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ABSTRACT This paper considers a downlink cloud radio access network (C-RAN) in which all the
base-stations (BSs) are connected to a central computing cloud via digital backhaul links with finite
capacities. Each user is associated with a user-centric cluster of BSs; the central processor shares the user’s
data with the BSs in the cluster, which then cooperatively serve the user through joint beamforming. Under
this setup, this paper investigates the user scheduling, BS clustering, and beamforming design problem from
a network utility maximization perspective. Differing from previous works, this paper explicitly considers
the per-BS backhaul capacity constraints. We formulate the network utility maximization problem for the
downlink C-RAN under two different models depending on whether the BS clustering for each user is
dynamic or static over different user scheduling time slots. In the former case, the user-centric BS cluster is
dynamically optimized for each scheduled user along with the beamforming vector in each time-frequency
slot, whereas in the latter case, the user-centric BS cluster is fixed for each user and we jointly optimize
the user scheduling and the beamforming vector to account for the backhaul constraints. In both cases,
the nonconvex per-BS backhaul constraints are approximated using the reweighted `1-norm technique.
This approximation allows us to reformulate the per-BS backhaul constraints into weighted per-BS power
constraints and solve the weighted sum rate maximization problem through a generalized weightedminimum
mean square error approach. This paper shows that the proposed dynamic clustering algorithm can achieve
significant performance gain over existing naive clustering schemes. This paper also proposes two heuristic
static clustering schemes that can already achieve a substantial portion of the gain.

INDEX TERMS Cloud radio access network (C-RAN), network multiple-input multiple-output (MIMO),
coordinated multi-point (CoMP), limited backhaul, user scheduling, base-station clustering, beamforming,
weighted sum rate maximization, weighted minimum mean square error (WMMSE).

I. INTRODUCTION
The fifth-generation (5G) wireless system is expected to sup-
port an ever increasing number of mobile devices with ubiq-
uitous service access. To realize this 5G vision, ultra-dense
small cell deployments and cloud computing are recognized
as the two key enabling technologies [2]. With small cells,
the received signal strength is enhanced at the user’s side due
to the reduced distance to the serving base-stations (BSs).
However, as the neighboring BSs are also located closer in
distance, the users are exposed to more inter-cell interfer-
ence, which limits the performance of the cellular network.
Cloud radio access network (C-RAN) is an emerging network
architecture that is capable of dealing with this inter-cell
interference issue. In C-RAN, the BSs are connected to a
central processor (CP) via digital backhaul links. This allows
the CP to jointly encode the user messages using linear

precoding or beamforming techniques for interference
mitigation purpose in the downlink. The C-RAN architecture
can be thought of as a platform for the practical implementa-
tion of network multiple-input multiple-output (MIMO) and
coordinated multi-point (CoMP) transmission concepts [3].
This paper studies the optimization of the C-RAN archi-

tecture focusing on the effect of finite-capacity backhaul
links on the overall network capacity. In this realm, several
practical transmission strategies have been proposed for the
downlink C-RAN to account for the finite backhaul. In one
such strategy, the CP performs the beamforming operation,
then compresses and forwards the beamformed signals to the
BSs. Compression is needed because of the capacity limits of
the backhaul links. This strategy is investigated in [4] and [5]
and is referred to as the compression strategy in this paper.
In an alternative strategy, each user is associated with a cluster
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of multiple BSs and the CP simply shares each user’s mes-
sage directly with its serving BS cluster. The BSs form the
beamformed signals locally, then cooperatively transmit the
signals to the users. This strategy is studied in [4], [6], and [7]
and is referred to as the data sharing strategy in this paper. In
the compression strategy, the amount of available backhaul
capacity determines the resolution of the compressed sig-
nals: higher-resolution compression requires larger backhaul
capacity. In the data sharing strategy, the amount of required
backhaul capacity is related to the BS cluster size: larger
cluster size leads to higher backhaul consumption.

This paper focuses on the data sharing strategy. The
performance of the data sharing strategy depends cru-
cially on the choice of BS cooperation cluster for each
user. Broadly speaking, there are two types of BS clus-
tering schemes for data sharing: disjoint clustering and
user-centric clustering. In disjoint clustering scheme, the
entire network is divided into non-overlapping clusters
and the BSs in each cluster jointly serve all the users
within the coverage area [8]. Although disjoint clus-
tering scheme has already been shown to be effec-
tive in mitigating the inter-cell interference [9], [10],
users at the cluster edge still suffer from considerable
inter-cluster interference. Differently, in user-centric cluster-
ing, each user is served by an individually selected subset
of neighboring BSs and different clusters for different
users may overlap. The benefit of user-centric clustering
is that there exists no explicit cluster edge. This paper
adopts the user-centric clustering scheme and further con-
siders two different implementations of user-centric clus-
tering depending on whether BS clustering is dynamic
or static over the different user scheduling time slots.
In dynamic clustering, the BS cluster for each user can
change over time, allowing for more freedom to fully
utilize the backhaul resources. However, dynamic cluster-
ing scheme also requires more signaling overhead as new
BS-user associations need to be established continuously.
In static clustering, the BS-user association is fixed over time
and may only need to be updated as the user location changes.

This paper considers both dynamic and fixed clustering
schemes, and proposes joint clustering, user scheduling and
beamforming designs for the downlink C-RAN with user-
centric data sharing strategy. We explicitly take per-BS back-
haul capacity constraints into account in the network utility
maximization framework, and use the `1-norm reweighting
technique in compressive sensing and a generalized weighted
minimum mean square error (WMMSE) [11], [12] approach
to solve the problem. We show that dynamic clustering can
significantly outperform the naive channel strength based
clustering strategy, while the proposed heuristic static clus-
tering schemes can already achieve a substantial portion of
the performance gain.

A. RELATED WORK
The information-theoretical capacity of the C-RAN model
has been considered extensively in the literature. However,

most of the theoretical analysis on C-RAN is restricted to
simplified channel models [6], [7], [13], [14]. Specifically,
the achievable rate regions derived in [6] and [7] are based
on a two-BS-two-user channel model, while [13] and [14]
consider Wyner-like channel models and report the achiev-
able rates and capacity bounds, respectively. In [15] and [16],
large-system analysis of network MIMO system is carried
out. Although based on simplified models, these previous
information-theoretical results already reveal the benefits of
C-RAN in significantly improving the system performance.
This paper focuses on practical system design for the down-

link C-RAN. This design problem has been considered in the
literature under various performance metrics. For instance,
under the signal-to-interference-and-noise ratio (SINR)
constraints at the receivers, [17] considers backhaul min-
imization while [18] and [19] consider network power
minimization as the objective. Furthermore, the opti-
mal tradeoff between the backhaul capacity and trans-
mit power is investigated in [20]–[22], while several other
performance measures like mean square error (MSE) and
energy efficiency (bits/Joule delivered to the users) are
considered in [23]–[26], respectively.
In this paper, we consider the network utility as the per-

formance measure for the downlink C-RAN. Differing from
the utility maximization problems in conventional wireless
networks with only transmit power constraints, the additional
backhaul constraints in C-RANmake the problem more chal-
lenging as the backhaul consumption at a particular BS is a
function of not only the (continuous) user rates but also the
(discrete) number of associated users. To tackle this mixed
continuous and discrete optimization problem, existing liter-
ature mostly take the limited backhaul capacities into account
implicitly either by fixing the BS clusters [27]–[29] or by
adding the backhaul as a penalized term into the objective
function [30]–[32]. Specifically, [27] considers sum ratemax-
imization under fixed and disjoint clustering scheme while
[28] and [29] maximize a more general utility function under
user-centric but predetermined BS clusters. Dynamic user-
centric clustering design is considered in [30] by penalizing
the objective function with an `2-norm approximation of the
cluster size. Alternatively, [31] and [32] choose the backhaul
rate as the penalized term but solve the problem heuristically.
For fixed clustering scheme assumed in [27]–[29], the back-
haul consumption is only known afterwards by evaluating the
rates of user messages delivered in each backhaul link. For
dynamic clustering designs considered in [30]–[32], one has
to optimally choose the price associated with each penalized
term to ensure that the overall backhaul stays within the
budget, which is not easy.
In contrast to all the above existing works in network utility

maximization for the downlink C-RAN, this paper explicitly
formulates the per-BS backhaul constraints in the optimiza-
tion framework. With explicit per-BS backhaul constraints,
we show that the backhaul resources can be more efficiently
utilized and that the network utility can be significantly
improved.
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The BS clustering problem for C-RAN with limited
backhaul capacity is combinatorial in nature, for which
finding the global optimum is expected to be quite
challenging. Several suboptimal cluster formation algorithms
have already been proposed in the literature. In [33], the
BS cluster is assumed to be selected from a set of prede-
termined candidate clusters, and a greedy cluster selection
algorithm is proposed to maximize the network utility.
Alternatively, [34] models the cluster formation problem
using graph theory, while [35] treats the problem from queu-
ing theory perspective.

This paper differs from previous work in that we
propose a dynamic clustering scheme by optimizing a
sparse beamforming vector for each user, where the
nonzero entries in the beamforming vector correspond to
the user’s serving cluster. This allows the formulations
of the BS clustering problems as an `0-norm optimiza-
tion problem and its subsequent solution via an applica-
tion of the `1-norm reweighting technique in compressive
sensing.

This paper proposes a novel application of WMMSE
approach to jointly optimize the user scheduling and beam-
forming vectors under either dynamic or fixed BS clustering.
This is in contrast to [28], which uses the first-order Taylor
expansion to approximate the the nonconvex rate expression.
Although the WMMSE approach has been applied to the
C-RAN setup in the past [29], [30], these previous works
do not explicitly take the backhaul constraints into consid-
eration. As related work, the WMMSE approach has also
been adapted to solve the max-min fairness problem for
MIMO interfering broadcast channel [36], a link flow rate
control problem for the radio access network [37] and a
power minimization problem under time-averaged user rate
constraints for the CoMP architecture [38]. Recently, the
WMMSE technique is generalized in [39] to a wider class
of network setups using the successive convex approximation
idea. Finally, we mention that the WMMSE is a numerical
approach for solving for a stationary point to the weighted
sum rate (WSR) maximization problem over the beamform-
ers, which is known to be a challenging problem. Recent
progress for finding globally optimal solution to the WSR
maximization problem under various conditions has been
reported in [40]–[42].

B. MAIN CONTRIBUTIONS
This paper considers the user scheduling, user-centric
BS clustering and beamforming design problem for the down-
link C-RAN. Themain contributions in this paper are summa-
rized as follows:

1) Per-BS backhaul constraints are explicitly considered
in the network utility maximization problem for the
downlink C-RAN under data sharing strategy. A key
novel technique proposed in this paper is that the per-
BS backhaul constraint can be formulated in a weighted
`0-norm format and approximated using the reweighted
`1-norm.

2) A novel application of the WMMSE approach is pro-
posed to solve the utility maximization problem with
backhaul constraints. The proposed algorithm can be
applied to the cases where the BS clustering for each
user can be either dynamic or static.

3) We show numerically that with explicit per-BS
backhaul constraints, the proposed algorithm is able to
utilize the backhaul resources more efficiently, as well
as to offer more flexibilities in choosing the cluster size.
Simulation results also show that as compared with the
naive clustering schemes, both the dynamic and the
static clustering schemes proposed in this paper achieve
significant performance improvement.

C. PAPER ORGANIZATION AND NOTATIONS
The rest of the paper is organized as follows. Section II
introduces the system model. Section III considers dynamic
BS clustering and proposes a joint scheduling, beamforming
and clustering design algorithm together with two additional
techniques to further reduce the computational complexity of
the proposed algorithm. In Section IV, the user scheduling
and beamforming vectors are jointly optimized under fixed
BS clustering and two heuristic static clustering algorithms
are proposed. Numerical results are provided in Section V.
Conclusions are drawn in Section VI.
Throughout this paper, lower-case bold letters (e.g. w)

denote vectors and upper-case bold letters (e.g. H) denote
matrices.We useR andC to denote real and complex domain,
respectively. The matrix inverse, conjugate transpose and
`p-norm of a vector are denoted as (·)−1, (·)H and | · |p respec-
tively. The complex Gaussian distribution is represented by
CN (·, ·) while Re{·} stands for the real part of a scalar. The
expectation of a random variable is denoted as E [·]. Calligra-
phy letters are used to denote sets while |·| stands for either the
size of a set or the absolute value of a real scalar, depending
on the context.

II. SYSTEM MODEL
Consider a downlink C-RAN with L BSs and K users,
where each BS has M transmit antennas while each user has
N receive antennas. Each BS l is connected to a CP with a
backhaul link with capacity limit Cl, l ∈ L = {1, 2, . . . ,L},
as depicted in Fig. 1. We assume that the CP has access to all
users’ data and distributes each user’s data to an individually
selected cluster of BSs via the backhaul links. Each user is
then cooperatively served by its serving cluster through joint
beamforming.
In order to represent the BS cluster and transmit beam-

former in a compact form, we introduce a network-wide
beamforming vector wk = [w1

k ,w
2
k , . . . ,w

L
k ] ∈ CMt×1 for

each user k ∈ K = {1, 2, . . . ,K }, where Mt = LM and
wl
k ∈ CM×1 is the transmit beamformer from BS l to user k .

Suppose that BS l is not part of user k’s serving cluster, then
the corresponding beamformer blockwl

k is set to 0. Since each
user is expected to be served by only a small number of BSs,
the network-wide beamforming vector wk is group sparse.
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FIGURE 1. Downlink C-RAN with per-BS backhaul capacity limits, where
each user is cooperatively served by a user-centric and potentially
overlapping subset of BSs.

Here, we assume that all the L BSs can potentially serve each
scheduled user in order to simplify the notations. However,
the proposed algorithms in this paper can be readily applied
to the situation where only a subset of BSs are considered as
each user’s candidate serving BSs.1

With linear transmit beamforming scheme at the BSs, the
received signal at user k , denoted as yk ∈ CN×1, can be
written as

yk = Hkwksk +
∑

j 6=k,j∈K
Hkwjsj + nk , (1)

where Hk ∈ CN×Mt denotes the channel state information
(CSI) matrix from all the Mt transmit antennas to user k ,
nk ∈ CN×1 is the received noise at user k and is assumed
to be distributed as CN (0, σ 2I). In this paper, we consider
the case where each user has only a single data stream for
simplicity and assume that user k’s message sk is independent
and identically distributed according to CN (0, 1). Under this
consideration, the achievable rate for user k can be written as:

Rk= log

1+wH
k H

H
k

∑
j 6=k
j∈K

HkwjwH
j H

H
k +σ

2I


−1

Hkwk

.
(2)

Note that the rate expression (2) can also account for the
user scheduling operation. A user k is scheduled, i.e. Rk is
nonzero, if and only if its beamformer vector wk is nonzero.
In other words, the scheduling choice is determined by the
indicator function:

1

{
‖wk‖

2
2

}
=

{
0, if ‖wk‖

2
2 = 0

1, otherwise.
(3)

In this manner, the user scheduling, BS clustering and beam-
forming design for the downlink C-RAN is unified within this

1In the simulation part of this paper, only the strongest few BSs around
each user are considered as the candidate serving BSs in order to reduce the
computational complexity of the proposed algorithms.

single task of determining the sparse beamforming vector wk
for each user.
In this paper, we assume that the CP has access to global

CSI for designing the sparse beamforming vector wk . Once
wk is determined, the CP transmits user k’s message, along
with the beamforming coefficients, to those BSs correspond-
ing to the nonzero entries in wk through the backhaul links.
We also assume that the channels are slow varying and only
consider the backhaul consumption due to the user data
sharing and ignore the backhaul required for sharing CSI and
delivering beamforming coefficients.
Intuitively, the backhaul consumption at the lth BS is the

accumulated data rates of the users served by BS l. Notation-
ally, we can characterize whether or not user k is served by
BS l using the indicator function 1

{∥∥wl
k

∥∥2
2

}
and cast the per-

BS backhaul constraint as:∑
k∈K

1

{∥∥∥wl
k

∥∥∥2
2

}
Rk ≤ Cl, ∀l. (4)

Specifically, in the case where the serving cluster for each
user is fixed, or equivalently the set of users associated with
each BS is predetermined, the backhaul consumption at BS l
is also equal to the accumulated data rates of users associated
with BS l, which can be formulated as∑

k∈Kl

Rk ≤ Cl, ∀l (5)

where Kl ⊆ K denotes the fixed subset of users associated
with BS l. Note that in each time-frequency slot, only the
subset of users scheduled to be served have nonzero rates.
So in (5), summing over the set of users associated with BS l
is equivalent to summing over the set of scheduled users.
From (4) and (5), we see that the backhaul consumption is

a function of both the cluster size and the user rate, where
in addition the user rate is a function of user scheduling
and beamforming operation. This observation provides us
with different degrees of freedom in controlling the back-
haul consumption depending on whether the BS clustering
is dynamic or fixed in different user scheduling time slots.
When the BS clustering is dynamic, we can jointly design
the clustering, scheduling and beamforming to satisfy the
per-BS backhaul constraint expressed in (4). But even when
the BS clustering is fixed (or static), we can still control the
user rates through scheduling and beamforming vectors to
make sure that the backhaul constraint expressed in (5) is
satisfied. In the following two sections, we discuss in detail
how to incorporate the per-BS backhaul constraints in net-
work utility maximization framework for downlink C-RAN
under the above two different situations.

III. UTILITY MAXIMIZATION WITH
DYNAMIC BS CLUSTERING
In this section, we propose a joint dynamic clustering, user
scheduling and beamforming design strategy for the down-
link C-RAN. The proposed algorithm designs a group sparse
beamforming vector wk for each user in each scheduling
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slot using an `1-norm reweighting technique followed by a
WMMSE approach under explicit per-BS backhaul capacity
constraints.

A. PROBLEM FORMULATION
This paper considers network utility maximization as the
objective. Among the family of utility functions, WSR has
been widely applied to network control and optimization
problems. In this paper, we also adopt the WSR utility
but point out that the proposed scheme can be readily
extend to any utility function that holds an equivalence rela-
tionship with the WMMSE problem (see [12] for a suf-
ficient condition on the utility functions holding such an
equivalence).

In dynamic BS clustering, the serving cluster for each
user is a variable to be optimized in each scheduling slot.
We adopt the per-BS backhaul constraint formulation (4)
and formulate the WSR maximization problem under per-BS
power constraints and per-BS backhaul constraints as:

maximize{
wlk |l∈L,k∈K

}∑
k∈K

αkRk (6a)

subject to
∑
k∈K

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l (6b)

∑
k∈K

1

{∥∥∥wl
k

∥∥∥2
2

}
Rk ≤ Cl, ∀l (6c)

where αk denotes the priority weight associated with user
k at the current scheduling slot which can be updated
according to, for example, the proportional fairness criterion.
Here, Pl and Cl represent the transmit power budget and the
backhaul capacity limit for BS l, respectively. The rate Rk
shown in (6a) and (6c) is defined in (2), which is a function
of the set of sparse beamforming vectors wk ’s only. Note that
wk is comprised of the beamforming vectors wl

k ’s. Thus, the
optimization variables for problem (6) are the set of wl

k ’s.

B. PROPOSED ALGORITHM
The conventional WSR maximization problem is a
well-known nonconvex optimization problem, for which find-
ing the global optimal solution is already quite challenging
even without the additional mixed discrete and continuous
backhaul constraint (6c). This paper focuses on heuristic
algorithms for approaching a local optimum solution to the
problem (6) only. Our main contribution is a new way of
dealing with the discrete indicator function in constraint (6c).

A key observation made in this paper is that the indicator
function in (6c) can also be equivalently expressed as an
`0-norm of a scalar. The `0-norm is the number of nonzero
entries in a vector. So it reduces to an indicator function in
the scalar case. This equivalent expression allows us to use
ideas from the compressive sensing literature [43], where
a nonconvex `0-norm optimization objective can often be
approximated by a convex reweighted `1-norm, i.e.

‖x‖0 ≈
∑
i

βi|xi| (7)

where xi denotes the ith component in the vector x andβi is the
weight associated with xi. By properly choosing weights βi’s,
the minimization of ‖x‖0 can be effectively solved through
the minimization of

∑
i βi|xi| instead.

This paper goes one step further in that we extend the
reweighted `1-norm approximation technique (7) originally
proposed for minimizing the `0-norm in the objective to
dealing with the `0-norm in the constraint. In particular,
we rewrite the indicator function 1

{∥∥wl
k

∥∥2
2

}
as

1

{∥∥∥wl
k

∥∥∥2
2

}
=

∥∥∥∥∥∥∥wl
k

∥∥∥2
2

∥∥∥∥
0
, (8)

and reformulate the backhaul constraint (6c) as:∑
k∈K

β lk

∥∥∥wl
k

∥∥∥2
2
Rk ≤ Cl (9)

where β lk is a constant weight associated with BS l and user
k and is updated iteratively according to

β lk =
1∥∥wl

k

∥∥2
2 + τ

, ∀k, l (10)

with some small constant regularization factor τ > 0 and∥∥wl
k

∥∥2
2 from the previous iteration.

The heuristic weight updating rule (10) is motivated by the
fact that by choosing β lk to be inversely proportional to the
transmit power level

∥∥wl
k

∥∥2
2, those BSs with lower transmit

power to user k would have higher weights and would be
forced to further reduce its transmit power and encouraged
to drop out of the BS cluster eventually. Note that not only
the BS cluster formation, but also the user scheduling can
be controlled through

∥∥wl
k

∥∥2
2 since the user k is scheduled

if and only if there exists at least one BS l ∈ L such that∥∥wl
k

∥∥2
2 6= 0.

However, even with the above approximation, the opti-
mization problem (6) with the backhaul constraint (6c)
replaced by (9) is still difficult to deal with, due to the fact
that the rate Rk appears in both the objective function and the
constraints. To address this difficulty, we propose to solve the
problem (6) iteratively with fixed rate R̂k in (9) obtained from
the previous iteration. Under fixed β lk and R̂k , problem (6)
now reduces to

maximize{
wlk |l∈L,k∈K

}∑
k∈K

αkRk (11a)

subject to
∑
k∈K

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l (11b)

∑
k∈K

β lk R̂k
∥∥∥wl

k

∥∥∥2
2
≤ Cl, ∀l (11c)

where the approximated backhaul constraint (11c) can
be interpreted as a weighted per-BS power constraint
bearing a resemblance to the traditional per-BS power
constraint (11b).
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Although the approximated problem (11) is still noncon-
vex, we can reformulate it as an equivalent WMMSE prob-
lem and use the block coordinate descent method to reach
a stationary point of (11). The equivalence between WSR
maximization and WMMSE is first established in [11] for
MIMO broadcast channel and later generalized to MIMO
interfering channel in [12] and MIMO interfering channel
with partial cooperation in [29].

It is not difficult to see that the generalized WMMSE
equivalence established in [12] also extends to the problem
(11) with the newly introduced weighted per-BS power con-
straint (11c). We explicitly state the equivalence as follows:
Proposition 3.1: The WSR maximization problem (11)

has the same optimal solution as the following WMMSE
problem:

minimize{
ρk ,uk ,wlk |l∈L,k∈K

}∑
k∈K

αk (ρkek − log ρk)

subject to
∑
k∈K

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l

∑
k∈K

β lk R̂k
∥∥∥wl

k

∥∥∥2
2
≤ Cl, ∀l (12)

where ρk denotes the MSE weight for user k and ek is the
corresponding MSE defined as

ek = E
[∥∥∥uHk yk − sk∥∥∥22

]

= uHk

∑
j∈K

HkwjwH
j H

H
k + σ

2I

uk

−2Re
{
uHk Hkwk

}
+ 1 (13)

under the receiver uk ∈ CN×1.
The advantage of solvingWSRmaximization problem (11)

through its equivalent WMMSE problem (12) is that (12) is
convex with respect to each of the individual optimization
variables. This crucial fact allows problem (12) to be solved
efficiently through the block coordinate descent method by
iteratively optimizing over ρk , uk and wk :

• The optimal MSE weight ρk under fixed wk and uk is
given by

ρk = e−1k , ∀k. (14)

• The optimal receiver uk under fixed wk and ρk is the
MMSE receiver:

uk =

∑
j∈K

HkwjwH
j H

H
k + σ

2I

−1Hkwk , ∀k. (15)

• The optimization problem for finding the optimal
transmit beamformer wk under fixed uk and ρk
is a quadratically constrained quadratic program-

ming (QCQP) problem:

minimize{
wlk |l∈L,k∈K

}∑
k∈K

wH
k

∑
j∈K

αjρjHH
j uju

H
j Hj

wk

− 2
∑
k∈K

αkρkRe
{
uHk Hkwk

}
subject to

∑
k∈K

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l

∑
k∈K

β lk R̂k
∥∥∥wl

k

∥∥∥2
2
≤ Cl, ∀ l (16)

which can be solved using a standard convex optimiza-
tion solver such as CVX [44].

A straightforward way of applying the above WMMSE
algorithm to solve the original problem (6) would involve
two loops: an inner loop to solve the approximated WSR
maximization problem (11) with fixed weight β lk and rate R̂k ,
and an outer loop to update β lk and R̂k . Although such an
algorithm can guarantee that the inner loop converges to
a stationary point of the problem (11), its computational
complexity can be high. Instead, we propose to combine
these two loops into a single loop and update the weight β lk
and rate R̂k inside the WMMSE algorithm, as summarized
in Algorithm 1. Although Algorithm 1 does not have a proof
of convergence, numerical simulation shows that it converges
reasonably fast, and it significantly outperforms the fixed
clustering baseline schemes.

Algorithm 1 WSR Maximization With Per-BS Backhaul
Constraints Under Dynamic BS Clustering

Initialization: β lk , R̂k ,wk ,∀l, k;
Repeat:
1) Fix wk ,∀k , compute the MMSE receiver uk and the

corresponding MSE ek according to (15) and (13);
2) Update the MSE weight ρk according to (14);
3) Find the optimal transmit beamformer wk under fixed

uk and ρk ,∀k , by solving the QCQP problem (16);
4) Compute the achievable rate Rk according to (2), ∀k;
5) Update R̂k = Rk and β lk according to (10), ∀l, k .

Until convergence

C. COMPLEXITY ANALYSIS
Assuming a typical network withK > L > M > N , the com-
putational complexity of Step 1 inAlgorithm 1 isO(K 2LMN ),
mainly due to the receive covariance matrix computation in
(15) and (13). With the MSE ek obtained from Step 1, the
additional computational complexity for Step 2 for updating
all the MSE weights ρk ’s is only O(K ). Step 3 requires
solving a QCQP problem, which can also be equivalently
reformulated as a second order cone programming (SOCP)
problem as we do in the simulation part of this paper. The
total number of variables in the equivalent SOCP problem is

VOLUME 2, 2014 1331



B. Dai, W. Yu: Sparse Beamforming and User-Centric Clustering

KLM and the computation complexity of using interior-point
method to solve such an SOCP problem is approximately
O((KLM )3.5) [45]. In Step 5, the rate updating procedure
requires the computation of the achievable rate in Step 4
according to (2), which has the same computational complex-
ity as computing the MSE, i.e. O(K 2LMN ). As we can see,
the computational complexity of Algorithm 1 per iteration
mainly comes from the optimal transmit beamformer design
in Step 3. Suppose Algorithm 1 requires T total number of
iterations to converge, the overall computational complexity
of Algorithm 1 is therefore O((KLM )3.5T ).

D. HEURISTIC COMPLEXITY REDUCTION TECHNIQUES
To improve the efficiency of Algorithm 1 in each iteration,
in what follows, we further propose two techniques, iterative
link removal and iterative user pool shrinking. The former
aims at reducing the number of potential transmit antennas
LM serving each user while the latter is intended to decrease
the total number of users K to be considered in each iteration.

1) ITERATIVE LINK REMOVAL
Similar to what we observed in [20], the transmit power from
some of the candidate serving BSs would drop down rapidly
as the iterations go on. By taking advantage of this fact, we
propose to iteratively remove the lth BS from the kth user’s
candidate cluster once the transmit power from BS l to user k ,
i.e.

∥∥wl
k

∥∥2
2, is below a certain threshold, say −100 dBm/Hz.

This reduces the dimension of the potential transmit beam-
former for each user and reduces the complexity of solving
SOCP in Step 3 of Algorithm 1.

2) ITERATIVE USER POOL SHRINKING
The proposed algorithm does user scheduling implicitly.
We observe from simulations that, it is beneficial for
Algorithm 1 to consider a large pool of users. However, to
consider all the users in the entire network all the time would
incur significant computational burden. Instead, we propose
to check the achievable user rate Rk in Step 4 in each iteration
and ignore those users with negligible rates (below some
threshold, say 0.01 bps/Hz) for subsequent iterations. Our
simulations show that, after around 10 iterations, more than
half of the total users can be taken out of the consideration
with negligible performance loss to the overall algorithm.
This significantly reduces the total number of variables to be
optimized.

IV. UTILITY MAXIMIZATION WITH
STATIC BS CLUSTERING
In the previous section, BS clustering is dynamically
determined in each time-frequency slot together with the
beamforming vector and user scheduling in a joint fashion.
However, dynamic BS clustering may incur significant
signaling overhead in practice as new BS-user associations
need to be established continuously over time. In this section,
we discuss static clustering schemes, where the BS clusters

only need to be updated at much larger time scale, typically
only when user locations change.
As discussed previously, backhaul consumption under

static clustering can still be controlled by jointly optimizing
the user scheduling and beamforming. In this section, we
first adapt the sparse beamforming algorithm proposed in
previous section to jointly schedule the users and design
the beamforming vectors under per-BS backhaul constraints
while assuming that the BS clustering is fixed. We then
propose two heuristic static clustering schemes: one depends
on the maximum number of users each BS can support and
the long-term channel condition each user experiences; the
other generalizes the SINR-bias technique used for cell range
expansion [46] to form a static cluster for each user.

A. JOINT SCHEDULING AND BEAMFORMING
DESIGN WITH FIXED BS CLUSTERING
Let Lk be the fixed cluster of BSs serving user k . The
joint scheduling and beamforming design problem is that
of determining the scheduled users in each time-frequency
slot and the corresponding beamformers from the BSs in Lk
to each scheduled user k while satisfying the per-BS power
constraints and per-BS backhaul constraints.
Equivalently, let Kl be the set of users associated with

BS l, the network utility maximization problem can now be
formulated as

maximize{
wlk |k∈K,l∈Lk

}∑
k∈K

αkRk (17a)

subject to
∑
k∈Kl

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l (17b)

∑
k∈Kl

Rk ≤ Cl, ∀l (17c)

Note that the difference between the utility maximization
problems (17) and (6) is that the transmit power and backhaul
constraint for BS l now only need to take into account the
fixed subset of users associated with BS l, Kl . Also, the opti-
mization variable wl

k is only over the beamforming vectors
from the BSs in each user k’s serving clusterLk sincewl

k = 0
for l /∈ Lk .
Note that user scheduling is implicitly being optimized

in (17). Only the subset of users scheduled in the current
time-frequency slot would have nonzero rates and need to
be considered in the summations (17b) and (17c). With this
observation, we can rewrite (17c) in the following equivalent
form: ∑

k∈Kl

1

{∥∥∥wLk
k

∥∥∥2
2

}
Rk ≤ Cl, ∀l. (18)

where wLk
k ∈ C|Lk |M×1 is the beamforming vector from user

k’s serving cluster Lk to user k . This allows us to utilize
a similar idea as in previous section to solve problem (17)
approximately by fixing the user rate Rk in the constraint
and approximating the indicator function in (18) using the
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reweighted `1-norm technique. The resulting approximated
optimization problem to (17) now becomes

maximize{
wlk |k∈K,l∈Lk

}∑
k∈K

αkRk (19a)

subject to
∑
k∈Kl

∥∥∥wl
k

∥∥∥2
2
≤ Pl, ∀l (19b)

∑
k∈Kl

βk R̂k
∥∥∥wLk

k

∥∥∥2
2
≤ Cl, ∀l (19c)

where βk is the constant weight associated with the prede-
termined BS cluster Lk for user k and is updated iteratively
according to

βk =
1∥∥∥wLk

k

∥∥∥2
2
+ τ

, ∀k, (20)

and R̂k is the achievable rate from previous iteration.
Comparing the weight updating rule (20) with (10), we

note that the role of β lk in problem formulation (11) is to
determine whether or not BS l should serve user k in the
current time-frequency slot, while the role of βk in problem
formulation (19) is to decide whether or not user k should be
scheduled and served by its predetermined serving cluster Lk
as a whole in the current time-frequency slot. Note that β lk
only appears in the lth BS backhaul constraint in (11c), while
in (19c) βk appears in the approximated per-BS backhaul
constraints corresponding to all of the user k’s pre-associated
cluster of BSs in Lk .

With the approximated problem formulation (19), it
becomes straightforward to extend Algorithm 1 for solving
problem (17). The only necessary adaptation occurs in Step 5
of Algorithm 1, where the update of weight β lk is replaced
by updating the weight βk according to (20). Under given
BS cluster Lk , we rewrite the MMSE receiver, MSE and
achievable rate for user k as below2:

uk =

∑
j∈K

H
Lj
k w

Lj
j

(
H
Lj
k w

Lj
j

)H
+ σ 2I

−1HLk
k wLk

k (21)

ek = uHk

∑
j∈K

H
Lj
k w

Lj
j

(
H
Lj
k w

Lj
j

)H
+ σ 2I

uk

−2Re
{
uHk H

Lk
k wLk

k

}
+ 1 (22)

Rk = log
(
1+

(
HLk
k wLk

k

)H(∑
j 6=k
j∈K

H
Lj
k w

Lj
j

(
H
Lj
k w

Lj
j

)H

+ σ 2I
)−1

HLk
k wLk

k

)
(23)

2One can also use the MMSE receiver, MSE and achievable rate defined
previously in (15), (13) and (2) respectively by filling those entries corre-
sponding to Lk in wk with wLk

k and the rest entries in wk with zero.

where H
Lj
k is the CSI matrix from user j’s serving cluster Lj

to user k . The proposed joint scheduling and beamforming
design algorithm under fixed BS clustering is summarized
in Algorithm 2.
It is worth noting that both Algorithm 1 and 2 implement

user scheduling operation implicitly by optimizing the beam-
forming vectors for all the users in the entire network but only
selecting those users with nonzero beamforming vectors to be
served. This is in contrast to the conventional user scheduling
approach, where typically a subset of users are pre-selected
and only the beamforming vectors corresponding to those pre-
selected users are optimized. Simulation results show that the
proposed algorithms are able to achieve better performance
by scheduling the users implicitly, although the performance
gain comes at a complexity cost.
We also note that both Algorithm 1 and 2 require global

CSI at the CP in order to schedule the users and to design
beamformers accordingly, which may lead to large channel
estimation overhead. Performance analysis of C-RAN with
partial CSI has been carried on in [47] under a simplified
model where the BSs and the users are equipped with a single
antenna each and no backhaul constraint is considered. The
impact of channel estimation overhead on the system perfor-
mance of C-RAN under a more realistic model considered in
this paper is nontrivial and is left for future work.

Algorithm 2 WSR Maximization With Per-BS Backhaul
Constraints Under Static BS Clustering

Initialization: βk , R̂k ,w
Lk
k ,∀k;

Repeat:
1) Fix wLk

k ,∀k , compute the MMSE receiver uk and the
corresponding MSE ek according to (21) and (22);

2) Update the MSE weight ρk according to (14);
3) Find the optimal transmit beamformer wLk

k under fixed
uk and ρk ,∀k , by solving the QCQP problem (16)
with wk , Hj and Hk replaced by wLk

k , HLk
j and HLk

k
respectively;

4) Compute the achievable rate Rk according to (23), ∀k;
5) Update R̂k = Rk and βk according to (20), ∀k .

Until convergence

B. PROPOSED STATIC CLUSTERING ALGORITHMS
Thus far in this section, we have dealt with the joint user
scheduling and beamforming design under per-BS backhaul
capacity constraints for any given fixed clustering scheme.
We now propose heuristic algorithms to optimize over the
clustering strategies.
Differing from the traditional BS-user association problem

where each user is only associated with a single BS, in
C-RAN each user is served by a cluster of BSs. The optimal
fixed BS clustering design for C-RAN is nontrivial as each
user wants to be served by as many nearby BSs as possible
while each BS can only support a limited number of users
due to the limited radio resources, i.e. transmit power, and
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limited backhaul capacity. A good clustering strategy for
C-RAN should account for not only the channel strength
from the BSs to each user but also the available resources at
each BS.

This paper adopts the user-centric clustering strategy, in
which each user is served by an individually selected and
potentially overlapping subset of BSs. A simple way of
forming user-centric clusters is to choose an equal number
of strongest BSs around each user as its serving cluster.
However, such a scheme may produce imbalanced traffic
loads across the network, especially in a heterogeneous
deployment where the macro-BSs typically havemuch higher
transmit power than the pico-BSs, so more than the optimal
number of users would associate with the macro-BSs. This
paper proposes two heuristic static clustering schemes to
address this load balancing issue. The first scheme is based on
imposing a maximum load on each BS. The second scheme
is based on introducing a bias term to the received signal
strength at each user. These two schemes are described in
detail below.

1) MAXIMUM LOADING BASED STATIC CLUSTERING
In order to avoid BS overloading, in this scheme, we propose
to set an upper bound on the number of users that can asso-
ciate with each BS l, denoted as Kl,max . The value of Kl,max
depends on the amount of resources available at BS l. For
example, in a heterogeneous network, the macro-BSs usually
have higher transmit power and more backhaul capacity than
the pico-BSs, hence Kl,max for macro-BSs should be larger
than that of pico-BSs. With Kl,max , those BSs that have
already reached its maximum number of associated users
would direct the subsequent users to other underloaded BSs.

At the user’s side, each user wants to be served by as many
nearby BSs as possible to obtain the highest service rate.
However, since a cell-center user typically already experi-
ences good channel condition, it is reasonable to connect it
with fewer BSs, whereas a cell-edge user may need more
serving BSs to coordinately mitigate inter-cell interference.
To capture the difference in the ideal cluster size for different
users, which depends on their relative locations, we propose
to set a candidate BS cluster for each user based on a threshold
on the received signal strength difference. For each user k ,
only those BSs from which the received signal strength is
within η1 gap to the signal strength from the strongest BS are
considered as potential serving BSs. Mathematically, let sl,k
be the received signal strength from BS l to user k , defined as
the maximum transmit power from BS l compensated by the
path loss to user k without accounting for possible antenna
beamforming gain, the candidate serving cluster Ck for user k
is a set defined as follows:

Ck =
{
l ∈ L| max

m
sm,k − sl,k ≤ η1

}
. (24)

Since a cell-edge user sees more nearby BSs with similar sig-
nal strength than a cell-center user, the candidate cluster size
|Ck | for a cell-edge user would be larger, which potentially
results in more serving BSs for the cell-edge user.

Based on the aforementioned parameter Kl,max and set Ck ,
we propose a simple user-centric clustering scheme based on
the following two heuristics:
• Each user k sends requests to the BSs in the candidate
set Ck sequentially from the strongest to the weakest;

• Each BS l accepts up to Kl,max users.
The details of the first proposed static clustering scheme
is shown in Algorithm 3, which requires a multi-round
negotiation between the BSs and the users until the BSs
are connected with the maximum number of users or
the users have exhausted all their BSs in the candidate
sets.

Algorithm 3Maximum Loading Based Static Clustering
Initialization:
1) K = {1, 2, · · · ,K }, L = {1, 2, · · · ,L};
2) Let Kl be the set of users associated with the lth BS.

Set Kl = ∅, l = 1, 2, · · · ,L;
3) Let Kl,max be the maximum number of users BS l can

support, l = 1, 2, · · · ,L;
4) Let Ck be the candidate serving cluster for user k , k =

1, 2, · · · ,K ;
5) Set iteration index i = 1.

Repeat:
1) Each user k ∈ K sends a request to the ith strongest BS

in Ck ;
2) For each BS l ∈ L:

If Kl,max − |Kl | ≥ total number of received requests
2.1) Kl = Kl ∪ {All the received requests};
otherwise
2.2) Kl = Kl ∪ {The

(
Kl,max − |Kl |

)
strongest users

among all the received requests};
2.3) L = L \ {l}.
end if

3) For each user k ∈ K, if it has exhausted all the candidate
BSs in the list Ck , update K = K \ {k};

4) i = i+ 1.
Until L = ∅ or K = ∅

We remark that the parameters Kl,max and Ck jointly play
an important role in determining the serving clusters in
Algorithm 3. Using Kl,max or Ck alone would not have pro-
duced a good clustering scheme. For instance, suppose each
BS is simply associated with theKl,max strongest users it sees,
then the cell-edge users would be at a risk of connecting with
noBSs. Or, if each user is served by all the BSs in its candidate
list Ck , then the high-power BSs may be overloaded. Only by
taking into account both the traffic load of each BS and the
channel condition of each user through the parameters Kl,max
and Ck jointly would the proposed Algorithm 3 be able to
produce a good clustering scheme.
It is worth noting that the use of (Kl,max , Ck ) in

Algorithm 3 is only one possibility in jointly controlling the
traffic load of the BSs and the channel condition of the users.
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For example, one can also set the candidate cluster for user k
as the strongest Lk BSs instead of the proposed Ck . Such an
algorithm also has reasonable performance. However, to find
a good Lk for each user in the entire network is not an easy
task. Suppose that the Lk is set to be equal for all users to
simplify the search, it may result in the cell-center users and
the cell-edge users being associated with an equal (or at least
a similar) number of BSs, which may lead to inefficient usage
of the backhaul resources. The proposed candidate cluster Ck
can be alternatively seen as one way to set a nonuniform Lk
for each user (as Lk = |Ck |) through a common parameter η1
as in (24).

2) BIASED SIGNAL STRENGTH BASED STATIC CLUSTERING
An alternative method for controlling the traffic load of the
BSs is to set a received signal strength bias ζl for eachBS l and
to determine the user-centric clusters based on the biased sig-
nal strength. By setting a higher bias for the underloaded BSs,
users around the overloaded BSs are prompted to connect
with the underloadedBSs instead. This biasing idea originates
from the SINR-bias technique for cell range expansion in the
traditional BS-user association problem for heterogeneous
networks [46], where each user is only associated with a
single BS. The proposed algorithm generalizes this idea to the
case where each user can associate with a cluster of multiple
BSs, and further combines the idea of biasing with the idea
of using a received signal strength gap threshold, denoted
as η2, to determine the cluster sizes for different users, as
done in (24). The proposed biased signal strength based
static clustering scheme is described in detail as Algorithm 4
below.

Algorithm 4 Biased Signal Strength Based Static Clustering
Let ζl be the received signal strength bias from BS l, l =
1, 2, · · · ,L, the serving BS cluster for user k is set as:

Lk =
{
l ∈ L| max

m

(
sm,k + ζm

)
−
(
sl,k + ζl

)
≤ η2

}
k = 1, 2, · · · ,K , where sm,k is the received signal strength
from BS m to user k .

V. SIMULATION RESULTS
In this section, numerical simulations are conducted to show
the effectiveness of the proposed algorithms. We consider
a 7-cell wrapped-around two-tier heterogeneous network
with the simulation parameters listed in Table 1. Each cell
is a regular hexagon with a single macro-BS located at
the center and 3 pico-BSs equally separated in space as
illustrated in Fig. 2. To simplify the discussion, we set
all the macro-BSs to have equal backhaul constraints and
likewise for the pico-BSs. The backhaul constraints are
denoted as (Cmacro,Cpico) respectively. The proposed algo-
rithms are simulated under the same power constraints listed
in Table 1 but with various sets of (Cmacro,Cpico) backhaul
constraints.

TABLE 1. Simulation parameters.

FIGURE 2. 7-cell wrapped around two-tier heterogeneous network.

A. DYNAMIC BS CLUSTERING
We first evaluate the performance of the proposed
Algorithm 1 under dynamic BS clustering. As indicated ear-
lier, instead of considering all the L BSs in the entire network
as candidates for serving each user, in simulations we only
consider the strongest Lc (Lc ≤ L) BSs around each user as its
candidate cluster. To illustrate how the sparse beamforming
vector wk for each user is formed using Algorithm 1, we plot
in Fig. 3 the power evolutions of the strongest 8 BSs for the
third user in the second cell as an example. As we can see,
after around 20 iterations only the first and third strongest BSs
maintain a reasonable transmit power level. They eventually
form the cluster to serve user 3 in cell 2. With the proposed
iterative link removal technique and by setting the threshold
to be−100 dBm/Hz, Algorithm 1 can narrow down the candi-
date BSs to only the strongest 4 BSs after the 5th iteration, and
to the (1st, 3rd, 4th) strongest BSs after the 8th iteration, and
finally to the (1st, 3rd) strongest BSs after the 17th iteration.
To demonstrate the effectiveness of the proposed itera-

tive link removal and iterative user pool shrinking tech-
niques in improving the efficiency of Algorithm 1, we plot
in Fig. 4 the CPU execution time needed for each iteration
in Algorithm 1. As we can see, the per-iteration execu-
tion time for Algorithm 1 drops dramatically from around
170 seconds to about 5 seconds within 20 iterations. This is
due to the continually shrinking candidate cluster size and
user scheduling pool. For instance, at the 20th iteration, the
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FIGURE 3. Power evolutions of the strongest 8 BSs for user 3 in cell 2,
(Cmacro,Cpico) = (245,70) Mbps, αk = 1,∀k, Lc = 8.

FIGURE 4. CPU execution time needed for each iteration in a linux x86_64
machine with 2.3 GHz CPU and 2 GB RAM under (Cmacro,Cpico) =

(245,70) Mbps, αk = 1,∀k, Lc = 8.

average candidate cluster size for each user is 1.96 and the
number of remaining users in the scheduling pool is 54, which
are only about 1/4 of the original cluster size Lc = 8 and the
total number of users K = 210, respectively.
In Fig. 5, we compare the cumulative distributions of

the long-term average user rates between Algorithm 1 with
dynamic clustering and the baseline scheme where each user
is served by the strongest S BSs (S = 1, 2, 3, 4). We first
run the baseline schemes using the WMMSE algorithm with-
out explicit backhaul constraints as in [29] and evaluate the
corresponding backhaul requirement for each BS afterwards.
We then set the explicit backhaul constraints (Cmacro,Cpico)
in Algorithm 1 to be the average backhaul requirements
over the macro-BSs and the pico-BSs respectively computed
from the baseline. The baseline is denoted as ‘‘Strongest S
BSs (Cmacro,Cpico) Mbps’’ while the proposed Algorithm 1
is denoted as ‘‘Dynamic Clustering (Cmacro,Cpico) Mbps.’’
Each curve in Fig. 5 is obtained by iteratively simulating
the corresponding scheme with fixed user priority weights
αk ’s and updating the weights as αk = 1/R̄k according to
the proportional fairness criterion, where R̄k is the long term
average data rate for user k .

FIGURE 5. Cumulative distribution function of user data rate comparison
with Lc = 8 and proportionally fair scheduling.

As we can see from Fig. 5, by optimizing with explicit
backhaul constraints, Algorithm 1 achieves significant perfor-
mance gain. We list the 50th percentile user rate comparison
betweenAlgorithm 1 and the baseline in Table 2. For instance,
around 35% improvement is obtained for the 50th percentile
user as compared with the baseline where each user is served
by the strongest 3 BSs. Note that since the baseline algorithm
connects each user to an equal number of neighboring BSs,
it inevitably favors high-rate users. In contrast, the proposed
Algorithm 1 can select clusters for each user adaptively, and
in particular can choose a larger cluster for the low-rate users,
thus achieving a significant overall gain from a network utility
perspective.

TABLE 2. 50th percentile user data rate comparison.

We also see from Fig. 5 that the ‘‘Dynamic Clustering
(690, 107) Mbps’’ scheme shows better performance as com-
pared to the baseline where each user is served by the
strongest 3 BSs as in the ‘‘Strongest 3 BSs (1197, 173)Mbps’’
scheme, while only requires about 60% of backhaul. To fur-
ther investigate the reason behind this significant reduction
in backhaul consumption, we plot the probability density
function (pdf) of the backhaul consumption in each time slot
for all the 7macro-BSs in Fig. 6. As we can see, the macro-BS
backhaul consumption for Algorithm 1 has a peak around its
constraint3 and is highly concentrated. However, the backhaul

3The slight excess over the backhaul constraint in the pdf curve is due to
the embedded pdf estimation function in MATLAB, which interpolates more
points at the boundary to smooth the estimated curve.

1336 VOLUME 2, 2014



B. Dai, W. Yu: Sparse Beamforming and User-Centric Clustering

FIGURE 6. Probability density distribution of maco-BS backhaul
consumption, where the straight magenta dashed line represents the
position of the corresponding Cmacro.

FIGURE 7. Convergence behavior of
∑

k log(R̄k ) for Algorithm 1 under
dynamic clustering, where R̄k is the long term average rate for user k
and Lc = 8.

consumption for the baseline is more spread out, whose peak
point is only about half of its backhaul requirement. Similar
phenomenon also occurs in the backhaul consumption for the
pico-BSs. The inefficient usage of the backhaul resource in
the baseline is due to fixed clustering and the lack of explicit
backhaul constraints. In contrast, the proposed dynamic clus-
tering with explicit backhaul constraints can adaptively form
the clusters for each user according to the available backhaul
budget, which also has an effect of balancing the data traffic.

Although a rigorous theoretical proof for the convergence
of the proposed Algorithm 1 is not yet available, we plot
in Fig. 7 the log utility evolutions for Algorithm 1 under
the same set of backhaul constraints as in Fig. 5. As we
can see, the proposed Algorithm 1 with dynamic BS cluster-
ing converges in roughly 40-50 iterations under each of the
(Cmacro,Cpico) settings.

B. STATIC BS CLUSTERING
We now evaluate the performance of Algorithm 2 under static
BS clustering schemes. In Fig. 8, we set the ‘‘Strongest
2 BSs’’ scheme from Fig. 5 as the baseline and set

FIGURE 8. Cumulative distribution function of user data rate comparison
with backhaul constraint (Cmacro,Cpico) = (690,107) Mbps under
proportionally fair scheduling.

its corresponding backhaul requirement (Cmacro,Cpico) =
(690, 107) Mbps as the explicit backhaul constraint for
Algorithm 2 under different static BS clustering schemes. We
first compare the baseline with Algorithm 2 in which each
user is associated with the strongest 3 and 4 BSs, respectively.
As we can see, by connecting each user to an additional
BS (strongest 3 BSs), the proposed Algorithm 2 with explicit
backhaul constraints improves the overall network utility by
sacrificing the high-rate users to improve the performance
of the low-rate users while still keeping the same backhaul
consumption. However, if each user is further connected to
one more additional BS (strongest 4 BSs), then the overall
performance is even worse than the case where each user
is connected to the strongest 2 BSs. This is because the
BSs are now overloaded under the given backhaul capacity
constraints and are forced to schedule only the low-rate users.
This illustrates the importance of choosing BS cluster size.

We also plot in Fig. 8 the performance of Algorithm 2
under the proposed static clustering schemes as listed in
Algorithm 3 and Algorithm 4, respectively, again with
(Cmacro,Cpico) = (690, 107) Mbps. In the maximum load-
ing based static clustering scheme, the maximum number of
users each macro-BS and each pico-BS can support is set
to be Kmacro,max = 70,Kpico,max = 10 and the received
signal strength gap is set as η1 = 14 dB. In the biased signal
strength based static clustering scheme, the received signal
strength bias is set as ζmacro = 0 dB for the macro-BSs and
ζpico = 6 dB for the pico-BSs and the received signal strength
gap is set as η2 = 12 dB. As we can see, the two proposed
clustering schemes have similar performance, and both can
achieve a significant portion of the performance gain that
the dynamic clustering scheme achieves over the baseline of
simply choosing the strongest BSs. For instance, compared
with the baseline at the 50th percentile user rate, both of
the proposed static clustering schemes show around 26%
performance improvement, while the proposed Algorithm 1
under dynamic clustering achieves 41.9% gain as listed in
Table 2.
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FIGURE 9. Cumulative distribution function of user data rate comparison
with backhaul constraint (Cmacro,Cpico) = (453,453) Mbps under
proportionally fair scheduling.

In Fig. 9, we compare the proposed static clustering
schemes with a different baseline. The baseline scheme
is chosen to be a disjoint clustering scheme where each
user is jointly served by the 4 BSs, i.e. 1 macro-BS and
3 pico-BSs, within its cell. Similar to Fig. 5, we first run
the disjoint clustering scheme usingWMMSE algorithm [29],
then set the backhaul constraints for the proposed algorithms
as the average backhaul consumptions evaluated from the
disjoint clustering scheme. Since the macro-BS and the pico-
BSs in each cell are associated with the same set of users,
the average backhaul consumptions for the macro-BSs and
for the pico-BSs are equal in the disjoint clustering scheme,
i.e. (Cmacro,Cpico) = (453, 453) Mbps. In this case, the
setting of Kmacro,max = 50,Kpico,max = 20 and η1 = 20 dB
provides the best performance for the proposed static cluster-
ing scheme inAlgorithm 3, while the setting of ζmacro = 0 dB,
ζpico = 14 dB and η2 = 12 dB provides the best performance
for the proposed static clustering scheme in Algorithm 4.
As we can see from Fig. 9, since the cluster-edge users suf-
fer from considerable inter-cluster interference, the disjoint
clustering scheme has a substantial number of low-rate users,
while the user-centric clustering schemes proposed in this
paper can effectively improve the performance of the low-rate
users. For example, for the 10th percentile user, both of the
proposed static clustering schemes improve the rate over the
disjoint clustering scheme by about 32%, while the proposed
Algorithm 1 under dynamic clustering achieves around 57%
improvement.

VI. CONCLUSION
This paper proposes an `0-norm formulation for the per-
BS backhaul constraint in a downlink C-RAN system.
By taking advantage of the `1-norm reweighting technique,
the nonconvex per-BS backhaul constraint is approximated
as a convex weighted per-BS power constraint. This approx-
imation allows us to use a generalized WMMSE approach to
solve the WSR maximization problem under two different

cases, depending on whether BS clustering is dynamic or
static over different time-frequency slots. In the former case,
we propose a joint user-centric clustering, user scheduling
and beamforming design algorithm; in the latter case we fix
the BS cluster for each user and jointly optimize the user
scheduling and beamforming vectors. We also provide two
static clustering formation algorithms, which can effectively
take into account both the traffic load of each BS and the
channel condition for each user. Simulation results show
that with explicit per-BS backhaul constraints, the proposed
dynamic clustering scheme is able to significantly improve
the system performance over the naive clustering schemes,
while the proposed static clustering schemes can already
achieve a substantial portion of the performance gain.
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