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ABSTRACT The massive multiple-input multiple-output (MIMO) system has drawn increasing attention
recently as it is expected to boost the system throughput and result in lower costs. Previous studies mainly
focus on time division duplexing (TDD) systems, which are more amenable to practical implementa-
tions due to channel reciprocity. However, there are many frequency division duplexing (FDD) systems
deployed worldwide. Consequently, it is of great importance to investigate the design and performance of
FDD massive MIMO systems. To reduce the overhead of channel estimation in FDD systems, a two-stage
precoding scheme was recently proposed to decompose the precoding procedure into intergroup precoding
and intragroup precoding. The problem of user grouping and scheduling thus arises. In this paper, we first
propose three novel similarity measures for user grouping based on weighted likelihood, subspace projec-
tion, and Fubini-Study, respectively, as well as two novel clustering methods, including hierarchical and
K-medoids clustering. We then propose a dynamic user scheduling scheme to further enhance the system
throughput once the user groups are formed. The load balancing problem is considered when few users
are active and solved with an effective algorithm. The efficacy of the proposed schemes are validated with
theoretical analysis and simulations.

INDEX TERMS Massive multiple-input multiple-output (MIMO), frequency division duplexing (FDD),

precoding, user grouping, load balancing.

I. INTRODUCTION

Last decades have witnessed ever-increasing demand
for higher data rates in wireless networks. To cater
for this demand, many advanced physical layer tech-
niques have been developed, e.g., multiple input multi-
ple output (MIMO) with orthogonal frequency division
multiplexing (OFDM). However, with linear throughput
improvement but the exponential growth on the data traffic,
the gap between the demand and supply has been increas-
ingly widened. To solve the problem, the next technology
we could resort to is massive MIMO (a.k.a. large-scale
MIMO, full-dimension MIMO, or hyper MIMO), which
significantly increases the system capacity by employing
a large number of antennas at the base station. As an
emerging and promising technology, large-scale MIMO also
enjoys many advantages such as low-power, robust transmis-
sions, simplified transceiver design, and simplified multiple-
access layer [1], [2], in addition to enhanced capacity.

Recently, lab demo systems have demonstrated the benefits
of massive MIMO [3], [4].

In general, the more transmit antennas, the more degrees
of freedom a massive MIMO system can provide, resulting in
higher reliability or larger throughput. It is expected that mas-
sive MIMO will tremendously boost up the system through-
put by simultaneously serving many users. However, due to
the difficulties of acquiring channel state information at the
transmitter side (CSIT), it is challenging to simultaneously
support a large number of users [2]. Most of the existing
works on massive MIMO systems consider the time-division-
duplexing (TDD) mode [5]-[7], within which by exploiting
channel reciprocity, the downlink channel can be estimated
through uplink training. Unfortunately, there is no such priv-
ilege in frequency-division-duplexing (FDD) systems, where
pilot based channel estimation and uplink channel feedback
are required. Such mechanisms usually consume considerable
spectrum and power resources.
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According to [8], there are much more FDD (> 300)
than TDD (< 40) LTE licenses worldwide. It is therefore
of great importance to investigate the massive MIMO design
for FDD systems. To reduce pilot resources and the channel
state information (CSI) feedback in FDD systems, a two-
stage precoding scheme has been proposed in [9] recently.
Firstly, the users in service are divided into groups, while
each group of users have similar second-order channel statis-
tics (i.e., transmit correlation). The same pre-beamforming,
or the first-stage precoding, is then used for each group of
users semi-statically. Next, with reduced dimensions on the
effective channel, simplified channel feedback can be realized
and the second-stage dynamic precoding can be applied. The
performance of such system design is largely dependent on
user grouping. In [10], a K-means clustering scheme, based
on chordal distance as the clustering metric, is introduced
for user grouping. In this paper, instead of chordal distance,
we propose three similarity measures as grouping metric,
namely, weighted likelihood similarity measure, subspace
projection based similarity measure, and Fubini-Study based
similarity measure. We also propose two clustering methods,
i.e., hierarchical clustering and K-medoids clustering, for
user grouping with the proposed metrics. Through theoretical
analysis and simulations, we validate the proposed approach
and find that the combination of weighted likelihood similar-
ity measure and hierarchical clustering achieves the largest
capacity among all the schemes examined in this paper.

Once user groups are formed, another important issue is
user scheduling, i.e., selecting users for transmission based on
instantaneous channel conditions. In this paper, we propose a
dynamic user scheduling method and derive a lower bound
for its achievable performance. If there are only a few active
users, some groups may barely have users while some other
groups are overloaded. Therefore, we also consider the load
balancing problem and develop an effective solution algo-
rithm. While some preliminary results can be found in [11],
we substantially extend our study with new contributions
including new methods, analysis, discussions, and results in
this paper.

The remainder of this paper is organized as follows.
Related works are discussed in Section II. In Section III,
we present the system model and preliminaries. We address
the user grouping and user scheduling problems in
Sections IV and V, respectively. Joint user grouping and
group load balancing is examined in Section VI. Our sim-
ulation study is presented in Section VII and Section VIII
concludes this paper.

Il. RELATED WORKS

As aforementioned, most of the existing works on massive
MIMO focus on TDD systems. Although TDD has the advan-
tage of exploiting the channel reciprocity, pilot contamination
remains the biggest problem for TDD systems [1], [2], [5].
For FDD systems, the system bottleneck lies in the cost of
acquiring CSIT. Broadly speaking there are two types of
transmission modes: open-loop and closed-loop, representing

948

the system without and with feedback, respectively. Our paper
falls into the latter category.

Assuming that the base station and the users share a
common set of training signals, both open-loop and closed-
loop training frameworks are proposed in [12]. In the open-
loop mode, the base station transmits training signals in a
round-robin manner, so that the receivers could estimate the
current channels using spatial or temporal correlations and
previous channel estimations. In the closed-loop mode, users
select the best training signal based on previously received
signals and return the index of these training signals to the
base station. In the next phase, the base station sends the
training signals according to the feedback in previous phases.
In [13], the feedback rate has been taken into consideration.
Since for a fixed feedback rate per antenna, channel quan-
tization grows exponentially with the number of transmit
antennas, a noncoherent trellis-coded quantization is pro-
posed with complexity growing linearly with the number of
antennas.

Pilot pattern design for channel estimation is consid-
ered in [14]. Presuming wireless channel to be a stationary
Gauss-Markov random process, pilot pattern is then designed
based on Kalman filtering, spatial and temporal channel
correlations. It is shown that the proposed scheme has low
complexity but better performance, especially for the one-ring
channel model.

A codebook design method is presented in [15] with lim-
ited or extremely low feedback, which could be considered as
an open-loop approach. The compressive sensing technique is
proposed in [16] to reduce the training and feedback overhead
for CSIT acquisition. Due to the hidden joint sparsity struc-
ture of massive MIMO systems, a distributed compressive
CSIT estimation scheme is proposed. The advantage is that
compressed measurements are taken locally at users, while
CSIT recovery is jointly performed at the base station. The
proposed scheme has been shown to outperform five other
algorithms in terms of normalized mean absolute error for
CSIT recovery and have close performance to a so-called
genie-aided scheme.

Similar to [9] and [10], Chen and Lau in [17] decompose
the overall precoder into an outer precoder and an inner
precoder, where the outer precoder suppresses the inter-cell
or inter-cluster interference and the inner precoder is used
for intra-cluster multiplexing. The contribution of [17] is to
reduce the complexity of computing the outer precoder from
OM3) to O(M?), and it is an online algorithm that is suitable
for time-varying channels.

It can be seen that these prior papers have not considered
the user grouping and scheduling problems in massive MIMO
systems. Based on the framework of [10], our recent work
in [11] proposes an improved K-means clustering scheme
and a dynamic user selection scheme. Another problem con-
sidered in [11] is the load balancing problem, which is also
addressed in [18] for TDD systems. In summary, the main
contribution of this paper on massive MIMO in FDD sys-
tems over [10], [11] lies in three aspects: new user grouping
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schemes with new grouping metrics, new user scheduling
schemes, and an effective load balancing design.

IIl. SYSTEM MODEL AND PRELIMINARIES

We consider a downlink system with M antennas at the base
station (BS) and a single antenna at each user terminal (UT).
The transmit antennas can have different geometries, e.g.,
being placed along one axis to form a uniform linear
array (ULA), along a circle to form a uniform circular
array (UCA), or in two or three dimensions. Denote y; as
the received signal at user k, k = 1,2, ..., K. The signals
received by all UTs y can be written as

y =HVd +z, (1)

where (-} denots the Hermitian of a matrix; H, of dimension
M x K, is the actual channel between the BS and the users;
V is the precoding matrix of dimension M x S; d is the data
vector of dimension S x 1; and z is the zero mean circulant
symmetric complex Gaussian noise vector. Throughout this
paper, we use a bold upper (lower) case symbol to denote a
matrix (vector), and a normal symbol to denote a scalar.

With the two-stage precoding approach in [9], precoding
is conducted as a multiplication of two precoding matrices,
i.e., V = BP. The first part B of dimension M x b is the
pre-beamforming matrix, which is designed based on the
second order channel statistics, or in particular, the trans-
mit spatial correlation. The same pre-beamforming matrix is
semi-statically applied to the users with the same or similar
transmit correlation, which forms a user group. Therefore, the
pre-beamforming matrix is designed to suppress the interfer-
ences across different groups. We can see that the effective
transmit size after pre-beamforming is b, which is deter-
mined by the dominant eigenmodes of the average transmit
correlation of user groups. The second part P of dimension
b x S, is designed to suppress the interferences within each
group with dynamical channel conditions. To compute P, we
apply the conventional zero-forcing beamforming (ZFBF) or
regularized zero-forcing beamforming (RZFBF). Note that
we have S < b as the second-stage precoding is sup-
posed to suppress the interference within the group. Denote
H = BYH as the effective channel after pre-beamforming.
The received signal in (1) can be rewritten as

y = H'BPd + z = HPd + z. ()

We adopt the one-ring channel model in [9] and [11]. Let
0 be the azimuth angle of the user location, s the distance
between the BS and the user, r the radius of the scattering
ring, and A the angle spread, which can be approximated
as A ~ arctan(r/s). Then the (m, p)-th entry of the channel
covariance matrix R of the transmitter is given by

1 a 'kT 0 —
[R]m,p — ﬂ N e/ (a+0)(um up)da’ (3)
where k(o) = — 2T’T(cos(oz), sin(a))? is the vector for a planar

wave impinging with Angle of Arrival (AoA) «, A is the
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carrier wavelength, u,, and u, are the position vectors of
antennas m and p, respectively, and ()7 denotes the transpose
operation. It can be verified that R is a normal matrix. With
eigen-decomposition, we have

R = UAU?, )

where U is a unitary matrix comprising eigenvectors of R and
A is a diagonal matrix with eigenvalues of R as the diagonal
entries. Furthermore, the actual channel is generated using the
following model

h=UA2w, 5)

where w is a vector of complex random variables and
w ~ CN(0, D), i.e., w is circularly-symmetric Gaussian.

Let G be the number of groups, S, the user set in
group g, and |Sg| the size of group g. We then have
H, = [hgl’th""’hg\Sg\]’ H = [H;,H,,...,Hg], B =
[B1,B2,...,Bgl,and H, = BgHg, where hg, is the channel
of user i in group g and By is the precoding matrix for group g.
The signal vector received by the g-th group of users is then
given by

y, = HP,d, + Z HIYB,Pdy +12,,
g#8
¢=1,2,...,G. 6)

The details of designing B, and P, are omitted here. Inter-
ested readers are referred to [11] and references therein.

IV. USER GROUPING IN MASSIVE MIMO SYSTEM

In order to suppress the inter-group interference, the pre-
beamforming matrix B, for group g shall be carefully
designed based on all the group centers Rg, g =1,2,...,G.
Note that the group center can be obtained by averaging the
subspace of all the group members or by simply assigning one
of the group members to be the group center. User grouping
also has impacts on user scheduling, since for each pre-
beamforming group, only the users within the group can be
scheduled. Therefore it is important to design an effective user
grouping method for enhanced system capacity.

The idea of user grouping is illustrated in Fig. 1. The big
triangle in the middle represents the massive MIMO base
station. Other markers except the red-cross represent users.
Users from different groups are differentiated by different
markers and colors. The red cross is the virtual group center.
The dashed lines indicate the connections between users and
group centers.

For user grouping, we first need to obtain the similarities
(or distances) among the users and groups, and then group
users based on a certain metric. Each user grouping scheme
consists of two parts, the similarity measure and clustering
method. In this section, we first review the K-means clus-
tering method and the chordal distance as similarity measure
presented in [10] and [11]. Then we propose new similarity
measures as the grouping metric and new clustering methods.
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FIGURE 1. User grouping scenario.

Most of the clustering schemes in the literature only handle
the matrix dataset, i.e., the entire dataset is a matrix. However,
for our case here, each data entry is a matrix. The entire
dataset is comprised of a large number of matrices. Thus,
one of our contributions is to form efficient low-complexity
grouping methods for datasets with many matrices. Also note
that different clustering methods and similarity measures can
be combined in various ways. It is useful to evaluate the
various combinations to find the best one.

A. K-MEANS USER GROUPING AND CHORDAL DISTANCE
In [10], a K-means clustering algorithm for user grouping is
presented. The similarity measure of the K-means clustering
algorithm is the chordal distance defined as

de(Ug, V) = [0 — v Vi |2, )

where Uy is the matrix of the eigenvectors of Ry, i.e., Ry =
UkAkUkH , and V, is the matrix of the eigenvectors of the
group center Ry. User grouping is then achieved with an
iterative process. In each iteration, each user is assigned to
the group with the minimum chordal distance. Then the group
center is updated using unitary matrix of users currently
associated with the group as

1

Ve =Tl

> Uy (8)

keS,

Note that Y(-) denotes the unitary matrix after eigen
decomposition.

B. WEIGHTED LIKELIHOOD SIMILARITY MEASURE

Instead of chordal distance, we first propose a weighted like-
lihood function as the similarity measure between a user and
a group, which is defined as

1
LR, V) 2 [UAD V2. ©)
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The proposed likelihood metric uses the projection of the
eigenspaces of the users to that of the group centers, so
that users can be readily separated into different groups.
For instance, if user k is very close to group center g, or
Ui ~ V,, then U¥V, would result in a large value due to
the property of unitary matrix. If Uy is much different from
V,, then UV, would produce a very small value due to the
orthogonality of unitary matrices. The weighted likelihood
also takes into account the weights of different eigenmodes
so that the user’s group is mainly determined by the dominant
eigenmodes.

Given L(Ry,V,) for each user k and group g, we
assign each user to the group with the maximum likeli-
hood. The group center V, and the total likelihood Ly, are
updated as

1
¢l

G
DR L= Y LR V). (10)

keS8 g=lkeS;

Vg:T{

Note that the weights of eigenmodes is considered in the
proposed algorithm when updating the group center and the
total likelihood.

Algorithm 1 Improved K-Means Clustering Algorithm

With Weighted Likelihood Similarity Measure

1 Setn:O,ﬂggt) =1;

2 Randomly choose G different indices (denoted as 7 (g), Vg)
from the set {1, 2, --- , K} and set Vi,”) = Uz, V8

3n= 1,£§Z,)=0;

4 While ‘cﬁ(’,’} — Eﬁ:},—l) > eﬁg,',’t_l) do

5 | Lasy=0,g=1,2,---,G;

6 fork=1,2,---,Kdo

7 forg=1,2,---,Gdo
1 2
s Compute L(Ry, Vfgn_l)) = H (UrAg )va,”_l) :
F
9 end
10 Find gf = arg maxy LRy, V;’f*])) and let
S(ﬂ) _ S(n) Uk} ;
8 i ’
1 end

12 forg=1,2,--- ,Gdo

(n) 1 .
Vg = T { |S(n) Zkesén) Rk} 5
4

13
14 end

(n) G (my .
Is Compute L) = pIp Zkesjf,") LRy, V') s
16 n=n+1;
17 end
18 Assign Vg = ng) and S = Sg(,").

With the weighted likelihood similarity measure, we now
propose an improved K-means clustering algorithm, which
is described in Algorithm 1. Note that in Algorithm 1, Uy g
is the unitary matrix of the user with index m(g) and € is
a small number to control the termination of the iterative
algorithm.
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C. SUBSPACE PROJECTION BASED SIMILARITY MEASURE
We next propose another similarity measure, which is based
on subspace projection, given by

P(Ur, Vo) = | VeV UL — U 7. (11)

We can see from the above definition that we measure the
similarity between user k and group g by firstly projecting
user k to group g and then calculating the distance between
user k and its projection on group g. If user k is the group
center or in close proximity to the group center, P(Uy, V,)
would be close to zero.

D. FUBINI STUDY BASED SIMILARITY MEASURE
The third similarity measure we propose is the Fubini-Study
(FS) based similarity measure, which is given by

Fs(U, V) = arccos | det (UF' V,)|. (12)

We can see that if user k is close to the group center g, then
F(Uy, V) would be close to 0. Otherwise, F(Ug, V) would
be larger if the user is farther from the group center. The
FS distance can then be another choice of the similarity
measure for the user grouping.

E. HIERARCHICAL USER GROUPING

In addition to the new similarity measures, we also propose
new user grouping schemes. The first new user grouping
scheme that we propose employs the agglomerative hierarchi-
cal clustering method. Different from the K-means method,
which essentially looks at all possible combinations of users
and groups, the agglomerative hierarchical clustering method
starts with each individual user forming a user group. It then
proceeds by a series of successive mergers based on certain
criteria. Eventually, all users can form one single group.
We can terminate the scheme when the desired number of
groups is reached.

20t

151

101

Similarity Measure

||

2 9191203167 518 415 6 8101112131417
User Index

FIGURE 2. Hierarchical clustering illustration.

An example of the agglomerative hierarchical clustering
method is illustrated in Fig. 2. Initially, there are 20 users
and thus 20 groups. The distance between any two users
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(or two initial groups) is calculated. At the first iteration, we
find that the distance between users 2 and 9 is the smallest.
So users 2 and 9 are merged into one group as shown in Fig. 2.
At the second iteration, the distance between users 4 and 15
is found to be the smallest. So users 4 and 15 are merged
as a group. We iterate such group merging process until the
desired number of groups is reached.

One may notice in the example above that at one inter-
mediate step, the group comprised of users 1 and 20 is
found to be close to the group comprised of users 2, 9 and
19. So one important issue in hierarchical clustering is how
to define the similarity measure or distance between exist-
ing groups and newly defined groups (called linkage meth-
ods). Typical linkage methods include: single linkage, com-
plete linkage, average linkage, ward linkage, median link-
age, and weighted average linkage, which are explained as
follows.

Since we only merge two groups at each step, the linkage
methods can be defined in an inductive manner. Suppose we
have merged groups v; and v; to get a new group (v;v;) =
vil[Jvj. Now we need to define the distance between the
remaining groups and the new group (v;v;). Let group v, be
one of the remaining groups. The distance between (v;v;) and
vy given by the single linkage method is

d(v,-v,-),vq £ min {dv,-,qu de,vq} . (13)

That means the distance between group (v;v;) and v, is the
minimum of the two distances dy, ,, and d,, ,,,, where distance
dy; v . and dvj,v ” have been previously calculated in the same
manner.

Complete linkage defines the distance between (v;v;) and
vg as the maximum of the two distances d,, v, and dy, ,,,
given by

d(vivj'),vq £ max {dv,-,vqa de,vq} . (14)
Average linkage defines the distance between (v;v;) and v, as
the average of all the pair-wise distances, given by
|Vi|dv,~,vq + |Vj|dvj~,vq

dyyiv, = . 15
Vivj,Vq |(ViVj)| ( )

Ward linkage defines the distance between (v;v;) and v, as

d(ViVj)qu
2 (lvil + |Vq|)dvi,vq + (Ivjl + |Vq|)dvj-,vq - |Vq|dv,-,vj-

il + il + Ivg

(16)

Median linkage defines the distance between (v;v;) and v, as

1 1 1
d(viv]'),vq = Edv,',vq + Ed\/j,vq - ZdVi,Vj' (17)

Finally, weighted average linkage defines the distance
between (v;v;) and v, as

1 1
d(v;v_/),vq £ Edvi,vq + Ed"_/"’q’ (18)
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Algorithm 2 Hierarchical Clustering Algorithm

1 For given G and the user setUf = {1, 2, - - - , K}, start with each
user forming a group, i.e., vy = {g}, ¢ =1,2,--- ,K ;

2 fork=1,2,--- ,Kdo

3 fork’ =1,2,---,K do

4 Calculate pair-wise similarity between users (or

groups) using (7) or (9) ;

5 end

6 end

7 while The number of groups is greater than G do

8 Search for and merge the groups with the maximal
similarity ;

9 Calculate the pair-wise distance between user (or group)
and updated group using one of the linkage methods
(13)~(18) ;

10 end

Given the linkage definitions, we propose our hierarchical
clustering algorithm as presented in Algorithm 2. As dis-
cussed, the algorithm keeps on merging the closest groups,
until the desired number of groups is reached.

Next we present a complexity analysis for K-means cluster-
ing and hierarchical clustering methods. Note that the frame-
work of K-means is essentially similar to Algorithm 1. Denote
the complexity of computing similarities for all user-group
(or group-group) pairs as Cs_mean for K-means clustering
and Cs_p;er for hierarchical clustering; searching for the max-
imal similarity pair and pairing them up as Cy—kmean fOr
K-means clustering and C,,—pj. for hierarchical clustering;
and updating group center as Cy—_ean for K-means clus-
tering and C,_p;e, for hierarchical clustering, respectively.
We have the following proposition for K-means clustering.
The proof is omitted for brevity.

Proposition 1: The complexity of K-means clustering is
O(GX Cy_tumean). More specifically, it is O(GKKG x 2M?> +
M 2)) for K-means clustering with chordal distance and
O(GKKG x [(r*)3 + (Mr*)z])for K-means clustering with
weighted likelihood similarity measure, where r* is the effec-
tive rank of Ry, i.e., the number of columns in Uy.

For Algorithm 2, we have the following proposition. The
proof is omitted for brevity.

Proposition 2: The complexity of hierarchical cluster-
ing is O(Cs—pier). More specifically, it is O(w
(2M3+M?)) for hierarchical clustering with chordal distance
and O(@[(”*ﬁ + (Mr*)?]) for hierarchical clustering
with weighted likelihood similarity measure.

We can see that the algorithm complexities depend on the
number of users K, the number of antennas M, the effective
rank r*, and the choice of number of groups G. If K is rela-
tively small and G is relatively large, hierarchical clustering is
more computationally efficient. However, if K is much large
and G is small, K-means clustering may be more computa-
tionally efficient. Fig. 3 presents the complexity comparison
for an example case. In this simulation, we let M = 100,
G=6,and r* = 11.

There are two advantages of hierarchical clustering com-
pared with K-means clustering. First, hierarchical clustering

952

x 10"

—é— Hierarchical, chordal distance
3.5 | = ® = K-means, chordal distance

- 8 - K-means, weighted likelihood
3 | —e— Hierarchical, weighted likelihood

Computations
N

50 100 150 200

FIGURE 3. Complexity comparison between K-means clustering with
similarity measure (7) and Hierarchical-clustering with similarity
measure (9).

-100 -
-100 -50 0

FIGURE 4. User grouping result with K-means clustering.

does not rely on the initial choices of group center. For exam-
ple, given the users’ distributions, K-means clustering may
end up with user groups shown in Fig. 4. We can see that there
are several crossing lines for different groups, which sug-
gests possibly inappropriate user grouping. On the contrary,
Fig. 5 shows the grouping results obtained by hierarchical
clustering, which is clearly a better grouping configuration.
This advantage is especially true when the number of users is
small. Second, according to Propositions 1 and 2, hierarchical
clustering is generally more computationally efficient when
the number of users is less than or equal to 100.

F. K-MEDOIDS USER GROUPING

The second user grouping scheme we propose is the
K-medoids clustering method. K-medoids clustering is
similar to K-means clustering. However, the main difference
lies in the approach of updating group center. While K-means
uses the average of the group members (or called centroids),
K-medoids tries every group member (medoids) as the group
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FIGURE 5. User grouping result with hierarchical clustering.

Algorithm 3 K-Medoids Clustering Algorithm

1 Setn:O,Eggt) =1;
2 Randomly choose G different indices (denoted as 7 (g), Vg)

from the set {1, 2, --- , K} and set ng) =Ugz(g), Vg

3n= 1,£§Z,):O;
4 While ‘Lg}? — L;gfl) > eﬁﬁﬁf“ do
s | LSy =0,g=1,2,---,G;
6 fork=1,2,--- ,K do
7 forg=1,2,---,Gdo
8 \ Compute similarity measure using (7) or (9) ;
9 end
10 Find gj = arg maxy L(Rg, ng_l)), or
g = argming dc(Uy, V;','*”) and let
SW=8Wutk);
8k 8k
11 end
12 forg=1,2,---,Gdo
13 for k € Sé”) do
" WGRSS (@), = ¥, s LR, Ry or
WGRSS(2)” = ¥, _ s de(Uk, Upe)
15 end
16 Find k* = arg max; WGRSS (g)i”) for likelihood or
k* = arg min, WGRSS(g)\" for distance, and let
Vi’ =Upe s
17 end
18 | Lio = Y0 WGRSS(9)}" ;
19 n<n+1;
20 end

21 Assign V, = Vé") and S = S(é,n) ;

center and uses the one with the least within group residue
sum of squares (WGRSS) for distance (or the one with the
largest WGRSS for likelihood). The user grouping algorithm
based on the K-medoids clustering method is presented in
Algorithm 3. Due to the exhaustive search of group centers,
the computational complexity of K-medoids is lower bounded
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by the complexity of K-means, and is hence comparably
higher.

V. USER SCHEDULING IN MASSIVE MIMO SYSTEMS
After forming the user groups, we can obtain the pre-
beamforming matrix B, for each group g. At a particular
time slot, based on the instantaneous channel conditions of
the users, we dynamically schedule a subset of users in each
group for the transmissions in this time slot.

In [10], a MAX and an ALL user scheduling algorithm
are presented. The MAX user scheduling is only based on
the feedback of beam index with the max SINR, while the
ALL user scheduling is based on the user’s feedback of all
beamforming SINRs, i.e., SINR for every beam selection.
Different from this approach, we propose a dynamic user
scheduling algorithm that schedules users in a greedy man-
ner. In particular, at each step, the proposed algorithm only
schedules the user that can achieve the largest gain in the
system throughput. The proposed algorithm is presented in
Algorithm 4.

Algorithm 4 Greedy Algorithm for Dynamic User
Selection and Beamforming With Determined User
Grouping

1 User groups {S,} are given ;
2 Initially setUd = {1,2,--- ,K},C=0,and Kz =¥, Vg
3 while Termination conditions (Zg ’ICg| = Zg bg,
k(k*, gix) = 0, or U = B) are not satisfied do

4 for k € U do
if |Kg, | < Sg then

Seit Ky = Kg U {k}ifk € S¢, and

Ky =Kg. V' #g;

7 Perform ZFBF or RZFBF based on {IC;} and
{Bg};
8 Compute the gain
ie(k, g)=max [0, CUK,). (Bg) —C({Ky). (BeD):
9 end
10 end

11 Obtain (k*, gx+) = argmaxy o, k(k, g) ;
12 if (k*, gr+) # ¥ then

13 U <~ U\K*;

14 ng* <~ K:gk* U {k*};
15 end

16 end

Given the user grouping and scheduling, we can calculate
the instantaneous SINR, y,, , for user & in group g as

2|\wH . 2
Zssg Cg |hngng('7 gk)|
1 +Im(g’ k)+Ilt(g7 k) '

where [;, and I;; denote the inner group and inter group
interferences, respectively, computed as

Vo = 19)

p 2 H . 2
lin(g. ) = 556 > [hEBPC, g
8v8 sk
p 2 H . 2
lin(g, k) = > > %o > g BPyC g
878 grtg j
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P,(:, gx) denotes the submatrix containing all the rows and
the gi-th column of P, and §g2 is the scaling factor for
satisfying certain power constraint, which can be obtained

2 _ B¢ .
as §y = TRTBIB Py The rate for scheduled user gj is

Ng = logy(1 + ) and the overall system throughput C is
obtained as

G
C=2 N

g=1kelky

where K is the scheduled user set in group g. Obviously, C is
a function of {/Cy} and precoding for all co-scheduled users,
denoted as C({KCg}, {Bg}, {Pg, D).

In the following part of this section, we present a lower
bound of the proposed greedy algorithm for dynamic user
selection.

Lemma 1: In Algorithm 4, the first user scheduled
achieves the largest rate increase.

Proof: This is resulted from Step 11 of Algorithm 4 and
the fact that the first user scheduled has the largest rate among
all users without any interference. For each user scheduled
in the subsequent iterations, the resulting user rate is always
smaller than the user rate evaluated in the first iteration due to
the intra- and inter-group interference from the users already
scheduled and power splitting among scheduled users. There-
fore the rate increase in all other iterations is smaller that that
of the first iteration. ]

Denote the achievable rate of the first scheduled user as Z1,
the system sum rate of Algorithm 4 as x, and the system
sum rate of the optimal user scheduling as X'. We have the
following lemma.

Lemma 2: Z1 <x < |U|Z.

Proof: 21 < x is trivial, since Algorithm 4 would
schedule at least one user. Since there are |U{| users, from
Lemma 1 we know that the achievable rates of them are all
upper bounded by 21, x < |U/|Z] thus holds. ]

Using similar arguments as the proof of Lemma 1, we can
show that the following lemma holds.

Lemma 3: X < |U|Z.

From Lemma 2 and Lemma 3, we have that %
x < |U|Z;. So we have the following theorem.

Theorem 1: The greedy algorithm for dynamic user selec-
tion can achieve an objective value that is at least ‘71| of the
optimal user selection solution.

Lemma 3 and Theorem 1 not only give the lower and upper
bounds for the greedy algorithm, but also for the optimal user
scheduling scheme. Fig. 6 illustrates this bound of the optimal
scheme. For obvious reason, we let G = 1 here. We can
see that when the number of users is not large, our greedy
user scheduling algorithm approaches the upper bound of the
optimal user scheduling. Note that as the number of users
increases, the bound becomes looser.

VI. USER GROUPING WITH JOINT GROUP LOAD
BALANCING AND PRECODING DESIGN

In real life applications, many users may gather at one geo-
graphic location (e.g., in a skyscraper). If we design the
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FIGURE 6. Greedy algorithm versus the upper bound.

precoder exactly as discussed, these users will form a big
group. It would be desirable to offload some of the users
to other groups, to achieve fairness among hte users. This
is because with more members in a group, each member’s
chance of getting scheduled for transmission will be smaller.
We develop a user grouping method considering group load
balancing and user proportional fairness in this section. User
grouping with proportional fairness can be formulated as the
following optimization problem.

K G _
max J = ZZxkg log <£ng ) (20)
iXig

{xrg} k=1 g=1

st Y xg=1 Vke{l,2,--- K} (1)
8

Xk € {0,1},  Vk, g, (22)

where J denotes the utility to optimize, 7, is the average
user throughput, i.e., 7, = 10g,(1 + ¥, ), ¥, is the average
SINR when user k is assigned to group g, and xy, is the
assignment indicator defined as

1,
.ng = O

Given constraint (23), we can see that the optimization
problem (20) is combinatorial in nature. If we apply exhaus-
tive search for this problem, the complexity is exponential.
To make the problem tractable, we relax the variable xi,
to be a real number in the range of [0, 1]. The relaxed
problem has the same objective function (20) and con-
straint (refeq:sumxkg), but with the following new constraint,
which replaces constraint (22):

if user{c is in group g Vi, g. 23)
otherwise,

O<xe =1, Vk, g (24)

Lemma 4: The relaxed problem with constraint (24) is a
convex optimization problem.
Proof: The objective function of problem (24) can be

represented as Yy >, Xk 108(7g, ) — D _p D, Xkg 108(D; Xig)-
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The first term is affine. The second term is basically two
concatenated sums of x log(x + a), where 0 < a < (K —1).
The second derivative of xlog(x + a) is )ﬁ + m,
which is positive for 0 < a < (K — 1). So xlog(x + a)
is a convex function and — ), Zg xig log(Q_; xig) is con-
cave due to negative sums. Therefore ) , > ¢ Xkg 10g(Tg,) —
Dk D¢ Xkg 10g(3_; Xig) is concave. Since the constraints are
linear, the problem is convex. ]
Given Proposition 4, we could apply an effective con-
vex optimization technique to solve the relaxed problem.
However, an important issue is how to obtain the average
SINR ¥,,. The challenge is, without user grouping and
scheduling information, we cannot calculate the exact SINR
for each user. Moreover, over different time slots, different
users will be scheduled based on the user grouping result and
the instantaneous channel states. Thus, in order to solve the
problem, we need to find a way to approximate average SINR
for each user in each group. We propose to approximate the
average SINR based on following assumptions.
(i) Conjugate precoding [19], [20] for the target user;
(i) There are no intra-group co-scheduled users;
(iii) Identity precoding for inter-group co-scheduled users.
We can obtain the SINR approximation as
5 |tr(BY R, By)|

= P H
1+ 5 > ete |tr(Bg,ngBg/)

Due to the dynamic nature of the user scheduling and
the objective of user group assignment itself, it is difficult
to obtain the average SINR presuming multiuser MIMO
scheduling. However, as in [21], when we consider the load
balancing problem, it is reasonable to consider the single user
resource allocation with user average SNR for the targeted
cell. Therefore in our case, when we compute the average
SINR for a user, we assume that in an instantaneous time
slot, only the user of interest is scheduled in its group. More-
over, we treat other groups as the virtual neighboring cells
and consider the identity precoding matrix for the interfer-
ing groups, which is a fairly good approximation for the
interference. With these assumptions, we assume the best
resource allocation for each user with average interference,
which we think is appropriate for studying the user load
balancing among groups. Otherwise it would be very diffi-
cult to approximate the average intra-group and inter-group
interferences.

After obtaining the SINR approximation, similar to [21],
the procedure to solve the relaxed user grouping optimization
problem with load balancing is presented in Algorithm 6.

Theorem 2: The solution to the relaxed problem is also
feasible and optimal to the original problem (20).

Proof: Since we relax the variables from binary to
fractional, the solutions to the relaxed problem with constraint
(24) actually upper bounds the solution to the original prob-
lem. However, we can see from Algorithm 6 that the solutions
to the relaxed problem are integers other than fractions. So
the optimal solution to the relaxed problem is also feasible to

Ve A
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Algorithm 5 User Grouping With Joint Group Load
Balancing and Precoding Design Algorithm

1 Perform K-means Clustering Algorithm or Algorithm 1 to
obtain user group ID x;; ;
2 while 7*(—D _ 7x(1=2) o ¢ 7xn=2) g

3 for g € Gdo
4 Find VZ(") using (8) or the proposed weighted
likelihood (10) ;

5 end

6 for g € Gdo

7 | Find B using approximate BD approach ;
8 end

9 fork=1,2,---,K do
10 forg=1,2,---,Gdo
11 | Find y,, using (25);

12 end

13 end

14 Optimize (20) using Algorithm 6 ;

15 Update x;; and J *(n)

16 end

Algorithm 6 Optimization Algorithm for (20)

1 n=0, ,LL(l) =0;

2 while the optimization has not converged do
3 n<n+1;

4 fork=1,2,---,K do

5 forg=1,2,---,Gdo

6 | Compute ¥, and 77, ;

7 end

8 Assign user k to group g* where

g* = argmax, (log(ﬁgk) — ,ui,”)), and let x,(cgl =1,

x,i?zOforg;ﬁg*;

9 end
10 forg=1,2,--- ,Gdo
11 Each group chooses a step size 8 and computes

(n)
K%“” = min{k, e D),
1 3
Mgn+ ) Mg’n) _ 8(”)(@”) . kxlgz)) ;

12 end
13 end

the original problem (20). Since the solutions to problem (20)
cannot achieve higher utility than the solutions to the relaxed
problem, the solutions to the relaxed problem is also optimal
to the original problem. ]

VII. SIMULATION STUDY

More numerical simulations are performed to evaluate the
proposed schemes. The system configuration is provided in
Table 1. In particular, we consider a 120° sector. For each
user drop, the azimuth angle 6y, angle spread Ay and dis-
tance s for user k are uniformly generated within the inter-
vals [6min, Omax]s [Amins Amax] and [Smin, Smax ], respectively.
We average over 100 user drops for the entire simulation.
In each user drop, we evaluate the performance with 200
channel realizations. We fix the number of groups as G = 6.
For the antenna configuration, we consider the ULA case
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TABLE 1. System configuration in the simulations.

Parameter | Value | Parameter | Value

Omin —60° M 100
Omaz 60° D 0.5
Amin 5° G 6

Amaz 15° s 11

Smin 20 (m) € 1073
Smax 100 (m) p 10, 20 dB

and place 100 antennas along the y-axis with 0.51 spacing.
According to (3), the (m, p)-th entry of the covariance matrix
is given by

A
L e*jZnD(mfp) sin(a+9)da. (26)
2A J_a
Throughout the simulations, to find the first and second stage
precoding matrices, we adopt the approximate BD approach
and the regularized ZF precoding approach, respectively.
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FIGURE 7. Similarity measure comparison.

Fig. 7 presents a comparison of the proposed similarity
measures. For a fair comparison, we use the same cluster-
ing method K-means and user scheduling method MAX.
Note that CHD stands for chordal distance defined in (7);
WLD stands for weighted likelihood defined in (9); SSP
stands for subspace projection defined in (11); FSD repre-
sents Fubini Study distance defined in (12). We find that
WLD has a slightly higher throughput than CHD, which
verifies the effectiveness of our proposed scheme. However,
the sum rates of FSD and SSP are lower than that of CHD.
Therefore we will not consider these similarity measures in
the following simulations.

Fig. 8 provides a comparison of the several linkage meth-
ods for hierarchical clustering. For a fair comparison, we
use agglomerative hierarchical clustering, weighted likeli-
hood similarity measure, and MAX user scheduling for all
the linkage methods. We find that as the number of users
increases, the sum rate of single linkage drops gradually.
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FIGURE 8. Comparison of linkage methods for hierarchical clustering.

This is because the dimension of each cluster grows when
there are more users. Using the distance between the near-
est points of two clusters to represent the distance between
two clusters becomes inaccurate. We can also observe that
weighted average linkage achieves the highest throughput.
Carefully looking into the definition of weighted average
linkage, we can see that weighted average linkage puts higher
weights on the members who join the group late, which are
less similar to other group members. By giving higher weights
to members who join the group late, better performance can
be achieved in our scheme. We thus use weighted average
linkage method for hierarchical clustering hereafter.
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2
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£
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30 i i i i i
0 100 200 K 300 400 500

FIGURE 9. Clustering method comparison.

Fig. 9 presents a comparison of the proposed clustering
methods. For a fair comparison, we use the same similarity
measure CHD defined in (7) and the MAX user schedul-
ing scheme. It can be observed that hierarchical clustering
has the highest throughput, while K-medoids clustering has
the lowest throughput for the entire range of user numbers.
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Due to the relatively higher computational complexity and
inferior performance, we do not consider K-medoids clus-
tering in the following simulations. However, the efficacy of
agglomerative hierarchical clustering has been demonstrated
in Fig. 9. Moreover, hierarchical clustering has the advan-
tage of lower computational complexity, which has been
illustrated in Fig. 3.
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FIGURE 10. Scheduling methods comparison.

Fig. 10 is a comparison of the user scheduling schemes.
For a fair comparison, we use the same K-means cluster-
ing and CHD similarity measure. It can be seen that our
proposed greedy algorithm achieves the highest throughput.
Although the proposed greedy algorithm is suboptimal, it
greatly enhances the system throughput.
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FIGURE 11. System sum rate versus the number of users when M = 100.

Fig. 11 presents the sum rate comparison of our proposed
schemes with the scheme proposed in [10]. We can see that
all the proposed schemes outperform the scheme in [10].
In particular, hierarchical clustering greedy user selection
with weighted likelihood has the highest system throughput.
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Hierarchical clustering greedy user selection with chordal
distance has slightly lower throughput than the highest one.
Hierarchical clustering MAX user scheduling with weighted
likelihood and K-means clustering greedy user selection
with chordal distance both have higher throughputs than the
scheme in [10]. We find that greedy user scheduling has a
greater impact than the user grouping methods on the system
throughput. This is because no matter how the groups are
formed, greedy user scheduling has the direct impact on the
throughput and could always select the users who benefit
the throughput performance most. It is also interesting to
see that, as the number of users increases, the gap between
the K-means and hierarchical clustering curves narrows. This
is because with a large number of users, different grouping
schemes tend to produce similar user grouping results.

20
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- © - w/ load balancing, non—iterative

=120 —e— w/ load balancing, iterative

-140 : :
0 20 40 60 80

FIGURE 12. Total utility versus the number of users, for user grouping
with joint group load balancing and precoding design when M = 100.

For user grouping with load balancing, we set p = 20 dB.
Fig. 12 plots the resulted utility metric of problem (20)
solved by Algorithm 5. Note that the negative values of utility
are resulted from the log function of achievable rate over
the number of group members. We can see that the pro-
posed scheme outperforms the scheme without considering
load balancing even with one iteration. The proposed itera-
tive load balancing scheme could achieve even higher total
utility.

In addition to the total utility, we are also interested in the
number of users in each group. Note that the average number
of users in each group is not very helpful, since in each
simulation run, the number of users in each group is random.
Averaging over these random numbers is approximately K /G
for every group. So we just look at one particular simulation,
which is depicted in Fig. 13. The total number of user is
K = 40 in the simulation. We can see that the number of users
is {14,3,7, 10, 2, 4} for groups 1 — 6 without considering
load balancing. The number of users is {11, 6,7, 5,4, 7} for
the non-iterative load balancing scheme and {8, 9, 7, 5, 5, 6}
for the load balancing scheme iteratively executed. So the
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FIGURE 13. Group sizes for user grouping with joint group load balancing
and precoding design when M = 100. From left to right of each stack, the
bars are for the scheme without load balancing, the scheme with load
balancing non-iterative and the scheme with load balancing iterative,
respectively.
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FIGURE 14. Maximum difference of number of users among groups
versus the number of users, for user grouping with joint group load
balancing and precoding design when M = 100 and G = 6.

difference between the most loaded group and the least loaded
group is 7 for the proposed non-iterative scheme, only 4 for
the proposed iterative scheme, but 12 for the scheme without
considering load balancing.

Fig. 14 depicts the maximum difference of number of users
among all groups. The number of groups G is set to be 6.
We can see that when K = 10, the maximum differences are
2.33, 2.11, and 1.93 for the scheme without load balancing,
with load balancing but non-iterative, with load balancing
and iterations, respectively. When K = 40, the numbers
become 9.11, 4.24, and 3.56. When K = 80, the maximum
differences are 15.62, 8.07, and 5.44. Therefore, the proposed
scheme strikes a much better balance as the users are more
evenly distributed among all the groups.
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VIil. CONCLUSIONS

In this paper, we have studied the user grouping and schedul-
ing problems based on a two-stage precoding framework for
FDD massive MIMO systems. We have proposed weighted
likelihood similarity measure, subspace projection based
similarity measure, Fubini Study based similarity measure,
hierarchical clustering, and K-medoids clustering for user
grouping. We have also proposed a dynamic user scheduling
scheme and a user grouping algorithm to achieve load bal-
ancing and user fairness for FDD massive MIMO systems.
The efficacy of the proposed schemes has been validated with
analysis and simulations.
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