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ABSTRACT In wireless communication, compressed vision information may suffer from kinds of degrada-
tion, which dramatically influences the final visual quality. In this paper, a compressed vision information
restoration method is proposed based on two explored vision priors: 1) the cloud prior and 2) the local
prior. The cloud prior can be obtained from the nature images set in the cloud, and fields of experts is
used to formulate the statistical character of the nature image contents as a high order Markov random
field. The local prior is achieved from the degraded image itself, and K-SVD is adopted to model the
sparse and redundant representation characters of nature images. These priors are effectively comprised
in the proposed vision information restoration method. The relation between the quantization parameter and
the optimal configuration of the prior models is further analyzed. In addition, an enhanced quantization
constrained projection algorithm is proposed to refine the high frequency components. We extend this paper
to compressed video restoration for H.264/AVC and the experiment results demonstrate that the proposed
scheme can reproduce higher quality images compared with conventional H.264/AVC.

INDEX TERMS Nature image prior, high-quality image restoration, fields of experts, K-SVD.

I. INTRODUCTION
With the rapid development of wireless technologies, the
concept of the Fifth Generation (5G) wireless communication
system started to emerge and the expectations towards 5G are
set much higher in terms of capacity and maximum through-
put when compared with Fourth Generation (4G). There are
also some new technical challenges the system will need
to face, like Machine to Machine (M2M) communication,
energy efficiency and complete ubiquity. Developing the new
technologies provides uninterrupted access to services such as
voice and data, Multimedia Message Service (MMS), video
chat,Mobile TV,HDTV content andDigital VideoBroadcast-
ing (DVB), which opens the gate that creates a new dimension
to our lives and changes our lifestyle significantly.

As the most important form of media, the vision infor-
mation, images and videos, suffering degradations during
the acquisition, storage and transmission, which has pro-
found influence on the performance of Fifth Generation (5G)
wireless communication system. Block-based discrete cosine

transform coding (BDCT), reducing the redundancy between
the pixels of images, is an effective way for image and
video compression and has been prevalent in the main
image and video compression standards. However, in BDCT,
motion compensation, and the coarse quantization results in
high frequency (HF) coefficients truncation. Intensity dis-
continuity and in particular the block truncation of high
frequency (HF) cause the blocking effect and ringing artifacts
around the contour. Many methods have been proposed to
suppress blocking artifacts and these methods can be divided
in to three categories. Some of them try to suppress the
artifacts based on the transform domain methods, such as
DCT [1], sparse 3D transform-domain collaborative filter-
ing [4], over complete wavelet representation (OWR) [2], [3]
and spatial domain [5]. Some research devote to the post
processing or image iteratively recoverymethods based on the
theory of projections onto convex sets (POCS) [6]. Recently,
learning-based image restoration [7]–[9] have emerged to
deal with the artifices in the compressed images and videos.
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For the deblocking methods in DCT domain, the direct
operation of the DCT coefficients try to reduce artifacts
before compressed image being fully decoded. In particular,
in order to reduce block artifact, an adaptive filtering method
was proposed [1], in which the HVS weighted mechanism
andmasking quantified constraints is adopted to eliminate the
block artifacts. In [2], cross-correlation between the scale and
the protection of the edge information are explored to reduce
artifacts in compressed images. Liew et al. [3] proposed a
method to suppress blocking and ringing effects by analyz-
ing the statistical properties of discrete blocks and cross-
scale wavelet coefficients. K. Dabov [4] proposed a novel
image denoising strategy, based on the sparse representation
in the transform domain. In the spatial domain, spatially
adaptive filtering is proposed to the deblocking applications.
Based on non-local characters of image, the post-filtering
transfer window is proposed [5], which moves the window
between adjacent blocks to suppress block artifacts. Some
other studies regard the image compression as a kind of
distortion, and kinds of algorithms have been proposed for the
image restoration. The projection onto convex sets (POCS)
algorithm denotes the original prior information as convex
sets, and obtain the convergence result through iterative
projections. Yang et al. [6] proposed image restoration by
integrating local HVS statistical characteristics and direc-
tional smoothness constraints.

The above conventional post processing strategies cannot
recover the high frequency components of compressed vision
information, which has been discarded in the quantization
step of compression. Recently, learning-based image restora-
tion [7] has been proposed to rebuild a high-quality image
from a codebook which contains the HF components for the
low quality image. Because a patch of degraded images can
be mapped to more than one high-frequency patches, the
learning-based image restoration is an ill-posed problem in
essence.

Recently, redundant representation and sparsity based
signal denoising has attracted a lot of attention. With the over
redundant dictionary, the image denoising can be addressed
with the introduction of matching pursuit technique. K-SVD
is proposed to solve this problem [14], [15], which achieves
good performance. Utilize the sparse prior, K-SVD provides
an effective solution for the compromise of the reconstruc-
tion and the degraded image under a regulation optimiza-
tion framework. To extend this work to image sequence and
exploring the space and time cues in neighboring patches,
3-D atoms are further proposed [16] in which the propagation
of the dictionary over time are explored.

Different from simple restoration tasks, the compressed
images restoration should take account of the compatibility
with the compression standard, and the possibility of the
cooperation with other deblocking techniques, e.g. the loop
filtering in H.264/AVC, etc. Although 3-D atoms lead to
better denoising performance in some cases, it is not suit-
able to apply these methods to H.264/AVC directly. Firstly,
the predictive coding, motion compensation and the loop

filtering used in hybrid coding make it difficult to introduce
the 3-D atoms into H.264/AVC directly. Secondly, the perfor-
mance of 3-D atoms-based method is under the assumption
that the Gaussian noise added to the original image sequences
is pre-known, and this is quite different from the video com-
pression scenario.
Inspired by the recent progress in sparse prior models

of nature image [14], a novel compressed video restoration
framework is proposed in this paper and our contributions are
summarized as follows:
(1) We model the nature image as a special case of high

order Markov random field (MRF), and obtain the cloud prior
for the compressed images restoration from a large quantity
of images with similar contents and categories in the cloud.
(2) K-SVD is adopted to model the local sparse prior and

an adaptive dictionary is obtained for the image effective
description. The maximum a posteriori (MAP) estimation is
used to alleviate the blocking artifacts.
(3) An enhanced quantization constrained projection

algorithm is further proposed to correct the high frequency
components in the reconstructed images. The reconstructed
images are obtained by blending the loop filtered images
and the reconstruction images. Some other considerations are
also included in this paper: the compatibility of restoration
method with the conventional hybrid coding technique and
the possible extension to a novel video coding framework
based on images sparse and redundant representation.

II. RELATED WORKS
In last ten years, the natural image prior modeling has
become a research focus in the field of computer vision, and
with energy minimization criterion, significant progress in
low-level vision has been obtained. Generally, the crite-
rion function consists of two terms: one is the likelihood
term, ensuring the likeness of the degraded image and the
restoration one and the other is the constraint term, con-
straining the restoration signals satisfying some prior. This
approach has been explored in many computer vision tasks,
such as estimating optimal flow [17], [18], stereo vision and
3D reconstruction [19], [20], image content segmentation and
so on. Some of these tasks can be categorized according to
their output, the ‘‘natural image.’’ The transparency estima-
tion [21], camera blur restoration [22] image denoising and
image inpainting [23] fall in to this category. In the prior
modeling process, some models capture the image prior with
a large quantity of images while some model need only few
image. According to the quality of nature images needed in
the prior modeling, the prior models can be divided into cloud
prior and local prior categories.

A. CLOUD PRIOR: FILTER-BASED MRFS
Markov random field based image prior has been widely
explored and utilized, e.g., noise elimination [25]–[31],
inpainting [32], segmentation [34] and 3D vision [33]. The
exploration ofMRFmodels contains diversity considerations,
such as the scale of the cliques, the design of the filters,
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and the form of the energy functions, as well as the parameters
estimation approaches.

Most of the earlyMarkov randomfield approaches adopted
the quadratic image smoothness prior [35] and the poten-
tial function is the squared summation of local derivation
operators. It is noted this would be the most appropriate if
derivation filter response of the natural image distribution is
indeed Gaussian. In fact, when derivation filter is applied to
the images, the distribution of the response of the filter is
not Gaussian, which is peaked at zero and contains a heavy
tail [10], [36], [37]. Non Gaussian marginal response is also
observed for optical-flow and 3D vision [9], [38]. Therefore,
Gaussian prior is not a good choice. The recent approaches
commonly assume a non-quadratic potential function for
local derivation response. Generally, one would prefer learn-
ing the potential function from training data. The FRAME
model proposed by Zhu [26] uses high-order MRFs to model
the filter responses. In the FRAMEmodel, discretized energy
functions are obtained from training data, and the filters
are chosen from pre-designed candidates. Then a potential
function which is built on the response of linear filter ωk to
the image x to estimate the probability:

Pr (x; {wk , 9k}) =
1

Z ({wk , 9k})
e−

∑
i,k Ek

(
ωTikx

)

=
1

Z ({wk , 9k})

∏
i,k

9k
(
ωTi,kx

)
,

where i is denoted as the index of pixels and k is the linear
filter index. ωTi,kx denotes the response of the linear filter ωk
to x at location i. The partition function Z ({ωk , 9k}) is a
normalization constant.

Note the above equation provides a general instance of
some popular prior explored in low-level vision. If the filter
is horizontal and vertical derivation and the potential function
has the quadratic form, it provides the smoothness prior of
images Zhu and Mumford [26], [33] utilized Gibbs sampling
to estimate the statistics. They assumed that the filters are
selected from a pre-defined set of derivation like filters and
the potential function has no shape constrain. The obtained
results are very non-intuitive. For derivation at the finest scale,
the learned potential function are similar to the log histograms
and peaked at zero. But at the coarse scale the function form
are inverted.

Field of Experts (FoE) [9], [40] are also the instances
of high-order MRF models. FoE adopts continuous energy
function and the filter is learned from training data for
better performance. FoE assumes the energy function has
the form of student T distribution and the filters are allowed
arbitrary. The exploration of the learned filters achieved
superior performance compared with the simple derivation
filters on a range of restoration tasks [41]. In [42], auxiliary-
variable Gibbs sampling is adopted and minimum Bayesian
mean squared error estimation is introduced to explore more
general and effective MRF model with the Gaussian scale
mixture (GSM) model [43]. Although the sampling based

approaches have statistical interpretation, they mostly have
high computation complexity, which is challenging in appli-
cations. Additionally, there are no closed form solutions
for the model expectation and the exact inferences are
intractable [26]. Recently, maximum likelihood estimation is
approximated with contrastive divergence (CD) [44], which
do not need costly equilibrium samples.

B. LOCAL PRIOR: SPARSE AND REDUNDANT
REPRESENTATION
The sparse prior of natural images [10] can be categorized
into transform-domain techniques, such as discrete cosine
transform (DCT) and discrete wavelet transform (DWT).
When performing transform to natural image, the original
image can be represented by some coefficients of the prin-
cipal components. In contrast, high-frequency components
over the whole coefficient fields generally has many zero or
small transform coefficients. Based on these observation in
transform domain the shrinkage technique is introduced for
image denoising [45], [46], in which a threshold operator
is adopted for the coefficients in the transform domain to
remove smaller ones and keep larger ones. Image sparsity
and redundant representation is a general form of transform-
domain sparsity. It demonstrates that a nature image can be
approximately reconstructed with a dictionary, such that

x ≈ 8α, s.t. ‖α‖0≤ T,

where T is a predenoted threshold value and l0-norm ‖α‖0
calculate the number of nonzero elements in α. Utilizing the
sparse prior, the restoration of image x can be regarded as an
optimal estimation by the following MAP:

α̂ = argmax
α

Pr(y/a)Pr(α),

where Pr(a) ∝ exp(−λ ‖α‖0) is the prior function. Consider-
ing the computation complexity of the l0 regularization opti-
mization, approximation approaches are generally adopted,
such as greedy pursuit such as the Orthogonal Matching
Pursuit (OMP) [47], [48] and convex relaxation algorithms,
such as the Basis Pursuit (BP) [49].
Another vital aspect of sparse prior and redundant

representation is the design of the dictionary [50]–[52].
Dictionary learning methods are introduced to learning a
dictionary which fits a given set of images adaptively. One of
the most effective approaches is K-SVD [14] which utilizes
either OMP or BP in the iteration procedure for dictionary
estimation. K-SVD can be regarded as a general form of
K-means clustering, and alternates between a process of
sparse coding of image based on the learned dictionary and
a process of the dictionary updating. Denote signals Y and
threshold T0, the K-SVD can be expressed as:

min
D,X

{
‖Y − DX‖2F

}
s.t. ∀i, ‖xi‖0 ≤ T0,

where X is the sparse representation coefficient matrix and
D is the learned redundant dictionary. Similar with FoE,
K-SVD learns dictionary atoms with the overlapping
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image patches. The entire image can be sparsely represented
by the concatenation of all of sparse codes. The image con-
struction with the sparse codes becomes an over-determined
problem, which has a straightforward least-square solution.
In practice, dictionary learned with K-SVD has achieved
excellent performance in image restoration.

III. CLOUD PRIOR BASED COMPRESSED
IMAGES RESTORATION
For an image to be compressed, the DCT coefficients of each
patch are further quantized and the quantization noise arises.
This process is undertaken for each block independently and
the introduction of discontinuity brings blocking artifacts.
Additionally, because of the blurred edges and the truncation
of the high frequency DCT coefficients during the quantiza-
tion and the deblocking steps, the ringing artifacts arise.

A. MAP ESTIMATION AND OPTIMIZATION
One of the most crucial parts of the MAP estimation is to
adopt appreciatemodels for the original imageX , i.e. the prior
model. Assume

Y = X + N , (1)

where X is denoted the original image, Y is the compressed
image, and N is the block artifacts noise, which is caused
by quantization process. Then the MAP estimation can be
formulated as

X̂MAP = argmax
X

p(X |Y )

= argmax
X

log
p(Y ,X )
p(Y )

= argmax
X
{log p(Y |X )+ log p(X )}, (2)

Where P(X ) represents the image prior model for the original
and P(Y |X ) is the degradation model.

B. ORIGINAL IMAGE PRIOR MODEL
The image probability density function, i.e. the prior p(X),
can be described as a Markov random field. To demonstrate
this in detail, let x represent a pixel in the image and suppose
a neighboring system ∂x contains all the neighbor pixels of X .
A clique c is composed of a set of pixels, neighboring to each
other:

∀x, y ∈ c⇒ y ∈ ∂x. (3)

Figure 1 gives an instance of an 8-point neighborhoods.
MRF mode can be represented with Gibbs function:

p(X ) =
1
Z
exp

{
−

∑
c∈C

Vc(X )

}
, (4)

where c denotes a clique, Vc(X ) is energy function defined on
the clique, and Z is the normalization term.

Denote Jk as a n × n linear filter, the clique ct contains
n×n pixels with pixel t in the center, N is the total number of
filters applied, and αk is a positive parameter which is used to

FIGURE 1. An 8-point neighboring system and its 2-point clique.
(a) 8-point neighborhood: the gray blocks are the neighbors of x(1,1)
(b) 2-point clique.

adjust the φ proper distributions. Field of Experts (FoE) was
proposed [8] in the following form:

p(X ) =
1
Z
exp

{∑
t∈C ′

N∑
k=1

logφ(JTk Xct ;αk )

}

=
1
Z

∏
t∈C ′

N∏
k=1

φ(JTk Xct ;αk ), (5)

where

φ(JTk Xct ;αk ) =
(
1+

1
2
(JTk Xct )

2
)−αk

. (6)

One advantage of FOE is that both the filter Jk and the
parameter αk can be estimated from a training image data set.

C. DEGRADATION MODEL
Haven obtained the description of P(X ), an appropriate
assumption is provided that the quantization noise N and the
original image X has the independent relationship,

p(Y |X ) = p(X + N |X ) = pN (N ). (7)

We assume that quantization errors satisfies Gaussian
distribution:

pN (n(i, j)) =
1

√
2πσN (i, j)

exp(−
n2(i, j)

2σ 2
N (i, j)

), (8)

where n is an 8×8 patch of the degrade imageN , (i, j) denotes
the location of the 8×8 block, σ 2

N (i, j) represents the variance
of quantization error.
There have been many quantization error models been

proposed, such as assuming that the quantization error has the
same variance at different position of images [12] or explor-
ing the uniform distribution to model the quantization [13].
However, for the pixels at the block boundary, the quantiza-
tion error tends to be much stronger than those in the center
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of block, which is not appreciate to be described with the
former variances. We proposes a function to approximately
estimate the variance of quantization error:

σ 2
N (i, j) = a · ((i− 3.5)2 + (j− 3.5)2 + d), (9)

where a is denoted as a factor relating with the quantization
parameter and d is a constant.

D. OPTIMIZATION METHOD
Once we have obtained the image prior model, the degrada-
tion model and by comprising these two to the whole image,
an objective function for maximization can be obtained as

X̂MAP= argmax
X

∏
m

p(X (m)|Y (m))

= argmax
X

∑
m

(log p(Y (m)|X (m))+ log p(X (m))

= argmax
X

(
∑
m

(−λ·
N 2(m)

2σ 2
N

)+
∑
ct∈C ′

N∑
k=1

logφ(JTk Xct ;αk ))

(10)

where m is the patch index, X (m), Y (m) and N (m) are the
mth block of the original image, the compressed image and
the quantization noise at the same location, respectively. λ is
a constant utilized as the weight constant relating to the
noise model. Optimizing (10) can be transformed to be a
minimization problem with the energy function Eo (X):

EO(X ) = λ
∑
m

N 2(m)

2σ 2
N

−

∑
ct∈C ′

N∑
k=1

logφ(JTk Xct ;αk ), (11)

which can be expressed as

EO(X ) = λ · EN (X )+ E(X ), (12)

where

EN (X ) =
∑
m

N 2(m)

2σ 2
N

, (13)

E(X ) = −
∑
ct∈C ′

N∑
k=1

logφ(JTk Xct ;αk ). (14)

Here the conjugate gradient descent is adopted to solve
this problem. The gradient of E(X ) and EN (X ) can be
expressed as:

∇EN (X ) =
1

σ 2
N

(Y − X ), (15)

∇E(X ) = −
N∑
k=1

Jk · ψk (JkX ). (16)

A further description of the optimization process is provided
in [8] and [9].

FIGURE 2. Frame work of Images restoration with Cloud prior and Local
Prior.

FIGURE 3. Dictionaries for spare representation. Top: Overcomplete DCT
dictionary and globally trained dictionary. Bottom: Original image and
corresponding adaptively trained dictionary with K-SVD.

IV. LOCAL PRIOR MODELING AND ENHANCEMENT
Having obtained the restoration image with cloud prior,
a local prior model is utilized to get refined images. The
proposed local prior model and enhancement procedure can
be represented as follows: providing a degraded image Y
and the quantization parameter Q, a preliminarily restored
image X̂ is expected to be estimated with MAP strategy as
shown in Figure 2.

A. SPARSE REPRESENTATION AND K-SVD ALGORITHM
Most of the traditional approaches are global representa-
tion based [11]–[13], in which the features are learned from
amount of natural images. The global representation based
methods have drawbacks to a certain extend: firstly, it is not
precise enough; secondly, it can’t obtain full scale features for
the original images. Self-adaptive method can be adopted to
overcome this problem and obtain effective sparse features
and is a perfect solution to this problem. We thus utilize
the K-SVD algorithm [14], [15] to estimate the atoms of
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the dictionary, which leads to more precise representation of
the target image.

B. IMAGE RECONSTRUCTION USING SPARSITY
AND REDUNDANCY
Based on sparse and redundant representation a denoising
approach is proposed in [14], which has the ability to learn
the effective sparse representation for each image block in
the training set. A basic assumption is each image block can
be reconstructed as a linear combination of a small subset
of the basics. Accordingly, the task of image self-adaptive
sparse representation can be described as a potential function
minimization. The following optimization term describes a
combination of three penalties:{
α̂ij, X̂

}
= arg min

αij,X
λ ‖X − Y‖22

+

∑
ij

µij
∥∥αij∥∥0 +∑

ij

∥∥Dαij − RijX∥∥22. (17)

The first term is used to constrain the proximity between
the degraded image Y and its reconstruction version X . The
second term is utilized to satisfy that each block from the
reconstruction could be represented up to a bounded error
with the dictionary D. The third term demands that the num-
ber of coefficients should satisfy representation any patch is
small. The values µij are patch-specific weights. Minimizing
this function yields the sparse representation algorithm and
the choice of D is crucial to the performance, as shown in
Figure 3. The methods in [8] and [9] are of an iteration block-
coordinate relaxation approach, which fixes all the other
unknowns except one to be updated. The iteration process can
be described as:

1) Updating the sparse representation coefficients
{
αij
}
:

assuming that D and X are fixed, solve the problem as

âij = argmin
a
mij ‖a‖0 +

∥∥Da− xij∥∥22 . (18)

In this step, the sparsest vector for each patch in
the image is pursuit to describe it with atoms of D.
The orthogonal matching pursuit (OMP) algorithm is
utilized for this purpose.

2) Updating the atoms in the dictionary D: assuming that
X is fixed and update each atom at a time in D, as well
as updating the coefficients αij. This is done via a
rank-one approximation of a residual matrix.

3) Updating the reconstructed image X : after rounds of
updating

{
αij
}
and D, the coefficients of all blocks

obtain a sparse representation for the original image

X̂ = argmin
x
λ ‖X − Y‖22 +6

ij

∥∥Dα̂ij − RijX∥∥22. (19)

This optimization is solved with a simple weighting of the
represented blocks with overlaps.

C. ENHANCED QUANTIZATION
CONSTRAINED PROJECTION
After applying K-SVD for single frame, the frame is divided
into blocks which will be transformed and quantized to get
new quantization coefficients (NQC). If NQC are different
from the corresponding original quantization coefficients that
will be transmitted to the decoder, the pixel values of the block
will be modified by the following methods.
The quantization constraint and the range constraint are

respectively imposed on the DCT coefficients and the pixel
values during the iteration. It is our priori knowledge that
the original DCT coefficients must lie within the quantization
intervals and the pixel values between 0 and 255. If either of
them is violated, the intermediate result should be set to the
nearest value satisfying the corresponding constraint. In the
BDCT process, the BDCT quantization coefficients compose
a constrained set:

CT
=

{
x : x̂min

(i,j) < BDCT (x) < x̂max
(i,j) ,

∀i = 1, 2, . . . ,M; ∀j = 1, 2, . . .N (20)

where CT is the constrained set, (i, j) is the corresponding
pixel location; x̂min

(i,j) and x̂
max
(i,j) are the boundaries of quantiza-

tion interval. The projection of image block x to the convex
set CT can be represented as follows:

PT (x) = BDCT−1 · x̂, (21)

where PT is the mapping process, and the quantization con-
strained pixel value at location (i, j) can be represented as:

KSVD_pixel (i, j) = x̂(i, j)

=


x̂min
(i,j) , if BDCT (x)(i,j) < x̂min

(i,j)

x̂max
(i,j) , if BDCT (x)(i,j) > x̂max

(i,j)

BDCT (x)(i,j), otherwise

(22)

The final restored image is achieved by blending the loop fil-
tered results LoopPixel(i, j) with the quantization constrained
results KsvdPixel(i, j).

XE = ω1 · LoopPixel (i, j)+ ω2 · KsvdPixel (i, j) (23)

where w1 + w2 = 1 and w1 is weighted coefficient for loop
filtered results and w2 for quantization constrained results.

D. THE PROPOSED EDGE ENHANCEMENT
After the aforementioned steps, a restoration image could be
obtained. However, because the FoE model based on a set of
learned filters is a no-bias model, which processes the smooth
area and the contour area of image equally. So the edge may
be blurred, even may the ringing artifacts are arisen. Since the
edge area of an image is important for visual attention, the
loss of edge information could greatly degrade the subjective
quality. Therefore, in order to restore the edge information, an
edge enhancement algorithm is proposed, which is illustrated
in Figure 4.

A Laplacian Image X̂Laps is obtained by constructing a
Gaussian/Laplacian image pyramid as shown in Figure 5,
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FIGURE 4. The proposed enhancement scheme.

FIGURE 5. Gaussian/Laplacian image pyramid (N = 3).

from which we can further obtain the HF content for edge
restoration.

This process can be demonstrated by the following expres-
sions: Denote Gn as the nth Gaussian image of the input G0,
then Gn can be calculated with a REDUCE(·) operation:

Gn+1 = REDUCE(Gn), 0 ≤ n ≤ N − 1, (24)

where N is the levels number in the pyramid structure and
G0 represents the highest resolution. Denote G̃n as the image
expended from Gn+1 with an EXPEND(·) operation:

G̃n = EXPAND(Gn+1), 0 ≤ n ≤ N − 1. (25)

The Laplacian pyramid can be got by

Ln = G̃n − EXPAND(Gn+1), 0 ≤ n ≤ N − 1, (26)

where Ln is the nth Laplacian pyramid image of G0.
Here only the 0th Laplacian image of X̂MAP is utilized,

denoted as X̂Laps. Although X̂Laps contains the HF information
of X̂MAP, it is inevitable to discard some true HF information
of the original image. For the next step we will enhance
this HF image as shown in Figure 4, with the following
expression:

XE = X̂Laps + XP = X̂Laps + γ · CM · XO. (27)

By performing the control function with X̂MAP, the control
map CM can be obtained and XO is the HF component
of X̂MAP. Figure 6 provides an instance of the control func-
tion, which as a function of local activity LA, LA0 and C0
representing the parameters to adjust the control function.

The control function should satisfy:

lim
LA(i,j)→0

Cf (i, j) = C0, lim
LA(i,j)→∞

Cf (i, j) = 0. (28)

FIGURE 6. Control function Cf (i, j )as a function of the local activity
LA(i, j ).

With the adoption of the control function, the overshoots near
sharp edges can be limited and the noise in the smooth area
can be attenuated at the same time. The control function can
be defined as:

Cf (i, j) =
LA(i, j)+ c

k · (LA(i, j))2 + l

a =
C0 · LA0
2(1− C0)

, l =
LA0

2(1− C0)
, k =

1
2 · LA0

, (29)

where (i, j) is the pixel location in the image. With precise
setting these two parameters, it can be ensured that only the
selected detail information in the contour regions is refined.
By comprising XP with XD, enhanced HF image XE can be
obtained with local compatibilities between the primitives
enforced. As to the local activity LA(i, j), the response of
Sobel operator is utilized to measure the intensity variance
of local regions in this paper. By combining the enhancement
HF image with the deblocking image, a higher-quality image
could be reconstructed. Finally, quantization constrained
projection is used to improve the image quality by eliminating
possible over blurring influence.

V. EXPERIMENT RESULTS
In this section, extensive experiments are performed to eval-
uate the performance of the proposed compressed vision
information restoration based on cloud priors and local priors,
which is compared with the other state-of-the-art methods.
In our experiments, the parameters used in the prior modeling
are set as follows. The filter’s scale of FoE is 5 × 5, which
have the ability to extract the structural information in natural
images. The tested images are shown in Fig. 7.

A. COMPRESSED IMAGE RESTORATION
To evaluate the proposed cloud prior and local prior based
images restoration, we compare our method with some other
popular strategies and adopt the peak signal-to-noise ratio as
the objective quality assessment and the comparison results
are reported in Table 1. The best two performances for each
column are emphasized by the shades. With these compar-
isons, it can be observed that the proposed method achieves
significantly better performance emphasized in bold than
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TABLE 1. PSNR comparison of different image restoration schemes.

FIGURE 7. Typical test images (a) LENA, (b) PEPPERS, (c) BARBARA, and (d) BABOON.

FIGURE 8. Subjective quality comparison on LENA. (a) Original image. (b) JPEG 30.41dB. (c) Xiong 31.05dB. (d) Yang 31.03dB.
(e) Chen 31.16dB. (f) Zhai 31.25dB. (g) Liew 31.44dB. (h) Proposed 32.05dB.

JPEG and the other deblocking methods, even at higher bit
rates. Significant improvements in image quality are obtained
both in smooth and texture images. As shown in Fig. 8,

the subjective result of the proposed method outperforms
the other restoration methods. Fig. 9 illustrates the perfor-
mance of the proposed edge enhancement. With the proposed
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FIGURE 9. Restored images of the proposed scheme: a) JPEG-coded ‘‘LENA’’ b) Restored ‘‘LENA’’
without the proposed edge enhancement c) Restored ‘‘LENA’’ with the proposed edge enhancement
d) JPEG-coded ‘‘BARBARA’’ e) Restored ‘‘BARBARA’’ without the proposed edge enhancement
f) Restored ‘‘BARBARA’’ with the proposed edge enhancement.

TABLE 2. Coding conditions.

cloud prior and local prior based images restoration, greater
improvements can be achieved in the images which contain
large smooth area, such as LENA and PEPPERS. However, in
the images containing most texture information, the improve-
ment is relatively smaller.

B. COMPRESSED VIDEO RESTORATION
The simulation conditions are given in Table II. In our simu-
lations, all intra/inter encoding modes are enabled to evaluate
the performance of the proposalmethods. In order to highlight
the results of our proposal, the loop filtered results rather
than the results of our proposal are used as reference for inter
prediction.

Enhanced Quantization Constrained Projection uses for-
mula (23) to correct the pixel values. EQCP corrects all the
pixels of all modes with w1 = (QP/4− 3)/10,w2 = 1− w1
for P images, and corrects pixels of mode Intra 16 × 16
with w1 = 0.6,w2 = 0.4 for I images. The performance
comparison of PSNR is depicted in Table III.
The experiment results reveal that for the proposedmethod,

the PSNR of restored I images is better than that of the
restored P image with the same QP, which is mostly because
the blocking artifacts of I images are more obvious. Another
reason for less PSNR gain of P image is that if the quanti-
zation coefficients of a block are small enough, they will be
discarded for the sake of saving bitrates. As to the choose of
the parameter λ, with a large-scale test, we find empirically
that the optimized value of λλ depends on the QP value and
the type of the images. As seen in Table III, the optimized
λ of I images is smaller than that of P images; as QP goes
down, better results are achieved with larger values of λ.
As for the EQCP, the weighted fusion of the loop filter results
and those of K-SVD turns out to be better than using either
of them. The pixel values of all modes will be processed with
the weights related to QP for P images, while those of the
mode Intra 16 × 16 with constant weights, 0.4 and 0.6 will
be appropriate for I images. The proposed method achieves
better performance for P images than I images, and the
confidence of the restoration of P images is higher for the
sequences with less movement.
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TABLE 3. Comparison of PSNR between JM10.0 and the proposal.

VI. CONCLUSION
In this paper, a compressed video restoration scheme based
on cloud and local priors for vision information is proposed.
A cloud prior model is obtained by training on a huge nature
image dataset in the cloud which models the nature image in
the form of high order Markov random field. The local prior
model explores the sparse characters of nature images. These
two models are comprised to eliminate the block artifacts
in the compressed vision information. The enhanced quan-
tization constrained projection method is further provided to
refine the high frequency components of the vision informa-
tion. Simulation evaluations demonstrate that the proposed
methods outperform the current deblocking algorithms.
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