
Received July 2, 2014, accepted August 2, 2014, date of publication August 26, 2014, date of current version September 10, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2351832

Neural Implementation of Shape-Invariant
Touch Counter Based on Euler Calculus
KEIJI MIURA1 AND KAZUKI NAKADA2, (Member, IEEE)
1Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
2Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo 182-8585, Japan

Corresponding author: K. Miura (miura@ecei.tohoku.ac.jp)

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas, in part by the Neural Creativity
for Communication under Grant 4103, in part by the Ministry of Education, Culture, Sports, Science, and Technology, Japan,
under Grant 24120701, and in part by a Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science,
under Grant 24700301 and Grant 25820163.

ABSTRACT One of the goals of neuromorphic engineering is to imitate the brain’s ability to recognize and
count the number of individual objects as entities based on the global consistency of the information from
the population of activated tactile (or visual) sensory neurons whatever the objects’ shapes are. To achieve
this flexibility, it may be worth examining an unconventional algorithm such as topological methods. Here,
we propose a fully parallelized algorithm for a shape-invariant touch counter for 2-D pixels. The number of
touches is counted by the Euler integral, a generalized integral, in which a connected component counter
(Betti number) for the binary image was used as elemental module. Through examples of touches, we
demonstrate transparently how the proposed circuit architecture embodies the Euler integral in the form
of recurrent neural networks for iterative vector operations. Our parallelization can lead the way to Field-
Programmable Gate Array or Digital Signal Processor implementations of topological algorithms with
scalability to high resolutions of pixels.

INDEX TERMS Euler calculus, topology, invariance, touch counter, neuromorphic engineering, sensor
networks.

I. INTRODUCTION
It has been desired for a long time to design the machine that
achieves brains’ ability to recognize unity from the global
consistency of sensory stimuli [1], [2]. For example, there
is a neuron which can count the number of objects in the
visual field irrespectively of their shapes [3]–[5]. In the case
of tactile system, it can be important to count the number of
touches irrespective of their shapes [6].

Conventionally, perceptrons or similar layered networks
have been used as a model of pattern recognition in the
brain [7]–[10]. Although perceptron-like machines show
invariance to, say, object rotations to some extent, their
analogue nature of computation makes it difficult to achieve
the invariance with the infinite precision, especially in
counting [11], [12]. Therefore, it is worth examining an
alternative algorithm, which, hopefully, realizes concerted
inter-neuronal communications with the perfect invariance
guaranteed.

To compute the topological invariants such as the num-
ber of distinct objects in an image, the algorithms based
on topology, a major area of mathematics [13]–[15], can be

more effective than ad hoc algorithms. Fortunately, recent
advances of the field of computational topology made it
possible to compute topological invariants in an accessible
way [16]–[21].
Although a couple of latest works by mathematicians

tackled the fundamental problems of shape-invariant num-
ber count specifically [22]–[25], their implementations on
serial system computers can, in principle, suffer from the
formidable computational time for the big data with many
sensors or pixels. Although there are some works on dis-
tributed [25] or gradient-based decentralized algorithms [26],
the concrete computations have been actually performed on
serial system computers. Therefore it is very important to
design a fully parallelized circuit implementation for comput-
ing topology. In addition, if the parallelization is biologically
plausible in the form of neural networks, which we call
‘‘neural implementation,’’ it could give insight into neural
information processing as a brain model, as it readily allows
to compare its behaviors to those of biological neurons [1].
In this paper, we propose an algorithm of a fully paral-

lelized neural network that can count the number of touches

960
2169-3536
 2014 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 2, 2014

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

on a two dimensional square lattice of sensors. Based on the
Euler calculus, the proposed counter can count the touch num-
ber irrespectively of the shapes and positions of the touches.
The count is not approximate, but accurate, guaranteed by
mathematics. The key idea is to transform the touch number
on a 2D plane to the number of connected components of level
sets there. Thenwe implement and demonstrate the connected
component counter, which is a key elemental module, in
a fully parallelized circuit for iterative vector calculations.
Through concrete examples of simple but nontrivial touches,
we demonstrate transparently how the proposed circuit archi-
tecture embodies the Euler integral.

The background mathematics here is rather advanced, but
we try to keep the paper as accessible as possible by engineers
and designers. One of the goal of this paper is to import
the state-of-the-art idea from mathematics and explain it as
plainly as possible. Our substantial contribution resides in the
parallelization of the algorithm and its circuit implementation
as recursive vector operations, which renders the scalability to
high resolutions of pixels.

In Sec. 2, we briefly review the Euler calculus for counting
the number of touches and propose a concrete and paral-
lelized algorithm to compute it by way of recursive vector
operations. For ease of comprehension, we first design a
connected component counter as a subunit. Then we con-
struct a whole touch counter as an upper level module. In
Sec. 3, we demonstrate the proposed algorithm through the
implementation in a fully parallelized circuit architecture. We
concretely implement the proposed algorithms for examples
of touches in order to demonstrate explicitly how the pro-
posed circuit architecture embodies the Euler integral in the
form of recurrent neural networks. We successfully generated
HDLs to ensure implementability and accessibility in Field-
Programmable Gate Array (FPGA). Finally, Sec. 4 presents a
summary and discussions.

II. THEORY AND ALGORITHM OF EULER INTEGRAL
In this section, we briefly review the mathematics of Euler
calculus for counting the number of touches [22]–[25] and
propose an algorithm to compute it by way of recursive
vector operations. The proposed algorithm can be easily
implemented in a parallel, distributed neural network archi-
tecture as we will see in the next section.

A. PROBLEM SETTING
For ease of comprehension, let us begin with a simple exam-
ple in which tactile sensors, which are densely aligned on a
two dimensional regular square lattice, sense tactile stimu-
lations at each point (Figure 1). The goal here is to count
the total number of touches (= three times) irrespective of
the shapes and positions of the stimulating objects. Note that
each touch has an arbitrary shape of finite size while each
point neuron can sense and keep only the total touch number
over an entire period at each point. This situation could
happen when sensors have no or low temporal resolution
(to save resources). The numbers on the figure represents

FIGURE 1. Example problem of Euler calculus on two dimensional plane.
Each touch has an arbitrary shape of finite size while each point neuron
can sense the total touch number at each lattice point. The neurons form
a dense, square lattice on the plane. The numbers represent the touch
count sensed by neurons in each domain. The total ‘‘touch’’ count, which
we want, is three. A toy problem mimicking this example is shown
in Eq. 16.

how many times the neurons in each domain were touched.
In this example, each neuron was touched from 0 to 2 times.
We would like to estimate the total touch number (= 3)
only from the local or pointwise touch numbers each neuron
senses.
The solution can be achieved by the Euler calculus.

In the followings, we first construct a connected component
counter as an elemental module that can count the number of
connected component in a binary image by way of recursive
vector operations. Then, we design a shape-invariant touch
counter for a multi-valued image based on the Euler integral
as an upper level module.

B. COUNTING THE NUMBER OF CONNECTED
COMPONENTS IN A BINARY IMAGE
Here we consider the problem of counting the number of
connected component (β0) in a ‘‘binary’’ image as in Figure 2.
To keep the algorithm concrete, throughout this section we
consider the 2× 3 input image shown in Figure 3 (a) as an
example, where each sensor neuron is activated or inactivated
depending on binary input to each lattice point (ui = 0 or 1).
We first define an adjacency matrix which takes 1 if the

sites i and j are neighbors and the i-th and j-th neurons are
both activated, ui = uj = 1 (Figure 3 (a)):

Aij=

{
uiuj (i and j are neighbors in the 2D square lattice)
0 (otherwise)

(1)

where diagonal elements Aii are defined to be 0. Note that
each neuron has up to four neighbors (up, down, left and
right). You can regard the connections between neurons
as the Hebbian-like local learning rule as only the (neigh-
boring) neurons which are both active are connected.

VOLUME 2, 2014 961

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 2. Counter of connected components. The numbers 1 and 0
represent the occupied and unoccupied domains, respectively. An ideal
counter should count the number of connected components occupied
irrespective of their shapes.

FIGURE 3. (a) Construction of an adjacency matrix of a graph according to
the Hebbian-like local learning rule on a 2×3 example lattice. (left) The
black and white circles represent the activated and inactivated neurons.
(middle) Connections are formed when the neurons on the both ends of
an edge are activated (Hebbian-like local learning rule). Note that only
nearby neurons can form connections. (right) The matrix representation
of the graph where the elements represent the existence of connections.
(b) Time evolution of neurons. Neurons homogenize their states over time
if they are connected. The number of destinations or different final states
gives the number of connected components (= 2).

For the current purpose, you can ignore the matrix elements
for the inactivated neurons as in A of Figure 3 (a) because
they are just all zeros. Notice that we distinguish lattice
points by a single index i although the pixels are alined on
a two dimensional regular square lattice. That is, we treat
the pixels as a vector ui rather than a matrix uxy, so that the
following computations can be implemented in the form of
vector operations.

Finally and most importantly, when time evolution of the
neurons homogenize their states as in Figure 3 (b), the num-
ber of destinations or different final states gives the number
of connected components (= 2), which we wanted. This is
because only neurons in the same connected component can
be homogenized via interactions.

To describe the time evolution in the form of a mathemati-
cal equation, let us define the Laplacian matrix 1 [27] by

1 = D− A, (2)

where

Dii =
n∑
j=1

Aij (3)

represents the degrees of the nodes. That is, D is a diago-
nal matrix with Dii = (the number of connections the i-th
neuron has). For our concrete example of the 2D input image
(Figure 3 (a)),

1 0 1
1 0 1

, (4)

the Laplacian matrix 1ex is given by

1ex = D− A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

=

1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 . (5)

where −1 represents the connected neurons (n1-n2 and
n3-n4) according to the Hebbian-like local learning rule
for neighbors and the diagonal elements correspond to the
number of connections each neuron formed (one for all the
neurons in this case).
Then, the homogenizing interaction in Figure 3 (b) can be

mathematically described as

v|t=n = (I − α1)n v|t=0, (6)

starting from a random vector whose elements (vi’s) are
distributed uniformly. Simply, a neuron updates its state
toward the average state of the neighboring (active) neurons
to the degree of α. The mathematical background is shown in
Appendix A. As we take small enough coefficient α(≈ 1/8),
the convergence is guaranteed (Appendix B).
Practically, to treat both activated (ui = 1) and inactivated

(ui = 0) neurons in a unified way, we multiply ui to (v|t=0)i
before the iteration because vi for inactivated neuron (ui = 0)
is never updated (no connection) and kept to be 0 as will be
seen in Figure 8.
With this connected component counter as a subunit, we

will construct a touch counter based on the Euler integral in
the next subsection.

C. COUNTING THE NUMBER OF TOUCHES
ON A SENSOR NETWORK
Here we review the Euler integral [22]–[24] and show how
to compute it concretely by using the connected component
counters. While usually the topological invariants such as
connected components, numbers of holes and Euler char-
acteristics are computed for ‘‘binary’’ images, the Euler
integral, a generalized Euler characteristics, is computed
for the ‘‘integer-valued’’ images. Mathematically, the Euler
integral can be regarded as a (generalized) integral.

962 VOLUME 2, 2014

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 4. Euler characteristics for binary images: χ = β0 − β1 = (number
of connected components) − (number of holes).

For ‘‘binary’’ images, the Euler integral simply returns
the Euler characteristics (= the number of connected
components - the number of holes). For example, in Figure 4,
the first and the third examples have one and three compo-
nents while the second example has one connected compo-
nent and one hole, returning zero. Note that the Euler integral
does not count and ignores the number of disks with a hole.

FIGURE 5. Example problem of touch counter. The total touch count is
two. Euler calculus allows to decompose the integer-valued integrand
into two indicator functions (Eq. 7). This decomposition guarantees the
correct touch number in the Euler integral.

For ‘‘integer-valued’’ images h(= 0, 1, 2, . . .), the integral
rule allows to decompose the integral of a sum of integrands
into the sum of integrals:

χ (f + g) = χ (f)+ χ (g). (7)

For the case of Figure 5, you can theoretically decompose
the original image into the sum of two indicator functions
which take 1 on simultaneously touched domains. Then, as
each integral counts one in each indicator function, the sum
of the integrals returns the correct answer (= 2). In this way,
this integral rule results in the correct touch count in general
for any touch counts.

However, the computation shown above is theoretical.
In reality, you do not necessarily know how to decompose
the integrand. Therefore in practice another (automatic) way
of decomposition is used. That is, we decompose an integrand
or an integer-valued image by levels into binary images:

χ (h) =
∞∑
s=0

χ (h > s), (8)

where h > s represents the indicator function that takes 1
in the domain with h > s and 0 elsewhere, for brevity of

notation. Thus the integral reduces to the Euler characteristics
for the domains whose shapes are represented by binary
images. For the case of Figure 5 (left), the integral can be
computed by assuming Figure 4 (top) as

χ (h) = χ (h > 0)+ χ (h > 1)+ . . . = 1+ 1+ 0 = 2. (9)

For the case of Figure 1 (or Eq. 23), the integral can be
computed by assuming Figure 4 (middle and bottom) as

χ (h) = χ (h > 0)+ χ (h > 1)+ . . . = 0+ 3+ 0 = 3. (10)

In this way, you can compute the total touch number even
if you do not know the set of simultaneously touched pixels
[22]–[24].
Finally, the computation of Euler characteristics for binary

images as in Figure 4 remains to be solved. This computation
can be actually reduced to counting the connected compo-
nents. Remember that (Euler characteristics) = (#connected
components)− (#holes). As it is difficult to numerically com-
pute the number of holes without error, we use the Alexander
duality [15], [28]–[30]) for 2D planes to compute the Euler
characteristics [22]–[24]:

χ (A) = β0(A)− β1(A) = β0(A)− (β0(R2
\ A)− 1), (11)

where A represents a (compact) domain whose pixel values
are 1. β1 is the number of holes and β0 is the number of
connected components. Here we do not prove the above
formula, but the formula means that the number of holes of
A in R2 can be counted by counting the number of connected
components in the complement domain. The Euler charac-
teristic χ computed through β0 as above can be numerically
more robust than that by the direct computation, say, with the
Euler’s formula [22]–[24].

By combining Eqs. 8 and 11, finally we have

χ (h)=
∞∑
s= 0

χ (h > s)=
∞∑
s= 0

[β0(h>s)−β0(h ≤ s)+1]. (12)

Note that the entire computation reduced to the number of
connected components β0, which we know how to compute
concretely and in a fully parallelized manner.

Let us compute examples through Alexander duality in
Eq. 12 just for illustration of it. For the case of Figure 5,

χ (h) = [β0 (h > 0)− β0 (h ≤ 0)+ 1]
+[β0 (h > 1)− β0 (h ≤ 1)+ 1]
+ 0 + 0 + . . .

= [1 − 1 + 1]+ [1 − 1 + 1]
= 2. (13)

For the case of Figure 1,

χ (h) = [β0 (h > 0)− β0 (h ≤ 0)+ 1]
+[β0 (h > 1)− β0 (h ≤ 1)+ 1]
+ 0 + 0 + . . .

= [1 − 2 + 1]+ [3 − 1 + 1]
= 3. (14)

VOLUME 2, 2014 963

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 6. Implementation diagram for touch counter. Euler integral χ is computed from connected component
counts β0. The connected component counter β0 consists of a Laplacian matrix generator, an iterative vector
calculator for Eq. 6 and a level setter essentially consisting of sort(), diff() and sum() Matlab functions.

Notice that the Euler integral is unique independently of
the ways of decompositions, because it satisfies the additivity
axiom of measure [22]–[24],

χ (A ∪ B) = χ (A)+ χ (B)− χ (A ∩ B), (15)

and the finest segmentalization guarantees the unique integral
as a topological invariance (= #vertices − #edges + #faces)
according to the Euler’s formula. The underlining assump-
tions are that each touch forms an open (or closed) set in the
2D plane and pixels are much finer than the touch shapes.

III. DEMONSTRATIONS BY PARALLELIZED
CIRCUIT ARCHITECTURE
A. A SIMPLEST EXAMPLE WITH 5×5 PIXELS
In order to demonstrate the proposed algorithm, we
concretely designed a fully parallelized circuit architecture
(Figures 6 and 7) to automatically solve problems on the two
dimensional pixels. As an illustrative example, we first solve
the following problem mimicking Figure 1:

0 0 0 0 0
0 1 2 1 0
0 2 0 2 0
0 1 1 1 0
0 0 0 0 0

. (16)

Note that we do not get the correct answer (= three times)
unless we put zeros outside. For example, if we consider

another problem

1 2 1
2 0 2
1 1 1

, (17)

we get a wrong touch number due to wrong β0 such as

β0(h ≤ 0) = β0

 0 0 0
0 1 0
0 0 0

 = 1. (wrong! see Eqs. 21)

(18)

Thus we have to be careful about the boundary condi-
tion in modeling 2D plane, especially when there are holes
inside.
To save users’ efforts to manually insert 0’s outside the

input touch image, we implemented the automatic inser-
tion as a preprocessing of Matrix Generator in Figure 6.
As the peripheral pixels can flip to 1 after the operations
such as h 5 0, it is appropriate to implement this insertion
initially.
For ease of comprehension, first we elaborate on the con-

nected component counter β0(‘‘*’’), which works as an ele-
mental module. The proposed circuit generates the 25× 25
Laplacian matrix1 from the input pixel values u according to
Eq. 2. For example, for the binary image with full activations

964 VOLUME 2, 2014

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 7. Implementation diagram for iterative vector calculator for Eq. 6 inside connected component counter.

(corresponding to Eq. 21 (bottom right)),

u =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

, (19)

1 is given by Eq. 20, as shown at the bottom of this page,
where −1 represents the connected edges (in this specific
case, all the neighboring neurons) while diagonal elements

represent the number of edges for each neuron (four for inner
neurons).
As shown in Figure 7, the Laplacianmatrix1 and a random

vector v are input to the module, where the operation of
1v is realized as an inner product (wi · v) between v and
the rows wi of the Laplacian matrix 1 = (w1; w2; . . . ;
w25). The iterative vector calculation of Eq. 6,
which essentially homogenizes the states within each con-
nected component, is implemented recursively with unit
time delay to save space. Thus we realized a connected

2 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 3 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 3 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 3 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 3 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 4 −1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 3 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 3 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 3 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 3 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 2

(20)

VOLUME 2, 2014 965

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

β0(h > 0) = β0

0 0 0 0 0
0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 0 0 0 0

 = 1, β0(h ≤ 0) = β0

1 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1

 = 2,

β0(h > 1) = β0

0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0

 = 3, β0(h ≤ 1) = β0

1 1 1 1 1
1 1 0 1 1
1 0 1 0 1
1 1 1 1 1
1 1 1 1 1

 = 1,

β0(h > 2) = β0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = 0, β0(h ≤ 2) = β0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 = 1. (21)

component counter β0(‘‘∗′′) in a fully parallelized
manner.

Figure 8 shows the recursive time evolutions of v imple-
mented on the circuit simulator for the six level sets in
Eqs. 21, as shown at the top of this page, for our example
in Eq. 16. Note that the number of destinations gives the
number of connected components β0 in each input figure.
For example, the top left figure and the middle left fig-
ure show one and three connected components respectively.
Note that in the middle left figure, v stays at the initial
values under the iteration of Eq. 6 as there is no connec-
tion in this case. As can be expected from the converging
nature of Figure 8, the result is robust in the sense that
any noise on v halfway does not change the final result
at all.

Finally, the upper module that computes the Euler
integral χ just calls the connected component counters,
β0 (Eq. 12), and it can be implemented straightforwardly
(Figure 6). For our example in Eq.16 the touch number can
be correctly computed as ‘‘three times’’ from the connected
components of level sets (Eqs. 21) as

χ (h) = χ (h > 0)+ χ (h > 1)+ χ (h > 2)+ . . .

= [β0(h > 0)− β0(h ≤ 0)+ 1]

+[β0(h > 1)− β0(h ≤ 1)+ 1]

+[0]+ . . .

= [1 − 2 + 1]+ [3 − 1 + 1]+ [0]+ . . .

= 0 + 3 + 0+ . . .

= 3. (22)

Note that our level-set decomposition into characteristic

functions, h = 1(h > 0)+ 1(h > 1), or

0 0 0 0 0
0 1 2 1 0
0 2 0 2 0
0 1 1 1 0
0 0 0 0 0

=

0 0 0 0 0
0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 0 0 0 0

+

0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0

, (23)

differs from the one into original touch shapes in Figure 1,
which should be,

0 0 0 0 0
0 1 2 1 0
0 2 0 2 0
0 1 1 1 0
0 0 0 0 0

=

0 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

+

0 0 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

+

0 0 0 0 0
0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 0 0 0 0

. (24)

Thus we can compute the correct touch number as a topolog-
ical invariant independent of the decomposition even if we do
not know the original decomposition.
We successfully computed the touch count as the Euler

integral χ (= 3) for our example in Eq. 16 by executing
our Simulink model/library on a PC platform and gener-
ated the corresponding HDL code for verification in large-
scale through SW/HW co-simulations on FPGA platforms.
All the digital computations were done to the 16-bit pre-
cision with 8-bit after the decimal point. All the imple-

966 VOLUME 2, 2014

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 8. Time evolution of v by Eq. 6 for six cases in Eqs. 21. The number of destinations gives the number of
connected components β0 in each input figure. 25 lines in each figure represent the time evolutions of 5×5
neurons, v = (v1, v2, . . . , v25).

mentation including the level set operation, which is essen-
tially ‘‘sum(diff(sort(v))),’’ are designed as custom Simulink
model/library employing vector operations. In particular, the
iterative vector calculator is implemented using recursive vec-
tor operations as described as the block diagram in Figure 7.
In this way, the proposed circuit has scalability to many pixels
because we can generate HDL seamlessly and automatically
from the same Simulink model/library only by adjusting the
scale parameter (= resolution of the touch sensor) as we will
see next.

B. TOWARD A LARGER PROBLEM
So far, we implemented up to 5× 5 pixels as an input
image. Although an automated design might be helpful for
having more pixels without wiring complications (Eq. 19),

the proposed algorithm has the potential in scaling in prin-
ciple. In fact, we successfully implemented at least up
to 10× 10 pixels for now (Figure 9) with straightforward
modularizations.
Notice that most of the edges are fixed to be 0 independent

of the input touch image because only the edges for neighbor-
ing neurons on the lattice can be nonzero. For example, even
the densest case of Eq. 19 for 5× 5 pixels gives a fairly sparse
matrix shown in Eq. 19. Therefore, the number of nonzero
connections is not O(N 2), but O(4N), fortunately. Here
4N appears because each pixel has (up to) four neighbors.
As the iterative vector calculation of Eq. 6 is implemented
recursively, we do not need to represent the full (sparse)
matrix and rather we only need to consider the existence of
4N connections in the module depending on the input pixels.

VOLUME 2, 2014 967

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

FIGURE 9. A larger example (10×10) mimicking Figure 1 in a circuit simulation. (left) The input image. The black color denotes the overlap region
(h=2) and the gray color denotes the single-touched region (h=1). (others) Time evolution of v by Eq. 6 for the multiple-touched region (h > 1). The
number of destinations (different states) gives the number of connected components: β0(h > 1) = 3. Note that the connected neurons homogenize
their states by mutual interactions.

For the problem with N = 25 as in Eq. 16, 4N = 100 is more
tractable than N 2

= 625. For the problem with N = 100 as in
Figure 9, 4N = 400 ismuchmore tractable thanN 2

= 10000.
Imagine that N 2 can easily get untractably large for larger N .
This theoretical estimate demonstrates the scalability of our
architecture to high resolutions of pixels.

In the higher level of the design process, designers could
use the full matrix for describing1. Then, asmost of elements
of the matrix are actually fixed to zero, it is expected that
the compiler automatically optimize the circuits at the logic
synthesis from HDL. In any case, we expect that the FPGA
resources scale asO(4N) with the number of pixel N after the
optimization.

IV. SUMMARY AND DISCUSSIONS
In this paper, we proposed a sensor network that accurately
counts the number of touches irrespective of their shapes and
positions based on the Euler calculus. The Euler calculus
is a generalization of the rule of integral where the integral
gives Euler characteristics or touch counts. We designed a
fully parallelized touch counter for two dimensional sensor
networks. We concretely implemented our proposed circuits
for examples of touches in order to demonstrate transparently
how the proposed circuit architecture embodies the Euler
integral in the form of fully parallelized and recursive vector
operations, with scalability to high resolutions of pixels.

The advantage of our implementation resides in the paral-
lelism and recursiveness of the main connected component
counter module. Fully parallelized circuit implementation
in the form of distributed sensory neurons with only local
connections can potentially save computational time drasti-
cally, compared with algorithms on serial system PCs. The
proposed circuit has scalability with many pixels because
all the computations are implemented as recursive vector
operations. For example, while the computational time for
the multiplication of a matrix to a vector can be O(N 3) on
serial PC, it is O(1) if neurons update their states at once. We
also save space (O(N)) by computing the core iterative vector
calculation in Eq. 6 in a recursive manner as discussed at the
end of Sec. 3.We designed a functional circuit by constructing
the block diagram of Matlab Simulink in a bottom-up manner

and generating HDL in a top-down manner. The reduction
of many input pixels into a few integers is where recurrent
neural networks are good at and topological invariants appear.
Although we treated only zero-th order Laplacian and Betti
number in this paper, our iterative scheme can be directly
generalized to those of higher orders. Thus our paralleliza-
tion can lead the way to FPGA or Digital Signal Processor
implementations of topological algorithms with scalability to
high resolutions of pixels.
As we aimed to understandably explain the background

theory and the algorithm byway of iterative vector operations,
we focused on instructive problems with up to 10× 10 pixels
in our circuit implementation and just estimated theoretically
that our circuit has scalability. Further improvement may be
needed formore practical applications.Wewould like to leave
realistic and large problems as well as the details of parameter
tuning for the future work.
The realization of shape-invariant touch counter in a

fully parallelized neural network could give an insight into
the information processing in the brain. Our naturally-
parallelized algorithm of Euler calculus, which we call
‘‘neural implementation’’ from biological plausibility, can be
interpreted as a brain model, as it can be readily compared
with the biological neurons. The concrete construction of a
functional neural network will help the understanding of the
brains ability to recognize unity from the global consistency
of the tactile or visual stimuli.

APPENDIX A
MATHEMATICAL BACKGROUND OF TIME
EVOLUTION OF NEURONS IN EQ. 6
In counting the number of connected component via Eq. 6, we
utilized the fact that the problem of counting the connected
component in a binary image can be reduced to the problem
of calculating a zero eigenvector v of the Laplacian matrix 1
[27], [31]:

1v = 0. (25)

To be precise, the dimension of the solution vector space
for zero eigenvalue is equal to the number of the connected
components. This is because the solution of Eq. 25 is the

968 VOLUME 2, 2014

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

function that is constant on each connected component as
1 is essentially a differential operator. For our example,
the eigenvalues of 1ex are λ = (0, 0, 2, 2) and the zero-
eigenvector is given by

vex =

a
a
b
b

 , (26)

where the constants a and b are arbitrary because the vector
space for zero-eigenvalue is two dimensional. Because there
are two levels a and b, you can conclude that the graph repre-
sented by this example Laplacian matrix 1ex has two blocks
of connected components (n1-n2 and n3-n4 in Figure 3).

As our final goal is to implement the above algorithm in
a parallel and scalable manner, we compute the eigenvectors
for zero-eigenvalue by the iterative vector operation in Eq. 6
mimicking the time evolution of a neural network with only
local connections.

When you take small enough coefficient α in Eq. 6,
non-zero eigenvectors shrink and disappear with iterations.
For the example Laplacian matrix 1ex in the main text, the
eigenvalues of (I−α1ex) are λ = (1, 1, 1−2α, 1−2α) and the
eigenvalues of (I−α1ex)n are λ = (1, 1, (1−2α)n, (1−2α)n).
Thus the components for non-zero eigenvalues disappear
through multiplications of (1 − 2α)(< 1). In this way, we
get the final state, vfinal , of the form in Eq. 26.
Note that the dimension or the number of different values

(= 2) in the final state, vfinal , is equal to the number of con-
nected components consisting of only active neurons, which
we wanted for the input image in Eq 4 or Figure 3.

APPENDIX B
OPTIMAL VALUE OF α FOR ITERATION IN EQ. 6
Here we prove that the maximal convergence rate is achieved
when α = 1/8 (if oscillations are not allowed).

We consider the condition for the vector in the iteration
to converge to a zero-eigenvector for sure. The problem can
be reduced to compute the (maximum) eigenvalues of 1,
(λ1 = 0 ≤ λ2 ≤ . . . ≤ λmax), as the iteration in Eq. 6
multiplies

1− αλi (27)

to i-th eigenspace. Then, for all the eigenspaces except for
zero-eigenspace to shrink to zero,

|1− αλi| < 1 (28)

is required. This is marginally achieved when

|1− αλmax | = 0 or α = 1/λmax (29)

if oscillations are not allowed and achieved when

|1− αλmax | = −1 or α = 2/λmax . (30)

if oscillations are allowed. We will show below that λmax ≤ 8
and thus we must set α < 1/8 to ensure non-oscillatory
convergence. The optimal convergence rate is achieved when

α ≈ 1/8 because the larger α the faster the convergence.
As our precision in circuit implementation is 8-bit after the
decimal point, we actually used α = 0.117 throughout the
paper. Notice that the convergence rate itself can be estimated
from the second smallest eigenvalue λ2, which depends on
problems [32], [33].
Finally we will prove that λmax ≤ 8. Let us sort and scale v,

that satisfies λv = 1v, so that 1 = v1 > |vi| for i ≥ 2. Then
the first component of the eigen equation for any λ leads to

|λ|=|λ|v1=|
∑
j

11jvj|≤
∑
j

|11j|≤2 ∗ (max degree)=8.

(31)

REFERENCES
[1] J. L. Krichmar andH.Wagatsuma,Neuromorphic and Brain-Based Robots.

Cambridge, U.K.: Cambridge Univ. Press, 2012.
[2] T. Furukawa, ‘‘SOMof SOMs:An extension of SOM from ‘map’ to ‘homo-

topy’,’’ in Neural Information Processing (Lecture Notes in Computer
Science), vol. 4232. Berlin, Germany: Springer-Verlag, 2006, pp. 950–957.

[3] A. Nieder, D. J. Freedman, and E. K. Miller, ‘‘Representation of the
quantity of visual items in the primate prefrontal cortex,’’ Science, vol. 297,
no. 5587, pp. 1708–1711, 2002.

[4] B. Butterworth, What Counts: How Every Brain is Hardwired for Math.
New York, NY, USA: Free Press, 1999.

[5] K. Devlin, The Math Gene: How Mathematical Thinking Evolved and
Why Numbers are Like Gossip. New York, NY, USA: Basic Books,
2001.

[6] R. Romo, L. Lemus, and V. de Lafuente, ‘‘Sense, memory, and decision-
making in the somatosensory cortical network,’’ Current Opinion Neuro-
biol., vol. 22, no. 6, pp. 914–919, 2012.

[7] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computa-
tional Geometry. Cambridge, MA, USA: MIT Press, 1969.

[8] H. Okuno and T. Yagi, ‘‘Image sensor system with bio-inspired efficient
coding and adaptation,’’ IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 4,
pp. 375–384, Aug. 2012.

[9] J. Misra and I. Saha, ‘‘Artificial neural networks in hardware: A sur-
vey of two decades of progress,’’ Neurocomputing, vol. 74, nos. 1–3,
pp. 239–255, Dec. 2010.

[10] O. L. Savkay, N. Yildiz, E. Cesur, M. E. Yalcin, and V. Tavsanoglu, ‘‘Real-
ization of preprocessing blocks of CNN based CASA system on FPGA,’’
in Proc. IEEE Eur. Conf. Circuit Theory Design (ECCTD), Sep. 2013,
pp. 1–4.

[11] M. Ishikawa, ‘‘Learning of modular structured networks,’’ Artif. Intell.,
vol. 75, no. 1, pp. 51–62, 1995.

[12] M. Ishikawa, ‘‘Structural learning with forgetting,’’ Neural Netw., vol. 9,
no. 3, pp. 509–521, 1996.

[13] W. Fulton, Algebraic Topology: A First Course. New York, NY, USA:
Springer-Verlag, 1995.

[14] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology.
New York, NY, USA: Springer-Verlag, 1982.

[15] A. Hatcher, Algebraic Topology. Cambridge, U.K.: Cambridge Univ. Press,
2002.

[16] H. Edelsbrunner and J. L. Harer, Computational Topology. Providence, RI,
USA: AMS, 2009.

[17] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology.
New York, NY, USA: Springer-Verlag, 2010.

[18] Z. Arai, H. Kokubu, and P. Pilarczyk, ‘‘Recent development in rigorous
computational methods in dynamical systems,’’ Jpn. J. Ind. Appl. Math.,
vol. 26, nos. 2–3, pp. 393–417, 2009.

[19] M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow, and
V. Nanda, ‘‘Topological measurement of protein compressibility via
persistence diagrams,’’MI Preprint Ser., vol. 6, pp. 1–10, 2012.

[20] C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs, ‘‘The neural ring:
An algebraic tool for analyzing the intrinsic structure of neural codes,’’
Bull. Math. Biol., vol. 75, no. 9, pp. 1571–1611, 2013.

[21] Z. Chen, S. N. Gomperts, J. Yamamoto, and M. A. Wilson, ‘‘Neural
representation of spatial topology in the rodent hippocampus,’’ Neural
Comput., vol. 26, no. 1, pp. 1–39, 2014.

VOLUME 2, 2014 969

K. Miura, K. Nakada: Neural Implementation of Shape-Invariant Touch Counter

[22] Y. Baryshnikov and R. Ghrist, ‘‘Target enumeration via euler characteristic
integrals,’’ SIAM J. Appl. Math., vol. 70, no. 3, pp. 825–44, 2009.

[23] Y. Baryshnikov and R. Ghrist, ‘‘Euler integration over definable func-
tions,’’ Proc. Nat. Acad. Sci. USA, vol. 107, no. 21, pp. 9525–9530, 2010.

[24] J. Curry, R. Ghrist, and M. Robinson, ‘‘Euler calculus with applications
to signals and sensing,’’ in Proc. Symp. Appl. Math., vol. 70. 2012,
pp. 75–146.

[25] Z. Arai, K. Hayashi, and Y. Hiraoka, ‘‘Mayer–Vietoris sequences and
coverage problems in sensor networks,’’ Jpn. J. Ind. Appl. Math., vol. 28,
no. 2, pp. 237–250, 2011.

[26] A. Tahbaz-Salehi and A. Jadbabaie, ‘‘Distributed coverage verification in
sensor networks without location information,’’ in Proc. 47th IEEE Conf.
Decision Control, Dec. 2008, pp. 4170–4176.

[27] F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: AMS, 1997.
[28] J. W. Alexander, ‘‘A proof of the invariance of certain constants of analysis

situs,’’ Trans. Amer. Math. Soc., vol. 16, no. 2, pp. 148–154, 1915.
[29] L. Pontryagin, ‘‘The general topological theorem of duality for closed

sets,’’ Ann. Math., vol. 35, no. 4, pp. 904–914, 1934.
[30] P. S. Aleksandrov, Combinatorial Topology. Rochester, NY, USA:

Graylock, 1956.
[31] M. Nakahara, Geometry, Topology and Physics. Boca Raton, FL, USA:

CRC Press, 2003.
[32] B. Mohar, ‘‘The Laplacian spectrum of graphs,’’ in Graph Theory, Com-

binatorics, and Applications, vol. 2. New York, NY, USA: Wiley, 1991,
pp. 871–898.

[33] M. Tanaka. (2013). ‘‘Multi-way expansion constants and partitions of a
graph.’’ [Online]. Available: http://arxiv.org/abs/1112.3434

KEIJI MIURA received the Ph.D. degree in science from Kyoto University,
Kyoto, Japan, in 2006. From 2006 to 2008, he was a JSPS Research Fellow
with the University of Tokyo, Tokyo, Japan.

He was a JST PRESTO Researcher with Harvard University, Cambridge,
MA,USA, from 2008 to 2011. Since 2011, he has been anAssistant Professor
with Tohoku University, Sendai, Japan. His research area is mathematical
neuroscience.

KAZUKI NAKADA received the B.Sc. degree in mathematics, and the
M.E. and Ph.D. degrees in electrical engineering from Hokkaido University,
Sapporo, Japan, in 2002 and 2005, respectively.

He was an Assistant Professor with the Graduate School of Life Science
and Systems Engineering, Kyushu Institute of Technology, Kitakyushu,
Japan, from 2005 to 2011. In 2011, he joined the Advanced Electronics
Research Division at the INAMORI Frontier Research Center, Kyushu
University, Fukuoka, Japan, as a Research Associate. Since 2013, he has
been with the Graduate School of Informatics and Engineering, Uni-
versity of Electro-Communications, Tokyo, Japan. His main research
interests are the mathematical analysis and physical implementation of
unconventional computing, including cognitive neuromorphic comput-
ing. Toward the research aim, he is currently exploring novel design
principles exploiting cooperative phenomena in silicon electronics and
spintronics.

970 VOLUME 2, 2014

