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ABSTRACT In this paper, we introduce a novel but intuitive scheme to recover multiple signals of
interest (SoI) from multiple emitters in signal collection applications such as signal intelligence, electronic
intelligence, and communications intelligence. We consider a case where the SoIs form a heavy interfer-
ence environment. The scheme, which is referred to as reference-based successive interference cancel-
lation (RSIC), involves a combination of strategic receiver placement and signal processing techniques.
The scheme works by placing a network of cooperative receivers where each receiver catches its own SoI
(despite multiple interferences). The first receiver demodulates the initial SoI (called a reference signal)
and forwards it to the second receiver. The second receiver collects a received signal containing the second
SoI but is interfered with by the initial SoI, which is a problem called co-channel interference in cellular
communications. Unfortunately, the amplitude scaling of the interference is unknown in the second receiver
and therefore has to be estimated via least squares error. It turns out that the estimation requires a priori
knowledge of the second SoI, which is the very signal it tries to demodulate, thereby yielding a Catch-22
problem. We propose using an initial guess on the second SoI to form an amplitude estimate such that the
interference is subtracted (cancelled) from the collected measurement at the second receiver. The procedure
is applied to a third receiver (or multiple receivers) until the last of the desired SoI is separated from all of the
co-channel interferences. The RSIC scheme performs well. Using quaternary phase shift keying as example
modulation, we present major symbol error rate (SER) performance improvements with the use of RSIC
over the highly degraded SER of receivers that are heavily interfered and do not employ any cancellation
technique.

INDEX TERMS Amplitude estimation, COMINT, ELINT, LSE, QPSK, signal collection, RSIC, SIGINT,
SoI.

I. INTRODUCTION
Wireless signals from various emitters such as cellular
communications, commercial/military radar, non-intentional
interferences and even intentional interferences (such as
jammers and cyber attacks) are now commonplace. Our
interest is in the collection of some these signals which we
refer to as signal/s of interest (SoI). Examples of signal
collection applications are signal intelligence (SIGINT) [1],
electronic intelligence (ELINT) [2], and communications
intelligence (COMINT) [3] applications. Works in these
collection-related fields in the open literature are few and
far between. However, we refer [1], [4], and [5] as starting

points for the uninitiated when it comes to SIGINT. We refer
the interested reader to [2] as an excellent text for ELINT.
The works in [6]–[8] relate ELINT to radar. For potential
COMINT application, [9] and [10] present good exposure to
communication modulation classification and contain other
references related to that area.
Unlike a single-receiver system that tries to collect and

retrieve multiple signals, this work uses multiple receivers to
collect multiple signals. We introduce a method that allows
subtraction of heavy interferences from a received signal by
a particular receiver so that the desired signal is ‘‘faithfully’’
reconstructed (i.e. demodulated signals for communications
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FIGURE 1. A 4-cell BS configuration with overlapping antenna coverage
which has different signal combinations received in each sector. The
co-channel signals are generically labeled S1, S2, S3, and S4.

and radar applications). To demodulate different SoIs from
different emitters, multiple receivers are positioned so that
an initial reference signal is collected that is passed on to
the second receiver that effectively conducts a variation on
co-channel interference (CCI) cancellation. Our interest is in
the use of multiple receivers that are physically far apart in
contrast to one-receiver collector or multi-antenna collector

(co-located receivers) which uses classical successive inter-
ference cancellation (SIC) techniques geared towards demod-
ulating one signal (or more) from many (e.g. co-channel
interference) where [11] and [12] are good starting articles
and contain many references for readers that are interested in
that topic. In this paper, we are not interested in these types of
SIC techniques for a one-receiver or multi-antenna collector.
Again, our interest is in the use of multiple receiver collectors
that are strategically positioned to cooperate so that each one
receiver demodulates its own signal of interest (SoI) [13]
from various transmitters thereby yielding multiple SoIs for
signal collection purposes. In this scenario where potentially
many receivers are involved, latency and error accumulation
are expected in the demodulation of the latter SoIs. For
applications conducting long-term surveillance and collec-
tion, latency is acceptable and in fact is expected. Thus, the
technique of using multiple receivers for successive cancel-
lation (or more aptly successive subtraction) applies very
appropriately.
We call our method reference-based successive interfer-

ence cancellation (RSIC) technique. This method is novel
in the sense that most signal collection applications use one
large super sensitive receiver while RSIC employs multiple
receivers (but not necessarily highly sensitive) that are spa-
tially far apart. RSIC is very intuitive and elegantly simple but

FIGURE 2. The estimation curves as function of S2IR at various S2NR: (a) estimate with high S2NR; (b) estimate
with low S2NR; (c) β1,2 vs. α1,2 with high S2NR; and (d) β1,2 vs. α1,2 with low S2NR.
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FIGURE 3. The estimation curves as function of S2IR at various S2NR where the amplitude phase offset is π/6 or 30 deg: (a) estimate
(magnitude) with high S2NR; (b) estimate (phase) with high S2NR; (c) |β1,2| vs. |α1,2| with high S2NR; (d) estimate (magnitude) with low S2NR;
(e) estimate (phase) with low S2NR; and (f) |β1,2| vs. |α1,2| with low S2NR.

FIGURE 4. The estimation curves as function of S2IR at various S2NR: (a) estimate (magnitude) with high S2NR is π/4 or 45 deg; (b) estimate
(phase) with high S2NR; (c) |β1,2| vs. |α1,2| with high S2NR; (d) estimate (magnitude) with low S2NR; (e) estimate (phase) with low S2NR; and
(f) |β1,2| vs. |α1,2| with low S2NR.

it will be evident quickly that the application problem it solves
presents very difficult and unique challenges. RSIC works by
strategically placing an initial receiver in a favorable location
(i.e. not heavily interfered but not noise-free) where an ini-
tial SoI is readily collected and demodulated. This reference
signal is then transmitted to a second receiver (and others for
multi-receiver scenario). The second receiver is placed where
its corresponding SoI is corrupted by the first receiver’s SoI.

Unfortunately, the reference signal cannot simply be can-
celled or subtracted from the second receiver received sig-
nal. This is because the power (i.e. the amplitude or gain)
of the first SoI may not be known in the second receiver
(which is a very practical assumption especially in signal col-
lection application). In this work, we attempt to estimate the
amplitude (complex or real) of the interference despite
the fact the second SoI becomes an ‘‘interferer’’ to first
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FIGURE 5. The SER vs. S2NR (s2 demodulation) performance curves for MLD receiver with no interference (interference-free),
Non-RSIC (MLD with interference), and RSIC for various interference powers: (a) α1,2 = 0.2, S2IR = 14 dB; (b) α1,2 = 0.4,
S2IR = 7.96 dB; (c) α1,2 = 0.6, S2IR = 4.44 dB; (d) α1,2 = 0.8, S2IR = 1.94 dB.

SoI in terms of estimation. This is an interesting twist.
Recall that from the second receiver’s demodulation stand-
point, it is the first SoI that is the actual interference.
Moreover, the estimation needs actual knowledge of the
second SoI, the very signal it tries to demodulate yield-
ing a ‘‘Catch-22’’ problem! Assuming we are able to
overcome this problem and thus are able to calculate
an estimate for the SoI amplitude, we can then scale
the reference with that estimate. Before demodulation,
the scaled reference is subtracted from the second receiver’s
received signal. The result is then demodulated as second SoI.
Now a ‘‘cleaned up’’ version of the second signal is available
and is made into a second reference signal, which is passed on
to a third receiver (and others in the system). The cancellation
procedure is repeated until a cleaner reference is available
to a fourth receiver. Thus, the procedure applies to multiple
receivers.

In this work, we present a mathematical model with several
receivers with multiple interferers. We attempt to estimate
the amplitudes of the received interfering signals to be used

for cancellation. We evaluate the performance of the RSIC
technique both in terms of symbol error rates (SER) and
parameter estimation. The technique presented here works
for various scenarios where the signals can be of various
types andmodulation. For presentation of results, we consider
an example scenario where we collect communication sig-
nals using QPSK modulation. To successfully estimate these
interference amplitudes, we use least squares error (LSE)
estimation method. LSE is a mature estimation technique and
thus references abound but we point the novice reader to
an excellent text [14]. Utilizing Monte Carlo simulation, we
calculate SER against various signal-to-noise ratios (SNR),
signal-to-interference (SIR), and signal-to-interference plus
noise combinations.
The major contribution of this paper is the introduc-

tion of a novel and yet intuitive technique (RSIC) that
solves the multiple-signal recovery problem (from many
emitters and thus heavy interference) by the combination
of strategic placement of multiple receivers and a clever
mix of signal processing techniques. This involves solving
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FIGURE 6. The SER vs. S2NR (with φ = π/6) performance curves for MLD receiver with no interference (interference-free),
Non-RSIC (MLD with interference), and RSIC for various interference powers: (a) |α1,2| = 0.2, S2IR = 14 dB; (b) |α1,2| = 0.4,
S2IR = 7.96 dB; (c) |α1,2| = 0.6, S2IR = 4.44 dB; (d) |α1,2| = 0.8, S2IR = 1.94 dB.

the need to have knowledge of the signal being demod-
ulated, amplitude estimation, and successive cancellation.
In the example scenario of collecting QPSK signals from
multiple emitters (e.g. base stations), major receiver per-
formance improvements in terms of SoI SERs as well as
parameter estimation for individual receivers are shown. The
paper is organized as follows. In Section II, the concept of
how to strategically place receivers in relation to emitter
configuration is discussed. The signal mathematical mod-
els needed for the RSIC technique are discussed in detail.
LSE of complex-valued amplitude estimators is presented.
The inherent but interesting problem of needing a priori
knowledge of the signal to be demodulated to accomplish
estimation is addressed. In Section III, IV, and V, SER
and estimation results for a two-receiver system, a three-
receiver system and a four-receiver system using QPSKmod-
ulation are presented respectively. In relation to SER, we
observe how the estimates change as a function of SNR
and different interference amplitude combinations (i.e. var-
ious SIR combinations). In Section VI, we present our
conclusions.

II. REFERENCE-BASED SUCCESSIVE
INTERFERENCE CANCELLATION
The set of emitters that transmit multiple SoIs may exist in
many configurations and is therefore application dependent.
For illustrative purposes, let us assume that the emitters are
base station (BS) transmitters and as such transmit cellular
signals. A good example of a 4-cell BS configuration is shown
in Fig. 1, where the antenna or coverage areas of multiple cel-
lular base stations (BSs) overlap with those from subsequent
BSs. This configuration results in a layout where different
regions contain multiple co-channel signals. Certain sectors
of the coverage areas contain only a specific number of these
signals and one area contains only one signal. It turns out that
any cellular configuration features a specific area where only
one signal is contained (and therefore RSIC can be applied to
any configuration).

For 1, 2, . . . , L coverage areas, each sector is modeled so
that it contains a received signal vector that is described by

yn = sn +
n−1∑
m=1

αm,nsm + wn (1)
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FIGURE 7. The SER vs. S2NR (with φ = π/4) performance curves for MLD receiver with no interference (interference-free), Non-RSIC
(MLD with interference), and RSIC for various interference powers: (a) |α1,2| = 0.2, S2IR = 14 dB; (b) |α1,2| = 0.4, S2IR = 7.96 dB;
(c) |α1,2| = 0.6, S2IR = 4.44 dB; (d) |α1,2| = 0.8, S2IR = 1.94 dB.

where n serves as index for the nth receiver (Rxn), sn is
the signal corresponding to base station n (BSn), and wn is
the complex-valued additive white Gaussian noise (AWGN)
in Rxn. A signal vector sm corresponds to base station
m (BSm) and αm,n is its amplitude gain (or loss). In other
words, for Rxn the SoI is sn and the n−1 vectors described
by sm serve as interfering signals (known as CCI in cellular
applications) in Rxn. The amplitude αm,n may take on various
values and dictate the SIR. The amplitude αm,n can be real
(and positive) as in synchronous systems. In general, αm,n is
complex-valued to account for the fact that the signal symbols
received by the current receiver in (1) frommultiple transmit-
ters may not be aligned in time. In other words, the symbols
are not phased-synchronized in the receiver. If αm,n is real and
positive, then the signal symbols are received synchronously.
If αm,n is complex, then its phase (and magnitude) may be
estimated.

Let the amplitude estimate for αm,n be βm,n. If the estimates
βm,n are readily available, then it is straightforward to perform
the interference subtraction or cancellation via

s̆n = yn −
n−1∑
m=1

βm,nsm (2)

where s̆n serves as the pre-demodulation signal. Thus, demod-
ulation in the nth receiver is given by

ŝn = dec(s̆n) (3)

where dec(*) stands for receiver decision via the standard
maximum-likelihood detection (MLD). For high SNR, the
noise is considered negligible and thus the receiver becomes
interference-limited. For low SNR, the receiver becomes
noise-limited and therefore the noise may even have a greater
effect on receiver performance than the interferences them-
selves.

A. INTERFERENCE AMPLITUDE ESTIMATION WITH LSE
Starting with the notion of a L-receiver system with index n
in (1), we propose to utilize LSE to determine estimates for
the αm,n values. In this paper we assume vector signal models.
This is appropriate since signals in modern receivers are
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FIGURE 8. The estimate plots of α1,2 and the estimator β1,2 vs. S2NR values for: (a) a1,2 = 0.2, S2IR = 14 dB, (b) a1,2 = 0.4,
S2IR = 7.96 dB; (c) a1,2 = 0.6, S2IR = 4.44 dB, and (d) a1,2 = 0.8, S2IR = 1.94 dB.

almost always sampled prior to signal processing. We deter-
mine the estimates of complex amplitudes by first minimizing
the squared magnitude difference between the received signal
yn = [yn[0]yn[1] · · · yn[N − 1]]T in Rxn and the sum signal

sn +
n−1∑
m=1

αm,nsm where the mth interfering signal is given by

sm = [sm[0] sm[1] · · · sm[N − 1]]T and sn is the actual SoI.
The error is given by

J (αn) =
N−1∑
i=0

∣∣∣∣∣yn[i]− (sn[i]+
n−1∑
m=1

αm,nsm[i])

∣∣∣∣∣
2

(4)

where J (αn) is the square-error magnitude, N is the number
of samples (or symbols) in the measurement with i being the
index, and αn = [α1,n α2,n · · · αn−1,n]T is the interference
amplitude vector whose components are αm,n. As such (4) is
equivalent to

J (αn) =

∥∥∥∥∥yn −
(
sn +

n−1∑
m=1

αm,nsm

)∥∥∥∥∥
2

=

(
yn − sn−

n−1∑
m=1

αm,nsm

)H (
yn − sn−

n−1∑
m=1

αm,nsm

)

=
(
yn − sn − Sαn

)H (yn − sn − Sαn
)

(5)

where (·)H is the Hermitian or complex conjugate transpose
operation, and S = [s1 s2 · · · sn−1] is an N × (n − 1)
interference signal matrix (ISM) where N ≥ (n − 1) . Since
our application is signal collection (where large or big data
collection is typical) we assume that N � (n − 1) . Taking
the partial derivative of (5) with respect to αn yields the
(n − 1) × 1 column vector (see Appendix for complete
derivation) given by

∂J (αn)
∂αn

= −

[
SH

(
yn − sn

)]∗
+

[
SHSαn

]∗
. (6)

Letting the derivative vector be equal to zero vector yields

SHSαn = SH (yn − sn). (7)

Then the estimate βn of the amplitude vector αn is calculated
to be

βn = (SHS)−1SH
(
yn − sn

)
. (8)

If the elements of amplitude gain vector αn are real then it can
be shown that (see Appendix for complete derivation) that the
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FIGURE 9. Magnitude and phase estimates (β1,2) vs. S2NR values for α1,2 with φ = π/6: (a) magnitude and (b) phase for
|a1,2| = 0.2; (c) magnitude and (d) phase for |a1,2| = 0.4; (e) magnitude and (f) phase for |a1,2| = 0.6; and (g) magnitude and
(h) phase for |a1,2| = 0.8.

amplitude vector estimate is given by

βn = [Re(SHS)]−1Re[SH (yn − sn)]. (9)

The equations (8) and/or (9) form the starting point of the
RSIC method in terms of estimating the amplitude vector
needed to be applied to the reference signals such that the sub-
traction of the multiple interference signals from the received
signal in any receiver in the receiver chain may be performed.
Unfortunately, in (8) we already see two major issues. The
first is that (8) assumes that the true ISM S = [s1 s2 · · · sn−1]
is known a priori. Second, (8) also assumes that sn is available.
If that were the case then there’s no need to subtract interferers
since the SoI sn is already available (which we know is not
true since sn is the very signal that Rxn is trying to capture
and demodulate).

B. REFERENCE SIGNALS VIA STRATEGIC
RECEIVER PLACEMENT
Since the receivers do not have prior knowledge of the
interfering signals (the ISM given by S = [s1 s2 · · · sn−1]),

we have to devise a way for these receivers to gain some
knowledge of these SoIs. We do so by strategic placement
of the receivers. The starting point is with an initial receiver
collecting lightly interfered or interference-free SoI.
Of course, the first SoI is not noise-free because of its own
receiver noise. In Fig. 1, this is implemented with Rx1 located
in Sector A receiving s1. Rx1 takes the first SoI and demod-
ulates it (using MLD) as ‘‘first reference’’ ŝ1, and transmits
this reference to Rx2 (and other receivers for multi-receiver
scenario) located in Sector B. This can easily be performed
using another channel (away from the SoI channels). Recall
that our application is signal collection, i.e. the Rxs are
not necessarily mobile or cellular phones. In other words,
these collector receivers are pre-configured such that they use
separate means (e.g. separate channels) for accomplishing
the transmission of reference signals. In our Monte Carlo
experiments, we assume that these references are received
with sufficient or high SNR. The topic of ‘‘separate chan-
nels’’ is also interesting since it touches on the cooperative
networking aspect of the implementation but is beyond the
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FIGURE 10. Magnitude and phase estimates (β1,2) vs. S2NR values for α1,2 with φ = π/4: (a) magnitude and (b) phase for
|a1,2| = 0.2; (c) magnitude and (d) phase for |a1,2| = 0.4; (e) magnitude and (f) phase for |a1,2| = 0.6; and (g) magnitude and
(h) phase for |a1,2| = 0.8.

natural scope of this paper. Although not necessary, reference
transmissions may also be performed at a much later time
(since our application of interest is not necessarily latency-
limited as already pointed out before).

For Rx2 (i.e. m = 1 interference), we can modify (2)
into useful form by replacing s1 with ‘‘first reference’’ ŝ1.
While we may have solved one problem, we still need esti-
mate α1,2 which is associated with s1. But according to (8)
estimation requires a priori knowledge of s2, the very signal
it is trying to demodulate which makes for an interesting
‘‘Catch-22’’ problem. Remarkably, RSIC is found to be effec-
tive even with this problem! For the time being let’s assume
we have s2 or a replacement for it. In Rx2, estimation is
performed. The estimate is applied to the received reference
where the scaled version of ŝ1 is subtracted from the received
signal y2. The result is demodulated with the use of MLD
yielding ŝ2 (the second reference signal). Rx2 now transmits
this new reference over to Rx3 (and others). This iteration of
cancellation continues for multiple receivers. For example,
if L = 4, then s4 is the SoI. In Fig. 1, it is the signal

transmitted by BS4 that Rx4 (in Sector D) is trying to cap-
ture. For a multiple receiver system such as a 4-Rx system,
each interferer has a distinct signal strength relative to s4 as
dictated by its amplitude αm,4. In other words, each one of
these interfering signals contributes to an aggregate signal-
to-interference ratio (SIR) that affects the performance of the
cancellation technique. The remaining question is: what is
the replacement for sn in Rxn such that the estimation can
proceed?

C. BREAKING THE ‘‘CATCH-22’’
For the nth-receiver to perform estimation, we need to solve
the issue of the presence of ISM S = [s1 s2 · · · sn−1] in (8).
Despite possibly containing errors, we utilize the reference
signals by stacking the signals in an interference reference
matrix (IRM) Ŝ = [ŝ1 ŝ2 · · · ŝn−1] which becomes our
replacement to the true ISM S = [s1 s2 · · · sn−1]. This
resolves one of the two major issues in (8). Unfortunately,
we still need to resolve the need in (8) for sn which is the very
signal Rxn is trying to demodulate. To solve this problem, we
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FIGURE 11. The plots of the variance of the estimator β1,2 vs. S1NR values: (a) a1,2 = 0.2, S2IR = 14 dB; (b) a1,2 = 0.4,
S2IR = 7.9 dB; (c) a1,2 = 0.6, S2IR = 4.4 dB; (d) a1,2 = 0.8, S2IR = 1.9 dB.

have to modify (8) and/or (9) in order for them to be useful.
We propose to have an initial ‘‘guess’’ on sn by preliminarily
demodulating the received signal using the standard MLD on
yn via (3) without using (2). In other words, the first thing the
RSIC receiver needs to do is to produce an initial ‘‘guess’’
given by

s̃n = dec(yn) = dec

(
sn +

n−1∑
m=1

αm,nsm + wn

)
(10)

where it is clear that no prior effort is made to estimate the
interferers’ amplitudes nor use reference signals in the IRM
Ŝ = [ŝ1 ŝ2 · · · ŝn−1] that may be available. This may sound
disconcerting since it is clear that the initial guess may be
error-filled depending on the total SIR. Nevertheless, this
initial ‘‘guess’’ s̃n is then used along with the rest of the
reference signals in Ŝ = [ŝ1 ŝ2 · · · ŝn−1] to form the vector
amplitude estimate where the idealized (8) (which couldn’t
be used directly) is modified into useful version as given by

βn = (Ŝ
H
Ŝ)−1Ŝ

H (
yn − s̃n

)
. (11)

Once amplitude vector is estimated then it can be used to
perform the cancellation using a modified and useful version

of (2) that allows the use of the IRM which is given by

s̆n = yn − Ŝβn (12)

where Ŝβn =
n−1∑
m=1

βm,nŝm. Then, we ‘‘re-use’’ MLD in (3) to

finally yield the post-demodulated SoI ŝn. It is clear in (10)
that total SIR may be low due to the multitude of interferers
and that initial SoI guess (10) is likely to be error-filled
especially at low aggregate SIR. Despite this issue, RSIC is
proven to work remarkably well in a sense that it is able to
correct much of the errors from the interferences. In other
words, demodulation of SoI (or multiple SoIs) is shown to
be very feasible. Many examples ensue in later sections.
The amplitude estimates are a function of the sum error

term in (8). However, which amplitude estimate performs
better or worse (and at which SNR or SIR configuration)
compared to others is not apparent in (8). We perform Monte
Carlo simulations such that we can look at estimation results
for various SNR and SIR configurations. Also, the estimates
are a function of the number ofmeasurementsN . Each sample
in sn may represent a symbol. For example, if the signal
of interest is a communications signal, then a sample can
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FIGURE 12. The plots of the variance (of the real part) of the estimator β1,2 vs. S1NR values for α1,2 with φ = π/6:
(a) |a1,2| = 0.2, (b) |a1,2| = 0.4, (c) |a1,2| = 0.6, and (d) |a1,2| = 0.8.

be a symbol. Or each group of Ng samples may represent
a symbol. In that case, the total number of symbols in the
N -length sequence is Ns = N /Ng. For the sake of
generating results, we assume that a sample represents a
symbol. In signal collection applications where latency is not
an issue, it is common to record long data sets and as suchN is
usually very large. The importance ofN (and of it being large)
is related to the Cramer-Rao lower bound of the variance of
the estimator of the vector αn which is the topic of the next
section.

D. CRAMER-RAO LOWER BOUND (CRLB)
We endeavor to use CRLB in order obtain a lower bound
on the variance of our estimator in (8) to determine whether
or not the estimator is the mean value unbiased estimator,
which may indicate that (8) has the lowest variance of any
other unbiased estimator for all possible values of αn. In other
words CRLB will be used as a benchmark for comparison.
We assume complex baseband signal modeling. Thus the
probability density function (pdf) of yn assuming complex-
valued Gaussian noise is given by

p(yn;αn) =
1

πN |Cn|
exp

{
−
(
yn − sn − Sαn

)H

×C−1n
(
yn − sn − Sαn

)}
(13)

where Cn = σ
2I is the noise covariance matrix, C−1n = σ

−2I
is its inverse, I is the identity matrix, and σ 2 is the variance
of a sample of the complex-valued additive white Gaussian
noise (AWGN) in Rxn. The log-likelihood yields

ln p(yn;αn) = ln
(

1
πNσ 2N

)
+ ln exp

{
−

1
σ 2

(
yn − sn − Sαn

)H
(yn − sn − Sαn)

}
= ln

(
1

πNσ 2N

)
−

1
σ 2

(
yn − sn − Sαn

)H (yn − sn − Sαn
)

= ln
(

1
πNσ 2N

)
−
J (αn)
σ 2 (14)

where J (αn) is given in (5).

1) REAL αn

Taking the first derivative of ln p(yn;αn) with respect to αn
by using (B2) from the Appendix, we have

∂ ln p(yn;αn)
∂αn

=
2
σ 2

(
Re[SH (yn − sn)]− [Re(SHS)]αn

)
.

(15)
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FIGURE 13. The plots of the variance (of the real part) of the estimator β1,2 vs. S1NR values for α1,2 with φ = π/4:
(a) |a1,2| = 0.2, (b) |a1,2| = 0.4, (c) |a1,2| = 0.6, and (d) |a1,2| = 0.8.

The second vector differentiation results in
∂2 ln p(yn;αn)

∂α2n
= −

2
σ 2Re(S

HS)

= −
2
σ 2Re


‖s1‖2 sH1 s2 . . . sH1 sn−1
sH2 s1 ‖s2‖

2 . . . sH2 sn−1
...

...
. . .

...

sHn−1s1 sHn−1s1 . . . ‖sn−1‖
2

.
(16)

Then the Fisher information matrix (FIM) is given by

I (αn) = −E
[
∂2 ln p(yn;αn)

∂α2n

]
(17)

where E[*] is the expected value operator and thus

I (αn) =
2
σ 2E

Re


‖s1‖2 sH1 s2 . . . sH1 sn−1
sH2 s1 ‖s2‖

2 . . . sH2 sn−1
...

...
. . .

...

sHn−1s1 sHn−1s1 . . . ‖sn−1‖
2


 (18)

which reduces to

I (αn) =
2N
σ 2


Es1 ρ1,2 . . . ρ1,n−1

ρ2,1 Es2 . . . ρ2,n−1
...

...
. . .

...

ρn−1,1 ρn−1,2 . . . Esn−1

 (19)

where Es is the average energy of a symbol (sample) in the
data sequence and ρk,l = 1

N E
[
Re(sHk sl)

]
. For constant energy

modulations, the average symbol energy is simply equal to
symbol energy. In our examples, we use QPSK and as such
Es = Es. Finally, the CRLB of an amplitude estimate which
is the reciprocal of a diagonal in the FIM is given by

var(βm,n) ≥
σ 2

2ĒsN
. (20)

In other words, the CRLB is inversely proportional to the
average SNR and the number of symbols. The larger the SNR,
the smaller is the CRLB. The longer the symbol sequence, the
smaller is the CRLB.
Although not true in general, the data sequence may be

uncorrelated from one emitter to another emitter or at least
not very correlated. This may be a practical assumption when
the emitters are not co-located and thus are isolated from each
other. Moreover, if the generation of data from one emitter to
emitter is truly independent, then off-diagonal elements in the
FIM are zero. For this special case, the FIM reduces to

I (αn) =
2N
σ 2


Es1 0 . . . 0
0 Es2 . . . 0
...

...
. . .

...

0 0 . . . Esn−1

. (21)
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FIGURE 14. The plots of amplitude estimates β2,3 vs. S3I2R values with fixed high S3NR levels: (a)–(b) α1,3 = 0.1; (c)–(d) α1,3 = 0.2;
(e)–(f) α1,3 = 0.5; (g)–(h) α1,3 = 0.8.

Recall that the ISM S is not truly available. Instead, when
we calculate variances to compare to (20), we use signal
matrix Ŝ. In other words, we compare the calculated vari-
ances to that of the CRLB given by (20). Although relatively
clean, the reference (interfering) signals in Ŝ are ‘‘estimates’’
themselves (i.e. hard detections) in the sense they have accu-
mulated errors. The first set of errors comes from the demod-
ulation of the references from the receivers. The second set
of errors comes from receiving the transmitted references
in the subsequent receivers. In our simulations, we assume
sufficient to high SNR in the latter such that most (if not all)
the errors come from the former. These accumulated errors
may contribute to the actual calculated covariance matrix of
the estimates. In summary, the actual covariance matrix of the
estimate may not only depend on the noise and energy of the
signal corresponding to the amplitude but also depend on how
much error is in the reference signals.

2) COMPLEX αn

When the estimates are complex-valued, it is more convenient
to start with the FIM to find the CRLB. It is known [14], [15]
that the FIM or more specifically the individual entry of the

FIM is given by

[I (αn)]kl = Tr
[
C−1n (αn)

∂Cn (αn)

∂αn,k
C−1n (αn)

∂Cn (αn)

∂αn,l

]
+ 2Re

[
∂µHn (αn)

∂αn,k
C−1n (αn)

∂µn (αn)

∂αn,l

]
(22)

where k and l denote the location of the individual entry of
the FIM, Tr[*] stands for the ‘‘trace’’ operator and µn (αn) =
sn+ Sαn using (13). Since Cn = σ

2I, the first term is clearly
zero. We have

[I (αn)]kl =
1
σ 2 2Re

[
∂µHn (αn)

∂αn,k

∂µn (αn)

∂αn,l

]
. (23)

Using the definition of the complex gradient, we have

∂µn (αn)

∂αn
=

1
2

[
∂

∂αn,r
(sn + Sαn)− j

∂

∂αn,i
(sn + Sαn)

]
(24)

where αn,r refers to the real part of αn and αn,i refers to the
imaginary part. Then,

∂

∂αn,r

(
sn,r + jsn,i + Sαn,r + jSαn,i

)
= S (25)
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FIGURE 15. The plots of amplitude estimates β2,3 vs. S3I2R values with fixed low S3NR levels: (a)–(b) α1,3 = 0.1; (c)–(d) α1,3 = 0.2;
(e)–(f) α1,3 = 0.5; (g)–(h) α1,3 = 0.8.

where sn,r and sn,i refer to the real and complex part of sn
respectively. It follows that

∂

∂αn,i

(
sn,r + jsn,i + Sαn,r + jSαn,i

)
= jS. (26)

Also,

∂µn (αn)

∂αn
=

1
2
[S− j (jS)] = S. (27)

In view of (23), then any diagonal element of the FIM is
given by

[I (αn)]kk =
1
σ 2 2Re

[
sHk sk

]
=
2 ‖sk‖2

σ 2 =
2NĒs
σ 2 . (28)

In other words, the CRLB of a complex-valued estimate is
given by

var(βm,n) ≥
1

2N Ēs
σ 2

=
σ 2

2ĒsN
. (29)

III. TWO-RECEIVER SYSTEM
For a two-receiver system, the reference is given by ŝ1 =
dec(y1) and the initial SoI guess is s̃2 = dec(y2). Then,

β1,2 = (ŝH1 ŝ1)
−1ŝH1

(
y2 − s̃2

)
. (30)

If α1,2 is real, then the estimate is given by

β1,2 = [Re(ŝH1 ŝ1)]
−1Re[ŝH1 (y2 − s̃2)]. (31)

The reference ŝ1 is scaled by β1,2 and is subtracted from
the received signal to demodulate Rx2 SoI which is given by
ŝ2 = dec(y2 − β1,2ŝ1). The following sections show various
simulation SER and estimation results.

A. ESTIMATION RESULTS: PARAMETERIZE
S2NR, VARY α1,2
It turns out estimation plays a vital role in the SER perfor-
mance of the RSIC technique. As such, it is important to
explore how the estimates perform as the true parameter is
varied given SNR. Since y2 is made up of SoI s2 and the scaled
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FIGURE 16. The performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 at different interference
combinations when α2,3 = 0.1: (a) α1,3 = 0.2, S3IR = 13 dB; (b) α1,3 = 0.4, S3IR = 7.7 dB; (c) α1,3 = 0.6, S3IR = 4.32 dB;
(d) α1,3 = 0.8, S3IR = 1.87 dB.

interference s1, the SIR is therefore defined as

S2IR ,
Es2
Es1
=
‖s2‖2∥∥α1,2s1∥∥2 (32)

where Esi , i = 1, 2 are the sequence energies of amplitude-
scaled interference s1 and SoI s2. We use QPSK modulation
for our simulations and as such the SIR simplifies to

S2IR =
1
|α1,2|2

. (33)

In our Monte Carlo simulations (1×106 QPSK symbols
for each s1 and s2 data stream), the SNR of the SoI s2 is
varied by simply changing the noise variance or power Pn in
the received signals. The 1×106 symbols is in anticipation
of generating SER results that are good to SER of about
1×10−5. For convenience, let’s start with α1,2 being real
and positive (i.e. symbols are synchronized in time prior to
demodulation). The values of α1,2 are varied from 0.01 to 1.0
to vary the S2IR given a signal-to-noise ratio, or S2NR. We
then vary the S2NR to observe the effect on the estimate β1,2
compared to the actual amplitude α1,2. Because of the inverse
relationship in (33), as α1,2 is increased the value of S2IR
decreases. Initially, Pn is set low in order to model a system
where there is high S2NR. We then increase Pn gradually
to model low S2NR. The comparison (sometimes referred

to as ‘‘tightness’’ or ‘‘closeness’’) between the estimate β1,2
and the amplitude α1,2 for various SNR is shown in Fig. 2a
(high S2NR) and Fig. 2b (low S2NR). We see that the dashed
blue line represents the actual α1,2 parameters used in the
simulation. At high S2NR level of 20 dB, the calculated
estimate β1,2 values are close to α1,2 until α1,2 takes on the
value of 0.8 to 1.0 (significant interference). The value 0.8
corresponds to a very low S2IR (about 2 dB). In other words,
the amplitude estimate is still good at low S2IR (about 2 dB)
but at a high S2NR (20 dB). If the noise is increased (i.e.
low S2NR), the ‘‘closeness’’ (which indicates accuracy) of the
estimator to the actual parameter begins to deviate as shown
in Fig. 2b. At a modest S2NR of 6.99 dB, the estimator may
be considered reasonable at S2IR ≥ 15dB. At a very low
S2NR = 0.97 dB, the estimates do not get close to the true
value unless values of α1,2 are very small. Interestingly as
α1,2 gets larger, the estimate gets worse; it begins to converge
towards the value of 0.5. It seems that estimator from (31)
is more accurate for systems where ||s2||2 � |α1,2|2||s1||2.
Thus, the estimator does not yield good estimates for high
α1,2 levels at least when the ‘‘initial guess’’ in (10) is used.
Another useful way to see how effective the estimates

are (β1,2) is to plot them against the actual α1,2 parame-
ter values as shown in Fig. 2c (high S2NR) and Fig. 2d
(low S2NR). Again, the dashed blue line represents actual
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FIGURE 17. The RSIC performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 as a function of increasing α1,3 with
α2,3 = 0.1.

amplitude parameter α1,2 values and the subsequent curves
show the estimates at various S2NRs. At low Pn levels, the
estimates are fairly accurate until α1,2 is about 0.8 (or greater)
as observed before. At higher α1,2 values, the estimates devi-
ate far from the actual amplitude. Thus, we can appreciate the
joint effect of varying noise and varying interference on the
amplitude estimates.

A more general scenario is where α1,2 is complex-valued.
The values of

∣∣α1,2∣∣ are varied from 0.01 to 1.0 to vary the
S2IR given a fixed S2NR and we let the phase of any α1,2 be
φ = π/6 = 30◦. Again, we vary the S2NR to observe the
effect on the magnitude and phase estimate of β1,2 compared
to the magnitude and phase of α1,2. The comparison between
themagnitudes and phases of β1,2 compared toα1,2 are shown
in Fig. 3a, 3b, and 3c for high S2NR and Fig. 3d, 3e, and 3f for
low S2NR. The magnitude estimate results somewhat mirror
that of α1,2 being real. The main difference between the α1,2
being real and complex is that the complex-valued estimate
has a phase component where it is clear that at very low S2IR
(0< S2IR<3dB), the phase estimates are definitely not as
good compared to phase estimates with high S2IR. What’s

interesting however is that the ‘‘poor’’ phase estimates for
0< S2IR<3dB are worse for high SNR than low SNR; which
is a result not readily apparent from (8). Thus, this is where
simulation results become very useful.
It is also of interest to see the effect of increasing the

phase offset. Since QPSK is phase modulated, the received
phase may in fact affect demodulation as well as estimation.
We again vary

∣∣α1,2∣∣ from 0.01 to 1.0 and let the phase of
any α1,2 be φ = π/4 = 45◦ which means that the received
constellation symbols are shifted by half a symbol which
wouldmake symbol demodulation evenmore erroneous if not
corrected. Again, we also vary the S2NR. The comparison
between the magnitudes and phases of β1,2 compared to
α1,2 is shown in Fig. 4a, 4b, and 4c for high S2NR and
Fig. 4d, 4e, and 4f for low S2NR. Although the performance
trends are similar, we note that in terms of amplitude and
phase estimates, there are some interesting differences for
φ = π/6 and φ = π/4. Looking at Fig. 3a and Fig. 4a,
we note that for S2NR = 10 dB and S2IR = 5dB where∣∣α1,2∣∣ = 0.56, the estimate for φ = π/6 is

∣∣β1,2∣∣ = 0.4
while for φ = π/4 is

∣∣β1,2∣∣ = 0.38 which means that
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FIGURE 18. Receiver 3 estimates (β2,3 and β1,3) and actual parameters (α2,3 and α1,3) vs. S3NR for α2,3 = 0.1 which is paired
with: α1,3 = 0.2, 0.4, 0.6, and 0.8.

the phase increase does have an effect on the magnitude
estimate (in this case a slight degradation). Looking at the
corresponding phase estimates in Fig. 3b and Fig. 4b, we can
see that phase estimate is closer to the actual parameter in
the case of φ = π/4. In other words it is very interesting to
note that at low SIR, the magnitude estimates are better in the
case of φ = π/6 but phase estimates are better in the case of
φ = π/4, which is another result that is not intuitive from (8)
and would not have been known if not for the simulations.

1) DEMODULATION (SER) RESULTS: PARAMETERIZE α1,2,
VARY S2NR
While it is certainly interesting to discuss the amplitude (mag-
nitude and phase) estimation results, we emphasize that our
main interest is signal collection where faithful demodulation
of SoI is of importance. Since the SoIs in our examples are
communications signals, SER (or BER as in bit error rate)
performance naturally becomes the metric of interest. We set
up an experiment where we generate s1 that is received by
Rx1. Since we assume the initial signal is to be received with
sufficient or high SNR, we assume a 20 dB S1NR in Rx1 in
our simulations where demodulation results in reference ŝ1.
To show SoI (s2) SER vs S2NR in Rx2, we hold the
interference amplitude constant α1,2 while the noise power
is varied. Then we vary α1,2 for various S2IR sce-
narios. Here, we assume α1,2 to be real and positive
(the case of complex-valued α1,2 is considered next).

We show the SER vs S2NR in: Fig. 5a) α1,2 = 0.2,
S2IR = 14 dB; Fig. 5b) α1,2 = 0.4, S2IR = 7.96 dB;
Fig. 5c) α1,2 = 0.6, S2IR = 4.4 dB; and Fig. 5d) α1,2 = 0.8,
S2IR = 1.94 dB. In Fig. 5, the dashed blue line repre-
sents the theoretical QPSK SER over noise (i.e. interference-
free) via the use of standard maximum-likelihood (MLD)
detector (thus labeled ‘No interference’). The line labeled
‘Non-RSIC’ corresponds to the SoI SER performance with
interference (amplitude α1,2 = 0.2 in Fig. 5a) employing
MLD where s̃2 = dec(y2). As expected the Non-RSIC
SER is degraded compared to the interference-free SER. For
example, the Non-RSIC SER is 1.2×10−4 at S2NR = 13dB
compared to 8×10−6 if there were no interference. To imple-
ment RSIC, recall that we first have to estimate α1,2 via
β1,2 = [Re(ŝH1 ŝ1)]

−1Re[ŝH1 (y2− s̃2)] which uses s̃2. Then, the
resulting demodulated signal is given by ŝ2 = dec(y2−β1,2ŝ1)
inwhich the SER curve is labeled ‘RSIC’ in Fig. 5a. TheRSIC
SER performance is vastly improved compared to the Non-
RSIC where SER remarkably approaches the interference-
free QPSK SER. In Fig. 5b we illustrate the Non-RSIC SER
with α1,2 = 0.4 (S2IR = 7.96 dB) and we note that the SER
is 3.7×10−3 at S2NR = 13 dB (again compared to 8×10−6

if there were no interference) while the RSIC SER again
approaches the interference-free SER. In Fig. 5c we illustrate
the Non-RSIC SER where α1,2 = 0.6 (S2IR = 4.44 dB) and
we note that the SER is 3.7×10−2 at S2NR = 13 dB (which
is unacceptable in most systems). The RSIC SER (1.7×10−5)
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FIGURE 19. The performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 at different interference combinations
when α2,3 = 0.2: (a) α1,3 = 0.2, S3IR = 11 dB; (b) α1,3 = 0.4, S3IR = 6.99 dB; (c) α1,3 = 0.6, S3IR = 3.98 dB; (d) α1,3 = 0.8,
S3IR = 1.67 dB.

is close to the interference-free SER of 8×10−6 which is
3 decades better than the Non-RSIC SER. We can also
look at the improvement in terms of S2NR savings. For
example, the Non-RSIC SER of about 1×10−2 corresponds
to approximately 15dB of S2NR while for the RSIC it
is approximately 9dB, i.e. a 6dB SNR savings! In other
words, the proposed RSIC technique works very well. In
Fig. 5d we illustrate the Non-RSIC SER where α1,2 = 0.8
(S2IR= 1.94 dB) andwe note that the non-RSIC performance
is 1.7×10−2 at S2NR = 13 dB which is terribly degraded.
The RSIC SER performance at the same SNR is 1.4×10−4

which is two decades of SER improvement despite the large
interference.

Now we consider the case where α1,2 is com-
plex. We allow the phase offset φ = π/6 where
α1,2 = 0.2jπ/6, 0.4jπ/6, 0.6jπ/6, 0.8jπ/6. We show the SER
vs S2NR in Fig.: 6a)

∣∣α1,2∣∣ = 0.2, S2IR = 14 dB; 6b)∣∣α1,2∣∣= 0.4, S2IR= 7.96 dB; 6c)
∣∣α1,2∣∣= 0.6, S2IR= 4.4 dB;

and 6d)
∣∣α1,2∣∣ = 0.8, S2IR = 1.94 dB. The SER without

the use of RSIC suffers as a function of increasing
∣∣α1,2∣∣

but the interesting fact to note is for the case where there
is a phase offset of 30 deg, the Non-RSIC SER perfor-

mance is worse than when the phase offset is 0 (α1,2 is
real where we recall the SER performances are shown in
Fig. 5). We also note the effectiveness of the RSIC method.
For the cases of α1,2 = 0.2jπ/6, 0.4jπ/6, the RSIC SERs
approach the interference-free SER while the SER for α1,2 =
0.6jπ/6 is still close to the interference-free SER (albeit
slightly worse than the SER for α1,2 = 0.6 in Fig. 5c).
For the case of α1,2 = 0.8jπ/6 RSIC SER is still better
than the Non-RSIC but comparatively worse than SER for
α1,2 = 0.8 in Fig. 5d. In other words, the SER effect
of phase offset is significant when the interference is also
significant.
We mention that another interesting choice for the phase

offset is φ = π/4 where α1,2 = 0.2jπ/4, 0.4jπ/4, 0.6jπ/4,
0.8jπ/4 and compare the SER performances to φ = 0 (α1,2 is
real) and φ = π/6. For φ = π/4, we show the SER vs S2NR
in Fig.: 7a)

∣∣α1,2∣∣= 0.2, 7b)
∣∣α1,2∣∣ = 0.4, 7c)

∣∣α1,2∣∣ = 0.6, and
7d)

∣∣α1,2∣∣ = 0.8. Here, the conclusion to note is that there is a
slight SER degradation for both Non-RSIC and RSIC scheme
from φ = π/6 to φ = π/4. Interestingly the φ = π/6 to
φ = π/4 phase shift has less SER effect compared to φ = 0
to φ = π/6 phase shift.
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FIGURE 20. The RSIC performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 as a function of increasing α1,3
with α2,3 = 0.2.

B. ESTIMATION RESULTS CORRESPONDING TO SER
Another useful set of results is the amplitude estimation
corresponding to the set of SER results in Figs. 5, 6, and 7.
The corresponding estimation results actually explain the
remarkable RSIC SER performance. First we consider SER
in Fig. 5 when phase offset is 0 (α1,2 is real). By plotting β1,2
estimates along the actual amplitude value α1,2 as a function
S2NR in Fig. 8 and then showing how close the estimates
approach the actual amplitude, a clear understanding is made
of how S2NR plays a role in parameter estimation. We can
also plot the estimates as function of S1NR in Rx2 which
would be natural for estimation. However, we’ll use S2NR
so we can conveniently see the correspondence to the SER
results in Fig. 5 thereby illustrating the estimate’s effect on
SER which is not conveyed in the SER in Fig. 5. Notice
that the estimates eventually approach the true parameters in
Fig. 8a, 8b, and 8c at high S2NRwhich explains why the SERs
in Fig. 5a, 5b, and 5c eventually approach the interference-
free SER. Estimates obviously improve with reduction of
noise. However, with much higher interference level such as
when α1,2 = 0.8 in Fig. 8d, the estimate does not quite reach
α1,2 (at least at S2NR = 15 dB). This is the reason why the
RSIC performance gain in Fig. 5d is the least among all α1,2
values. In other words, when the interference is large, the
estimate is as not close to the actual parameter which makes

the RSIC SER not as close to the interference-free SER. The
corresponding estimates for SER results in Fig. 6 and Fig. 7
are shown in Fig. 9 and Fig. 10 respectively. Since α1,2 is
complex with φ = π/6 in Fig. 9 and φ = π/4 in Fig. 10,
both the magnitude estimate and phase estimate for β1,2 are
shown. If we compare the amplitude estimates from Fig. 8
(α1,2 is real) and the magnitude estimates in Fig. 9 (φ =
π/6), then we see that the phase shift makes the estimates
worse. If we compare the magnitude estimates in Fig. 9 to the
magnitude estimates in Fig. 10 (φ = π/4), we see that the
phase shift from π/6 to π/4 has less effect on the magnitude
estimates compared to the phase shift from 0 to π/6. Now
we can conclude that this is perhaps the reason why the SER
differential between φ = 0 to φ = π/6 (Figs. 5 and 6) is
worse than the SER differential between φ = π/6 to φ = π/4
(Figs. 6 and 7), a conclusion which would not have been
apparent from Figs. 5, 6, and 7 alone. Interestingly, the phase
estimates for φ = π/4 are slightly better than for the case of
φ = π/3 which is a surprising result.

C. CRLB RESULTS CORRESPONDING TO SER
AND ESTIMATION
Finally, an important comparison to perform in estimation is
to compare the actual calculated variances to the CRLB. The
variances of the β1,2 estimates corresponding the Figs. 8, 9,
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FIGURE 21. Receiver 3 estimates (β2,3 and β1,3) and actual parameters (α2,3 and α1,3) vs. S3NR for α2,3 = 0.2 which is paired
with: α1,3 = 0.2, 0.4, 0.6, and 0.8.

and 10 are calculated and compared to the variance calculated
in (20) and/or (29), which interestingly can also be shown to
be the CRLB if the system is without interference (i.e. only
noise). While plotting the variance over S2NR is insightful,
in view of (20) we plot the variance as a function S1NR
(or equivalently interference-to-noise ratio, INR) in Rx2. We
note that since we are using S1NR, its range is not the same
for each α1,2. Of course the corresponding S2NR range in
Figs. 11, 12, and 13 remains the same for each α1,2. The
estimator variance vs. S1NR in Fig. 11 corresponds to the
SER with α1,2 being real (SER in Fig. 5 and amplitude
estimate in Fig. 8). Note that for α1,2 = 0.2, the estimator
variance approaches the CRLB except for S1NR values that
are very low where it is widely known that the CRLB does
not provide a good bound for such values. The fact that
variance estimate approaches the CRLB for modest to high
S1NR is actually a good result since we recall that actual
estimate carries with it some decoding errors i.e. the refer-
ence signal contains some demodulation errors (albeit small).
As expected, the variance of β1,2 decreases as S1NR increases
and the variance increases as α1,2 is increased. Once α1,2
starts to approach 1.0, even very high levels of S1NR result
in high variances of the estimate. The estimator variance vs.
S1NR curves in Fig. 12 and Fig. 13 correspond to the SER

with α1,2 being complex with φ = π/6 (SER in Fig. 6) to
φ = π/4 (SER in Fig. 7) respectively. The variance is actually
the variance of the real part or the imaginary part of the
estimator β1,2 where simulations show that these variances
are actually equal. From Fig. 12 (φ = π/6), we note and now
expect that the variance gets worse as α1,2 is increased and
that the variance decreases as S1NR increases. What is inter-
esting is to compare variance vs S1NR curves from Fig. 11
(α1,2 is real) and Fig. 12 (α1,2 is complex with φ = π/6).
Here we see that variance is worse for φ = π/6 compared to
φ = 0. If we compare variance vs S1NR curves from Fig. 12
(φ = π/6) to Fig. 13 (φ = π/4), we notice that the variance
differential is lower than the variance differential from φ = 0
to φ = π/6.

IV. THREE-RECEIVER SYSTEM
We now expand the number of receivers to three which also
corresponds to three SoIs. If we continue to use Fig. 1 as a ref-
erence, then a third signal is received by Rx3 which is located
in Sector C. Unfortunately, the received signal y3 contains two
interfering signals. In Rx3, the reference signals are contained
in the IRM which is given by Ŝ = [ŝ1 ŝ2]. Recall that Rx3
must first demodulate y3which may contain some errors due
to the two interfering signals, which is given by s̃3 = dec(y3)
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FIGURE 22. The performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 at different
interference combinations when α2,3 = 0.5: (a) α1,3 = 0.2, S3IR = 5.38 dB; (b) α1,3 = 0.4, S3IR = 3.87 dB;
(c) α1,3 = 0.6, S3IR = 2.15 dB; (d) α1,3 = 0.8, S3IR = 0.506 dB.

FIGURE 23. The RSIC performance curves of SER vs. S3NR for demodulation of SoI s3 in Rx3 as a function of
increasing α1,3 with α2,3 = 0.5.

via MLD. In this case, the complex-valued estimate vector
is given by β3 = (Ŝ

H
Ŝ)−1Ŝ

H (
y3 − s̃3

)
. Specifically, the

estimate vector corresponding to the true α3 = [α1,3 α2,3]T

vector is β3 = [β1,3 β2,3]T . Of course, if α3 = [α1,3 α2,3]T

is all real then, β3 =
(
[Re(Ŝ

H
Ŝ)]−1Re[Ŝ

H
(y3 − s̃3)]

)
.

Utilizing amplitude estimates β3 = [β1,3 β2,3]T , we
perform the RSIC demodulation of s3 as given by
ŝ3 = dec(y3 − β1,3ŝ1 − β2,3ŝ2). Since our main interest

VOLUME 2, 2014 745



Romero et al.: SoI: Recovery With Multiple Receivers

FIGURE 24. Receiver 3 estimates (β2,3 and β1,3) and actual parameters (α2,3 and α1,3) vs. S3NR for
α2,3 = 0.5 which is paired with: α1,3 = 0.2, 0.4, 0.6, and 0.8.

FIGURE 25. The RSIC SER vs. S4NR for ŝ4SoI demodulation at different interference combinations when
α3,4 = 0.1: (a) α2,4 = 0.2; (b) α2,4 = 0.5.

is SoI demodulation we will keep reporting in this section
SER performance curves and the corresponding estimates
versus true parameter (interference amplitude) results of

which there’ll be many due to the three receiver scenario.
Thus in interest of brevity, we refrain from reporting any
more variance vs CRLB comparison results since variance
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FIGURE 26. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. S4NR corresponding to:
(a) α3,4 = 0.1, α2,4 = 0.2, α1,4 = 0.1(S4IR = 12.2 dB); and (b) α3,4 = 0.1, α2,4 = 0.2, α1,4 = 0.4 (S4IR = 6.78 dB).

calculations are straightforward with standard software com-
puting tools.

1) ESTIMATION RESULTS: PARAMETERIZE S3NR, VARY α3
With two signals interfering the SoI s3, the signal-to-total-
interference ratio is defined to be

S3IR ,
Es3

Es1 + Es2
=

‖s3‖2∥∥α1,3s1∥∥2 + ∥∥α2,3s2∥∥2 (34)

which simplifies to

S3IR =
1

||α1,3||2 + ||α2,3||2
. (35)

SIR due to individual signal interference is denoted as such
(e.g. S3I2R and S3I1R). Since S3IR includes both interfer-
ences (i.e. α1,3 and α2,3), there are numerous combinations
that can be made in (34) or (35). Add the fact amplitudes
are generally complex makes the number of combinations
much larger (theoretically infinite in fact). Thus for the sake
of brevity, we now just consider select combinations and

consider α3 = [α1,3 α2,3]T is real (and positive) to reduce
the number of practical results to be reported.
We investigate estimation by first holding Rx3 SoI (s3)

energy constant for various noise levels while varying inter-
ference amplitude values (varying S3IR). For example, we
can compare the estimates β2,3 to α2,3 as a function of
decreasing α2,3 (i.e. increasing S3I2R) for various noise levels
(i.e. S3NR levels). For α1,3 = 0.1, 0.2, 0.5, and 0.8 we plot in
Figs. 14a, 14c, 14e, and 14g β2,3 estimates along with α2,3 as
a function of increasing S3I2R for high S3NR levels (10, 13,
20 dB). It is seen that as β2,3 is varied at high S3NR levels,
β2,3 estimates remain accurate with low α1,3 values such as
0.1 and 0.2, but heavily degrade at 0.5 and 0.8. This is not
surprising since α1,3 = 0.5 and α1,3 = 0.8 result in high
S3IR despite α2,3 being low. In Figs. 14b, d, f, and h, β2,3
estimates are plotted versus α2,3. The results corresponding to
low S3NR levels (0.97, 3.01, 6.99 dB) are shown in Fig. 15a-g
where we see that estimates in a three-receiver system suffer
worse compared to estimates corresponding to high S3NR
which is to be expected. Interestingly, for any α1,3 under large
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FIGURE 27. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. S4NR corresponding to:
(a) α3,4 = 0.1, α2,4 = 0.5, α3,4 = 0.1 (S4IR = 5.69 dB); (b) α3,4 = 0.1, α2,4 = 0.5, α1,4 = 0.4 (S4IR = 3.77 dB).

amount of interference (α2,3 close to 1), the estimates for all
S3NR levels approaches 0.5 as seen in Figs. 14 and 15 where
β2,3 is plotted versus α2,3 which was also noted in the two-
receiver system.

2) SER AND CORRESPONDING ESTIMATION RESULTS:
PARAMETERIZE α3, VARY S3NR
Again the performance metric of utmost interest is SER
(as a function of Rx3 SoI SNR, i.e. S3NR). Since we have two
interference amplitudes (α2,3 and α1,3), we have to vary both
with α1,3 taking the values 0.2, 0.4, 0.6 and 0.8 while we the
parameter α2,3 changes to 0.1, 0.2, and 0.5 to illustrate their
respective SERs as shown in Figures 16, 19, and 22. From
these SERs we see the differing performances resulting from
the multiple combinations of interference gain values.
When α2,3 = 0.1 and α1,3 = 0.2, 0.4, (Fig. 16a and 16b),

we note that non-RSIC performance gets worse (compared
to the two-receiver system from the previous section) but
application of the RSIC moves the SER performances back

closely to the interference-free SER. For the (α2,3 = 0.1,
α1,3 = 0.6) pair, the Non-RSIC SER is heavily degraded
and the corresponding RSIC SER becomes close to the
interference-free SER for tremendous improvement. For the
(α2,3 = 0.1, α1,3 = 0.8) pair, the Non-RSIC SER perfor-
mance is so heavily degraded that it would be very difficult
to successfully demodulate or retrieve the SoI. Fortunately,
RSIC SER improves upon Non-RSIC and the SER retains
the ‘‘waterfall’’ curve and remains acceptable even for this
low value of S3IR (1.87 dB)! For example, at 15dB S3NR,
the RSIC SER is over 3 decades better than the Non-RSIC.
The SER performance for RSIC is summarized in Fig. 17 as
a function of increasing α1,3 (with fixed α2,3 = 0.1) such
that the performance improvement for RSIC technique is
appreciated.
Since α2,3 = 0.1 and α1,3 = 0.2, 0.4, 0.6, and 0.8, there

are four pairs of interference estimates. The estimate curves
are shown in Fig. 18. For α2,3 = 0.1 and α1,3 = 0.2 and
0.4, it is clear that the estimate pairs converge (almost con-
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FIGURE 28. The RSIC SER vs. S4NR for ŝ4SoI demodulation at different interference combinations when α3,4 = 0.3: (a) α2,4 = 0.2;
(b) α2,4 = 0.5.

verges in the case of α1,3 = 0.6) to the true parameters as
S3NR is increased. This is the reason why the RSIC performs
well. Indeed, even for low S3NR where the estimates are
not close to the true parameters, RSIC also performs well.
Notice however the case of (α2,3 = 0.1, α1,3 = 0.8) pair
where estimate β1,3 actually gets slightly worse as S3NR
is increased. The estimate β1,3 is in a trajectory towards
α1,3 = 0.8 but does not reach it (at least not at S3NR = 15
dB). This is the reason why the RSIC SER does not get
as close to the interference-free SER for this pair. Never-
theless, its SER performance is a huge improvement from
Non-RSIC.

With α2,3 = 0.2 and α1,3 = 0.2, 0.4, and 0.6
(Fig. 19a, 19b, and 19c), we note that non-RSIC performance
gets worse (compared to the corresponding α2,3 = 0.1 SER
in Fig. 16a, 16b, and 16c) but yet again the application of the
RSIC moves the SER performances back to the interference-
free SER (forα1,3= 0.2, 0.4) or close to it (forα1,3= 0.6). For
last pair, the Non-RSIC SER performance is heavily degraded
as expected while RSIC SER still performs well enough in the
sense that a waterfall-like curve is retained. At 15dB S3NR,

the RSIC SER is over 2 decades better than the Non-RSIC.
The SER performance for RSIC is summarized in Fig. 20 as a
function of increasing α1,3 (with fixed α2,3 = 0.2). The four-
pair estimates that correspond to the summarized SER results
in Fig. 20 are shown in Fig. 21. For the first two-estimate
pairs it is clear that the estimate pairs converge to the true
parameters as S3NR is increased. For third estimate pair, the
estimate curves are in a trajectory towards but do not reach the
parameter at S3NR= 15 dB. It appears higher SNR is needed
for these estimates to reach the true parameters. Again notice
in the case of the last pair, the estimate β2,3 gets even worse
as S3NR is increased compared to (α2,3 = 0.1, α1,3 = 0.8)
pair. The estimate β1,3 seems to improve but very slowly (to
0.54 at S3NR = 15 dB where we recall that α1,3 = 0.8).
With α2,3 = 0.5 and α1,3 = 0.2, and 0.4 (Fig. 22a and 22b),

we note that non-RSIC performance gets worse (compared to
the corresponding α2,3 = 0.2 SER in Fig. 19a and Fig. 19b as
expected). The SER (for α1,3 = 0.2) is close to interference-
free SER and the SER (for α1,3 = 0.4) is respectable by
retaining the waterfall curve. For the last two interference
pairs, the Non-RSIC SER performances are truly unaccept-
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FIGURE 29. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. different S4NR values corresponding to:
(a) α3,4 = 0.3, α2,4 = 0.2, α1,4 = 0.1 (S4IR = 8.54 dB); and (b) α3,4 = 0.3, α2,4 = 0.2, α1,4 = 0.4 (S4IR = 5.38 dB).

able (almost flat). For both pairs, RSIC SER is only slightly
improved over Non-RSIC. This is because the S3IR for the
third pair is 2.15dB and the S3IR for the fourth pair is 0.506
dB which are just too interference-limited. The SER per-
formance for RSIC is summarized in Fig. 23. The four-pair
estimates that correspond to the summarized SER results in
Fig. 23 are shown in Fig. 24. For the first interference pair,
it is clear that the estimates converge to the true parameters
as S3NR is increased which explains why the RSIC SER gets
close the interference-free SER. For the second, the estimates
are in a trajectory towards the true parameters as S3NR is
increased (but would require much higher S3NR to do so).
For the last two interference pairs, the estimates slightly get
worse as S3NR is increased. Rx3 is just simply interference-
limited for these two pairs of interference amplitudes which
is why the RSIC can only improve so much in these
cases.

In conclusion for the case of a three-receiver system,
it is clear that RSIC performs very well in terms of SoI
SER. From the interference combinations explored where the
summarized SERs are shown in Figs. 17, 20, and 23, we can

conclude that it performs well except when the aggregate SIR
becomes very low.

V. FOUR-RECEIVER SYSTEM
Here we consider that a fourth receiver is added to the multi-
receiver system. If we refer to Fig. 1 the fourth receiver
takes a position somewhere in Sector D. The received signal
y4 contains three interfering signals signals: s1, s2 and s3
each of which has its own interference amplitude given by
α4 = [α1,4 α2,4 α3,4]T . Recall that in order to estimate these
amplitudes we need an initial guess for s4 in Rx4 which is
given by s̃4 = dec(y4). Since we have 3 interfering signals,
the SER is potentially worse than the three-receiver system.
The complex-valued estimate vector β4 = [β1,4 β2,4 β3,4]T

is given by β4 = (Ŝ
H
Ŝ)−1Ŝ

H (
y4 − s̃4

)
where the IRM is now

given by Ŝ = [ŝ1 ŝ2 ŝ3]. If the interference amplitudes in
α4 = [α1,4 α2,4 α3,4]T are real then the estimate vector β4
is given by β4 =

(
[Re(Ŝ

H
Ŝ)]−1Re[Ŝ

H
(y4 − s̃4)]

)
. Rx4 SoI

is then given by ŝ4 = dec(y4 − β1,4ŝ1 − β2,4ŝ2 − β3,4ŝ3).
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FIGURE 30. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. different S4NR values
corresponding to: (a) α3,4 = 0.3, α2,4 = 0.5, α1,4 = 0.1 (S4IR = 4.56 dB); and (b) α3,4 = 0.3, α2,4 = 0.5, α1,4 = 0.4 (S4IR = 3.01 dB).

The total SIR in Rx4 is given by

S4IR ,
Es4

Es1 + Es2 + Es3

=
‖s4‖2∥∥α1,4s1∥∥2 + ∥∥α2,4s2∥∥2 + ∥∥α3,4s3∥∥2 (36)

which simplifies to

S4IR =
1

||α1,4||2 + ||α2,4||2 + ||α3,4||2
. (37)

Now that S4IR includes three interferences, there are even
more SIR combinations in (37) compared to the three-receiver
case. Again for the sake of brevity, we now just consider select
combinations and consider the amplitudes to be real (and
positive) to reduce the number of example results. Moreover,
we limit our report on RSIC SERs and their corresponding
estimation results. We also now refrain from reporting Non-
RSIC (MLD without any interference cancellation) since it
performs terribly in the four-receiver case. This is true for
some cases even when the SNR is large and SIR is modest.

1) INTERFERENCE COMBINATIONS α3,4 = 0.1
α2,4 = 0.2,0.5, α1,4 = 0.1,0.4:
To generate SER and estimation results for RSIC let us
consider the following cases: α3,4 = 0.1, α2,4 =

0.2, 0.5, α1,4 = 0.1, 0.4. This results in four interference
amplitude combinations that yield S4IR of 12.2, 6.78, 5.69,
and 3.77 dB. The RSIC SERs corresponding to these 4 inter-
ference amplitude combinations are shown in Fig. 25. Notice
that the interference combinations corresponding to S4IR of
12.2, 6.78, and 5.69 dB result in SERs that approach the
interference-free SER. The RSIC SER corresponding to a
total SIR = 3.77 dB does not approach the interference-free
SER but retains the waterfall curve. We note that the SERs
corresponding to S4IR = 6.78 and 5.69 dB closely approach
the interference-free SER at high SNR. However at medium
SNR, the SERs are close but there seems to be discern-
able small gaps to the interference-free SER. These ‘‘small’’
gaps were actually present in a few of the 3-receiver RSIC
SER results from previous section but were not explored
upon. To explain this interesting phenomenon, we look at the
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FIGURE 31. The RSIC SER vs. S4NR for ŝ4 SoI demodulation at different interference combinations when α3,4 = 0.6: (a) α2,4 = 0.2;
(b) α2,4 = 0.5.

amplitude estimates corresponding to these SERs. The plots
of the estimators β3,4, β2,4, β1,4 (along with the actual param-
eters α3,4, α2,4, α1,4) vs. different S4NR values corresponding
to S4IR = 12.2 dB and S4IR = 6.78 dB are shown in Fig. 26.
For S4IR = 5.69 dB and S4IR = 3.77 dB, the plots are
shown in Fig. 27. Each estimate curve is also labeled with
the corresponding individual SIR. For example, the estimate
curve located far-right of Fig. 26a for α1,4 = 0.1 has a
label S4I1R = 20 dB but recall that the aggregate S4IR is
12.2 dB. For S4IR of 6.78, and 5.69 dBwhere the SER ‘‘gaps’’
exist, the estimates start to converge to the actual parameters
at high S4NR but not at medium S4NR. The fact that the
estimates have not converged to the actual parameters is the
reason why there are small SER gaps between RSIC SER
and interference-free SER. Nevertheless, it is still impressive
that the RSIC is able to incredibly improve upon the Non-
RSIC SER performance despite the estimates not being close
to the actual amplitude parameters at medium SNR. Inter-
estingly, at low SNR the accuracy of the estimates does not
affect the SER as evidenced in most of the SER plots even
when the SIR is low. This is because at low SNR, the actual
receiver noise starts to become more dominant compared to

the interferers. This is why the small SER gaps (which we
now know happens when the estimates do not converge to
the actual true parameters) only appear in the medium SNR
area. Such conclusions can’t bemade without running various
parameterized simulations.

2) INTERFERENCE COMBINATIONS α3,4 = 0.3,
α2,4 = 0.2,0.5, α1,4 = 0.1,0.4:
To generate different SIR values, we now hold toα3,4 constant
and vary the other two interference amplitudes. Specifically
we look at the set: α3,4 = 0.3, α2,4 = 0.2, 0.5, α1,4 =
0.1, 0.4 which yields four S4IRs of 8.54, 5.38, 4.56, and
3.01 dB. The corresponding RSIC SERs are shown in Fig. 28.
Here notice that the SER corresponding to S4IR of 8.54 dB
is the only one that approaches the interference-free SER.
For S4IR 5.38 and 4.56 dB, the SERs are still effective in
the sense they still have the shape of the waterfall curve.
For S4IR = 3.01 dB, the SER improves very slowly as a
function of increasing SNR and is therefore not as effec-
tive. The plots of the actual parameters α3,4, α2,4, α1,4 and
the estimators β3,4, β2,4, β1,4 vs. S4NR corresponding to
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FIGURE 32. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. S4NR for multiple simulations of y4:
(a) S4IR = 3.87 dB; (b) S4IR = 2.52 dB.

α3,4 = 0.3, α2,4 = 0.2, α1,4 = 0.1 (S4IR = 8.54 dB),
α3,4 = 0.3, α2,4 = 0.2, α1,4 = 0.4 (S4IR = 5.38 dB),
α1,4 = 0.3, α2,4 = 0.5, α3,4 = 0.1 (S4IR = 4.56 dB),
and α1,4 = 0.3, α2,4 = 0.5, α3,4 = 0.4 (S4IR = 3.01 dB)
are shown in Fig. 29 and Fig. 30. It is clear that only the
estimates corresponding to S4IR = 8.54 dB approach the
actual parameter values which explains why the RSIC SER
corresponding to this SIR approaches the interference-free
SER. Notice that at S4IR = 5.38 dB the RSIC SER is very
close but it does not approach the interference-free SER. At
this SIR, the three estimates improve as a function of increas-
ing SNR (although do not converge to the actual parameter
values at SNR= 15dB). The set of estimates for S4IR= 4.56
dB is a good example where there is a mixture of estimation
performance which (9) does not easily convey. Two of the
estimates improve as SNR is increased while the estimate
β1,4 actually gets worse as SNR is increased. Nevertheless
just like the SER corresponding to S4IR = 5.38 dB, the SER
corresponding S4IR = 4.56 dB retains its waterfall curve
which is still deemed effective. The estimate corresponding
S4IR= 3.01 dB actually gets worse as function of increasing

SNR. Although the SER improves (over Non-RSIC), it is
deemed less effective.

3) INTERFERENCE COMBINATIONS α3,4 = 0.6,
α2,4 = 0.2,0.5, α1,4 = 0.1,0.4:
Our goal in this section is to generate much higher SIR
values to see where RSIC becomes less effective in terms
of aggregate SIR, so we increase α3,4 to 0.6 (from the
previous interference combination). Thus, we have α3,4 =
0.6, α2,4 = 0.2, 0.5, α1,4 = 0.1, 0.4 which yields four
very low S4IRs of 3.87, 2.52, 2.08, and 1.14 dB. The cor-
responding RSIC SERs are shown in Fig. 31. With the SIR
being very low, none of the SERs approaches the interference-
free SER. In fact, only the SER corresponding to 3.87 dB
is deemed effective. The SERs corresponding to the last 3
SIRs do not retain the shape of the waterfall curve and are
deemed less effective. The plots of the actual gain param-
eters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs.
S4NR corresponding to S4IR = 3.87 dB, S4IR = 2.52 dB,
S4IR = 2.08 dB, and S4IR = 1.14 dB are shown in Fig. 32
and Fig. 33. We have a variety of interesting results that we
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FIGURE 33. The plots of the actual parameters α3,4, α2,4, α1,4 and the estimators β3,4, β2,4, β1,4 vs. S4NR for multiple simulations of y4:
(a) S4IR = 2.08 dB; (b) S4IR = 1.14 dB.

can discuss as to how the individual estimates behave. But
we only look at the estimate set belonging to S4IR= 3.87 dB
since we already know that the rest of the SIRs result in less
effective SERs. Even for S4IR = 3.87 dB, the three esti-
mates behave differently: the estimate β3,4 strictly improves
as a function of increasing SNR, the estimate β2,4 actu-
ally gets worse in the medium SNR range but seems to
improve at high SNR, and β1,4 gets worse as a function
of SNR.

It may be tempting to conclude that the aggregate SIR
given a number of interferers is the only metric that dic-
tate the RSIC SER (or regardless of the number of inter-
ferers for that matter). However, this is not the case. For
example, if we look at the SER corresponding to RSIC
SER for α3,4 = 0.3, α2,4 = 0.5, α1,4 = 0.1 (S4IR
= 4.56 dB) in Fig. 28b we note that this SER is almost
equal to the RSIC SER for α3,4 = 0.6, α2,4 = 0.2,
α1,4 = 0.1 (S4IR = 3.87 dB) in Fig. 31a despite the fact that
the latter has lower aggregate SIR than the former. This is a
surprising result that is not apparent in any of the equations

presented in this work. The key is to look at the quality of the
estimates. Better set of estimates (a set where the estimates
which tend to converge to the true interference amplitudes)
generally results in better RSIC SER.

VI CONCLUSION
In this paper, we introduced and developed a novel tech-
nique of retrieving (i.e. demodulating) signals of interest
(SoI) with the use of multiple receivers that are physically
far apart for the purposes of signal collection applications
which can extend to SIGINT, ELINT and/or COMINT appli-
cations. We call the technique RSIC (reference-based signal
interference cancellation) and it involves the combination
of strategic receiver location and a clever mixture of signal
processing techniques. Each receiver is assigned to capture a
single SoI. In other words, other signals act as interference
to that SoI. The scheme involves placing the receivers in
locations of opportunities where an initial receiver is placed
where only one SoI is present. This SoI (which is called
a reference signal) is passed on to the second receiver which
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tries to collect a different SoI in which the received signal is
interfered by the initial SoI. So, the second receiver uses the
reference forwarded by the first receiver for cancellation (sub-
traction). The problem however is that the second receiver
does not know its amplitude and thus subtraction cannot eas-
ily be performed. Thus, it is proposed to be estimated. Unfor-
tunately, the initial LSE estimation requires the knowledge of
the second SoI which is the very signal the second receiver is
trying to demodulate thereby yielding an interesting ‘‘Catch-
22’’ problem. To solve this problem, we proposed to demodu-
late the received signal (despite being filled with interference)
and use that as ‘‘initial guess’’ for estimation of the inter-
ference amplitude prior to subtraction. Once the estimate is
available, we perform the subtraction, and we re-demodulate
the resulting difference. This technique worked amazingly
well! The technique is easily extended to multiple SoIs with
the use of multiple receivers. While the technique is useful for
various signals, the ubiquity of communication signals due to
wireless applications prompted us to use a widely known sig-
nal modulation (QPSK) in our example simulations. Thus, we
monitored symbol error rate as our performance metric along
with the estimates and variance comparison to the CRLB. We
showed various interference combinations where the Non-
RSIC (i.e. using only maximum likelihood detection) simply
did not work well and resulted in heavily degraded SER.
When RSIC was applied, the SER actually approached the
interference-free SER even for modest SIR. While the RSIC
SER performance was tied to aggregate SIR, it was actually
the quality of the estimates that dictated how well RSIC
performed.

APPENDIX
A. DIFFERENTIATION FOR LSE
First, we expand (5) such that

J (αn) = (yn − sn − Sαn)H (yn − sn − Sαn)

= (yHn − sHn − α
H
n S

H )(yn − sn − Sαn)

= yHn yn − yHn sn − yHn Sαn − sHn yn + sHn sn + sHn Sαn
−αHn S

Hyn + αHn S
H sn + αHn S

HSαn. (A1)

The derivative of J (αn) with respect to the (n− 1) × 1
complex vector αn can be evaluated using the identity
∂bHθ/∂θ = b∗ where b and θ are both (n − 1) ×
1 complex vectors [14]. Taking the derivative of (A1)
yields

∂J (αn)
∂αn

= −
∂

∂αn

[(
SHyn

)H
αn

]
+

∂

∂αn

[(
SH sn

)H
αn

]
+

∂

∂αn

[
αHn S

HSαn
]

= −

(
SHyn

)∗
+

(
SH sn

)∗
+

(
SHSαn

)∗
(A2)

Setting ∂J (αn)/∂αn = 0 yields the estimate βn in (8) of the
complex vector αn as given by

βn = (SHS)−1SH
(
yn − sn

)
. (A3)

B. ESTIMATION WHEN INTERFERENCE
AMPLITUDES ARE PURELY REAL
If the elements of the amplitude gain vector αn are real, that
is αn= α∗n, we have from (A1)

J (αn) = yHn yn − yHn sn − yHn Sαn − sHn yn + sHn sn + sHn Sαn
−αTn S

Hyn + αTn S
H sn + αTn S

HSαn (B1)

Note that

αTn S
Hyn =

(
αTn S

Hyn
)T
= yTn S

∗αn

αTn S
H sn =

(
αTn S

H sn
)T
= sTn S

∗αn

since both quantities are scalars. Using the identity
∂aT θ/∂θ = a, we obtain the derivative of J (αn)with respect
to the (n− 1)× 1 real vector αn as
∂J (αn)
∂αn

=−ST y∗n+S
T s∗n−S

Hyn + SH sn+2[Re(SHS)]αn

=−ST (y∗n − s∗n)− SH (yn − sn)+ 2[Re(SHS)]αn
=−2Re[SH (yn − sn)]+ 2[Re(SHS)]αn (B2)

Setting ∂J (αn)/∂αn = 0 yields the estimate βn in (9) of
the real vector αn as given by

βn = [Re(SHS)]−1Re[SH (yn − sn)]. (B3)
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