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ABSTRACT A better understanding of human cognitive ability-demand gap (ADG) is critical in designing
assistive technology solution that is accurate and adaptive over a wide range of human-agent interaction. The
main goal is to design systems that can adapt with the user’s abilities and needs over a range of cognitive
tasks. It will also enable the system to provide feedback consistent with the situation. However, the latent
structure and relationship between human ability to respond to cognitive task (demand on human by the
agent) remains unknown. Robust modeling of cognitive ADGwill be a paradigm shift from the current trends
in assistive technology design. The key idea is to estimate the gap, based on human-agent cognitive task
interaction. In particular, latent response model was adopted to quantify the gap. First, we used one parameter
Rasch model and extended Rasch model (rating scale model, partial credit model) with dichotomous and
polytomous responses, respectively. Residues between expected and observed ability scores were considered
as gap parameter in case of dichotomous response. In extended Rasch modeling, response latitudes are
considered as an indicator of the gap. Additionally, we performed model fitting, standard error measurement,
kernel density estimation, and differential item functioning to test the suitability of Rasch model. Empirical
analyses on a number of data set show that proposed analytical method can model the cognitive ADG from
dichotomous and polytomous responses. In dichotomous case, the model better fits for mixed responses
(combination of easy, medium, and hard) data set rather than monotonic (e.g., only easy) data. Results show
that Rasch model can be reliably used to estimate cognitive gap with different cognitive task types.

INDEX TERMS Cognitive engineering, ergonomics, human computer interaction, human factors, cognitive
modeling, cyber physical systems.

I. INTRODUCTION
Blind Ambition is an ongoing innovative research project
at the Computer Vision Perception and Image Analysis
(CVPIA) laboratory at the University of Memphis. The main
aim is to develop accurate, adaptive, affordable, effective and
portable assistive technology solutions for the people who are
blind or visual impaired. The key idea is to keep the design
simple so that the user can interact with the system effectively
with minimal cognitive effort. A number of products and
wide varieties of services have been developed –reconfigured
mobile android phone application (RMAP [18] iMAP [19],
EmoAssist [20], FEPS [21], [22] and E-Glass.

Designing an adaptive assistive technology solutions
require an understanding of user’s need and ability to use
the system to perform the task with minimal cognitive effort.

Traditional designs focus on providing the functionalities
without considering the adaptive behaviorism - a type of
behavior that is used to adjust to another type of behavior
or situation [1], [2]. Using mobile devices in such technol-
ogy solicitation is a challenging task [7], [8]. The research
presented in this paper is a step towards bridging the ability-
demand gaps (ADGs) in developing assistive solutions.

A. ABILITY-DEMAND GAP (ADG)
The discrepancy between user’s ability and cognitive demand
on the user by technology solutions remains the source
of incoherence in human-machine (agent) interaction. This
discrepancy is known as (dis)ability or ability-demand gap
(ADG) [1], [3], [9]. Modeling and quantification of the
ADG is critical in designing the next generation human-agent
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FIGURE 1. A conceptual illustration of interaction gap (cognitive, physical, collaborative) - (A) Ability-demand gap - the gap model, (B) Gap stages - gap
amplification with a layer of hierarchy (C) Degree of gaps - range of gaps in human-agent (system) interaction, and (D) Gap adaptation - in
human-system (agent) interaction.

interaction system and assistive technology solutions. It is
easy to note that a system capable of understanding and
responding to the gap will help in error resolution, mini-
mizes incoherent interaction, and facilitates meaningful and
personalized feedback and also will improve users interaction
experiences.

The Fig. 1 illustrates a number of issues related to the
gap and system (agent’s) performance under different roles.
The Part A depicts the cognitive ability-demand gap from
a utilitarian point of view; part B shows different levels of
possible gaps and their associations with cognitive, physical
and social (collaborative) attributes; part C presents agents
different roles as a function of increasing degree of ADGs and
part D illustrates how the gap can be used to resolve issues in
human-agent (computer) interaction.

Continuous monitoring of gaps will enable designing a
multi-layer feedback system that is adaptive with the com-
plexity of the cognitive task and consistent with user’s need.
This research considers only the cognitive ADG in the context
of human-agent interaction. A range of other types of gap can
be considered depending on the agent’s role, and cognitive
functions [4]–[6].

This study considers ADG as the interplay of human
ability and task’s demand, like (but, not similar) to
Yin-Yang philosophy. Details can be found from authors’
earlier work [49]. Human expected demand sometime cor-
responds to their ability, so the ability and demand are
cluttered together as like the fig.2A. The latent properties
of the interplay are illustrated in fig.2B. Subject has his
ability (θ ) parameter, and the task it’s discrimination (α)
parameter, both are aligned with task difficulty (δ). Notably,
ability-demand gap resolutionmitigates shared understanding
between the user and assistive technology tools (e.g. Mobile
application).

Past observations applied item response model in the
ability estimation in psychometric assessment [31]–[35],
clinical usability assessment [31], [32], [36], cyber physical
systems [10] and political science [29]. The ability-demand
gap paradigm can be used with assistive intelligent tutoring
system [17], multimodal user interface in crisis manage-
ment [23], brain computer interfacing research [24], assis-
tive technology design [15] and collaborative sense-making
[12], [13]. This study proposes item response modeling
approach in human computer interaction with ability -
demand gap assessment. With cognitive ADG identification
being the primary objective of the paper, Section II discusses
the literatures related to ability-demand gaps computation,
modeling, and relation to human computer interaction and
cyber physical systems.
Next, the gap computation is examined with two datasets

which is explained in Section III. Section IV shows empirical
analysis results with dichotomous and polytomous data, item-
personmaps and fit computation. Finally SectionV concludes
the paper.

II. ABILITY-DEMAND GAP ANALYSIS
In this section, we review different computational approaches
and their application in estimating the anility-demand gap
(ADG) from human-agent interaction. We explain how dif-
ferent parameters of the latent response models are related to
the gap.

A. ADG COMPUTATION
Disability can be viewed as the difference between the cost
demanded by environment and individual’s ability [1], [2].
In new technology adaptation, a user starts with ADGs that
are reduced with an increase of skill and experiences. Users
with physical or sensory disability will always have some
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FIGURE 2. Ability-Demand gap Illustration, (A) Interplay of ability and demand [49], (B) latent
diagram with subject and task parameters.

FIGURE 3. Residual computation of ability-demand gap.

gaps (in their ability) to be considered with holistic design.
The ADG can be formalized as a latent response analysis as
illustrated in Fig. 2B, with subject’s ability vs. task demand
with task difficulty (β), task discrimination (α), subject’s
ability (θ ), performance (x) and the probability of success (Pj).
Intuitively, the cognitive demand on the user can be written
as [25]:

D = f (Pd ,Phd , Sd )+ DA (1)

Where, D is the overall demand, Pd is the physical demand;
Phd is the psychological demand; Sd is the sociological
demand, and DA is demand with ignored ability. The function
on the right side of the equation is the demand function.
Similarly, the ability can be expressed as [25]:

A = f (Pa,Pha, Sa)+ AD (2)

Where, A is the overall ability, Pa is the physical ability, Pha
is the psychological ability; Sa is the sociological ability and
AD is the ability with ignored demand. The function on the
right side of the equation is the ability function. The ability
demand gap can be formalized as’’

G = K (D− A) (3)

Where, G is the ADG, K can be considered as a normalizing
constant (e.g., the power constant 0.74±0.06, 95% confi-
dence limits [28]).

B. DIFFERENCE COMPUTATION
Given the subject’s ability A and cognitive task demand D,
the ADG can be defined by Coombs theory of difference [28].
If A is greater than D, say, A − D > 0 and the subject make
some error. With probability of error the equation can be
written as,

p (A > D|A,D) = (A− D) (4)

Alternatively, A is close to D if the absolute difference
between them, is less than some threshold, δ.

p(|A− D| < δ|ADδ) = f (|A− D|, δ) (5)

This distinction are shown graphically by considering the
probability of being greater as a function of the distance A -B
(Fig 3.c) or the absolute difference between A and B. Ordered
difference consider the probability of observing A > D as
a function of the difference between A and D. The greater
the signed difference, the greater the probability that A will
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FIGURE 4. Response latitude (RL) computation - (A) response attitude and latitude, (B) Large latitude, (C) Small latitude.

be reported as greater than D. The three lines represent three
different amounts of sensitivity to distance. The proximity
relationship considers the probability of observing A is the
same as (close to) D as a function of the difference between
A and D. The less the absolute difference, the greater the
probability they will be reported as the same. Given a data
matrix D with features dij, we try to find model values
mi and mj such that some function f when applied to the
model values best recreates dij. For data that are expressed as
probabilities of an outcome, the model should provide a rule
for comparing multiple scale values that are not necessarily
bounded 0−1with output values that are bounded 0−1. That
is, we are interested in a mapping function f such that for any
values of mi and mj

0 ≤ f(mi,mj) ≤ 1 (6)

In order to fit it to model, we need to find scale values that
minimize some function of the error. Applying f (mi, mj) for
all values of i and j produces themodel matrixM. Let the error
matrix E = Difference (f-norm (D), f-norm (M)). Because
average error will tend to be zero no matter how badly the
model fits; median absolute error or average squared error are
typical estimates of the amount of error. A generic estimate
of goodness of fit in terms of errors becomes

GF = f (D,M) (7)

Variations on this generic goodness of fit estimate include
Ordinary Least Squares Estimates such as

GF = (D,M )2/(D)2 (8)

and measures of median absolute deviation from the median,
or many variations onMaximum Likelihood Estimates of χ2.

C. ITEM RESPONSE MODEL AND GAP COMPUTATION
The item response theory (IRT)model predicts the probability
that a certain subject gives a certain response to a certain item.
In a single item response setting, let the subject x may only
have dichotomous responses (1 = correct, or 0 = incorrect),
let Pij as the probability of a correct response, where i refer
to the task, and the index j refers to the subject. The function
shown on the graph is known as the one-parameter logistic
function.

Pij(θj,bi) =
1

1+ e−(θj−bi)
(9)

This is known as one-parameter logistic (1PL) model, in
another name Rasch model [25] which predicts the proba-
bility of a correct response from the interaction between the
individual ability θj and the task parameter bi. The parameter
bi is called the location parameter or the difficulty parameter.
Cognitive ability experiment conducts picking a cognitive
task of average difficulty (b about 0). If the subject gets it
right, system might select a more difficult task. System can
keep making the experiment more difficult until the student
performs a task incorrectly. If the subject make mistake in
the first task, system gives an easier task. Keep making the
tasks easier until he/she gets a task correct. As soon as at
least one task is correct and at least one task is incorrect
the system computes a maximum likelihood estimate of the
subject’s standing on the trait. As soon as the system has a
point estimate, it can compute a confidence interval, that is, a
local standard error of measurement for the subject.
Latent response model, namely the Rasch model [25] pre-

dicts the probability of any response to a cognitive task given
the true ability of the user. In general, user may have dif-
ferent levels of ability, and items (tasks) can differ in many
respects—most importantly, some are easier, and some are
more difficult. In a very simple item response setting, the
subject x may only have dichotomous responses (1= correct,
or 0 = incorrect), let us consider Pij as the probability of the
correct response, where i refer to the task, and the index j
refers to the subject.

Also,P(θ ) to show that the probability of a correct response
is a function of the ability θ . The probability of incorrect
response Q(θ ) = 1 − P(θ ) with Rasch modeling might show
the disability, specifically the ADG [1].

Qijθj, bi = 1− Pijθj, bi =
1

1+e(θj−bi)
(10)

we consider the equation (2) as gap equation. Where θj−bi
is considered as residue of expected ability (difficulty) and
observed ability.

1) RESPONSE LATITUDE COMPUTATION
Fig. 4(B, C) illustrates category response functions [35],
which are estimated to describe the likelihood that a person
at a given level of the latent attitude selects a given response
option. The x –axis in the Fig. 5 represents the attitude
towards performing correct action (valid click or answer-
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FIGURE 5. Vector representation of subject or item - (A) Polar coordinate representation of subject or
item location θ j, (B) Item vector representing the direction of best measurement of an item. (a1 = 1.2,
a2 = .4, d = −.84).

ing correctly), which is represented by value ranging from
−4 to +4. The y-axis represents the probability that subjects
at various locations along the attitude range selecting a given
response option. Each response option is represented by logis-
tic curve function running along the attitude range. The higher
values along these functions indicate a higher probability of
respondents selecting that particular response option.

Let, there are four b parameters associated with five point
response scale. The lowest is b1 =−8.5 and the high-
est b4 = 1.15 represent the locations at which there is
50 percent probability of respondents selecting the lowest
(strongly disagree) and highest (strongly agree) response
options. The average b value, (.85 + .25 + .5 + 1.25)/4 =
0.7125 is considered as response latitude of the test [39]. The
middle b parameters, b2 and b3, represent the intersection of
middle response options. The distance between bs, shown in
bracketed regions of the attitude range in the bottom of the
Fig. 5B. The low distance between choices may indicate the
subjects are in low load and are selective in their choice of
response option.

Another important characteristic of a test item is howwell it
differentiates between two subjects or item located at different
points in the θ -space. If the probability of the correct response
to the item for the locations of two subjects is the same, the
item provides no information about whether the subjects are
at the same point or different points. However, if the differ-
ence in probability of the correct response is large, then it is
very likely that the subjects are located at different points in
the d-space. Differences in the probability of correct response
for an item are largest where the slope of the item response
surface is greatest, and when points in the space differ in
a way that is perpendicular to the equi-probable contours
for the item response surface. In this two dimensional case,
θj2 = 90 -θj1. More generally, the relationship among the
angles between the coordinate axes and the line connecting
the origin of the space to the θj-point is given by

m∑
k=1

(cosαjk )2 = 1. (11)

FIGURE 6. Shepard plot of mental multiplication (top - left) and RMAP
dataset (top - right). metaMDS plot of mental multiplication
(bottom - left) and RMAP dataset (bottom- right).

This relationship is a general property of the relationships of
angles with a line represented in an orthogonal coordinate
space. An example of this vector representation of an item
is given on the contour plot of an item response surface in
Fig. 6.

2) PERSON-ITEM MAP
A person-item map displays the location of item (and thresh-
old) parameters as well as the distribution of person parame-
ters along the latent dimension. Person-item maps are useful
to compare the range and position of the item measure dis-
tribution (lower panel) to the range and position of the per-
son measure distribution (upper panel). Items should ideally
be located along the whole scale to meaningfully measure
‘ability’ of all persons. Fig. 12 shows, person-item map in
terms of response latitude. The upper panel describes the
distribution of persons’ abilities and the lower panel explains
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item measure distributions. The black circle in the lower
panel indicates mean difficulty and the white circles represent
category thresholds. The left map illustrates person-item map
and right map shows the sorted version.

III. RESEARCH METHOD
Item Characteristic Curve (ICC) is defined as the (nonlinear)
regression line that represents the probability of endorsing
an item (or an item response category) as a function of the
underlying trait [29]–[41]. Though a complete description of
the Item Response Theory is beyond the scope of this paper,
a comprehensive analysis can be found in [33] and [47]. For
the purpose of this work, we have taken into consideration
the Rasch one parameter item response model (dichotomous)
and Rasch extended model (polytomous data). ADG is ana-
lyzed with both dichotomous and polytomous datasets. The
dichotomous data sample is considered from the pupillary
dataset [45], and the polytomous data is considered from the
one of our earlier experiment [1], [53]. Having both types of
datasets, we performed the preprocessing, Rasch analysis and
model fitting statistical tests.

A. MENTAL MULTIPLICATION DATA
There are two parts in mental multiplication dataset [26],
visual and auditory. In this study, we considered only the
visual task interaction part. Subjects are given three different
types of tasks (easy, medium and hard). For example, 6 × 12
is considered as easy task, 7 × 19 as a medium task, and
12 × 17 as a hard task. The dataset is well known and fol-
lowed, and prerequisites of mental multiplication task based
experiments. Details can be found in [26]. The rational to use
the dataset is to understand the effect of pupil size variation,
eye gaze, and response time with pupil dilation. The log
file gendered by the Tobii software includes different scrap
values. For instance, the value marked with ‘‘−1’’ in pupil
size means that the person is either looking away or typing or
is not at the computer, meaning as the tracker is not able to
detect pupil size. Some of these values are interpolated from
other values preceding the current value and following values.
More specifically, the interpolated pupil size is calculated
as y = x0+

(x1−x0)(t1−t0)
(tc−t0)

, where tc is the time for the corre-
sponding pupil diameter recording, x0 is preceding value of
expected pupil diameter y and x1 is the following value of
the expected pupil diameter. Data validation is considered
from Tobii’s validation values (0-4). Where, 0 represents the
eye is found, and the tracking quality is good. In the case
of eye out of the range, validation code is logged as 4. This
study considers task interaction outcome (correct/incorrect)
as subject’s task performance (ability) and task difficulty
(easy, medium or hard) as task demand. The pupillary data
is used in validating subject’s cognitive states.

B. RMAP DATASET
RMAP subjective rating dataset uses the concept of the
NASA Task Load Index [15] with six dimensions to assess
mental workload: mental demand, physicaldemand, temporal
demand, performance, effort, and frustration. Table I shows

TABLE 1. NASA-TLX of cognitive workload computation [16].

the description of NASA-TLX dimensions. Five step graded
response scales are used to obtain ratings for these dimen-
sions. A score from 0 to 10 is obtained on each scale. The six
individual scale rating are combined using a weighting proce-
dure. A cumulative workload score from 0 to 1is obtained for
each rated task by multiplying the weight by the individual
dimension scale score, summing across scales, and dividing
by individual average score we normalized the score.

C. GAP COMPUTATION
If ICCs of two populations (group of subjects) are the same,
the item is not biased. If the ICCs are different, the item is
biased – which is functioning differently across the group.
System can understand ability and gaps from a number of
iteration, which is explained later on. Initially, the system can
start with an average difficulty (b =0) item if a subject get it
right; the system can select more difficult item. Accordingly,
the system can keep selecting more difficult items until the
subject gets an item wrong. If the subject gets the first item
wrong, system might give her an easier item, and can keep
making the next item easier until the subject gets an item
right. With at least one item right and at least one item wrong
system should compute a maximum likelihood estimate of
subject’s standing on the trait. Having the point estimate, the
system will be able to compute a confidence interval, which
is a local standard error of measurement for that subject.
The system then chooses that item for the subject which is
expected to provide themaximum information for the subject.
After administrating each item, system computes a subject’s
standing on the trait and his confidence interval. This we term
as ‘gap’ in interaction. When the confidence interval (gap) is
small enough, the system should stop testing. This will ensure
that, each subject (with the ability) is likely to get a different
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FIGURE 7. Rasch analysis plots for mental multiplication tasks. (Left column) easy task, (middle column) medium task, and (right
column) hard task - (A) Item Characteristic Curves (ICCs), (B) Test information curves.

test but that the score will be on the same scale and measured
with approximately equal error.

First, cognitive ability was computed from the residues
- difference between observed proportion correct for a
given ability (theta) level and expected proportion correct
(i.e., probability from the IRT model). Rasch modeling and
extended Rash modeling are used. Standardized residual was
computed from the standard error of measurement (SEM).

Whether an item is biased or not biased is computed by the
probability of an item response depends on the combination
of values x of the variable X and values g of the variable G
with the equation: P(x = 1 |G, θ) 6= P(x = 1|θ ) -which is
regarded as differential item functioning (DIF). Two popular
methods are broadly used in DIF computation: (a) Raju’s
DFIT [45] and (b) Rasch tree [44]. According to Raju [45],
the gap is defined as the difference between expected scores
for the focal and reference groups – and considered as the
DIF index. Similarly, the cognitive gap needs to be computed
from the different clusters (group) of responses and measured
through DIFs. Samjima’s GRM [37] was used in graded
responses. Notably, the response attitude and response lati-
tude are accounted in ADG computation. Response latitude
around the attitude is found an index of gap.

Item discrimination, response biases [29], [30], and
response time was added in the model for further multidimen-
sional processing. Principal component and principal curve
(non-parametric) was adopted in gap identification through
response surfaces in multidimensional response modeling.
The amount of stress is used to judge the goodness of fit of an
MDS solution, which is computed from the sum of squared

values. The absolute values of the goodness statistic depend
on the definition of the stress. In all of our experimental
datasets, the stress value is very low and near the perfect fit.
The adequacy of an MDS solution is visualized with Shep-

ard diagram [27] (Fig. 6.) to show the ordinary distances and
monotone or linear fit line against original dissimilarities.
In addition, Shepard diagram displays two correlations like
statistics on the goodness of fit in the graph. The non-metric
fit is based on stress S and defined as R2=1-S2. The linear fit
is squared the correlation between fitted values and ordination
distances. The mental multiplication sample data set has non-
metric fit (R2 = 1) and liner fit (R2 = 1). Accordingly, the
RMAP dataset shows non-metric fit (R2 = 0.986) and liner
fit (R2 = 0.972).

IV. RESULTS
This research aims to find a mathematical model to iden-
tify ability-demand gap (ADG) in human computer (agent)
interaction. The key assumption underlying was that, human
inherent ability and task complexity both are related to human
task performance. Similarly, the gap might be related to
human task performance, which can be identified with the
same framework. Moreover, the reliability and accuracy of
the identification process should be verified with fit statistics
(infit/outfit).

A. DATA PREPROCESSING
As an exploratory data analysis, we performed non-metric
multidimensional scaling (MDS) to infer the dimensions of
the perceptual space of subjects. The raw data entering into an
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FIGURE 8. Rasch analysis plots for mental multiplication tasks - (A) Standard Error Measurement (SEM) plot; (B) Kernel Density
Estimation (KDE) plots, and (C) overall ICC plot.

MDS analysis are typically a measure of the global similarity
or dissimilarity of the stimuli or objects under investigation.
A monotonic transformation of the proximities is calculated
with stress function [39]. It is considered that the lesser the
stress value, the better the fit of the data set [27].

Because of the nonlinear relationship between ordina-
tion and original dissimilarities, the iterative searches some-
times become very difficult in NMDS. The iteration easily
gets trapped into a local optimum instead of finding
the global optimum. Rotating solutions to principal com-
ponents are showed from the dispersion of the points
which are highest on the first dimension, using metaMDS
(Fig. 6), which clearly distinguishes the dichotomous (men-
tal multiplication data) and polytomous (RMAP dataset)
responses.

B. ADG COMPUTATION FROM RESIDUAL ANALYSIS
In ADG analysis, dichotomous and polytomous datasets are
processed with Rasch one parameter (1PL) item reposemodel
and extended Rasch model, respectively.
Item characteristic, test information, item parameter, stan-

dard error of measurement and kernel density estimation
of easy, medium and hard task interaction are shown in
Fig. 8 and 9. Fig. 8. (A) Shows ICCs of all easy, medium,
and hard (left to right) mental multiplication tasks performed
by all 12 subjects. Subjects are given more medium tasks (14)
then easy (12) and hard task (10). Example, of an easy task
(8 × 12), a medium task (7 × 13) and a hard task (14 × 17).
ICCs in the left part of Fig. 7A explain 12 subjects easy task
interaction. Subjects correctly performed most of the easy
tasks except task 1 (5 × 19), task 6 (7 × 13) and task 12
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FIGURE 9. Ability-demand gap (residuals) identification in cognitive experiment (Rasch modeling), (A) 2D surface plot of nine subjects ten
tasks, (B) Rasch model convergence in easy, medium and hard task, (C) Gap convergence details in medium task.

(9 × 17). In terms of difficulty, task 12 (19 × 13) was felt
most difficult, then the task 6 (13 × 17), task 1(11 × 13)
and all rest of the tasks. In terms of discrimination, easy
tasks have two discrimination values 0.87 (task 1, 6, and 12).
Subjects are good in guessing the outcome of other tasks,

then the task 12, then task 16 and then task 1. Similarly,
in ICCs of medium task (in the middle of Fig. 7B), task 8,
3, 7, 2, 4 have chronologically higher discrimination values.
Except these five tasks, subjects correctly performed most of
the other tasks. An overturn picture is observed in the case of
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FIGURE 10. DIF plots, (A) DIF of easy vs. medium task; (B) DIF with Monte Carlo (MC) simulation, (C) DIF tree - Rasch tree plot.

hard task; almost half of the tasks are incorrectly performed
by the subjects. Among five successful tasks, a few of them
correctly performed the task 4. Thus, it is clear that ICCs
are good enough to represent suitability of tasks in cognitive
experiment. Standard error measurement (SEM) and Kernel
density (KD) plots are shown in Fig. 8A and B, respectively.
Although SEM plots are looks same, KD plots differentiate
item density in terms of subjects’ ability. The b, value in the

overall ICC plot (Fig. 8C) measures the differences. The cor-
rect responses are plotted in red whereas incorrect responses
are plotted using black color.
ADG is computed from average residues of endorsement in

dichotomous responses. An example is shown as following.
Rasch model residual analysis of easy, medium and hard
tasks processed by nine subjects is shown in Fig. 9. Rasch
analysis identifies users’ inherent ability from a dashing point

720 VOLUME 2, 2014



G. Hossain, M. Yeasin: Cognitive ADG Analysis With Latent Response Models

FIGURE 11. Response latitude computation from partial credit ICC plot. Top row (from left) Mental load (ML), Physical load
(PL), Temporal Load (TL), Effort Factor (EF), Performance Factor (PF) and Frustration Level (FL).

FIGURE 12. Person-Item maps- (A) Map with response latitude and (B) Map with Bond-and-Fox pathway.

of conversing the residuals (ADG) – which is considered a
value very close to zero. In the example (Fig. 9B. box plots)
after fifth iteration the sum of average residual converges.
The hard task shows higher residuals. The medium task took
relatively more iterations to converge. The X axis in the
Fig. 10(b) shows the number of iteration, and the Y axis is
the average ADG in terms of residuals. Fig. 9(c) illustrates
the five iterations.

C. DIF ANALYSIS OF CATEGORY
RELATED ADG
Rasch model necessaries that item difficulty does not change
between group. For instance, subjects need more cogni-
tive effort in medium task execution then easy tasks. It

would not be surprising to see subjects failing in easy task
execution response differently. Fig. 10A. Shows task level
DIF impact. The box-plot (left) of the graph shows the
difference in scores between using scores that ignore DIF and
those that account DIF. The interquartile range, representing
the middle 50% of the differences (bound between bottom
and top of the shaded box), range roughly from +0.12 to
−0.78 with a median of approximately +0.17. In the graph
on the right, the same difference scores are plotted against
the initial scores ignoring DIF (initial theta), separately for
easy and medium task. Guidelines are placed at 0.0 solid line,
i.e., no difference, and the mean of the differences (dotted
line). The positive values to the left of the graph indicate that
in almost all cases, according for DIF led, to slightly lower
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scores (i.e, naive score ignoring DIF minus score accounting
for DIF>0, so accounting for DIF score is less than the naive
score) for those with lower levels of anxiety, but this appears
to be consistent across easy and medium tasks. The nega-
tive value to this graph indicates that for those with higher
levels of anxiety, according for DIF led to slightly higher
scores, but this again was consistent across easy and medium
tasks. Higher order gap will be analyzed with 3D response
modeling and robust principal component analysis. To show
a prediction on large volume of data, Monte Carlo (MC)
simulation is applied, which is shown in Fig. 10B. Fig. 10C,
illustrates higher level classification of response tasks in
terms of response time (another dimension considered with
Rasch tree).

D. ADG ANALYSIS IN POLYTOMOUS RESPONSES
Ability-demand gap computation in polytomous responses
is performed in RMAP dataset. The confidence interval
(item-person map) and response attitude are considered
as an indicator of ADG. In RMAP dataset, the ADG
computed from response latitude (e.g., response latitude
in mental load using absolute difference [(|0.2–0.1| +
|1.0–0.2| + |2.25–1.0|)/3 = (0.1 + 0.8 + 1.25)/3 =
0.716]. Fig. 11 shows the item response curves of all six
NASA-TLX load indexes. All load indexes shows similar
response latitude (= 0.716). The temporal load has a different
orientation [(|−(0.45)−(−0.55)| +|−(−0.55)+0.75|+ |2.00–
0.75|)/3 = (0.1+0.8+1.25)/3], but same (0.716) response
latitude score. The dashed line in the Fig. 11 shows the
intersection points to account response latitudes.

E. PERSON-ITEM MAP AND FIT ANALYSIS
Fit analysis is performed to ensure whether Rasch model
fits the item difficulty measure or not. The ‘infit’ mean-
square and ‘outfit’ mean-square statistics were performed in
mental multiplication and RMAP datasets. The residual was
computed by the difference between the Rasch model’s theo-
retical explanation of item performance and the performance
actually encountered for that item in the data matrix [42].
Item’s dimensionality was computed by principal compo-
nent analysis (PCA). It is considered that, when the variance
explained by the measure is greater than 0.60 and the variance
explained by the first contrast is less than 0.05, the items are
unidimensional [26].

The ‘infit’ and ‘outfit’ statistics were between 0.5 to 1.5
or their standardized values between −2 to 2. The item diffi-
culty measures analyzed by Rasch model revealed that all of
the assessment items fit the model, with the ‘infit’ statistics
ranging from 0.5 to 1.5 (Fig. 12A and Fig. 12B), but their
‘outfit’ t-statistics were within the range from −2 to +2,
except for items 3, 11, 14, and 39. Only 3 items fell outside
the ‘infit’ statistics wit criteria from 0.6 to 1.3. If the criteria
were readjusted to 0.5 to 1.5, all the items fitted the ‘infit’
criteria. For the ‘outfit’ statistics, 10 of the items fell outside
the range at the 0.5 to 1.5 level. However, the principal
component analysis of the residual revealed that 66.1% of the

variance could be explained by the model. Fig. 13B shows
the Bond-and-Fox Pathway Map display of the location of
each item or each person against its infit t-statistic. Pathway
maps are useful for identifying misfitting items or misfit-
ting persons. Items or people should ideally have an infit
t-statistic lying between about −2 and +2, and these values
are marked.
In the analysis of fit of mental multiplication, we found

that some items did not fit the criteria of the ‘infit’ statistics,
but we still kept them in the mental multiplication analysis
for two reasons. First, all items fit the ‘infit’ analysis; second,
they had relevance clinical meaning in the assessment. Also,
we paid more attention to ‘infit’ and ‘outfit’ statistics because
the later was influenced by outliers, which could easily be
reminded and were less of a threat to measurement [46].
In addition, ‘infit’ and ‘outfit’ statistics adopt slightly dif-
ferent techniques to assess the item fit to the Rasch model.
The former give more weight to the performance of persons
closer to the item value whereas the later are not weighted.
Therefore, the ‘outfit’ statistics are more sensitive to the
influence of outlying score [32].

V. CONCLUSION
Understanding how cognitive ability-demand gaps (ADGs)
manifest in human-machine interaction is critical in design-
ing adaptive and assistive technology solutions. The gap
or (dis) ability can be quantified with an item response
model (IRT). It was observed that the IRT analysis of cog-
nitive ability-demand gap are reliable and may be useful
in shifting the paradigm of human-system (agent) interac-
tion with application in social networks, augmented tech-
nologies, assistive technology and cyber physical systems.
Also, the threshold for gap in interaction can help the sys-
tem to provide relevant feedback to the user. The IRT anal-
ysis of cognitive gap can also help to design a machine
that can understand group or individual information pro-
cessing differences. Differential item functioning (DIF),
Rash tree and principal component analysis explains more
extended features of group categorical impact on gap.
More research is necessary with larger datasets and vari-
ant of item and response parameters. Empirical results from
this study may have broader impact in other fields of
human computer interaction, assistive solutions and cognitive
science.
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