
Received May 13, 2014, accepted June 9, 2014, published June 25, 2014, date of current version July 12, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2332333

Cognitive Control: Theory and Application
MEHDI FATEMI1, (Member, IEEE), AND SIMON HAYKIN2, (Life Fellow, IEEE)
1School of Computational Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
2Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

Corresponding author: M. Fatemi (mehdi.fatemi@ieee.org)

ABSTRACT From an engineering point-of-view, cognitive control is inspired by the prefrontal cortex of the
human brain; cognitive control may therefore be viewed as the overarching function of a cognitive dynamic
system. In this paper, we describe a new way of thinking about cognitive control that embodies two basic
components: learning and planning, both of which are based on two notions: 1) two-state model of the
environment and the perceptor and 2) perception-action cycle, which is a distinctive characteristic of the
cognitive dynamic system. Most importantly, it is shown that the cognitive control learning algorithm is
a special form of Bellman’s dynamic programming. Distinctive properties of the new algorithm include
the following: 1) optimality of performance; 2) algorithmic convergence to optimal policy; and 3) linear
law of complexity measured in terms of the number of actions taken by the cognitive controller on the
environment. To validate these intrinsic properties of the algorithm, a computational experiment is presented,
which involves a cognitive tracking radar that is known to closely mimic the visual brain. The experiment
illustrates two different scenarios: 1) the impact of planning on learning curves of the new cognitive controller
and 2) comparison of the learning curves of three different controllers, based on dynamic optimization,
traditional Q-learning, and the new algorithm. The latter two algorithms are based on the two-state model,
and they both involve the use of planning.

INDEX TERMS Cognitive dyanamic systems, cognitive control, dynamic programming, two-state model,
entropic state, Shannon’s entropy, explore/exploit tradeoff, learning, planning, Bayesian filtering.

I. INTRODUCTION
Cognition is a distinctive characteristic of the human brain,
which distinguishes itself from all other mammalian species.
It is therefore not surprising that when we speak of cogni-
tive control, we naturally think of cognitive control in the
brain [1]. Most importantly, cognitive control resides in the
executive part of the brain, reciprocally coupled to its per-
ceptual part via the working memory [2]. The net result of
this three-fold combination is the perception-action cycle that
embodies the environment, thereby constituting a closed-loop
feedback system of a global kind.

In a point-of-view article published in the Proceedings
of the IEEE on the integrative field of Cognitive Dynamic
Systems viewed from an engineering perspective, it was first
described in the literature [3]. This new way of thinking was
motivated by two classic papers: ‘‘Cognitive Radio: Brain-
empowered Wireless Communications’’ [4], and ‘‘Cogni-
tive Radar: A Way of the Future’’ [5]. However, it was
a few years later that the second author became aware of
Fuster’s basic principles of cognition, namely, perception-
action cycle, memory, attention, and intelligence. It was that
particular awareness that prompted the engineering need for

bringing cognitive control into the specific formalism of
cognitive dynamic systems.
During the past few years, cognitive control viewed from an

engineering perspective, has featured in two journal papers, as
summarized here:
1) In [6], a control-theoretic approach was described using

dynamic optimization, representing a simplified ver-
sion of Bellman’s dynamic programming. It was in this
paper that for the first time, we faced the imperfect
state information problem, so called due to the fact that
the controller does not have the provision to sense the
environment in a direct manner. Although it is feasible
to mitigate this problem algorithmically as formulated
in [7], the incurred cost of computational complexity
is so expensive that we had to limit the dynamic pro-
gramming algorithm with no provision in looking into
the future; thereby the name dynamic optimization.

2) The two-state model, proposed in [8], provides the most
effective notion to bypass the imperfect state informa-
tion problem; more will be said on this notion later
in the paper. For the present, it suffices to say that
practical validity of this new way of thinking about
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cognitive control was demonstrated in [9] through the
use of Q-learning that represents an approximate form
of dynamic programming.

It was these two early contributions to cognitive control
that set the stage for a novel cognitive controller presented
in the current paper. Unlike the two previous procedures for
implementing cognitive control, the new cognitive controller
is optimal, in that it is well and truly a special case of
Bellman’s dynamic programming. Most importantly, unlike
dynamic programming, the new cognitive controller follows
a linear law of computational complexity measured in terms
of actions taken on the environment. The other desirable
attribute of this cognitive controller is the use of planning.

The rest of the paper is organized as follows:
• With cognitive control being the primary objective of
the paper, Section II discusses two underpinnings of
cognitive control, namely, learning and planning, each
of which is based on two notions:
1) The two-state model, which embodies target state

of the environment and entropic state of the
perceptor.

2) The cyclic directed information flow, which
follows from the global perception-action cycle:
the first principle of cognition.

• Next, mathematical formalism of the learning process in
cognitive control is presented in Section III, resulting in
a state-free cognitive control learning algorithm, where
computational complexity follows the linear law.

• Section IV goes one step further: the cognitive control
learning algorithm is shown to be a special case of
the celebrated Bellman’s dynamic programming; hence,
convergence and optimality of the new algorithm.

• Section V briefly discusses how to balance optimality of
the learning process versus the convergence rate of the
cognitive control learning algorithm, thereby setting the
stage for both planning and the explore/exploit tradeoff,
which are discussed in Sections VI and VII, respectively.

• At this point in the paper, we are ready to address
structural composition of the cognitive controller in
Section VIII.

• Then, Section IX validates an engineering application of
the cognitive controller by presenting a computational
experiment involving a cognitive tracking radar.

• Finally, Section X concludes the paper.

II. COGNITIVE CONTROL
From a cognitive neuroscience perspective, cognitive control
plays a key role in the prefrontal cortex in the brain; most
importantly, cognitive control involves two important pro-
cesses: learning, and planning. And, so it is in a cognitive
dynamic system, inspired by the brain. The learning process
is discussed in Section III, followed by the planning process,
which is discussed in Section VI. Both processes are depen-
dant on the two-state model as well as the cyclic directed
information flow, which are discussed in what follows.

A. THE TWO-STATE MODEL
As mentioned in the introduction, the two-state model is an
essential element in deriving the cognitive control algorithm.
By definition, the two-state model embodies two distinct
states, one of which is called the target state, pertaining to a
target of interest in the environment. The second one is called
the entropic state of the perceptor,1 the source of which is
attributed to the unavoidable presence of uncertainties in the
environment as well as imperfections in the perceptor itself.
Insofar as cognitive control is concerned, the two-state

model is described in two steps as follows:
1) State-space model of the environment, which embodies

the following pair of equations:{
Process equation: xk+1 = f(xk )+ vk
Measurement equation: zk = h(xk )+ wk

(1)

where xk ∈ Rn, zk ∈ Rm are the state and measure-
ment (observable) vectors at cycle k , respectively; f is
a vector-valued transition function, and h is another
vector-valued function that maps the target state-space
to the measurement space2; vk denotes an additive pro-
cess noise that acts as the driving force, evolving state
xk at cycle k to the updated state xk+1 at cycle k + 1;
finally wk is the additive measurement noise.

2) Entropic state model of the perceptor, which is formally
defined by the following equation:

Entropic-state equation: Hk = φ(p(xk |zk )) (2)

The Hk is the entropic state at cycle k in accordance
with the state posterior p(xk |zk ) in the Bayesian sense,
which is computed in the perceptor.3 As such,Hk is the
state of the perceptor, and φ is a quantitative measure
such as Shannon’s entropy.4

It is important to note here that, in general, Shannon’s
entropy could assume the value zero; however, in cognitive
control, the entropic state Hk will always have a non-zero,
positive value due to the fact that the environment always
involves uncertainty and we can never reach perfect target-
state reconstruction with 100% accuracy.

1The terms cognitive perceptor and perceptor are used interchangeably in
the paper.

2In order to guarantee the existence and uniqueness of the solution to (1),
both f(·) and h(·) are assumed to be Lipschitz continuous [10]; i.e., there
exists λ > 0 such that ||f(x2)− f(x1)|| ≤ λ||x2 − x1||, for all x1 and x2, with
||.|| denoting the Euclidian norm and likewise for h(·).

3To emphasize the cycles, in which the state and the measurement are
taken, in this paper, we may also use the notation Hk|k , in accordance with
the subscripts in the posterior, p(xk |zk ).

4Shannon’s entropy for a random variable X , having the probability den-
sity function pX (x) in the sample space �, it is defined as [11]:

H =
∫
�
pX (x) log

1
pX (x)

dx

Correspondingly, Shannon’s entropy of target state xk with the posterior
p(xk |zk ) is defined as:

Hk =
∫
Rn

p(xk |zk ) log
1

p(xk |zk )
dxk .
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FIGURE 1. Block diagram of the global perception-action cycle in a cognitive
dynamic system.

By definition [9], the function of cognitive control is
defined as follows:

To control the entropic state (i.e., state of the per-
ceptor), such that the target’s estimated state con-
tinues to be reliable across time.

Cognitive control therefore requires the entropic state, which
is computed in the perceptor and then passed to the cognitive
controller as feedback information.

B. CYCLIC DIRECTED INFORMATION FLOW
The global perception-action cycle, depicted in Fig. 1, plays
a key role in a cognitive dynamic system; it is said to be
global, in that it embodies the perceptor in the right-hand
side of the figure, the cognitive controller in the left-hand
side of the figure, and the surrounding environment, thereby
constituting a closed-loop feedback system. In descriptive
terms, the global perception-action cycle operates on the
observables (measurements) of the environment, so as to
separate relevant information about the environment from
irrelevant information that is not needed. The lack of suffi-
cient relevant information extracted from the observables is
attributed to the unavoidable uncertainties in the environment
as well as design imperfections in the perceptor. The entropic
state introduced in sub-section A is indeed a measure of the
lack of sufficient information. The entropic state supplies the
feedback information, which is sent to the cognitive controller
by the perceptor. With this feedback information at hand,
the cognitive controller acts on the environment, producing
a change in the observables. Correspondingly, this change
affects the amount of relevant information about the environ-
ment, which is extracted from the new observables. A change
is thereby produced in the feedback information and with it,
a new action is taken on the environment by the cognitive
controller in the next perception-action cycle. Continuing in
this manner from one cycle of perception-action to the next,
the cognitive dynamic system experiences a cyclic directed
information flow, as illustrated in Fig. 1.
In addition to feedback information directed from the per-

ceptor to the cognitive controller, there is also a feedforward
information link from the cognitive controller to the percep-
tor. In other words, the perceptor and the cognitive controller
are reciprocally coupled. This important link is illustrated in
Fig. 3, and will be discussed later in Section VI.

III. FORMALISM OF THE LEARNING PROCESS
IN COGNITIVE CONTROL
Previously in Section II, we introduced learning and planning
as the two important processes in the execution of cognitive
control. In actual fact, the aims of both learning and planning
processes are to improve an entity called cognitive policy. By
definition, cognitive policy is the probability distribution of
cognitive actions at the perception-action cycle k + 1, which
includes the influence of action taken in cycle k . Let πk (c, c′)
denote the cognitive policy at cycle k , defined as follows:

πk (c, c′) = P[ck+1 = c′|ck = c]; with c, c′ ∈ C,

where C is the cognitive action-space, c and c′ are two cogni-
tive actions, and P is a probability measure.
The cognitive policy should pertain to the long-term value

of cognitive actions. In order to formalize a long-term value
for each cognitive action, an immediate reward has to be
defined. To this end, the incremental deviation in the entropic
state from one cycle to the next, denoted by 11Hk , is
defined by

11Hk = Hk−1 − Hk . (3)

where Hk−1 and Hk are the entropic states at the preceding
and current cycles k − 1 and k , respectively. Note that 11Hk
could assume a positive or negative value, depending on
conditional changes in the environment. The entropic reward
for cognitive control at cycle k , denoted by rk , is now defined
as an arbitrary function of two entities: the entropic-state’s
absolute value, |Hk|k |, and the incremental deviation 11Hk ,
as shown by:

rk = gk (|Hk |,11Hk ) (4)

where, gk is an arbitrary scalar-valued operator. For example,
the entropic reward in (4) may take the following form:

rk =
11Hk
|Hk |

(5)

Remark 1: Computation of the entropic reward rk requires
knowledge of the incremental deviation 11H, defined in (4).
To satisfy (4), it follows therefore that we need a short-
term memory that accounts for the preceding entropic-state
Hk−1.
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As a result, after taking a cognitive action, a positive rk+1
indicates a decreasing deviation that can be considered as an
immediate reward for the taken action. Conversely, a negative
rk+1 demonstrates a cost against the selected action.

We may now define the following value-to-go function for
the cognitive controller:

J (c) = Eπ [rk+1 + γ rk+2 + γ 2rk+3 + · · · | ck = c] (6)

where γ ∈ [0, 1) denotes a discount factor that decreases
the effect of future actions, and E denotes the expected value
operator for which the expected value is calculated using the
policy distribution πk .
Lemma 1: J (c) satisfies the following recursion:

J (c) = R(c)+ γ6c′πk (c, c
′)J (c′) (7)

where R(c) = Eπ [rk+1|ck = c] denotes the expected imme-
diate reward at cycle k + 1 of the currently selected action c
at cycle k.

Proof: Using the linear property of the expected value
operator [12], we may expand (6) as follows:

J (c) = Eπ [rk+1 + γ rk+2 + γ 2rk+3 + · · · | ck = c]

= Eπ [rk+1|ck = c]+ γEπ [6∞j=0γ
jrk+j+2|ck = c]

In the second line of the equation, the first term is the
expected immediate rewardR(c). The second term lacks ck+1
in the condition to be the action-value of one-step future
action. Therefore, using the total probability theorem,5 we
may write:

J (c) = R(c)+ γEπ [6∞j=0γ
jrk+j+2|ck = c]

= R(c)+ γ6c′P[ck+1 = c′|ck = c]

×Eπ [6∞j=0γ
jrk+j+2|ck = c, ck+1 = c′]

= R(c)+ γ6c′πk (c, c
′)J (c′)

It is noteworthy that (7) has the flavor of Bellman’s equa-
tion for dynamic programming, on which more will be said
in the next section. In order to have a recursive algorithm, we
may express the recursion in the following form:

J (c)← R(c)+ γ6c′πk (c, c
′)J (c′) (8)

With recursion in mind and for the sake of flexibility, on
every cycle of the recursion, (8) becomes more of practical
value in an algorithmic sense by having J (c) plus a weighted
incremental update, as shown by

J (c)← J (c)+ α[R(c)+ γ6c′πk (c, c
′)J (c′)− J (c)] (9)

where α > 0 is a learning parameter. On the basis of the
recursion described in (9), we may formulate Algorithm 1,
which updates the value-to-go function from one cycle of
perception-action to the next.

5For random variables X , Y and Z defined in �X , �Y , and �Z , respec-
tively, the total probability theorem [12] says:

E[X |Y = y] =
∑
z∈�Z

P[Z = z|Y = y]E[X |Y = y,Z = z].

Algorithm 1 A Value-to-go Updating Algorithm Under
Lemma 1

1 Varables:
2 J := value-to-go function
3 γ := discount factor, γ ∈ [0, 1)
4 α := learning parameter, α > 0
5 Inputs:
6 R(c) := expected reward of action c
7 π := learning policy
8 Updating:
9 for all cognitive actions c ∈ C do

10 J (c)← J (c)+α[R(c)+γ6c′∈Cπk (c, c′)J (c′)−J (c)]
11 end

From an implementation perspective, the term 6c′∈Cπk
(c, c′)J (c′) in line 10 of Algorithm 1 may be substituted by
mean{J (c)}, simply by considering πk (c, c′) to be a uniform
distribution here.6 This method is called off-policy and is
known also to be convergent to the optimal policy [15].
Hereafter, the recursive algorithm based on (9) is referred

to as the cognitive control learning algorithm. This algo-
rithm has been derived by exploiting the cyclic information
flow that is a characteristic of the global perception-action
cycle. With mean{J (c)} substituted in line 10, examination of
Algorithm 1 immediately reveals that this algorithm follows
a linear law of computational complexity with respect to the
number of actions taken by the cognitive controller, which is
the cardinality of the cognitive action-space C.
From a practical perspective, linearity of the algorithm by

itself is not adequate. To be more precise, convergence as
well as optimality of the algorithm would have to be justified
theoretically. With this objective in mind, we propose to shift
gear from the cognitive perspective and appeal to Bellman’s
dynamic programming, which is known to be both convergent
and optimal [16], [17].

IV. COGNITIVE CONTROL LEARNING ALGORITHM
VIEWED AS A SPECIAL CASE OF BELLMAN’S
DYNAMIC PROGRAMMING
Bellman’s celebrated dynamic programming algorithm
[16], [17] was first described in the literature about fifty five
years ago; yet it remains to occupy an important place in the
study of optimal control. The optimality manifests itself in
terms of maximizing a long-term value-to-go function; it is
formally defined over time by means of immediate rewards.
In its basic form, Bellman’s dynamic programming deals
with finite-horizon problems. However, from an analytic per-
spective, the preferred mathematical approach is to deal with

6With mean{J} substituted in (9), the learning rule becomes similar to the
traditional Q-learning algorithm [13], [14], yet it differs from it in two basic
fronts: First, Q-learning uses max{J} as an approximation, and second, (9) is
calculated for all the cognitive actions, whereas in Q-learning, the update is
only for the current state and action. In Section IX, we have chosen traditional
Q-learning as a frame of reference for comparison in our computational
experiment.
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Algorithm 2 A Value-to-go Updating Algorithm for a
Generic Dynamic Programming

1 Varables:
2 J̃ := value-to-go function
3 γ := discount factor, γ ∈ [0, 1)
4 α := learning parameter, α > 0
5 Inputs:
6 T ass′ := transition probability
7 Rass′ := expected reward
8 π̃ := learning policy
9 Updating:

10 for all states s ∈ S do
11 for all actions a ∈ A do
12 J̃ (s, a)← J̃ (s, a)+ α[

∑
s′∈S T

a
ss′ [R

a
ss′ +

γ
∑

a′∈A π̃k (s, a
′) J̃ − J̃ (s′, a′)]

13 end
14 end

infinite-horizon problems, where the rewards are considered
over an infinite number of cycles.

In dynamic programming, a system is defined by its set of
states S and set of actions A. On a cycle-by-cycle basis, the
system has a transition from state s ∈ S at cycle k to s′ ∈ S
at cycle k + 1 as a result of action a ∈ A. This transition
results in an immediate reward rk+1 ∈ R. The state-action-
based value-to-go function is then defined by the formula:

J̃ (s, a) = Eπ̃ [rk+1 + γ rk+2 + γ 2rk+3 + · · · |sk = s, ak = a],

for which, π̃k (s, a) = P[ak+1 = a|sk = s] is the state-
based policywhen the system is in state s; the tilde in π̃k (s, a)
is intended to differentiate it from the policy π (c, c′) used
in the previous section. As mentioned previously, P denotes
a probability measure and Eπ̃ denotes the expected value
operator with respect to the policy π̃ . In Appendix A, it is
shown that J̃ (s, a) obeys Bellman’s equation for dynamic
programming as follows:

J̃ (s, a) =
∑
s′∈S

T ass′ [R
a
ss′ + γ

∑
a′∈A

π̃k (s, a′) J̃ (s′, a′)] (10)

where the transition probability T ass′ and the immediate
expected rewardRass′ are respectively defined by the following
pair of equations:{

T ass′ = P[sk+1 = s′|sk = s, ak = a],
Rass′ = Eπ̃ [rk+1|sk+1 = s′, sk = s, ak = a]

(11)

The optimal value-to-go function, denoted by J̃∗, is
obtained by maximizing the sum of all the terms in (10)
with respect to action a. Unfortunately, the end result of
this maximization is an exponential growth in computa-
tional complexity, known as the curse of dimensionality [17].
Nevertheless, the algorithm is known to be convergent as well
as optimal [15]. Algorithm 2 describes a dynamic program-
ming algorithm corresponding to (10). Inclusion of the two

nested for-loops in Algorithm 2 (lines 10 and 11) is indeed
the root of the curse of dimensionality problem.
The cognitive control learning algorithm, described in

Section III, is indeed state-free. On the other hand, in light
of the fact that Bellman’s dynamic programming is state-
dependant, the question to be addressed is:

How dowemake Bellman’s dynamic programming
to be on par with the cognitive control learning
algorithm, such that both of them are state-free?

FIGURE 2. Graphical illustration of state transition in dynamic
programming: (a) generic model, and (b) special case of Model 1.

To this end, consider the two models depicted graphically
in Fig. 2. In a generic sense, part (a) of the figure illustrates the
transition from state sk = s at time k to a new state sk+1 = s′

at time k + 1 under the influence of action ak = a ∈ A, as it
would be in Bellman’s dynamic programming. On the other
hand, part (b) of the figure depicts a ‘‘special’’ transition that
involves a single state s and therefore a graphical representa-
tion of the following model:

Model 1:
• State-space contains only one state, that is
S = {s},

• There exists a self-loop for s, including all the
actions in the action space, i.e.,
P[sk+1 = s|sk = s, ak = a] = 1, ∀a ∈ A.

Model 1 is a valid model that lends itself to the application of
Bellman’s dynamic programming; moreover, the application
of dynamic programming to Model 1 will not affect the
properties of optimality and convergence, which are basic to
dynamic programming [7]. The idea behind using Model 1
is to remove dependence of the dynamic programming algo-
rithm on the states, as it would be in the cognitive control
learning algorithm.

We next show that the following lemma holds:
Lemma 2: Dynamic programming ofModel 1 is equivalent

to the cognitive control learning algorithm.
Proof: It suffices to show that Bellman’s equation for

Model 1 is identical to the recursion equation in Lemma 1.
Assume that the action-space of Model 1 is the same as the
cognitive action-space in the previous section, that is,A = C.
Because Model 1 has only one state, the outer summation in
Bellman’s equation (10) has only one term with the transition
probability T ass′ being one (due to the second property of
Model 1). Additionally, the current and next states sk and sk+1
in the condition of Rass′ are always equal to s; hence,
they add no additional information to Rass′ , and they are there-
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fore redundant in Rass′ . We may thus formally write:

Rass′ = E[rk+1|sk+1 = s, sk = s, ak = a]

= E[rk+1|ak = a] = R(a)

Similarly, since in Bellman’s dynamic programming, current
actions are independent of previous actions, we may express
the corresponding policy:

π̃k (s, a′) = P[ak+1 = a′|sk = s]

= P[ak+1 = a′|sk = s, ak = a]

= P[ak+1 = a′|ak = a]

= πk (a, a′)

Substituting Rass′ and π̃k in (10) will then prove the
lemma. �

On the basis of Lemma 2, we may now state that the cog-
nitive control learning algorithm is indeed a special case of
of dynamic programming. Accordingly, the cognitive control
learning algorithm inherits the basic properties of dynamic
programming, namely, convergence and optimality. We may
now conclude the section with the following statement:

The cognitive control learning algorithm is not only
linear, but also convergent to the optimal policy.

V. OPTIMALITY VS. CONVERGENCE-RATE
IN ONLINE IMPLEMENTATION
Thus far, we have addressed optimality and convergence of
the cognitive control learning algorithm. However, there are
two other practical issues relating to the convergence rate of
the learning process, which are described as follows:

1) To implement the for-loop in Algorithm 1, the expected
immediate rewards should be known for all the actions
in the action space C. In reality, the immediate reward is
available only for the currently selected action, which
can replace its expected value. Hence, there would be
M = |C| perception-action cycles required to collect
information about all the actions. To overcome this
first issue we propose to use planning, which is to be
described in Section VI.

2) If we were to explore all the M cognitive actions in
the action space C, we would end up with a cogni-
tive controller of poor performance in the exploration
period. To overcome this second issue, we propose to
use the ε-greedy strategy, which is to be discussed in
Section VII.

Thus, through the use of planning and ε-greedy strategy,
an efficient convergence rate with optimal performance for
on-line applications is assured.

VI. FORMALISM OF THE PLANNING PROCESS
IN COGNITIVE CONTROL
Planning is defined as the process of using predicted future
rewards in order to improve our knowledge of the value-to-go
function J (c). Hence, the planning process plays a key role in
speeding up the convergence rate of the cognitive controller.

To this end, predicted values of entropic rewards are therefore
required.
Referring to (1), pertaining to the state-space model of the

environment, we may infer the following points:
1) If the probability density function of the noise terms

in (1) is known, then the entropic state can be predicted
one cycle into the future by using the Bayesian filtering
framework of the perceptor.

2) The predicted entropic reward in the cognitive con-
troller is then computed for the next hypothesized cycle.

In what follows next, this two-step procedure is illustrated in
an example involving a Gaussian environment. This example
will then be used in our computational experiment.

A. PREDICTING THE ENTROPIC REWARD IN A
GAUSSIAN ENVIRONMENT
Consider a target with arbitrary dynamics in a Gaussian envi-
ronment, with the state and measurement vectors denoted
by x and z, respectively. Since the noise terms in (1) are
both Gaussian, the posterior p(xk |zk ) at each cycle is sim-
ply reduced to its mean value and covariance matrix. Let
the entropic state be expressed by Shannon’s entropy of the
Gaussian posterior [11], namely:

Hk|k =
1
2
log(det{(2πe)Pk|k}) (12)

where det{.} denotes the determinant operator, and the matrix
Pk|k is the covariance matrix of the posterior at cycle k , given
the measurement also at cycle k . Since the logarithm is a
monotonic function, (12) may be simplified to express the
entropic state as follows:

Hk|k = det{Pk|k} (13)

Based on this definition, a one-step predicted entropic
state Hk+1|k = det(Pk+1|k ) is found if we know the
predicted covariance Pk+1|k . To that end, the Kalman
filter,7 operating as the perceptor, provides Pk+1|k sim-
ply by knowing the system noise covariance matrix Qk
and measurement noise covariance matrix Rk+1 [18].
Assuming that these two covariance matrices are given,
we may compute the predicted entropic state of the per-
ceptor. This process may be repeated to achieve further
stages of prediction into the future, namely Hk+j|k ,
j = 1, . . . , l, for l-step look-ahead horizon in time. Having
all theHk+j|k , predicted future rewards can then be calculated
using equation (4), and we may therefore benefit from a
planning process as well. �

The issue that emphasizes the need for planning is the time
required for having actual rewards. In a cognitive dynamic
system, we need to wait for one cycle to the next in order to
access new rewards, and thereby proceed with the cognitive

7In this context, if the process and/or measurement dynamics are nonlin-
ear, then the Kalman filter may be replaced by a nonlinear version such as the
extended Kalman filter (EKF), unscented Kalman filter (UKF), or cubature
Kalman filter (CKF); the CKF will be employed in our computational
experiment in Section IX.
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control learning algorithm, cycle by cycle. Unfortunately,
Fig. 1 lacks a feedforward link from the controller to the
perceptor. In such a scenario with an action library involv-
ing M possible actions (i.e., |C| = M ), there would have
to be M global perception-action cycles for exploring the
complete action library. If the time T seconds are taken for
each global perception-action cycle, then there would have
to be MT seconds needed to cover the entire action library.
In order to mitigate such a long-windowed exploration phase,
we propose to introduce a feedforward link, which connects
the controller to the perceptor, as depicted in Fig. 3. The feed-
forward information is a hypothesized future action, which
is to be selected for a planning stage. In so doing, a new
so-called internally composite cycle [19] is therefore created,
which completely bypasses the environment. Accordingly,
the duration τ taken by such a cycle will be small compared
to that of the global perception-action cycle, T . The practical
benefit of introducing the internally composite cycle in Fig. 3
is the fact that the perceptor and the cognitive controller are
now reciprocally coupled with each other, resulting in an
exploration phase that is considerably shorter than in Fig. 1
by the factor T/τ .

FIGURE 3. Block-diagram illustrating the combined presence of feedback
information as well as feedforward information links.

Building on the scenario illustrated in Fig. 3, the two
distinct but similar phases of learning and planning may now
be implemented together, as follows:

1) Learning, which is based on actual values of the pair of
entropic rewards at cycles k and k − 1 as in (3) and (4),
reproduced here for convenience of presentation:

g(|Hk|k |,11H ), 11H = Hk−1|k−1 − Hk|k

2) Planning, which is based on predicted values of the
entropic reward; for example, at cycle k + 1 and the
actual reward at the current cycle k , we have the pre-
dicted reward defined by:

g(|Hk+1|k |,12H ), 12H = Hk|k − Hk+1|k

Recall that learning is based on Lemma 1; equally,
this lemma also applies to planning because conceptually
speaking, both learning and planning perform the same
required task. Note, however, learning is processed only once

in each global perception-action cycle, which involves a sin-
gle selected cognitive action; that is because learning is based
on actual reward. On the other hand, in Fig. 3, planning is
performed for any number of internally composite cycles
and any number of hypothesized future actions in each of
such cycles. Hence, specially in problems with very large
number of possible actions (compared to the number of
global perception-action cycles), a cognitive controller with
learning only and therefore no planning may not perform on
average much better than random action-selection. It follows
therefore that planning is an essential requirement for policy
convergence.

VII. EXPLORE/EXPLOIT TRADEOFF FOR
COGNITIVE CONTROL
As discussed previously in Section V, in order to collect
information about all the cognitive actions, the cognitive
controller has to invest several global cycles, especially at the
beginning of the experiment. During this phase, which is com-
plete exploration of the cognitive action-space, the selected
cognitive action in each cycle may result in completely poor
performance. In particular, for problems with large set of
cognitive actions, the resulting efficiency of the learning algo-
rithm may remain unacceptable for a long period of time.
Planning helps to mitigate this issue considerably, yet there
is another auxiliary approach to smoothen the exploration
process as much as possible, as discussed next.
In the cognitive control learning algorithm, and generally

in dynamic programming, two different steps exist:
1) Updating the value-to-go function, J ,
2) Updating the policy, π .

Note that updating J requires the knowledge of π , and vice
versa. Hence, different approaches may be taken to update
J and π , one after the other. When designing an algorithm to
shape the cognitive policy on a cyclic basis, the following two
extreme approaches may then be taken:
• In the first approach, the cognitive controller will explore
the entire action-space uniformly without regard to the
value-to-go function as guidance. This strategy is called
pure explore.

• In direct contrast, at each cycle, the cognitive controller
may select an action that maximizes the value-to-go
function J . This strategy is called pure exploit.

These two pure strategies are both extreme and clearly in con-
flict with each other. In reality, a mixed strategy is therefore
desirable; namely, it is most of the time optimal in terms
of value-to-go maximization, while at the same time, the
strategy also involves exploration of other actions.
A commonly used mixed strategy as a compromise

between the two mentioned pure strategies is called ε-greedy
strategy [20], as follows:
• With the probability of ε (e.g., 5%), the cognitive con-
troller selects action randomly (pure explore),

• With the probability of 1 − ε (e.g., 95%), the cognitive
controller selects action based on the maximum value
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criterion (pure exploit). In this case, the action selec-
tion is completely aligned with the value-to-go function,
hence the term greedy.

Furthermore, in cognitive control, the explore/exploit
tradeoff may be performed separately in two stages:

1) For the cognitive policy, we use an ε-greedy strategy, in
which all the cognitive actions have the chance of being
selected at least with a small but nonzero probability ε;
this means most of the time, the policy is greedy but not
always.

2) In the planning phase, instead of selecting m (out of
M = |C|) ‘‘random’’ cognitive actions, which is com-
plete exploration, wemay select them cognitive actions
based on some prior knowledge. In such a case, the
selection ofm cognitive actions is driven by some selec-
tion prior probability distribution based on the policy.

Deployment of the explore/exploit tradeoff in cognitive
controlmay be viewed as a facilitator of attention as one of the
basic principles of cognition. Therefore, a cognitive controller
empowered with the explore/exploit tradeoff tries to allocate
computational resources in such a way that it remains focused
on the knowledge gained about the environment, but the

controller does not fall into local optimal actions and thereby
miss the big picture.

VIII. STRUCTURAL COMPOSITION OF THE
COGNITIVE CONTROLLER
Having the three constituents of perception, feedback infor-
mation, and control, we may incorporate all three of them to
propose a framework for cognitive control in a state-space
modelled environment, as described next.

1) STRUCTURE
To incorporate planning and learning, a basic and simple
structure is suggested by Sutton and Barto, called Dyna [15].
However, Dyna lacks state-space modelling and the inclusion
of Bayesian perception with cyclic directed information flow,
required in cognitive control. Thus, inspired by Dyna and
having cognitive control in mind, we propose a new struc-
ture depicted in Fig. 4. This structure consists of two parts:
(a) and (b) for ease of understanding. A global perception-
action cycle is initiated in the perceptor at the right-hand
side of Fig. 4-a, where Bayesian perception is performed.
The feedback information to be controlled will then be the

FIGURE 4. Block diagrammatic description of cognitive control: (a) cyclic directed information flow, and (b) illustration of algorithmic process
in the cognitive controller.
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entropic-stateHk|k , which is passed to the cognitive controller
at the left-hand side of Fig. 4-a. At the same time, as explained
in Remark 1, Hk|k is also preserved in a short-term memory
for the next cycle; it is short-term because in each cycle, the
previous value will be overwritten. Then, in the cognitive
controller, learning and planning are performed in the manner
depicted in Fig. 4-b. It is noteworthy that in Fig. 4-b, the
processes of learning and planning are performed in a serial
manner.8 To be specific, learning is performed, the result
of which is an updated value-to-go function J (c) for the
preceding action. Then, we have a number of planning stages,
each of which gives rise to a particular value-to-go update.
In practice, the number of planning stages is dependant on
the application of interest.

The explore/exploit tradeoff, explained in Section VII, is
carried out in two different places: one place pertains to
planning, and the other one pertains to policy-making. At the
end, a cognitive action is selected from the derived policy
and applied to the environment; and with it, the next global
perception-action cycle is initiated. This framework is indeed
the underlying structure for implementing cognitive control.

2) COMPLETE ALGORITHM
Algorithm 3 defines implementation of the cognitive con-
troller, as described above, under Structure. ‘‘Updates’’ in
lines 22 and 32 of the algorithm refer to the implementation
of equation (7) for the currently selected cognitive action
in learning and the hypothesized predictive action in plan-
ning, respectively. Also, line 30 in Algorithm 3 is imple-
mented using the state-space model, as explained previously
in Section II-A. Finally, the explore/exploit tradeoff is applied
both in line 26 of the algorithm, where attention is deployed
over some specific cognitive actions, namely the set C1, and
the point where the cognitive policy π is shaped as ε-greedy
in line 36 of the algorithm.

IX. COMPUTATIONAL EXPERIMENT: COGNITIVE
TRACKING RADAR
In what follows, we will demonstrate the information-
processing power of the cognitive controller applied to a
cognitive radar system, where the emphasis is on tracking
performance. To be specific, we consider the tracking of a
falling object is space, using a radar with 10 measurements
per second, based on the benchmark example presented in
[6] and [22]. Here, the cognitive actions ‘‘change’’ the radar
transmitter’s waveform parameters on a cycle-by-cycle basis
in order to correspondingly control noise in the receiver via
the environment.

The target state is x = [x1, x2, x3]T , where x1, x2
and x3 denote the altitude, velocity and ballistic coefficient,
respectively; the ballistic coefficient depends on the target’s
mass, shape, cross-sectional area, and air density. The mea-

8In the human brain, we have a similar scenario to that described in
Fig. 4-b. Learning and planning use the same resources in the prefrontal
cortex; where both learning and planning require organization in the time
domain, with learning being current and planning being predictive [21].

Algorithm 3 A Complete Algorithm to Implement
Lemma 2, Which Embodies Both Learning and Planning

1 Varables:
2 C := set of all cognitive actions
3 C1 := set of selected cognitive actions for planning
4 J := value-to-go function
5 π := control policy
6 memLearning := short-term memory for learning
7 memPlanning := short-term memory for planning
8 c := selected cognitive action
9 r := computed reward

10 k := time step
11 Initialization:
12 k ← 0;
13 memLearning← H0;
14 c← a random cognitive action;
15 Apply c to the environment;
16 repeat
17 k ← k + 1;
18 Hk|k ← Input(entropic_state) from Perceptor;
19

20 Learning:
21 r ← gk (Hk|k , (memLearning− Hk|k ));
22 Update J ;
23 memLearning← Hk|k ;
24

25 Planning:
26 Select C1 ⊆ C;
27 for all cognitive actions c ∈ C1 do
28 for i=1 to num_prediction_steps do
29 memPlanning← Hk+i−1|k ;
30 compute Hk+i|k using c;
31 r ← gk (Hk+i|k , (memPlanning− Hk+i|k ));
32 Update J ;
33 end
34 end
35

36 Update π by J ;
37 Select c based on π ;
38 Apply c to the environment;
39 until perception-action cycles are finished ;

surement vector z = [r, ṙ]T , consists of radar’s range and
range-rate. The extended state-space model is then defined by
the following set of equations, involving both the state-space
model as well as the entropic-state model: xk = f(xk−1)+ vk

zk = h(xk )+ wk (θk−1)
Hk = det{Pk|k}

where the vector θk−1 refers to the waveform transmitted at
the previous cycle, k − 1. For details of the functions f(.) and
h(.), the reader is referred to [6]. Both noise terms, vk andwk ,
are assumed to be white and zero-mean Gaussian. The system
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noise has the following covariance matrix [6]:

Q =

 q1 δ
3

3 q1 δ
2

2 0

q1 δ
2

2 q1δ 0
0 0 q2δ


where q1 = 0.01, q2 = 0.01, and δ = 1. To model
the measurement noise covariance matrix R as a function
of waveform parameters, we use the model developed by
Kershaw and Evans [23]. There, it is shown that for the
transmit waveform, combining linear frequency modulation
with Gaussian amplitude modulation, the measurement noise
covariance matrix is defined by

R(θk−1) =

[
c2λ2
2η −

c2bλ2
2π fcη

−
c2bλ2
2π fcη

c2

(2π fc)2η
( 1
2λ2
+ 2b2λ2)

]
where, the constants fc and η are the carrier frequency and the
received signal-to-noise ratio (SNR), respectively, and c =
2.9979× 108 m/s is the speed of light. Finally, θ = [λ, b]T

is the waveform-parameter vector, which is adjustable by the
cognitive controller for matching the transmitted waveform
to the environment as closely as possible.

For the Bayesian filter in the perceptor, a cubature Kalman
filter (CKF) [24] has been used, which provides the estimated
state covariance matrix Pk|k at cycle k . The entropic-state
is then determined by Hk|k = det{Pk|k}, as in (13). For
the entropic reward function, rk = | log(|1H |)|.sgn(1H ),
with 1H = Hk−1|k−1 − Hk|k has been used, where sgn(·)
denotes the standard signum function. This entropic reward
also includes the right algebraic sign, which is required to
guide the controller correctly. In the cognitive controller (i.e.,
radar transmitter), θ is changed at each perception-action
cycle, which gives rise to 382 possible cognitive actions
(382 is the number of different combinations for the transmit-
waveform library). On each cycle, the cognitive action taken
by the cognitive controller will affect the measurement noise
covariance matrix. The time allowed for the experiment is
five seconds for scenario 1 and 25 seconds for scenario 2;
we therefore have to consider 50 and 250 perception-action
cycles, respectively. All the simulations are performed over
1000Monte Carlo runs to minimize the effect of randomness.
It is also noteworthy that Algorithm 3, just like any other
learning algorithm, is sensitive to the design parameters; as
such, it is important to fine-tune the parameters for a given
problem of interest.

In what follows, we describe two different experimental
scenarios, one dealing with planning and the other comparing
three different controllers.

Scenario 1: The Impact of Planning
on Cognitive Control
In this experiment, we conduct three distinct case-studies:

1) Absence of cognitive control, that is, there is no feed-
back information form the receiver to the transmitter.
In effect, in so far as the receiver is concerned, the
CKF acts entirely on its own. As illustrated in Fig. 5,

FIGURE 5. The impact of planning on cognitive control in Scenario 1.

the green diamond-line at the top of the figure refers
to the fixed-waveform radar, where there is no cog-
nitive action at all. Nevertheless, because the CKF is
an integral part of the perceptor, the learning curve
decreases almost two orders of magnitude in the course
of 50 cycles.

2) Cognitive learning with no planning, in which the
recursive algorithm of (9) operates on its own in the
cognitive controller. As explained in Section VI, since
the total number of cycles is far less than the entire
number of possible cognitive actions (50 vs. 382), the
red bar-line in Fig. 5 is not that much better than the
case study involving the fixed transmit waveform.

3) Cognitive learning with planning, for which we retain
learning, but this time we also add planning. Imple-
menting explore-only in the planning phase (see
Section VII), this third case-study is repeated for three
different choices of |C1| (see line 26 of Algorithm 1):
(i) only one random cognitive action (blue triangle-
line), (ii) two random cognitive actions (black circle-
line), and (iii) three random cognitive actions (cyan
square-line). In the case of |C1| = 1, although one plan-
ning is still much less than the entire number of cogni-
tive actions, it is enough to demonstrate a considerable
improvement compared to the case with learning only.
As for the other two cases, they both show more than
four orders of magnitude improvement in the entropic-
state reduction compared to the radar with fixed
waveform.

Scenario 2: Comparison of Learning Curves
of Three Different Cognitive Controllers
We refer back to the two different cognitive con-
troller described in the Introduction, and compare them
experimentally with the new cognitive controller described
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in this paper. Thus, the study involves the following three
different configurations with the same cubature Kalman filter
for the cognitive radar receiver (perceptor):

1) Cognitive controller using dynamic optimization: This
optimization algorithm is a simplified version of
Bellman’s dynamic programming [6], in that it does not
account for the future impact of the currently selected
action. The reason is that at each perception-action
cycle, we must compute the change in the entropic state
for all the actions in the action-space. Therefore, from a
practical perspective, the computational throughput of
dynamic optimization is extremely high. To account for
this practical difficulty, the depth of horizon is reduced
to unity; in other words, there is no provision in looking
into the future. Even so, the computational throughput
is too heavy and therefore of limited practical applica-
tions.9 The learning curve of this first cognitive con-
troller is depicted by the blue line in Fig. 6.

FIGURE 6. Comparative performance evaluation of three different
cognitive control algorithms in Scenario 2.

2) Cognitive controller, using Q-learning as well as plan-
ning: To be specific, the learning process in the cog-
nitive controller is performed using the traditional
Q-learning algorithm [13], [14], which is made pos-
sible by exploiting the two-state model described in
Section II-A. Moreover, the controller embodies plan-
ning with cardinality |C1| = 3. The learning curve of
this second cognitive controller is depicted in Fig. 6 by
the green line.

3) The new cognitive controller, which follows
Algorithm 3. Specifically, it combines the use of the

9Appendix B shows that the method of dynamic optimization may indeed
be derived as a special case of the proposed algorithm in this paper.

cognitive control learning algorithm as well as plan-
ning. The third and final learning curve (red line) in
Fig. 6 accounts for the new cognitive controller. The
planning part of this cognitive controller is also set
to |C1| = 3. What is truly remarkable is the fact that
the learning curve for the cognitive controller based on
Algorithm 3 outperforms those of both Q-learning and
dynamic optimization.

In this second scenario, the number of perception-action
cycles has been set to 250 for the simple reason to allow for
convergence to optimality.
It is important to note here that the numbers of floating-

point operations (FLOPS) required for Algorithm 3 and
Q-learning (both equipped with planning of |C1| = 3)
are almost two orders of magnitude less than that of the
method of dynamic optimization. Moreover, in the method of
dynamic optimization, the computational load is unchange-
able. In direct contrast, through the use of planning in Algo-
rithm 3 (involving the selection of the planning set C1), we
have complete design flexibility. Specifically, we may move
anywhere from learning-only (least optimal, most compu-
tationally efficient), to any desirable number of planning
stages that remains computationally efficient. This signifi-
cant practical property of the new cognitive controller pro-
vides an information processing power to match the engi-
neering design of the cognitive controller to any problem of
interest, where levels of optimality and available computa-
tional resources are both specified.

X. CONCLUSION
A. COGNITIVE PROCESSING OF INFORMATION
The new cognitive controller in a cognitive dynamic system is
inspired by the brain on two fundamental accounts: learning
and planning:
A.1 The learning process in cognitive control is based on

two basic ideas:

• The entropic state of the perceptor, which makes it pos-
sible to bypass the imperfect-state information problem
that arises in the brain and other cognitive dynamic
systems, such as the cognitive radar [19], [22].

• The cyclic directed information flow, which is attributed
to the global perception-action cycle that defines the first
principle of cognition [2], [25].

A.2 The planning process in cognitive control: This sec-
ond process is inspired by the prefrontal cortex in the
brain [19], [26]. Specifically, the cognitive controller in one
side of the system is reciprocally coupled to the cognitive
preceptor in the other side of the system. This reciprocal
coupling, attributed to the combined use of feedback infor-
mation from the perceptor to the controller as well as feed-
forward information from the controller to the perceptor, is
the essence of the shunt form of perception-action cycle that
completely bypasses the environment. In this paper we refer
to this cycle as the internally composite cycle [19]; most
importantly, it is this particular form of the perception-action

708 VOLUME 2, 2014



M. Fatemi, S. Haykin: Cognitive Control: Theory and Application

cycle that accommodates the use of planning in the cognitive
controller.

B. LINEARITY, CONVERGENCE, AND OPTIMALITY
These three intrinsic properties of the cognitive control learn-
ing algorithm are accounted for as follows:

• The linear law of computational complexity, measured
in terms of actions taken on the environment, follows
directly from the learning algorithm.

• Convergence and optimality of the learning algo-
rithm follow from the proof that this algorithm is
indeed a special case of the classic Bellman’s dynamic
programming.

C. ENGINEERING APPLICATION
Practical validity of the new cognitive controller has been
demonstrated experimentally in a cognitive tracking radar
benchmark example. Specifically, the new cognitive con-
troller has been compared against two other different
sub-optimal cognitive controllers: One controller involves
dynamic optimization that is computationally expensive;
the other controller involves the use of traditional Q-
learning that is computationally tractable, but inefficient in
performance.
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APPENDIX A
In this appendix, we derive Bellman’s equation (10). The
proof is along the same line as the proof of Lemma 1.

Using the linear property of the expected value operator as
well as the total probability theorem [12], we may expand J̃
as follows:

J̃ (s, a) = Eπ [rk+1 + γ rk+2 + γ 2rk+3 + · · · | sk = s, ak = a]

= Eπ [6∞j=0γ
jrk+j+1 | sk = s, ak = a]

=

∑
s′∈S

P[sk+1 = s′|sk = s, ak = a]

×Eπ [6∞j=0γ
jrk+j+1|sk = s, ak = a, sk+1 = s′]

=

∑
s′∈S

T ass′

×Eπ [6∞j=0γ
jrk+j+1|sk = s, ak = a, sk+1 = s′]

=

∑
s′∈S

T ass′

×{Eπ [rk+1|sk = s, ak = a, sk+1 = s′]+ γEπ

[6∞j=0γ
jrk+j+2|sk = s, ak = a, sk+1 = s′]}

=

∑
s′∈S

T ass′{R
a
ss′ + γE

π [6∞j=0γ
jrk+j+2|sk

= s, ak = a, sk+1 = s′]}

=

∑
s′∈S

T ass′{R
a
ss′ + γ

∑
a′∈A

P

[ak+1 = a′|sk = s, ak = a, sk+1 = s′]

× Eπ [6∞j=0γ
jrk+j+2|sk = s, ak = a,

sk+1 = s′, ak+1 = a′]}

=

∑
s′∈S

T ass′{R
a
ss′ + γ

∑
a′∈A

π̃k (s, a′)J̃ (s′, a′)}

�

APPENDIX B
In this appendix, we show that dynamic optimization used in
the cognitive radar [6], it may be considered as a special case
of the cognitive control learning algorithm, introduced in this
paper.
At each perception-action cycle, the cost-function in the

dynamic optimization algorithm is equivalent to the entropic
state in this paper, and it is predicted for all the actions in
the action library, using the Kershaw and Evans model [23].
The action that has the minimum cost is then selected as the
optimal action.
Turning back to cognitive control, recall the learning

update in Algorithm 1 (line 11):

J (c)← J (c)+ α[R(c)+ γ6c′∈Cπk (c, c
′)J (c′)− J (c)]

Substituting α = 1 and γ = 0 yields the following:

J (c)← R(c) (14)

which implies that under the assumptions of α = 1 and
γ = 0, the value-to-go function in cognitive control turns into
the immediate reward.

Next, consider the substitution of C1 ← C, in algorithm 3
(line 26). This case is equivalent to having complete planning
at each perception-action cycle, which is clearly a possible
choice.

Combining the learning and planning processes, dis-
cussed above, we have then exactly the same algorithm as
dynamic optimization. To be more specific, in the case of
having complete planning with unitary learning factor and
no future inclusion (zero-discount), the new cognitive con-
troller is reduced to dynamic optimization, and therefore
the new cognitive controller embodies features that do not
exist in dynamic optimization. Hence, it is not surprising
that in Scenario 2 of Section IX, the learning curve for
dynamic optimization deviates from that of the new cognitive
controller.
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