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ABSTRACT Recent technological advancements have led to a deluge of data from distinctive domains (e.g.,
health care and scientific sensors, user-generated data, Internet and financial companies, and supply chain
systems) over the past two decades. The term big data was coined to capture the meaning of this emerging
trend. In addition to its sheer volume, big data also exhibits other unique characteristics as compared with
traditional data. For instance, big data is commonly unstructured and require more real-time analysis. This
development calls for new system architectures for data acquisition, transmission, storage, and large-scale
data processing mechanisms. In this paper, we present a literature survey and system tutorial for big data
analytics platforms, aiming to provide an overall picture for nonexpert readers and instill a do-it-yourself
spirit for advanced audiences to customize their own big-data solutions. First, we present the definition
of big data and discuss big data challenges. Next, we present a systematic framework to decompose big
data systems into four sequential modules, namely data generation, data acquisition, data storage, and data
analytics. These four modules form a big data value chain. Following that, we present a detailed survey of
numerous approaches and mechanisms from research and industry communities. In addition, we present
the prevalent Hadoop framework for addressing big data challenges. Finally, we outline several evaluation
benchmarks and potential research directions for big data systems.

INDEX TERMS Big data analytics, cloud computing, data acquisition, data storage, data analytics, Hadoop.

I. INTRODUCTION

The emerging big-data paradigm, owing to its broader impact,
has profoundly transformed our society and will continue
to attract diverse attentions from both technological experts
and the public in general. It is obvious that we are living
a data deluge era, evidenced by the sheer volume of data
from a variety of sources and its growing rate of generation.
For instance, an IDC report [1] predicts that, from 2005 to
2020, the global data volume will grow by a factor of 300,
from 130 exabytes to 40,000 exabytes, representing a double
growth every two years. The term of “big-data” was coined
to capture the profound meaning of this data-explosion trend
and indeed the data has been touted as the new oil, which is
expected to transform our society. For example, a Mckinsey
report [2] states that the potential value of global personal

location data is estimated to be $100 billion in revenue to
service providers over the next ten years and be as much as
$700 billion in value to consumer and business end users.
The huge potential associated with big-data has led to an
emerging research field that has quickly attracted tremen-
dous interest from diverse sectors, for example, industry,
government and research community. The broad interest is
first exemplified by coverage on both industrial reports [2]
and public media (e.g.,the Economist [3], [4], the New York
Times [5], and the National Public Radio (NPR) [6], [7]).
Government has also played a major role in creating new
programs [8] to accelerate the progress of tackling the big-
data challenges. Finally, Nature and Science Magazines have
published special issues to discuss the big-data phenomenon
and its challenges, expanding its impact beyond technological
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domains. As a result, this growing interest in big-data from
diverse domains demands a clear and intuitive understanding
of its definition, evolutionary history, building technologies
and potential challenges.

This tutorial paper focuses on scalable big-data systems,
which include a set of tools and mechanisms to load, extract,
and improve disparate data while leveraging the massively
parallel processing power to perform complex transforma-
tions and analysis. Owing to the uniqueness of big-data,
designing a scalable big-data system faces a series of tech-
nical challenges, including:

« First, due to the variety of disparate data sources and the
sheer volume, it is difficult to collect and integrate data
with scalability from distributed locations. For instance,
more than 175 million tweets containing text, image,
video, social relationship are generated by millions of
accounts distributed globally [9].

o Second, big data systems need to store and manage
the gathered massive and heterogeneous datasets, while
provide function and performance guarantee, in terms
of fast retrieval, scalability, and privacy protection. For
example, Facebook needs to store, access, and analyze
over 30 pertabytes of user generate data [9].

o Third, big data analytics must effectively mine mas-
sive datasets at different levels in realtime or near
realtime - including modeling, visualization, prediction,
and optimization - such that inherent promises can be
revealed to improve decision making and acquire further
advantages.

These technological challenges demand an overhauling
re-examination of the current data management systems,
ranging from their architectural principle to the implementa-
tion details. Indeed, many leading industry companies [10]
have discarded the transitional solutions to embrace the
emerging big data platforms.

However, traditional data management and analysis
systems, mainly based on relational database management
system (RDBMS), are inadequate in tackling the aforemen-
tioned list of big-data challenges. Specifically, the mismatch
between the traditional RDBMS and the emerging big-data
paradigm falls into the following two aspects, including:

o From the perspective of data structure, RDBMSs can
only support structured data, but offer little support for
semi-structured or unstructured data.

« From the perspective of scalability, RDBMSs scale up
with expensive hardware and cannot scale out with com-
modity hardware in parallel, which is unsuitable to cope
with the ever growing data volume.

To address these challenges, the research community and
industry have proposed various solutions for big data systems
in an ac-hoc manner. Cloud computing can be deployed as
the infrastructure layer for big data systems to meet cer-
tain infrastructure requirements, such as cost-effectiveness,
elasticity, and the ability to scale up or down. Distributed
file systems [11] and NoSQL [12] databases are suitable for
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persistent storage and the management of massive scheme-
free datasets. MapReduce [13], a programming framework,
has achieved great success in processing group-aggregation
tasks, such as website ranking. Hadoop [14] integrates data
storage, data processing, system management, and other
modules to form a powerful system-level solution, which
is becoming the mainstay in handling big data challenges.
We can construct various big data applications based on these
innovative technologies and platforms. In light of the prolifer-
ation of big-data technologies, a systematic framework should
be in order to capture the fast evolution of big-data research
and development efforts and put the development in different
frontiers in perspective.

FIGURE 1. A modular data center was built at Nanyang Technological
University (NTU) for system/testbed research. The testbed hosts 270
servers organized into 10 racks.

In this paper, learning from our first-hand experience of
building a big-data solution on our private modular data
center testbed (as illustrated in Fig. 1), we strive to offer
a systematic tutorial for scalable big-data systems, focusing
on the enabling technologies and the architectural principle.
It is our humble expectation that the paper can serve as a
first stop for domain experts, big-data users and the general
audience to look for information and guideline in their spe-
cific needs for big-data solutions. For example, the domain
experts could follow our guideline to develop their own big-
data platform and conduct research in big-data domain; the
big-data users can use our framework to evaluate alternative
solutions proposed by their vendors; and the general audience
can understand the basic of big-data and its impact on their
work and life. For such a purpose, we first present a list
of alternative definitions of big data, supplemented with the
history of big-data and big-data paradigms. Following that,
we introduce a generic framework to decompose big data
platforms into four components, i.e., data generation, data
acquisition, data storage, and data analysis. For each stage, we
survey current research and development efforts and provide
engineering insights for architectural design. Moving toward
a specific solution, we then delve on Hadoop - the de facto
choice for big data analysis platform, and provide benchmark
results for big-data platforms.

The rest of this paper is organized as follows. In Section 1II,
we present the definition of big data and its brief history,
in addition to processing paradigms. Then, in Section III,
we introduce the big data value chain (which is composed of
four phases), the big data technology map, the layered system
architecture and challenges. The next four sections describe
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the different big data phases associated with the big data value
chain. Specifically, Section IV focuses on big data generation
and introduces representative big data sources. Section V dis-
cusses big data acquisition and presents data collection, data
transmission, and data preprocessing techniques. Section VI
investigates big data storage approaches and programming
models. Section VII discusses big data analytics, and sev-
eral applications are discussed in Section VIII. Section IX
introduces Hadoop, which is the current mainstay of the big
data movement. Section X outlines several benchmarks for
evaluating the performance of big data systems. A brief con-
clusion with recommendations for future studies is presented
in Section XI.

II. BIG DATA: DEFINITION, HISTORY AND PARADIGMS
In this section, we first present a list of popular definitions
of big data, followed by a brief history of its evolution. This
section also discusses two alternative paradigms, streaming
processing and batch processing.

A. BIG DATA DEFINITION

Given its current popularity, the definition of big data is rather
diverse, and reaching a consensus is difficult. Fundamentally,
big data means not only a large volume of data but also other
features that differentiate it from the concepts of ‘“‘massive
data” and “‘very large data”. In fact, several definitions for
big data are found in the literature, and three types of defini-
tions play an important role in shaping how big data is viewed:

o Attributive Definition: IDC is a pioneer in studying
big data and its impact. It defines big data in a 2011
report that was sponsored by EMC (the cloud computing
leader) [15]: “Big data technologies describe a new
generation of technologies and architectures, designed to
economically extract value from very large volumes of a
wide variety of data, by enabling high-velocity capture,
discovery, and/or analysis.” This definition delineates
the four salient features of big data, i.e., volume, variety,
velocity and value. As a result, the “4Vs” definition
has been used widely to characterize big data. A similar
description appeared in a 2001 research report [2] in
which META group (now Gartner) analyst Doug Laney
noted that data growth challenges and opportunities
are three-dimensional, i.e., increasing volume, velocity,
and variety. Although this description was not meant
originally to define big data, Gartner and much of
the industry, including IBM [16] and certain Microsoft
researchers [17], continue to use this “3Vs” model to
describe big data 10 years later [18].

o Comparative Definition: In 2011, Mckinsey’s report [2]
defined big data as ‘‘datasets whose size is beyond
the ability of typical database software tools to cap-
ture, store, manage, and analyze.” This definition is
subjective and does not define big data in terms of any
particular metric. However, it incorporates an evolution-
ary aspect in the definition (over time or across sectors)
of what a dataset must be to be considered as big data.
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o Architectural Definition: The National Institute of Stan-
dards and Technology (NIST) [19] suggests that, “Big
data is where the data volume, acquisition velocity,
or data representation limits the ability to perform
effective analysis using traditional relational approaches
or requires the use of significant horizontal scaling
for efficient processing.” In particular, big data can
be further categorized into big data science and big
data frameworks. Big data science is ‘“‘the study of
techniques covering the acquisition, conditioning, and
evaluation of big data,” whereas big data frameworks are
“software libraries along with their associated algorithms
that enable distributed processing and analysis of big
data problems across clusters of computer units”. An
instantiation of one or more big data frameworks is
known as big data infrastructure.

Concurrently, there has been much discussion in various
industries and academia about what big data actually means
[20], [21].

However, reaching a consensus about the definition of big
data is difficult, if not impossible. A logical choice might
be to embrace all the alternative definitions, each of which
focuses on a specific aspect of big data. In this paper, we take
this approach and embark on developing an understanding of
common problems and approaches in big data science and
engineering.

TABLE 1. Comparison between big data and traditional data.

Traditional Da-
ta

Big Data

Volume GB constantly updated (TB or PB cur-
rently)
Generated Rate per hour, day, ... more rapid

Structure structured semi-structured or un-structured
Data Source centralized fully distributed

Data Integration easy difficult

Data Store RDBMS HDFS, NoSQL

Access interactive batch or near real-time

The aforementioned definitions for big data provide a set
of tools to compare the emerging big data with traditional
data analytics. This comparison is summarized in Table 1,
under the framework of the “4Vs”. First, the sheer volume
of datasets is a critical factor for discriminating between
big data and traditional data. For example, Facebook reports
that its users registered 2.7 billion “like” and comments
per day [22] in February 2012. Second, big data comes in
three flavors: structured, semi-structured and unstructured.
Traditional data are typically structured and can thus be easily
tagged and stored. However, the vast majority of today’s data,
from sources such as Facebook, Twitter, YouTube and other
user-generated content, are unstructured. Third, the velocity
of big data means that datasets must be analyzed at a rate
that matches the speed of data production. For time-sensitive
applications, such as fraud detection and RFID data man-
agement, big data is injected into the enterprise in the form
of a stream, which requires the system to process the data
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stream as quickly as possible to maximize its value. Finally,
by exploiting a variety of mining methods to analyze big
datasets, significant value can be derived from a huge volume
of data with a low value density in the form of deep insight or
commercial benefits.

Terabyte to Petabyte

2011.

Gigabyte to Terabyte 19905. IDC report
Google file system

19805 @ and MapReduce

Megabyte to Gigabyte shared-nothing
parallel database

1970s ®

database machine kilobyte (KB) ~ =2'% bytes
megabyte (MB) =210 x 21%bytes
gigabyte (GB) =210 x 210 x 210pytes
terabyte (TB) =210 x 210 x 210 x 21%ytes
petabyte (PB) =210 x 210 x 210 x 210 x 210pytes
exabyte (EB) =210 x 210 x 210 % 210 x 210 x 210hytes

FIGURE 2. A brief history of big data with major milestones. It can be
roughly split into four stages according to the data size growth of order,
including Megabyte to Gigabyte, Gigabyte to Terabyte, Terabyte to
Petabyte, and Petabyte to Exabyte.

B. A BRIEF HISTORY OF BIG DATA

Following its definition, we move to understanding the
history of big data, i.e., how it evolved into its current stage.
Considering the evolution and complexity of big data sys-
tems, previous descriptions are based on a one-sided view-
point, such as chronology [23] or milepost technologies [24].
In this survey, the history of big data is presented in terms of
the data size of interest. Under this framework, the history
of big data is tied tightly to the capability of efficiently
storing and managing larger and larger datasets, with size
limitations expanding by orders of magnitude. Specifically,
for each capability improvement, new database technologies
were developed, as shown in Fig. 2. Thus, the history of big
data can be roughly split into the following stages:

o Megabyte to Gigabyte: In the 1970s and 1980s, his-
torical business data introduced the earliest “big data”
challenge in moving from megabyte to gigabyte sizes.
The urgent need at that time was to house that data and
run relational queries for business analyses and report-
ing. Research efforts were made to give birth to the
“database machine” that featured integrated hardware
and software to solve problems. The underlying philos-
ophy was that such integration would provide better per-
formance at lower cost. After a period of time, it became
clear that hardware-specialized database machines could
not keep pace with the progress of general-purpose com-
puters. Thus, the descendant database systems are soft-
ware systems that impose few constraints on hardware
and can run on general-purpose computers.

e Gigabyte to Terabyte: In the late 1980s, the popular-
ization of digital technology caused data volumes to
expand to several gigabytes or even a terabyte, which
is beyond the storage and/or processing capabilities of
a single large computer system. Data parallelization
was proposed to extend storage capabilities and to
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improve performance by distributing data and related
tasks, such as building indexes and evaluating queries,
into disparate hardware. Based on this idea, several
types of parallel databases were built, including shared-
memory databases, shared-disk databases, and shared-
nothing databases, all as induced by the underlying
hardware architecture. Of the three types of databases,
the shared-nothing architecture, built on a networked
cluster of individual machines - each with its own pro-
cessor, memory and disk [25] - has witnessed great
success. Even in the past few years, we have witnessed
the blooming of commercialized products of this type,
such as Teradata [26], Netezza [27], Aster Data [28],
Greenplum [29], and Vertica [30]. These systems exploit
a relational data model and declarative relational query
languages, and they pioneered the use of divide-and-
conquer parallelism to partition data for storage.
Terabyte to Petabyte: During the late 1990s, when
the database community was admiring its “finished”
work on the parallel database, the rapid development
of Web 1.0 led the whole world into the Internet era,
along with massive semi-structured or unstructured web-
pages holding terabytes or petabytes (PBs) of data. The
resulting need for search companies was to index and
query the mushrooming content of the web. Unfor-
tunately, although parallel databases handle structured
data well, they provide little support for unstructured
data. Additionally, systems capabilities were limited
to less than several terabytes. To address the chal-
lenge of web-scale data management and analy-
sis, Google created Google File System (GFS) [31]
and MapReduce [13] programming model. GFS and
MapReduce enable automatic data parallelization and
the distribution of large-scale computation applications
to large clusters of commodity servers. A system running
GFS and MapReduce can scale up and out and is there-
fore able to process unlimited data. In the mid-2000s,
user-generated content, various sensors, and other ubig-
uitous data sources produced an overwhelming flow
of mixed-structure data, which called for a paradigm
shift in computing architecture and large-scale data
processing mechanisms. NoSQL databases, which are
scheme-free, fast, highly scalable, and reliable, began to
emerge to handle these data. In Jan. 2007, Jim Gray, a
database software pioneer, called the shift the “fourth
paradigm” [32]. He also argued that the only way to
cope with this paradigm was to develop a new generation
of computing tools to manage, visualize and analyze the
data deluge.

Petabyte to Exabyte: Under current development trends,
data stored and analyzed by big companies will undoubt-
edly reach the PB to exabyte magnitude soon. However,
current technology still handles terabyte to PB data;
there has been no revolutionary technology developed to
cope with larger datasets. In Jun. 2011, EMC published
a report entitled “Extracting Value from Chaos™ [15].
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The concept of big data and its potential were discussed
throughout the report. This report ignited the enthu-
siasm for big data in industry and academia. In the
years that followed, almost all the dominating industry
companies, including EMC, Oracle, Microsoft, Google,
Amazon, and Facebook, began to develop big data
projects. In March 2012, the Obama administration
announced that the US would invest 200 million dol-
lars to launch a big data research plan. The effort will
involve a number of federal agencies, including DARPA,
the National Institutes of Health, and the National Sci-
ence Foundation [8]. This endeavor aims to foster the
development of advanced data management and analysis
methods.

To look into future, we believe that data will continue to
expand by orders of magnitude, and we are fortunate enough
to stand in the initial stage of this big data wave [33], on which
there are great opportunities to create revolutionary data man-
agement mechanisms or tools.

C. BIG-DATA PARADIGMS: STREAMING VS. BATCH

Big data analytics is the process of using analysis
algorithms running on powerful supporting platforms to
uncover potentials concealed in big data, such as hidden pat-
terns or unknown correlations. According to the processing
time requirement, big data analytics can be categorized into
two alternative paradigms:

o Streaming Processing: The start point for the streaming
processing paradigm [34] is the assumption that the
potential value of data depends on data freshness. Thus,
the streaming processing paradigm analyzes data as soon
as possible to derive its results. In this paradigm, data
arrives in a stream. In its continuous arrival, because
the stream is fast and carries enormous volume, only a
small portion of the stream is stored in limited memory.
One or few passes over the stream are made to find
approximation results. Streaming processing theory and
technology have been studied for decades. Representa-
tive open source systems include Storm [35], S4 [36],
and Kafka [37]. The streaming processing paradigm is
used for online applications, commonly at the second,
or even millisecond, level.

e Batch Processing: In the batch-processing paradigm,
data are first stored and then analyzed. MapReduce [13]
has become the dominant batch-processing model. The
core idea of MapReduce is that data are first divided
into small chunks. Next, these chunks are processed in
parallel and in a distributed manner to generate interme-
diate results. The final result is derived by aggregating
all the intermediate results. This model schedules com-
putation resources close to data location, which avoids
the communication overhead of data transmission. The
MapReduce model is simple and widely applied in bioin-
formatics, web mining, and machine learning.

There are many differences between these two process-

ing paradigms, as summarized in Table 2. In general,
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TABLE 2. Comparison between streaming processing and batch
processing.

streaming processing batch processing

Input stream of new data or updates data chunks
Data size infinite or unknown in advance known & finite
Storage not store or store non-trival store

portion in memory

Hardware typical single limited amount | multiple CPUs, memories
of memory
Processing a single or few pass(es) over | processed in multiple rounds
data
Time a few seconds or even millisec- | much longer
onds
Applications | web mining, sensor networks, widely adopted in almost every

traffic monitoring domain

the streaming processing paradigm is suitable for applications
in which data are generated in the form of a stream and
rapid processing is required to obtain approximation results.
Therefore, the streaming processing paradigm’s application
domains are relatively narrow. Recently, most applications
have adopted the batch-processing paradigm; even certain
real-time processing applications use the batch-processing
paradigm to achieve a faster response. Moreover, some
research effort has been made to integrate the advantages of
these two paradigms.

Big data platforms can wuse alternative processing
paradigms; however, the differences in these two paradigms
will cause architectural distinctions in the associated
platforms. For example, batch-processing-based platforms
typically encompass complex data storage and management
systems, whereas streaming-processing-based platforms do
not. In practice, we can customize the platform according
to the data characteristics and application requirements.
Because the batch-processing paradigm is widely adopted,
we only consider batch-processing- based big data platforms
in this paper.

lll. BIG-DATA SYSTEM ARCHITECTURE

In this section, we focus on the value chain for big data
analytics. Specifically, we describe a big data value chain
that consists of four stages (generation, acquisition, storage,
and processing). Next, we present a big data technology map
that associates the leading technologies in this domain with
specific phases in the big data value chain and a time stamp.

A. BIG-DATA SYSTEM: A VALUE-CHAIN VIEW

A big-data system is complex, providing functions to deal
with different phases in the digital data life cycle, ranging
from its birth to its destruction. At the same time, the system
usually involves multiple distinct phases for different applica-
tions [38], [39]. In this case, we adopt a systems-engineering
approach, well accepted in industry, [40], [41] to decom-
pose a typical big-data system into four consecutive phases,
including data generation, data acquisition, data storage, and
data analytics, as illustrated in the horizontal axis of Fig. 3.
Notice that data visualization is an assistance method for data
analysis. In general, one shall visualize data to find some
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FIGURE 3. Big data technology map. It pivots on two axes, i.e., data value chain and timeline. The data value chain divides the
data lifecycle into four stages, including data generation, data acquisition, data storage, and data analytics. In each stage, we

highlight exemplary technologies over the past 10 years.

rough patterns first, and then employ specific data mining
methods. I mention this in data analytics section. The details
for each phase are explained as follows.

Data generation concerns how data are generated. In this
case, the term ‘“big data” is designated to mean large,
diverse, and complex datasets that are generated from various
longitudinal and/or distributed data sources, including sen-
sors, video, click streams, and other available digital sources.
Normally, these datasets are associated with different levels
of domain-specific values [2]. In this paper, we focus on
datasets from three prominent domains, business, Internet,
and scientific research, for which values are relatively easy to
understand. However, there are overwhelming technical chal-
lenges in collecting, processing, and analyzing these datasets
that demand new solutions to embrace the latest advances
in the information and communications technology (ICT)
domain.

Data acquisition refers to the process of obtaining informa-
tion and is subdivided into data collection, data transmission,
and data pre-processing. First, because data may come from
a diverse set of sources, websites that host formatted text,
images and/or videos - data collection refers to dedicated
data collection technology that acquires raw data from a spe-
cific data production environment. Second, after collecting
raw data, we need a high-speed transmission mechanism to
transmit the data into the proper storage sustaining system
for various types of analytical applications. Finally, collected
datasets might contain many meaningless data, which
unnecessarily increases the amount of storage space and
affects the consequent data analysis. For instance, redundancy
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is common in most datasets collected from sensors deployed
to monitor the environment, and we can use data compres-
sion technology to address this issue. Thus, we must per-
form data pre-processing operations for efficient storage and
mining.

Data storage concerns persistently storing and managing
large-scale datasets. A data storage system can be divided
into two parts: hardware infrastructure and data manage-
ment. Hardware infrastructure consists of a pool of shared
ICT resources organized in an elastic way for various tasks
in response to their instantaneous demand. The hardware
infrastructure should be able to scale up and out and be able
to be dynamically reconfigured to address different types
of application environments. Data management software is
deployed on top of the hardware infrastructure to main-
tain large-scale datasets. Additionally, to analyze or interact
with the stored data, storage systems must provide several
interface functions, fast querying and other programming
models.

Data analysis leverages analytical methods or tools to
inspect, transform, and model data to extract value. Many
application fields leverage opportunities presented by abun-
dant data and domain-specific analytical methods to derive
the intended impact. Although various fields pose dif-
ferent application requirements and data characteristics, a
few of these fields may leverage similar underlying tech-
nologies. Emerging analytics research can be classified
into six critical technical areas: structured data analytics,
text analytics, multimedia analytics, web analytics, net-
work analytics, and mobile analytics. This classification is
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intended to highlight the key data characteristics of each
area.

B. BIG-DATA TECHNOLOGY MAP

Big data research is a vast field that connects with many
enabling technologies. In this section, we present a big data
technology map, as illustrated in Fig. 3. In this technology
map, we associate a list of enabling technologies, both open-
source and proprietary, with different stages in the big data
value chain.

This map reflects the development trends of big data.
In the data generation stage, the structure of big data
becomes increasingly complex, from structured or unstruc-
tured to a mixture of different types, whereas data sources
become increasingly diverse. In the data acquisition stage,
data collection, data pre-processing, and data transmission
research emerge at different times. Most research in the
data storage stage began in approximately 2005. The fun-
damental methods of data analytics were built before 2000,
and subsequent research attempts to leverage these meth-
ods to solve domain-specific problems. Moreover, quali-
fied technology or methods associated with different stages
can be chosen from this map to customize a big data
system.

C. BIG-DATA SYSTEM: A LAYERED VIEW

Alternatively, the big data system can be decomposed into a
layered structure, as illustrated in Fig. 4. The layered structure

( Application Layer \

mwm

Computing Layer

=

Programming Model /

R

k Integration

Management

( Infrastructure Layer \

N Computation
omputation
Computation :

g
Network

™ g
Network

Storage
k Storage

FIGURE 4. Layered architecture of big data system. It can be decomposed
into three layers, including infrastructure layer, computing layer, and
application layer, from bottom to up.
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is divisible into three layers, i.e., the infrastructure layer, the
computing layer, and the application layer, from bottom to
top. This layered view only provides a conceptual hierarchy to
underscore the complexity of a big data system. The function
of each layer is as follows.

o The infrastructure layer consists of a pool of ICT
resources, which can be organized by cloud computing
infrastructure and enabled by virtualization technology.
These resources will be exposed to upper-layer systems
in a fine-grained manner with a specific service-level
agreement (SLA). Within this model, resources must be
allocated to meet the big data demand while achieving
resource efficiency by maximizing system utilization,
energy awareness, operational simplification, etc.

o The computing layer encapsulates various data tools into
a middleware layer that runs over raw ICT resources.
In the context of big data, typical tools include data inte-
gration, data management, and the programming model.
Data integration means acquiring data from disparate
sources and integrating the dataset into a unified form
with the necessary data pre-processing operations. Data
management refers to mechanisms and tools that provide
persistent data storage and highly efficient management,
such as distributed file systems and SQL or NoSQL data
stores. The programming model implements abstraction
application logic and facilitates the data analysis appli-
cations. MapReduce [13], Dryad [42], Pregel [43], and
Dremel [44] exemplify programming models.

o The application layer exploits the interface provided
by the programming models to implement various data
analysis functions, including querying, statistical anal-
yses, clustering, and classification; then, it combines
basic analytical methods to develop various filed related
applications. McKinsey presented five potential big data
application domains: health care, public sector admin-
istration, retail, global manufacturing, and personal
location data.

D. BIG-DATA SYSTEM CHALLENGES

Designing and deploying a big data analytics system is not
a trivial or straightforward task. As one of its definitions
suggests, big data is beyond the capability of current hard-
ware and software platforms. The new hardware and software
platforms in turn demand new infrastructure and models to
address the wide range of challenges of big data. Recent
works [38], [45], [46] have discussed potential obstacles to
the growth of big data applications. In this paper, we strive to
classify these challenges into three categories: data collection
and management, data analytics, and system issues.

Data collection and management addresses massive
amounts of heterogeneous and complex data. The following
challenges of big data must be met:

o Data Representation: Many datasets are heterogeneous
in type, structure, semantics, organization, granular-
ity, and accessibility. A competent data presentation
should be designed to reflect the structure, hierarchy,
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and diversity of the data, and an integration technique
should be designed to enable efficient operations across
different datasets.

e Redundancy Reduction and Data Compression: Typi-
cally, there is a large number of redundant data in raw
datasets. Redundancy reduction and data compression
without scarifying potential value are efficient ways to
lessen overall system overhead.

e Data Life-Cycle Management: Pervasive sensing and
computing is generating data at an unprecedented rate
and scale that exceed much smaller advances in storage
system technologies. One of the urgent challenges is that
the current storage system cannot host the massive data.
In general, the value concealed in the big data depends
on data freshness; therefore, we should set up the data
importance principle associated with the analysis value
to decide what parts of the data should be archived and
what parts should be discarded.

e Data Privacy and Security: With the proliferation of
online services and mobile phones, privacy and security
concerns regarding accessing and analyzing personal
information is growing. It is critical to understand what
support for privacy must be provided at the platform
level to eliminate privacy leakage and to facilitate var-
ious analyses.

There will be a significant impact that results from
advances in big data analytics, including interpretation, mod-
eling, prediction, and simulation. Unfortunately, massive
amounts of data, heterogeneous data structures, and diverse
applications present tremendous challenges, such as the
following.

o Approximate Analytics: As data sets grow and the real-
time requirement becomes stricter, analysis of the entire
dataset is becoming more difficult. One way to poten-
tially solve this problem is to provide approximate
results, such as by means of an approximation query.
The notion of approximation has two dimensions: the
accuracy of the result and the groups omitted from the
output.

o Connecting Social Media: Social media possesses
unique properties, such as vastness, statistical redun-
dancy and the availability of user feedback. Various
extraction techniques have been successfully used to
identify references from social media to specific product
names, locations, or people on websites. By connect-
ing inter-field data with social media, applications can
achieve high levels of precision and distinct points of
view.

e Deep Analytics: One of the drivers of excitement
around big data is the expectation of gaining novel
insights. Sophisticated analytical technologies, such as
machine learning, are necessary to unlock such insights.
However, effectively leveraging these analysis toolkits
requires an understanding of probability and statistics.
The potential pillars of privacy and security mechanisms
are mandatory access control and security communi-
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cation, multi-granularity access control, privacy-aware
data mining and analysis, and security storage and
management.
Finally, large-scale parallel systems generally confront sev-
eral common issues; however, the emergence of big data has
amplified the following challenges, in particular.

o Energy Management: The energy consumption of large-
scale computing systems has attracted greater concern
from economic and environmental perspectives. Data
transmission, storage, and processing will inevitably
consume progressively more energy, as data volume
and analytics demand increases. Therefore, system-level
power control and management mechanisms must be
considered in a big data system, while continuing to
provide extensibility and accessibility.

o Scalability: A big data analytics system must be able to
support very large datasets created now and in the future.
All the components in big data systems must be capable
of scaling to address the ever-growing size of complex
datasets.

o Collaboration: Big data analytics is an interdisciplinary
research field that requires specialists from multiple
professional fields collaborating to mine hidden val-
ues. A comprehensive big data cyber infrastructure is
necessary to allow broad communities of scientists and
engineers to access the diverse data, apply their respec-
tive expertise, and cooperate to accomplish the goals of
analysis.

In the remainder of this paper, we follow the value-chain
framework illustrated in Fig. 3 to investigate the four phases
of the big-data analytic platform.

IV. PHASE I: DATA GENERATION

In this section, we present an overview of two aspects of
big data sources. First, we discuss the historical trends of big
data sources and then focus on three typical sources of big
data. Following this, we use five data attributes introduced by
the National Institute of Standards and Technology (NIST) to
classify big data.

A. DATA SOURCES: TRENDS AND EXEMPLARY
CATEGORIES

The trends of big data generation can be characterized by
the data generation rate. Specifically, the data generation
rate is increasing due to technological advancements. Indeed,
IBM estimated that 90% of the data in the world today has
been created in the past two years [47]. The cause of the
data explosion has been much debated. Cisco argued that the
growth is caused mainly by video, the Internet, and cameras
[48]. Actually, data refers to the abstraction of information
that is readable by a computer. In this sense, ICT is the
principal driving force that makes information readable and
creates or captures data. In this paper, therefore, we begin our
discussion with the development of ICT and take a historical
perspective in explaining the data explosion trend. Specifi-
cally, we roughly classify data generation patterns into three
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sequential stages:

o Stage I: The first stage began in the 1990s. As digital
technology and database systems were widely adopted,
many management systems in various organizations
were storing large volumes of data, such as bank trading
transactions, shopping mall records, and government
sector archives. These datasets are structured and can be
analyzed through database-based storage management
systems.

o Stage II: The second stage began with the growing
popularity of web systems. The Web 1.0 systems, char-
acterized by web search engines and ecommerce busi-
nesses after the late 1990s, generated large amounts
of semi-structured and/or unstructured data, including
webpages and transaction logs. Since the early 2000s,
many Web 2.0 applications created an abundance of
user-generated content from online social networks,
such as forums, online groups, blogs, social networking
sites, and social media sites.

o Stage III: The third stage is triggered by the emergence
of mobile devices, such as smart phones, tablets, sensors
and sensor-based Internet-enabled devices. The mobile-
centric network has and will continue to create highly
mobile, location-aware, person-centered, and context-
relevant data in the near future.

With this classification, we can see that the data gener-
ation pattern is evolving rapidly, from passive recording
in Stage I to active generation in Stage II and automatic
production in Stage III. These three types of data consti-
tute the primary sources of big data, of which the auto-
matic production pattern will contribute the most in the near
future.

In addition to its generic property (e.g., its rate of gen-
eration), big data sources are tightly coupled with their
generating domains. In fact, exploring datasets from dif-
ferent domains may create distinctive levels of potential
value [2]. However, the potential domains are so broad
that they deserve their own dedicated survey paper. In this
survey, we mainly focus on datasets from the following
three domains to investigate big data-related technologies:
business, networking, and scientific research. Our reasons
of choice are as follows. First, big data is closely related
to business operations and many big data tools have thus
previously been developed and applied in industry. Sec-
ond, most data remain closely bound to the Internet, the
mobile network and the Internet of Things. Third, as sci-
entific research generates more data, effective data analy-
sis will help scientists reveal fundamental principles and
hence boost scientific development. The three domains vary
in their sophistication and maturity in utilizing big data
and therefore might dictate different technological require-
ments.
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1) BUSINESS DATA

The use of information technology and digital data has been
instrumental in boosting the profitability of the business
sector for decades. The volume of business data world-
wide across all companies is estimated to double every
1.2 years [49]. Business transactions on the Internet, includ-
ing business-to-business and business-to-consumer transac-
tions, will reach 450 billion per day [50]. The ever-increasing
volume of business data calls for more effective real-time
analysis to gain further benefits. For example, every day,
Amazon handles millions of back-end operations and queries
from more than half a million third-party sellers [51].
Walmart handles more than 1 million customer transactions
every hour. These transactions are imported into databases
that are estimated to contain more than 2.5 PBs of data [3].
Akamai analyzes 75 million events per day to better target
advertisements [9].

2) NETWORKING DATA

Networking, including the Internet, the mobile network,
and the Internet of Things, has penetrated into human
lives in every possible aspect. Typical network applications,
regarded as the network big data sources, include, but are
not limit to, search, SNS, websites, and click streams. These
sources are generating data at record speeds, demanding
advanced technologies. For example, Google, a representative
search engine, was processing 20 PBs a day in 2008 [13].
For social network applications, Facebook stored, accessed,
and analyzed more than 30 PBs of user-generated data.
Over 32 billion searches were performed per month on
Twitter [52]. In the mobile network field, more than 4 bil-
lion people, or 60 percent of the world’s population, were
using mobile phones in 2010, and approximately 12 percent
of these people had smart phones [2]. In the field of the
Internet of Things, more than 30 million networked sensor
nodes are now functioning in the transportation, automotive,
industrial, utilities, and retail sectors. The number of these
sensors is increasing at a rate of more than 30 percent per
year [2].

3) SCIENTIFIC DATA

More and more scientific applications are generating very
large datasets, and the development of several disciplines
greatly relies on the analysis of massive data. In this domain,
we highlight three scientific domains that are increasingly
relying on big data analytics:

o Computational Biology: The National Center for
Biotechnology Innovation maintains the GenBank
database of nucleotide sequences, which doubles in
size every 10 months. As of August 2009, the database
contains over 250 billion nucleotide bases from more
than 150,000 distinct organisms [53].

o Astronomy: From 1998 to 2008, the Sloane Digital Sky
Survey (SDSS), the largest astronomical catalogue, gen-
erated 25 terabytes of data from telescopes. As tele-
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TABLE 3. Typical big data sources.

Data Source Application Data Scale Type Response Time | Number of Users | Accurancy
Walmart retail PB structured very fast large very high
Amazon e-commerce PB semi-structured very fast large very high

Google search Internet PB semi-structured fast very large high
facebook Social network PB structured, un-structured fast very large high

AT&T Mobile network TB structured fast very large high
healthe care Internet of Things TB structured, un-structured fast large high
SDSS Scientific TB un-structured slow small very high
scope resolutions have increased, the generated data Lyelume
volume each night is anticipated to exceed 20 terabytes
in 2014 [54].
e High-Energy Physics: The Atlas experiment for the relational velocity T Amasen
limitation ——Google

Large Hadron Collider at the Center for European
Nuclear Research will generate raw data at a rate
of 2 PBs per second at the beginning of 2008 and
will store approximately 10 PBs per year of processed
data [55].

These areas not only generate a huge amount of data
but also require multiple geo-distributed parties to collab-
orate on analyzing the data [56], [57]. Interested schol-
ars should refer to the important discussions on data
science [32], including earth and environment, health
and well-being, scientific infrastructure, and scholarly
communication.

In Table 3, we enumerate representative big data sources
from these three domains and their attributes from the appli-
cation and analysis requirement perspective. As can be easily
shown, most data sources generate PB level unstructured data,
which requires fast and accurate analysis for a large number
of users.

B. DATA ATTRIBUTES

Pervasive sensing and computing across natural, business,
Internet and government sectors and social environments are
generating heterogeneous data with unprecedented complex-
ity. These datasets may have distinctive data characteristics in
terms of scale, temporal dimensional, or variety of data types.
For example, in [58], mobile data types related to location,
motion, proximity, communication, multimedia, application
usage and audio environment were recorded. NIST [19]
introduces five attributes to classify big data, which are listed
below.

o Volume is the sheer volume of datasets.

o Velocity the data generation rate and real-time require-
ment.

o Variety refers to the data form, i.e., structured, semi-
structured, and unstructured.

e Horizontal Scalability is the ability to join multiple
datasets.

o Relational Limitation includes two categories, special
forms of data and particular queries. Special forms of
data include temporal data and spatial data. Particular
queries may be recursive or another type.
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FIGURE 5. Five metrics to classify big data. These metrics are introduced
by NIST [19], including volume, velocity, variety, horizontal scalability, and
relational limitation.

Within this measure, we introduce a visualization tool,
which is shown in Fig. 5. We can see that the data source
from the scientific domain has the lowest attribute values in all
aspects; data sources from the business domain have a higher
horizontal scalability and relational limitation requirements,
whereas data source from the networking domain have higher
volume, velocity, and variety characteristics.

V. PHASE II: DATA ACQUISITION

As illustrated in the big data value chain, the task of the
data acquisition phase is to aggregate information in a digital
form for further storage and analysis. Intuitively, the acqui-
sition process consists of three sub-steps, data collection,
data transmission, and data pre-processing, as illustrated in
Fig. 6. There is no strict order between data transmission and
data pre-processing; thus, data pre-processing operations can
occur before data transmission and/or after data transmission.
In this section we review ongoing scholarship and current
solutions for these three sub-tasks.

A. DATA COLLECTION

Data collection refers to the process of retrieving raw data
from real-world objects. The process needs to be well
designed. Otherwise, inaccurate data collection would impact
the subsequent data analysis procedure and ultimately lead to
invalid results. At the same time, data collection methods not
only depend on the physics characteristics of data sources,
but also the objectives of data analysis. As a result, there
are many kinds of data collection methods. In the subsec-
tion, we will first focus on three common methods for big
data collection, and then touch upon a few other related
methods.

661



IEEE Access

practical innovations : open solutions

H. Hu et al.: Toward Scalable Systems for Big Data Analytics

Stage 1 Stage 2

eSensor
eLog file
*Web Crawler

Data Data

Collection Transmission

P backbone
eData center

Stage 3

eIntegration
*Cleansing
* Redundancy

Data Pre-

Processing

transmission

FIGURE 6. The Data acquisition stage consists of three sub-tasks: collection, transmission and
pre-processing. In each stage, representative methods will be investigated. For example, the data collection
stage covers three common methods, including sensor, log file, and web crawler.

1) SENSOR

Sensors are used commonly to measure a physical quantity
and convert it into a readable digital signal for processing
(and possibly storing). Sensor types include acoustic, sound,
vibration, automotive, chemical, electric current, weather,
pressure, thermal, and proximity. Through wired or wireless
networks, this information can be transferred to a data collec-
tion point.

Wired sensor networks leverage wired networks to connect
a collection of sensors and transmit the collected information.
This scenario is suitable for applications in which sensors can
easily be deployed and managed. For example, many video
surveillance systems in industry are currently built using a
single Ethernet unshielded twisted pair per digital camera
wired to a central location (certain systems may provide both
wired and wireless interfaces) [59]. These systems can be
deployed in public spaces to monitor human behavior, such
as theft and other criminal behaviors.

By contrast, wireless sensor networks (WSNs) utilize a
wireless network as the substrate of information transmis-
sion. This solution is preferable when the exact location of
a particular phenomenon is unknown, particularly when the
environment to be monitored does not have an infrastructure
for either energy or communication. Recently, WSNs have
been widely discussed and applied in many applications, such
as in environment research [60], [61], water monitoring [62],
civil engineering [63], [64], and wildlife habitat monitor-
ing [65]. The WSN typically consists of a large number of
spatially distributed sensor nodes, which are battery-powered
tiny devices. Sensors are first deployed at the locations spec-
ified by the application requirement to collect sensing data.
After sensor deployment is complete, the base station will
disseminate the network setup/management and/or collec-
tion command messages to all sensor nodes. Based on this
indicated information, sensed data are gathered at different
sensor nodes and forwarded to the base station for further
processing. [66] offer a detailed discussion of the foregoing.

A sensor based data collection system can be considered as
a cyber-physical system [67]. Actually, in the scientific exper-
iment domain, many specialty instruments, such as magnetic
spectrometer, radio telescope, are used to collect experiment
data [68]. They can be regarded as a special type of sensor. In
this sense, experiment data collection systems also belong to
the category of cyber-physical system.

A sensor-based data collection system is considered a
cyber-physical system [67]. In the scientific experiment
domain, many specialty instruments, such as magnetic spec-
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trometers and radio telescopes, are used to collect experi-
mental data [68]. These instruments may be considered as
a special type of sensor. In this sense, experiment data col-
lection systems also belong to the category of cyber-physical
systems.

2) LOG FILE
Log files, one of the most widely deployed data collection
methods, are generated by data source systems to record
activities in a specified file format for subsequent analysis.
Log files are useful in almost all the applications running on
digital devices. For example, a web server normally records
all the clicks, hits, access and other attributes [69] made by
any website user in an access log file. There are three main
types of web server log file formats available to capture the
activities of users on a website: Common Log File Format
(NCSA), Extended Log Format (W3C), and IIS Log Format
(Microsoft). All three log file formats are in the ASCII text
format. Alternatively, databases can be utilized instead of
text files to store log information to improve the querying
efficiency of massive log repositories [70], [71]. Other exam-
ples of log file-based data collection include stock ticks in
financial applications, performance measurement in network
monitoring, and traffic management.

In contrast to a physical sensor, a log file can be viewed
as ‘“‘software-as-a-sensor’’. Much user-implemented data col-
lection software [58] belongs to this category.

3) WEB CRAWLER

A crawler [72] is a program that downloads and stores web-
pages for a search engine. Roughly, a crawler starts with
an initial set of URLs to visit in a queue. All the URLs to
be retrieved are kept and prioritized. From this queue, the
crawler gets a URL that has a certain priority, downloads the
page, identifies all the URLs in the downloaded page, and
adds the new URLSs to the queue. This process is repeated until
the crawler decides to stop. Web crawlers are general data
collection applications for website-based applications, such
as web search engines and web caches. The crawling process
is determined by several policies, including the selection
policy, re-visit policy, politeness policy, and parallelization
policy [73]. The selection policy communicates which pages
to download; the re-visit policy decides when to check for
changes to the pages; the politeness policy prevents overload-
ing the websites; the parallelization policy coordinates dis-
tributed web crawlers. Traditional web application crawling
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TABLE 4. Comparison for three data collection methods.

method mode data structure data scale complexity typical applications
sensor pull structured or unstrucutred median sophisticated | video surveillance, inventory management
log file push | structured or semi-structured small easy web log, click stream

web crawler pull mixture large median search, SNS analysis

is a well-researched field with multiple efficient solutions.
With the emergence of richer and more advanced web appli-
cations, some crawling strategies [74] have been proposed to
crawl rich Internet applications. Currently, there are plenty
of general-purpose crawlers available as enumerated in the
list [75].

In addition to the methods discussed above, there are many
data collection methods or systems that pertain to specific
domain applications. For example, in certain government
sectors, human biometrics [76], such as fingerprints and sig-
natures, are captured and stored for identity authentication
and to track criminals. In summary, data collection methods
can be roughly divided into two categories:

o Pull-Based Approach: Data are collected proactively by

a centralized/distributed agent.

e Push-Based Approach: Data are pushed toward the sink

by its source or a third party.

The three aforementioned methods are compared in
Table 4. We can see from the table that the log file is the
simplest data collection method, but it can collect only a
relatively small amount of structured data. The web crawler is
the most flexible data collection model and can acquire vast
amounts of data with complex structures.

Data Center Infrastructure
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FIGURE 7. Big data transmission procedure. It can be divided into two
stages, IP backbone transmission and data center transmission.

B. DATA TRANSMISSION

Once we gather the raw data, we must transfer it into a data
storage infrastructure, commonly in a data center, for subse-
quent processing. The transmission procedure can be divided
into two stages, IP backbone transmission and data center
transmission, as illustrated in Fig. 7. Next, we introduce sev-
eral emerging technologies in these two stages.

1) IP BACKBONE

The IP backbone, at either the region or Internet scale, pro-
vides a high-capacity trunk line to transfer big data from its
origin to a data center. The transmission rate and capacity are
determined by the physical media and the link management
methods.

e Physical Media are typically composed of many fiber
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optic cables bundled together to increase capacity.
In general, physical media should guarantee path diver-
sity to reroute traffic in case of failure.

o Link Management concerns how the signal is transmitted
over the physical media. IP over Wavelength-Division
Multiplexing (WDM) has been developed over the past
two decades [77], [78]. WDM is technology that multi-
plexes multiple optical carrier signals on a single optical
fiber using different wavelengths of laser light to carry
different signals. To address the electrical bandwidth
bottleneck limitation, Orthogonal Frequency-Division
Multiplexing (OFDM) has been considered as a promis-
ing candidate for future high-speed optical transmission
technology. OFDM allows the spectrum of individual
subcarriers to overlap, which leads to a more data-rate
flexible, agile, and resource-efficient optical network
[79], [80].

Thus far, optical transmission systems with up to capac-
ities of 40 Gb/s per channel have been deployed in back-
bone networks, whereas 100 Gb/s interfaces are now com-
mercially available and 100 Gb/s deployment is expected
soon. Even Tb/s-level transmission is foreseen in the near
future [81].

Due to the difficulty of deploying enhanced network pro-
tocols in the Internet backbone, we must follow standard
Internet protocols to transmit big data. However, for aregional
or private IP backbone, certain alternatives [82] may achieve
better performance for specific applications.

2) DATA CENTER TRANSMISSION

When big data is transmitted into the data center, it will be
transited within the data center for placement adjustment,
processing, and so on. This process is referred to as data
center transmission. It always associates with data center
network architecture and transportation protocol:

o Data Center Network Architecture: A data center con-
sists of multiple racks hosting a collection of servers
connected through the data center’s internal connection
network. Most current data center internal connection
networks are based on commodity switches that con-
figure a canonical fat-tree 2-tier [83] or 3-tier archi-
tecture [84]. Some other topologies that aim to create
more efficient data center networks can be found in
[85]{88]. Because of the inherent shortage of electronic
packet switches, increasing communication bandwidth
while simultaneously reducing energy consumption is
difficult. Optical interconnects for data center networks
have gained attention recently as a promising solution
that offers high throughput, low latency, and reduced
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energy consumption. Currently, optical technology has
been adopted in data centers only for point-to-point
links. These links are based on low-cost multi-mode
fibers (MMF) for the connections of switches, with
bandwidths up to 10 Gbps [89]. The use of optical
interconnects for data center networks [90] (in which
the switching is performed at the optical domain) is a
viable solution for providing Tbps transmission band-
widths with increased energy efficiency. Many optical
interconnect schemes [87], [91]{95] have recently been
proposed for data center networks. Certain schemes add
optical circuits to upgrade current networks, whereas
other schemes completely replace the current switches.
However, more effort is required to make these novel
technologies mature.

o Transportation Protocol: TCP and UDP are the most
important network protocols for data transmission; how-
ever, their performance is not satisfactory when there is
a large amount of data to be transferred. Much research
effort was made to improve the performance of these two
protocols. Enhanced TCP methods aim to improve link
throughput while providing a small predictable latency
for a diverse mix of short and long TCP flows. For
instance, DCTCP [96] leverages Explicit Congestion
Notification (ECN) in the network to provide multi-
bit feedback to the end host, allowing it the host to
react early to congestion. Vamanan et al. [97] pro-
posed a deadline-aware data center TCP for bandwidth
allocation, which can guarantee that network commu-
nication is finished under soft real-time constraints.
UDP is suitable for transferring a huge volume of data
but lacks congestion control, unfortunately. Thus, high
bandwidth UDP applications must implement conges-
tion control themselves, which is a difficult task and may
incur risk, which renders congested networks unusable.
Kohler et al. [98] designed a congestion-controlled unre-
liable transport protocol, adding to a UDP-like foun-
dation to support congestion control. This protocol
resembles TCP but without reliability and cumulative
acknowledgements.

C. DATA PRE-PROCESSING

Because of their diverse sources, the collected data sets may
have different levels of quality in terms of noise, redundancy,
consistency, etc. Transferring and storing raw data would
have necessary costs. On the demand side, certain data anal-
ysis methods and applications might have strict requirements
on data quality. As such, data preprocessing techniques that
are designed to improve data quality should be in place in
big data systems. In this subsection, we briefly survey current
research efforts for three typical data pre-processing tech-
niques. [99]{101] provide a more in-depth treatment of this
topic.
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1) INTEGRATION

Data integration techniques aim to combine data residing in
different sources and provide users with a unified view of the
data [102]. Data integration is a mature field in traditional
database research [103]. Previously, two approaches pre-
vailed, the data warehouse method and the data federation
method. The data warehouse method [102], also known as
ETL, consists of the following three steps: extraction, trans-
formation and loading.

o The extraction step involves connecting to the source
systems and selecting and collecting the necessary data
for analysis processing.

« The transformation step involves the application of a
series of rules to the extracted data to convert it into a
standard format.

o The load step involves importing extracted and trans-
formed data into a target storage infrastructure.

Second, the data federation method creates a virtual database
to query and aggregate data from disparate sources. The
virtual database does not contain data itself but instead con-
tains information or metadata about the actual data and its
location.

However, the ‘store-and-pull” nature of these two
approaches is unsuitable for the high performance needs
of streaming or search applications, where data are much
more dynamic than the queries and must be processed on
the fly. In general, data integration methods are better inter-
twined with the streaming processing engines [34] and search
engines [104].

2) CLEANSING
The data cleansing technique refers to the process to deter-
mine inaccurate, incomplete, or unreasonable data and then to
amend or remove these data to improve data quality. A general
framework [105] for data cleansing consists of five comple-
mentary steps:

« Define and determine error types;

o Search and identify error instances;

o Correct the errors;

« Document error instances and error types; and

« Modify data entry procedures to reduce future errors.

Moreover, format checks, completeness checks, reasonable-
ness checks, and limit checks [105] are normally considered
in the cleansing process. Data cleansing is generally consid-
ered to be vital to keeping data consistent and updated [101]
and is thus widely used in many fields, such as banking,
insurance, retailing, telecommunications, and transportation.
Current data-cleaning techniques are spread across differ-
ent domains. In the e-commerce domain, although most of
the data are collected electronically, there can be serious data
quality issues. Typical sources of such data quality issues
include software bugs, customization mistakes, and the sys-
tem configuration process. Kohavi et al. in [106] discusses
cleansing e-commerce data by detecting crawlers and per-
forming regular de-duping of customers and accounts.
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In the radio frequency identification (RFID) domain, the
work in [107] considers data cleansing for RFID data. RFID
technologies are used in many applications, such as inventory
checking and object tracking. However, raw RFID data are
typically of low quality and may contain many anomalies
because of physical device limitations and different types
of environmental noise. In [108], Zhao et al. developed a
probabilistic model to address the missing data problem in
a mobile environment. Khoussainova et al. [109] presented
a system for correcting input data errors automatically with
application-defined global integrity constraints.

Another example was reported in [110] that implemented
a framework, BIO-AJAX, to standardize biological data for
further computation and to improve searching quality. With
the help of BIO-AJ Ax, errors and duplicate can be elim-
inated, and common data-mining techniques will run more
effectively.

Data cleansing is necessary for subsequent analysis
because it improves analysis accuracy. However, data cleans-
ing commonly depends on the complex relationship model
and it incurs extra computation and delay overhead. We must
seek a balance between the complexity of the data-cleansing
model and the resulting improvement in the accuracy
analysis.

3) REDUNDANCY ELIMINATION

Data redundancy is the repetition or superfluity of data,
which is a common issue for various datasets. Data redun-
dancy unnecessarily increases data transmission overhead
and causes disadvantages for storage systems, including
wasted storage space, data inconsistency, reduced reliabil-
ity and data corruption. Therefore, many researchers have
proposed various redundancy reduction methods, such as
redundancy detection [111] and data compression [112].
These methods can be used for different datasets or applica-
tion conditions and can create significant benefits, in addition
to risking exposure to several negative factors. For instance,
the data compression method poses an extra computational
burden in the data compression and decompression processes.
We should assess the tradeoff between the benefits of redun-
dancy reduction and the accompanying burdens.

Data redundancy is exemplified by the growing amount
of image and video data, collected from widely deployed
cameras [113]. In the video surveillance domain, vast
quantities of redundant information, including temporal
redundancy, spatial redundancy, statistical redundancy and
perceptual redundancy, is concealed in the raw image and
video files [113]. Video compression techniques are widely
used to reduce redundancy in video data. Many impor-
tant standards (e.g., MPEG-2, MPEG-4, H.263, H.264/AVC)
[114] have been built and applied to alleviate the burden on
transmission and storage. In [115], Tsai et al. studied video
compression for intelligent video surveillance via video sen-
sor networks. By exploring the contextual redundancy asso-
ciated with background and foreground objects in a scene, a
novel approach beyond MPEG-4 and traditional methods has
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been proposed. In addition, further evaluation results reveal
the low complexity and compression ratio of the approach.

For generalized data transmission or storage, the data dedu-
plication [116] technique is a specialized data compression
technique for eliminating duplicate copies of repeating data.
In a storage deduplication process, a unique chunk or segment
of data will be allocated an identification (e.g., hashing) and
stored, and the identification will be added to an identification
list. As the deduplication analysis continues, a new chunk
associate with the identification, which already exists in the
identification list, is regarded as a redundant chunk. This
chunk is replaced with a reference that points to the stored
chunk. In this way, only one instance of any piece of given
data is retained. Deduplication can greatly reduce the amount
of storage space and is particularly important for big data
storage systems.

In addition to the data pre-processing methods described
above, other operations are necessary for specific data
objects. One example is feature extraction, which plays a
critical role in areas such as multimedia search [117] and
DNA analysis [118], [119]. Typically, these data objects are
described by high-dimensional feature vectors (or points),
which are organized in storage systems for retrieval. Another
example is data transformation [120], which is typically
used to handle distributed data sources with heterogeneous
schema and is particularly useful for business datasets.
Gunter et al. [121] developed a novel approach, called
MapLan, to map and transform survey information from the
Swiss National Bank.

However, no unified data pre-processing procedure and no
single technique can be expected to work best across a wide
variety of datasets. We must consider together the character-
istics of the datasets, the problem to be solved, performance
requirements and other factors to choose a suitable data
pre-processing scheme.

VI. PHASE lil: DATA STORAGE

The data storage subsystem in a big data platform organizes
the collected information in a convenient format for analysis
and value extraction. For this purpose, the data storage sub-
system should provide two sets of features:

o The storage infrastructure must accommodate informa-
tion persistently and reliably.

o The data storage subsystem must provide a scalable
access interface to query and analyze a vast quantity of
data.

This functional decomposition shows that the data stor-
age subsystem can be divided into hardware infrastructure
and data management. These two components are explained
below.

A. STORAGE INFRASTRUCTURE
Hardware infrastructure is responsible for physically storing
the collected information. The storage infrastructure can be
understood from different perspectives.

First, storage devices can be classified based on the specific
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technology. Typical storage technologies include, but are not
limited to, the following.

e Random Access Memory (RAM): RAM is a form of
computer data storage associated with volatile types
of memory, which loses its information when pow-
ered off. Modern RAM includes static RAM (SRAM),
dynamic RAM (DRAM), and phase-change memory
(PRAM). DRAM is the predominant form of computer
memory.

o Magnetic Disks and Disk Arrays: Magnetic disks, such
as hard disk drive (HDD), are the primary component
in modern storage systems. An HDD consists of one or
more rigid rapidly rotating discs with magnetic heads
arranged on a moving actuator arm to read and write
data to the surfaces. Unlike RAM, an HDD retains
its data even when powered off with much lower per-
capacity cost, but the read and write operations are much
slower. Because of the high expenditure of a single large
capacity disk, disk arrays assemble a number of disks to
achieve large capacity, high access throughput, and high
availability at much lower costs.

o Storage Class Memory: Storage class memory refers to
non-mechanical storage media, such as flash memory.
In general, flash memory is used to construct solid-state
drives (SSDs). Unlike HDDs, SSDs have no mechan-
ical components, run more quietly, and have lower
access times and less latency than HDDs. However,
SSDs remain more expensive per unit of storage than
HDDs.

1/0
Requests

Virtualization layer

Array

FIGURE 8. Multi-tier SSD based storage system. It consists of three
components, including I/Orequest queue, virtualization layer, and array.

These devices have different performance metrics, which
can be leveraged to build a scalable and high-performance
big data storage subsystem. More details about storage
devices development can be found in [122]. Lately, hybrid
approaches [123], [124] have been proposed to build a hier-
archical storage system that combines the features of SSDs
and HDDs in the same unit, containing a large hard disk
drive and an SSD cache to improve performance of frequently
accessed data. A typical architecture of multi-tier SSD-based
storage system is shown in Fig. 8, which consists of three
components, i.e., I/O request queue, virtualization layer, and
array [125]. Virtualization layer accepts I/O requests and
dispatches them to volumes that are made up of extents
stored in arrays of different device types. Current commercial
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SSD-based multi-tier systems from IBM, EMC, 3PAR and
Compllent already gain satisfied performance. However, the
major difficulty of these systems is to determine what mix of
devices will perform well at minimum cost.

Second, storage infrastructure can be understood from a
networking architecture perspective [126]. In this category,
the storage subsystem can be organized in different ways,
including, but not limited to the following.

o Direct Attached Storage (DAS): DAS is a storage system
that consists of a collection of data storage devices (for
example, a number of hard disk drives). These devices
are connected directly to a computer through a host bus
adapter (HBS) with no storage network between them
and the computer. DAS is a simple storage extension to
an existing server.

o Network Attached Storage (NAS): NAS is file-level stor-
age that contains many hard drives arranged into logi-
cal, redundant storage containers. Compared with SAN,
NAS provides both storage and a file system, and can
be considered as a file server, whereas SAN is volume
management utilities, through which a computer can
acquire disk storage space.

o Storage Area Network (SAN): SANs are dedicated net-
works that provide block-level storage to a group of com-
puters. SANs can consolidate several storage devices,
such as disks and disk arrays, and make them accessible
to computers such that the storage devices appear to be
locally attached devices.

The networking architecture of these three technologies is
shown in Fig. 9. The SAN scheme possesses the most com-
plicated architecture, depending on the specific networking
devices.

Server\

- Server Servel)
[ Serveri

LAN or WAN
network

SCSl or fiber|

Channel Nework

iittached Storaﬁe
Disk Device 4
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FIGURE 9. Network architecture of storage systems. It can be organized
into three different architectures, including direct attached storage,
network attached storage, and storage area network. (a) DAS. (b) NAS (file
oriented). (c) SAN (block oriented).

Finally, existing storage system architecture has been a hot
research area but might not be directly applicable to big data
analytics platform. In response to the “4V”’ nature of the big
data analytics, the storage infrastructure should be able to
scale up and out and be dynamically configured to accom-
modate diverse applications. One promising technology to
address these requirements is storage virtualization, enabled
by the emerging cloud computing paradigm [127]. Storage
virtualization is the amalgamation of multiple network stor-
age devices into what appears to be a single storage device.
Currently, storage virtualization [128] is achieved with SAN

VOLUME 2, 2014



H. Hu et al.: Toward Scalable Systems for Big Data Analytics

IEEE Access

practical innovations : open solutions

Programming
Model | MapReduce | Pregel | Dryad || GraphLab |
| BigTable | Dynamo |MongoDB || Spanner

‘ File System
| GFS | | Haystack

FIGURE 10. Data management technology.
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or NAS architecture. SAN-based storage virtualization can
gain better performance than the NAS architecture in terms of
scalability, reliability, and security. However, SAN requires a
professional storage infrastructure, which comes at a higher
cost.

B. DATA MANAGEMENT FRAMEWORK

The data management framework concerns how to organize
the information in a convenient manner for efficient process-
ing. Data management frameworks were actively researched,
even before the era of big data. In this survey, we adopt a lay-
ered view of current research efforts in this field, classifying
the data management framework into three layers that con-
sist of file systems, database technology, and programming
models, as illustrated in Fig. 10. These layers are elaborated
below.

1) FILE SYSTEMS

The file system is the basis of big data storage and there-
fore attracts great attention from both industry and academy.
In this subsection, we only consider examples that are either
open source or designed for enterprise use.

Google designed and implemented GFS as a scalable dis-
tributed file system [31] for large distributed data intensive
applications. GFS runs on inexpensive commodity servers
to provide fault tolerance and high performance to a large
number of clients. It is suitable for applications with large
file sizes and many more read operations than write oper-
ations. Some disadvantages of GFS, such as single point
failure and poor performance for small size files, have been
overcome in the successor to GFS that is known as Colos-
sus [129]. Additionally, other companies and researchers
have developed their own solutions to fulfill distinct big
data storage requirements. HDFS [130] and Kosmosfs [131]
are open source derivatives of GFS. Microsoft created Cos-
mos [132] to support its search and advertisement busi-
nesses. Facebook implemented Haystack [133] to store a
massive amount of small-file photos. Two similar distributed
file systems for small files, the Tao File System (TFS)
[134] and FastDFS [135], have been proposed by Taobao.
In summary, distributed file systems are relatively mature
after a long period of large-scale commercial operation.
Therefore, in this section, we emphasize the remaining two
layers.
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2) DATABASE TECHNOLOGIES

Database technology has gone through more than three
decades of development. Various database systems have been
proposed for different scales of datasets and diverse appli-
cations. Traditional relational database systems obviously
cannot address the variety and scale challenges required
by big data. Due to certain essential characteristics, includ-
ing being schema free, supporting easy replication, pos-
sessing a simple API, eventual consistency and supporting
a huge amount of data, the NoSQL database is becom-
ing the standard to cope with big data problems. In this
subsection, we mainly focus on three primary types of
NoSQL databases that are organized by the data model, i.e.,
key-value stores, column-oriented databases, and document
databases.

®--¥
@ @ Nodes B, C
. andpstore
@ @ keys(/;r,]éa)mge
including K

FIGURE 11. Partitioning and replication of keys in Dynamo ring [136].

a: KEY-VALUE STORES

Key-value stores have a simple data model in which data are
stored as a key-value pair. Each of the keys is unique, and
the clients put on or request values for each key. Key-value
databases that have emerged in recent years have been heavily
influenced by Amazon’s Dynamo [136]. In Dynamo, data
must be partitioned across a cluster of servers and replicated
to multiple copies. The scalability and durability rely on
two key mechanisms: partitioning and replication and object
versioning.

o Fartitioning and Replication: Dynamo’s partitioning
scheme relies on consistent hashing [137] to distribute
the load across multiple storage hosts. In this mecha-
nism, the output range of a hash function is treated as a
fixed circular space or ‘“‘ring.”” Each node in the system is
assigned a random value within this space, which repre-
sents its ““position”” on the ring. Each data item identified
by a key is mapped to a node by hashing the data item’s
key to yield the node’s position on the ring. Each data
item in the Dynamo system is stored in its coordinator
node, and replicated at N — 1 successors, where N is
a parameter configured per instance. As illustrated in
Fig. 11, node B is a coordinator node for the key k,
and the data will be replicated at nodes C and D, in
addition to being stored at node B. Additionally, node D
will store the keys that fall in the ranges (A, B], (B, C1],
and (C, D].

o Object Version: Because there are multiple replications
for each unique data item, Dynamo allows updates to
be propagated to all replicas asynchronously to provide
eventual consistency. Each update is treated as a new
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and immutable version of the data. Multiple versions of
an object are presented in the system concurrently, and
newer versions subsume previous versions.

Other key-value stores include Voldemort [138],
Redis [139], Tokyo Cabinet [140] and Tokyo Tyrant [141],
Memcached [142] and MemcacheDB [143], Riak [144],
and Scalaris [145]. Voldemort, Riak, tokyo Cabinet and
Memecached can store data in RAM or on disk with storage
add-ons. The others store in RAM and provide disk as backup,
or rely on replication and recovery to eliminate the need for
a backup.

b: COLUMN ORIENTED DATABASES

Column-oriented databases store and process data by column
instead of by row. Both rows and columns will be split over
multiple nodes to achieve scalability. The main inspiration for
column-oriented databases is Google’s Bigtable, which will
be discussed first, followed by several derivatives.

"contents:” "anchor:cnnsi.com”  "anchor:my.look.ca”
/ | |

o]

"com.cnn.www" — =himis

FIGURE 12. Bigtable data model [146].

o Bigtable [146]: The basic data structure of Bigtable is a
sparse, distributed, persistent multi-dimensional sorted
map. The map is indexed by a row key, a column key and
a timestamp. Rows are kept in lexicographic order and
are dynamically partitioned into tablets, which represent
the unit of distribution and load balancing. Columns
are grouped by their key prefix into sets called column
families that represent the basic unit of access control.
A timestamp is used to differentiate reversions of a
cell value. Fig. 12 illustrates an example for storing a
large collection of webpages in a single table, in which
URLs are used as row keys and various aspects of web-
pages are used as column names. The contents of the
webpages associated with multiple versions are stored
in a single column. Bigtable’s implementation consists
of three major components per instance: master server,
tablet server, and client library. One master server is
allocated for each Bigtable runtime and is responsible for
assigning tablets to tablet servers, detecting added and
removed tablet servers, and distributing the workload
across tablet servers. Furthermore, the master server
processes changes in the Bigtable schema, such as the
creation of tables and column families, and collects
garbage, i.e., deleted or expired files that are stored in
GFS for the particular Bigtable instance. Each tablet
server manages a set of tablets, handles read and write
requests for tablets, and splits tablets that have grown
too large. A client library is provided for applications
to interact with Bigtable instances. Bigtable depends
on a number of technologies in Google’s infrastructure,
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including GFS [31], a cluster management system, an
SSTable file format and Chubby [147].

o Cassandra [148]: Cassandra, developed by Facebook
and open-sourced in 2008, brings together the distributed
system technologies from Dynamo and the data model
from Bigtable. In particular, a table in Cassandra is a dis-
tributed multi-dimensional map structured across four
dimensions: rows, column families, columns, and super
columns. The partition and replication mechanisms of
Cassandra are similar to those of Dynamo, which guar-
antees eventual consistency.

o Bigtable Derivatives: Because the Bigtable code is not
available under an open source license, open source
projects, such as HBase [149] and Hyper-table Hyper-
table [150], have emerged to implement similar systems
by adopting the concepts described in the Bigtable
subsection.

Column-oriented databases are similar because they are
mostly patterned after Bigtable but differ in concurrency
mechanisms and other features. For instance, Cassandra
focuses on weak concurrency via multi-version concurrency
control, whereas HBase and HyperTable focus on strong
consistency via locks and logging.

¢: DOCUMENT DATABASES

Document stores support more complex data structures than
key-value stores. There is no strict schema to which docu-
ments must conform, which eliminates the need of schema
migration efforts. In this paper, MongoDB, SimpleDB, and
CouchDB are investigated as the three major representatives.
The data models of all the document stores resemble the
JSON [151] object. Fig. 13 shows a wiki article represented
in the MongoDB [152] document format. The major differ-
ences in the document stores are in the data replication and
consistency mechanisms, which are explained below.

title: “MongoDB”,

last_editor: “172.5.123.91",

last_modified: new Date(“9/23/2013”),

body: “MongoDbisa ...”

categories: [“Database”, “NoSQL”, “Document Databases”],
reviewed: false

}

FIGURE 13. MongoDB data model [146].

e Replication and Sharding: Replication in MongoDB
is implemented using a log file on the master node
that contains all high-level operations performed in the
database. In a replication process, slaves ask the master
for all write operations since their last synchronization
and perform the operations from the log on their own
local database. MongoDB supports horizontal scaling
via automatic sharding to distribute data across thou-
sands of nodes with automatic balancing of the load
and automatic failover. SimpleDB simply replicates all
data onto different machines in different data centers

VOLUME 2, 2014



H. Hu et al.: Toward Scalable Systems for Big Data Analytics

IEEE Access

practical innovations : open solutions

TABLE 5. Design decision for NoSQL storage systems.

| Data Model |  Name | Producer | Data Storage | Concurrency Control [ CAP Option | Consistency
Key-Value Dynamo Amazon Plug-in MVCC AP Eventually Consistent
Voldemort Linkeld RAM MVCC AP Eventually Consistent
Redis Salvatore Sanfilippo RAM Locks AP Eventually Consistent
Column BigTable Google Google File Systems Locks + stamps CP Eventually Consistent
Cassandra Facebook Disk MVCC AP Eventually Consistent
Hbase Apache HDFS Locks CpP Eventually Consistent
Hypertable Hypertable Plug-in Locks AP Eventually Consistent
Document SimpleDB Amazon S3 (Simple Storage Solution) None AP Eventually Consistent
MongoDB 10gen Disk Locks AP Eventually Consistent
CouchDB Couchbase Disk MVCC AP Eventually Consistent
\ Row | PNUTS | Yahoo | Disk | MVCC | AP | Timeline consistent |

to ensure safety and increase performance. CouchDB
uses optimistic replication to achieve scalability with no
sharding mechanism currently. Each CouchDB database
can be synchronized to another instance; thus, any type
of replication topology can be built.

e Consistency: Both MongoDB and SimpleDB have
no version concurrency control and no transaction
management mechanisms, but they provide eventual
consistency. The type of consistency of CouchDB
depends on whether the master-master or master-slave
configuration is used. In the former scenario, CouchDB
provides eventual consistency; otherwise, CouchDB is
able to guarantee strong consistency.

d: OTHER NoSQL AND HYBRID DATABASES

In addition to the aforementioned data stores, many other
variant projects have been implemented to support differ-
ent types of data stores, such as graph stores (Neo4j [153],
DEX [154]) and PNUTS [155].

Because relational databases and NoSQL databases have
their own advantages and disadvantages, one idea is to com-
bine the two patterns to gain advanced performance. Follow-
ing this trend, Google recently developed several databases
to integrate the advantages of NoSQL and SQL databases,
including the following.

o Megastore [156] blends the scalability of NoSQL data
stores with the convenience of traditional RDBMSs to
achieve both strong consistency and high availability.
The design concept is that Megastore partitions the data
store, replicates each partition separately, and provides
full ACID semantics within partitions but only limited
consistency guarantees across partitions. Megastore pro-
vides only limited traditional database features that can
scale within user-tolerable latency limits and only with
the semantics that the partitioning scheme can support.
The data model of Megastore lies between the abstract
tuple of an RDBMS and the concrete row-column
storage of NoSQL. The underlying data storage of
Megastore relies on Bigtable.

o Spanner [157] is the first system to distribute data on
a global scale and support externally consistent dis-
tributed transactions. Unlike the versioned key-value
store model in Bigtable, Spanner has evolved into a tem-
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poral multi-version database. Data are stored in schema-
tized semi-relational tables and are versioned, and each
version is automatically time stamped with its commit
time. Old versions of data are subject to configurable
garbage-collection policies. Applications can read data
at old timestamps. In Spanner, the replication of data at a
fine grain can be dynamically controlled by applications.
Additionally, data are re-sharded across machines or
even across data centers to balance loads and in response
to failures. The salient features of Spanner are the exter-
nally consistent reads and writes and the globally con-
sistent reads across the database at a timestamp.

o F1[158], built on Spanner, is Google’s new database for
advertisement business. F1 implements rich relational
database features, including a strictly enforced schema,
a powerful parallel SQL query engine, general transac-
tions, change tracking and notifications, and indexing.
The store is dynamically sharded, supports transaction-
ally consistent replication across data centers, and can
handle data center outages without data loss.

e: COMPARISON OF NoSQL DATABASES

Even with so many kinds of databases, no one can be
best for all workloads and scenarios, different databases
make distinctive tradeoffs to optimize specific performance.
Cooper et al. [159] discussed the tradeoffs faced in cloud
based data management systems, including read performance
versus write performance, latency versus durability, syn-
chronous versus asynchronous replication, and data partition-
ing. Some other design metrics have also been argued in
[160]-{162]. This paper will not attempt to argue the metrics
of particular systems. Instead, Table 5 compares some salient
features of the surveyed systems as follows.

o Data Model: This paper mainly focuses on three primary
data models, i.e., key-value, column, and document.
Data model in PNUTS is row oriented.

o Data Storage: Some systems are designed for storage in
RAM with snapshots or replication to disk, while others
are designed for disk storage with cache in RAM. A few
systems have a pluggable back end allowing different
data storage media, or they require a standardized under-
lying file system.

o Concurrency Control: There are three concurrency con-
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trol mechanisms in the surveyed systems, locks, MVCC,
and none. Locks mechanism allows only one user at a
time to read or modify an entity (an object, document,
or row). MVCC mechanism guarantees a read-consistent
view of the database, but resulting in multiple conflict-
ing versions of an entity if multiple users modify it at
the same time. Some systems do not provide atomicity,
allowing different users to modify different parts of the
same object in parallel, and giving no guarantee as to
which version of data you will get when you read.

o CAP Option: CAP theorem [163], [164] reveals that
a shared data system can only choose at most two of
three properties: consistency, availability, and tolerance
to partitions. To deal with partial failures, cloud based
databases also replicate data over a wide area, this essen-
tially leaves just consistency and availability to choose.
Thus, there is a tradeoff between consistency and avail-
ability. Various forms of weak consistency models [165]
have been implemented to yield reasonable system avail-
ability.

o Consistency: Strict consistency cannot be achieved
together with availability and partition tolerance accord-
ing to CAP theorem. Two types of weak consistency,
eventually consistency and timeline consistency, are
commonly adopted. Eventual consistency means all
updates can be expected to propagate through the system
and the replicas will be consistent under the given long
time period. Timeline consistency refers to all replicas
of a given record apply all updates to the record in the
same order [155].

In general,it is hard to maintain ACID guarantees in big data
applications. The choice of data management tools depends
on many factors including the aforementioned metrics. For
instance, data model associates with the data sources; data
storage devices affect the access rate. Big data storage system
should find the right balance between cost, consistency and
availability.

3) PROGRAMMING MODELS

Although NoSQL databases are attractive for many reasons,
unlike relational database systems, they do not support declar-
ative expression of the join operation and offer limited sup-
port of querying and analysis operations. The programming
model is critical to implementing the application logics and
facilitating the data analysis applications. However, it is diffi-
cult for traditional parallel models (like OpenMP [166] and
MPI [167]) to implement parallel programs on a big data
scale, i.e., hundreds or even thousands of commodity servers
over a wide area. Many parallel programming models
have been proposed to solve domain-specific applications.
These efficient models improve the performance of NoSQL
databases and lessen the performance gap with relational
databases. NoSQL databases are already becoming the cor-
nerstone of massive data analysis. In particular, we discuss
three types of process models: the generic processing model,
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the graph processing model, and the stream processing model.

o Generic Processing Model: This type of model

addresses general application problems and is used in
MapReduce [13] and its variants, and in Dryad [42].
MapReduce is a simple and powerful programming
model that enables the automatic paralleling and distri-
bution of large-scale computation applications on large
clusters of commodity PCs. The computational model
consists of two user-defined functions, called Map and
Reduce. The MapReduce framework groups together all
intermediate values associated with the same interme-
diate key / and passes them to the Reduce function.
The Reduce function receives an intermediate key [
and its set of values and merges them to generate a
(typically) smaller set of values. The concise MapRe-
duce framework only provides two opaque functions,
without some of the most common operations (e.g.,
projection and filtering). Adding the SQL flavor on top
of the MapReduce framework is an efficient way to make
MapReduce easy to use for traditional database pro-
grammers skilled in SQL. Several high-level language
systems, such as Google’s Sawzall [168], Yahoo’s Pig
Latin [169], Facebook’s Hive [170], and Microsoft’s
Scope [132], have been proposed to improve program-
mersar’ productivity.
Dryad is a general-purpose distributed execution engine
for coarse-grain data parallel applications. A Dryad job
is a directed acyclic graph in which each vertex is a
program and edges represent data channels. Dryad runs
the job by executing the vertices of this graph on a set
of computers, communicating through data channels,
including files, TCP pipes, and shared-memory FIFOs.
The logical computation graph is automatically mapped
onto physical resources in the runtime. The MapReduce
programming model can be viewed as a special case
of Dryad in which the graph consists of two stages:
the vertices of the map stage shuffle their data to the
vertices of the reduce stage. Dryad has its own high-level
language called DryadLINQ [171] to generalize execu-
tion environments such as the aforementioned SQL-like
languages.

o Graph Processing Model: A growing class of appli-
cations (e.g., social network analysis, RDF) can be
expressed in terms of entities related to one another and
captured using graphic models. In contrast to flow-type
models, graph processing iterative by nature, and the
same dataset may have to be revisited many times. We
mainly consider Pregel [43] and GraphLab [172].
Google’s Pregel specializes in large-scale graph com-
puting, such as web graph and social network analysis.
The computational task is expressed as a directed graph,
which consists of vertices and directed edges. Each
vertex is associated with a modifiable and user-defined
value. The directed edges are associated with their
source vertices, and each edge consists of an alterable
value and a target vertex identifier. After the initializa-
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TABLE 6. Feature summary of programming models.

\ | MapReduce | Dryad Pregel | GraphLab | Storm | S4 |
Application | general  purpose | general  purpose | large scale graph | large scale machine | distributed stream- | distributed stream-
parallel execution | parallel execution | processing learning  and  data | ing processing ing processing
engine engine mining
Programming Map and Reduce directed  acyclic | directed graph directed Graph directed  acyclic | directed  acyclic
Model graph graph graph
Parallelism concurrent execu- | concurrent concurrent execu- | concurrent — execution | worker processes | worker processes
tion within map | execution of | tion over vertices | of non-overlapping | and executors and executors
and reduce phases vertices during a | within a superstep scopes, defined by
stage consistency model
Data Han- | distributed file sys- | various storage | distributed file sys- | memory or disk memory memory
dling tem media tem
Architecture | master-slaves master-slaves master-slaves master-slaves master-slaves decentralized and
symmetric
Fault Toler- | node level fault | node level fault | checkpointing checkpointing partial fault toler- | partial fault toler-
ance tolerance tolerance ance ance

tion of the graph, programs are executed as a sequence
of iterations, called supersteps, that are separated by
global synchronization points until the algorithm termi-
nates with the output. Within each superstep, the vertices
execute the same user-defined function in parallel that
expresses the logic of a given algorithm. A vertex can
modify its state or that of its outgoing edges, receive
messages transmitted to it in the previous superstep, send
messages to other vertices, or even mutate the topology
of the graph. An edge has no associated computation.
A vertex can deactivate itself by voting to halt. When all
the vertices are simultaneously inactive and there is no
message in transit, the entire program terminates. The
result of a Pregel program is the set of output values
by the vertices, which is frequently a directed graph
isomorphic to the input.

GraphLab is another graph-processing model, which
targets parallel machine learning algorithms. The
GraphLab abstraction consists of three components: the
data graph, the update function, and the sync operation.
The data graph is a container that manages user defined
data, including model parameters, algorithm state, and
even statistical data. The update function is a stateless
procedure that modifies the data within the scope of
a vertex and schedules the future execution of update
functions on other vertices. Finally, the sync operation
concurrently maintains global aggregates. The key dif-
ference between Pregel and GraphLab is found in their
synchronization models. Pregel has a barrier at the end
of every iteration and all vertices should reach a global
synchronization status after iteration, whereas GraphLab
is completely asynchronous, leading to more complex
vertices. GraphLab proposes three consistency models,
full, edge, and vertex consistency, to allow for different
levels of parallelism.

o Stream Processing Model: S4 [36] and Storm [35] are
two distributed stream processing platforms that run on
the JVM. S4 implements the actors programming model.
Each keyed tuple in the data stream is treated as an event
and routed with an affinity to processing elements (PEs).

VOLUME 2, 2014

PEs form a directed acyclic graph and take charge of
processing the events with certain keys and publishing
results. Processing nodes (PNs) are the logical hosts to
PEs and are responsible for listening to events and pass-
ing incoming events to the processing element container
(PEN), which invokes the appropriate PEs in the appro-
priate order. Storm shares many feature with S4. A Storm
job is also represented by a directed graph, and its fault
tolerance is partial as a result of the streaming channel
between vertexes. The main difference between S4 and
Storm is the architecture: S4 adopts a decentralized and
symmetric architecture, whereas Storm is a master-slave
system such as MapReduce.

Table 6 shows a feature comparison of the programming
models discussed above. First, although real-time processing
is becoming more important, batch processing remains the
most common data processing paradigm. Second, most of the
systems adopt the graph as their programming model because
the graph can express more complex tasks. Third, all the
systems support concurrent execution to accelerate process-
ing speed. Fourth, streaming processing models utilize mem-
ory as the data storage media to achieve higher access and
processing rates, whereas batch-processing models employ
a file system or disk to store massive data and support
multiple visiting. Fifth, the architecture of these systems is
typically master-slave; however, S4 adopts a decentralized
architecture. Finally, the fault tolerance strategy is different
for different systems. For Storm and S4, when node fail-
ure occurs, the processes on the failed node are moved to
standby nodes. Pregel and GraphLab use checkpointing for
fault tolerance, which is invoked at the beginning of certain
iterations. MapReduce and Dryad support only node-level
fault tolerance.

In addition, other research has focused on programming
models for more specific tasks, such as cross joining two
sets [173], iterative computation [174], [175], in-memory
computation with fault-tolerance [176], incremental compu-
tation [177]-{180], and data-dependent flow control decision
[181].
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VII. PHASE IV: DATA ANALYSIS

The last and most important stage of the big data value
chain is data analysis, the goal of which is to extract useful
values, suggest conclusions and/or support decision-making.
First, we discuss the purpose and classification metric of data
analytics. Second, we review the application evolution for
various data sources and summarize the six most relevant
areas. Finally, we introduce several common methods that
play fundamental roles in data analytics.

A. PURPOSE AND CATEGORIES

Data analytics addresses information obtained through obser-
vation, measurement, or experiments about a phenomenon
of interest. The aim of data analytics is to extract as much
information as possible that is pertinent to the subject under
consideration. The nature of the subject and the purpose
may vary greatly. The following lists only a few potential
purposes:

« To extrapolate and interpret the data and determine how
to use it,

o To check whether the data are legitimate,

« To give advice and assist decision-making,

« To diagnose and infer reasons for fault, and

o To predict what will occur in the future.

Because of the great diversity of statistical data, the meth-
ods of analytics and the manner of application differ sig-
nificantly. We can classify data into several types according
to the following criteria: qualitative or quantitative with the
property of the observation or measurement and univariate or
multivariate according to the parameter count. Additionally,
there have been several attempts to summarize the domain-
related algorithms. Manimon et al. [182] presented a taxon-
omy of data-mining paradigms. In this taxonomy, data mining
algorithms can be categorized as descriptive, predictive, and
verifying. Bhatt et al. [183] categorized multimedia analytics
approaches into feature extraction, transformation, represen-
tation, and statistical data mining. However, little effort has
been made to classify the entire field of big data analytics.
Blackett et al. [184] classified data analytics into three lev-
els according to the depth of analysis: descriptive analytics,
predictive analytics, and prescriptive analytics.

o Descriptive Analytics: exploits historical data to describe
what occurred. For instance, a regression may be used to
find simple trends in the datasets, visualization presents
data in a meaningful fashion, and data modeling is used
to collect, store and cut the data in an efficient way.
Descriptive analytics is typically associated with busi-
ness intelligence or visibility systems.

o Predictive Analytics: focuses on predicting future prob-
abilities and trends. For example, predictive modeling
uses statistical techniques such as linear and logistic
regression to understand trends and predict future out-
comes, and data mining extracts patterns to provide
insight and forecasts.

e Prescriptive Analytics: addresses decision making and
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efficiency. For example, simulation is used to analyze
complex systems to gain insight into system behavior
and identify issues and optimization techniques are used
to find optimal solutions under given constraints.

B. APPLICATION EVOLUTION

More recently, big data analytics has been proposed to
describe the advanced analysis methods or mechanisms for
massive data. In fact, data-driven applications have been
emerging for the past few decades. For example, business
intelligence became a popular term in business communities
early in the 1990s and data mining-based web search engines
arose in the 2000s. In the following, we disclose the evolution
of data analysis by presenting high impact and promising
applications from typical big data domains during different
time periods.

1) BUSINESS APPLICATION EVOLUTION

The earliest business data were structured data, which are
collected by companies and stored in relational database
management systems. The analysis techniques used in these
systems, which were popularized in the 1990s, are commonly
intuitive and simple. Gartner [185] summarized the most
common business intelligence methods, including reporting,
dashboards, ad hoc queries, search-based business intelli-
gence, online transaction processing, interactive visualiza-
tion, scorecards, predictive modeling, and data mining. Since
the early 2000s, the Internet and the web offered a unique
opportunity for organizations to present their businesses
online and interact with customers directly. An immense
amount of products and customer information, including
clickstream data logs and user behavior, can be gathered from
the web. Using various text and web mining techniques in
analysis, product placement optimization, customer transac-
tion analysis, product recommendations, and market structure
analysis can be undertaken. As reported [186], the number of
mobile phones and tablets surpassed the number of laptops
and PCs for the first time in 2011. Mobile phones and the
Internet of Things created additional innovative applications
with distinctive features, such as location awareness, person-
centered operation, and context relevance.

2) NETWORK APPLICATION EVOLUTION

The early network mainly provided email and website ser-
vice. Thus, text analysis, data mining and webpage analysis
techniques were widely adopted to mine email content, con-
struct search engines, etc. Currently, almost all applications,
regardless of their purpose or domains, run on a network.
Network data has dominated the majority of global data
volumes. The web is a growing universe with interlinked
webpages that is teeming with diverse types of data, including
text, images, videos, photos, and interactive content. Various
advanced technologies for semi-structured or unstructured
data have been proposed. For example, image analysis can
extract meaningful information from photos and multimedia
analysis techniques can automate video surveillance systems
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in commercial, law enforcement, and military applications.
After 2004, online social media, such as forums, groups,
blogs, social network sites, and multimedia sharing sites,
offer attractive opportunities for users to create, upload, and
share an abundant amount of user-generated content. Mining
everyday events, celebrity chatter, and socio-political sen-
timents expressed in these media from a diverse customer
population provides timely feedback and opinions.

3) SCIENTIFIC APPLICATION EVOLUTION

Many areas of scientific research are reaping a huge
volume of data from high throughput sensors and instru-
ments, from the fields of astrophysics and oceanog-
raphy to genomics and environmental research. The
National Science Foundation (NSF) recently announced
the BIGDATA program solicitation [187] to facilitate infor-
mation sharing and data analytics. Several scientific
research disciplines have previously developed massive
data platform and harvested the resulting benefits. For
example, in biology, iPlant [188] is using cyberinfras-
tructure, physical computing resources, a collaborative
environment, virtual machine resources and interoperable
analysis software and data services to support a community
of researchers, educators, and students working to enrich all
plant sciences. The iPlant data set is diverse and includes
canonical or reference data, experimental data, simulation and
model data, observational data, and other derived data.

From the above description, we can classify data analyt-
ics research into six critical technical areas: structured data
analysis, text analytics, web analytics, multimedia analytics,
network analytics, and mobile analytics. This classification is
intended to highlight the data characteristics; however, a few
of these areas may leverage similar underlying technologies.
Our aim is to provide an understanding of the primary prob-
lems and techniques in the data analytics field, although being
exhaustive is difficult because of the extraordinarily broad
spectrum of data analytics.

C. COMMON METHODS

Although the purpose and application domains differ, some
common methods are useful for almost all of the anal-
ysis. Below, we discuss three types of data analysis
methods.

o Data visualization: is closely related to information
graphics and information visualization. The goal of data
visualization is to communicate information clearly and
effectively through graphical means [189]. In general,
charts and maps help people understand information
easily and quickly. However, as the data volume grows to
the level of big data, traditional spreadsheets cannot han-
dle the enormous volume of data. Visualization for big
data has become an active research area because it can
assist in algorithm design, software development, and
customer engagement. Friedman [190] and Frits [191]
summarized this field from the information representa-
tion and computer science perspectives, respectively.
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o Statistical analysis: is based on statistical theory, which
is a branch of applied mathematics. Within statistical
theory, randomness and uncertainty are modeled by
probability theory. Statistical analysis can serve two
purposes for large data sets: description and infer-
ence. Descriptive statistical analysis can summarize or
describe a collection of data, whereas inferential statis-
tical analysis can be used to draw inferences about the
process. More complex multivariate statistical analysis
[192] uses analytical techniques such as aggression ,
factor analysis, clustering, and discriminant analysis.

e Data mining: is the computational process of discov-
ering patterns in large data sets. Various data mining
algorithms have been developed in the artificial intelli-
gence, machine learning, pattern recognition, statistics,
and database communities. During the 2006 IEEE Inter-
national Conference on Data Mining (ICDM), the ten
most influential data mining algorithms were identified
based on rigorous election [193]. In ranked order, these
algorithms are C4.5, k-means, SVM (Support Vector
Machine), a priori, EM (Expectation Maximization),
PageRank, AdaBoost, kNN, Naive Bayes, and CART.
These ten algorithms cover classification, clustering,
regression, statistical learning, association analysis and
link mining, which are all among the most important
topics in research on data mining. In addition, other
advanced algorithms, such as neural network and genetic
algorithms, are useful for data mining in different appli-
cations.

VIII. CASES IN POINT OF BIG DATA ANALYTICS
According to the application evolution depicted in the
previous section, we discuss six types of big data application,
organized by data type: structured data analytics, text analyt-
ics, web analytics, multimedia analytics, network analytics,
and mobile analytics.

A. STRUCTURED DATA ANALYTICS

A large quantity of structured data is generated in the business
and scientific research fields. Management of these structured
data relies on the mature RDBMS, data warehousing, OLAP,
and BPM [46]. Data analytics is largely grounded in data
mining and statistical analysis, as described above. These
two fields have been thoroughly studied in the past three
decades. Recently, deep learning, a set of machine-learning
methods based on learning representations, is becoming an
active research field. Most current machine-learning algo-
rithms depend on human-designed representations and input
features, which is a complex task for various applications.
Deep-learning algorithms incorporate representation learning
and learn multiple levels of representation of increasing com-
plexity/abstraction [194].

In addition, many algorithms have been successfully
applied to emerging applications. Statistical machine learn-
ing, based on precise mathematical models and powerful
algorithms, has already been applied in anomaly detec-
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tion [195] and energy control [196]. Utilizing data charac-
teristics, temporal and spatial mining can extract knowledge
structures represented in models and patterns for high-speed
data streams and sensor data [197]. Driven by privacy con-
cerns in e-commerce, e-government, and healthcare applica-
tions, privacy-preserving data mining [198] is becoming an
active research area. Over the past decade, because of the
growing availability of event data and process discovery and
conformance-checking techniques, process mining [199] has
emerged as a new research field that focuses on using event
data to analyze processes.

B. TEXT ANALYTICS

Text is one of the most common forms of stored information
and includes e-mail communication, corporate documents,
webpages, and social media content. Hence, text analytics is
believed to have higher commercial potential than structured
data mining. In general, text analytics, also known as text min-
ing, refers to the process of extracting useful information and
knowledge from unstructured text. Text mining is an inter-
disciplinary field at the intersection of information retrieval,
machine learning, statistics, computational linguistics, and,
in particular, data mining. Most text mining systems are based
on text representation and natural language processing (NLP),
with emphasis on the latter.

Document presentation and query processing are the foun-
dations for developing the vector space model, Boolean
retrieval model, and probabilistic retrieval model [200].
These models in turn have become the basis of search
engines. Since the early 1990s, search engines have evolved
into mature commercial systems, commonly performing dis-
tributed crawling, efficient inverted indexing, inlink-based
page ranking, and search log analytics.

NLP techniques can enhance the available information
about text terms, allowing computers to analyze, under-
stand, and even generate text. The following approaches are
frequently applied: lexical acquisition, word sense disam-
biguation, part-of-speech tagging, and probabilistic context-
free grammars [201]. Based on these approaches, several
technologies have been developed for text mining, includ-
ing information extraction, topic modeling, summarization,
categorization, clustering, question answering, and opinion
mining. Information extraction refers to the automatic extrac-
tion of specific types of structured information from text.
As a subtask of information extraction, named-entity recog-
nition (NER) aims to identify atomic entities in text that
fall into predefined categories, such as person, location, and
organization. NER has recently been successfully adopted
for news analysis [202] and biomedical applications [203].
Topic models are based upon the idea that documents are
mixtures of topics, in which a topic is a probability dis-
tribution over words. A topic model is a generative model
for documents, which specifies a probabilistic procedure
by which documents can be generated. A variety of prob-
abilistic topic models have been used to analyze the con-
tent of documents and the meaning of words [204]. Text
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summarization generates an abridged summary or abstract
from a single or multiple input text documents and can be
divided into extractive summarization and abstractive sum-
marization [205]. Extractive summarization selects important
sentences and paragraphs from the original document and
concatenates them into a shorter form, whereas abstractive
summarization understands the original text and retells it in
fewer words, based on linguistic methods. The purpose of text
categorization is to identify the main themes in a document
by placing the document into a predefined topic or set of
topics. Graph representation and graph mining-based text
categorization have also been researched recently [206]. Text
clustering is used to group similar documents and differs from
categorization in that documents are clustered as they are
found instead of using predefined topics. In text clustering,
documents can appear in multiple subtopics. Some clustering
algorithms from the data mining community are commonly
used to calculate similarity. However, research has shown
that structural relationship information can be leveraged to
enhance the clustering result in Wikipedia [207]. A question
answering system is primarily designed to determine how
to find the best answer to a given question and involves
various techniques for question analysis, source retrieval,
answer extraction, and answer presentation [208]. Question
answering systems can be applied in many areas, including
education, websites, health, and defense. Opinion mining,
which is similar to sentiment analysis, refers to the compu-
tational techniques for extracting, classifying, understanding,
and assessing the opinions expressed in news, commentaries,
and other user-generated contents. It provides exciting oppor-
tunities for understanding the opinions of the general public
and customers regarding social events, political movements,
company strategies, marketing campaigns, and product
preferences [209].

C. WEB ANALYTICS

Over the past decade, we have witnessed an explosive growth
of webpages, whose analysis has emerged as an active field.
Web analytics aims to retrieve, extract, and evaluate infor-
mation for knowledge discovery from web documents and
services automatically. This field is built on several research
areas, including databases, information retrieval, NLP, and
text mining. We can categorize web analytics into three
areas of interest based on which part of the web is mined:
web content mining, web structure mining, and web usage
mining [210].

Web content mining is the discovery of useful information
or knowledge from website content. However, web content
may involve several types of data, such as text, image, audio,
video, symbolic, metadata, and hyperlinks. Recent research
on mining image, audio, and video is termed multimedia
analytics, which will be investigated in the following section.
Because most of the web content data are unstructured text
data, much of the research effort is centered on text and
hypertext content. Text mining is a well-developed subject,
as described above. Hypertext mining involves mining semi-
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structured HTML pages that have hyperlinks. Supervised
learning or classification plays a key role in hypertext min-
ing, such as in email management, newsgroup management,
and maintaining web directories [211]. Web content mining
commonly takes one of two approaches: information retrieval
or database. The information retrieval approach mainly aims
to assist in information finding or in filtering information to
the users based on either inferred or solicited user profiles.
The database approach models the data on the web and
integrates them so that more sophisticated queries other than
the keyword-based searches might be performed.

Web structure mining is the discovery of the model under-
lying link structures on the web. Here, structure represents the
graph of links in a site or between sites. The model is based on
the topology of the hyperlink with or without link description.
This model reveals the similarities and relationships among
different websites and can be used to categorize websites. The
Page Rank [212] and CLEVER [213] methods exploit this
model to find webpages. Focused crawling [214] is another
example that successfully utilizes this model. The goal of a
focused crawler is to selectively seek out websites that are
related to a predefined set of topics. Rather than collecting
and indexing all accessible web documents, a focused crawler
analyzes its crawl boundary to find links that are likely to be
most relevant for the crawl and avoids irrelevant regions of the
web, which saves significant hardware and network resources
and helps to keep the crawl more up-to-date.

Web usage mining refers to mining secondary data gener-
ated by web sessions or behaviors. Web usage mining differs
from web content mining and web structure mining, which
utilize the real or primary data on the web. The web usage
data includes the data from web server access logs, proxy
server logs, browser logs, user profiles, registration data,
user sessions or transactions, cookies, user queries, bookmark
data, mouse clicks and scrolls, and any other data generated
by the interaction of users and the web. As web services and
web 2.0 systems are becoming more mature and increasing
in popularity, web usage data are becoming more diversified.
Web usage mining plays an important role in personalizing
space, e-commerce, web privacy/security, and several other
emerging areas. For example, collaborative recommendation
systems allow personalization for e-commerce by exploiting
similarities and dissimilarities in user preferences [215].

D. MULTIMEDIA ANALYTICS

Recently, multimedia data, including image, audio, and video,
has grown at a phenomenal rate and is almost ubiquitous.
Multimedia content analytics refers to extracting interest-
ing knowledge and understanding the semantics captured in
multimedia data. Because multimedia data are diverse and
more information-rich than the simple structured data and
text data in most of the domains, information extraction
involves overcoming the semantic gap of multimedia data.
The research in multimedia analytics covers a wide spectrum
of subjects, including multimedia summarization, multimedia
annotation, multimedia indexing and retrieval, multimedia
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recommendation, and multimedia event detection, to name
only a few recent areas of focus.

Audio summarization can be performed by simply extract-
ing salient words or sentences from the original data or
by synthesizing new representations. Video summarization
involves synthesizing the most important or representative
sequences of the video content and can be static or dynamic.
Static video summarization methods use a sequence of key
frames or context-sensitive key frames to represent video.
These methods are simple and have previously been com-
mercialized in Yahoo, Alta Vista and Google; however, they
engender a poor playback experience. Dynamic video sum-
marization methods utilize a sequence of video segments to
represent the video and employ low-level video features and
perform an extra smoothing step to make the final summary
look more natural. [216] proposed a topic-oriented multime-
dia summarization system that is capable of generating text-
based recounting for videos that can be viewed at one time.

Multimedia annotation refers to assigning images and
videos a set of labels that describe their content at syntactic
and semantic levels. With the help of these labels, the manage-
ment, summarization, and retrieval of multimedia content can
be accomplished easily. Because manual annotation is time
consuming and requires intensive labor costs, automatic mul-
timedia annotation with no human interference has attracted
substantial research interest. The main challenge of automatic
multimedia annotation lies in the semantic gap, namely the
gap between low-level features and annotations. Although
significant progress has been made, the performance of cur-
rent automatic annotation methods remains far from satisfac-
tory. Emerging research efforts aim to simultaneously explore
humans and the computer for multimedia annotation [217].

Multimedia indexing and retrieval concerns the descrip-
tion, storage, and organization of multimedia information
to help people find multimedia resources conveniently and
quickly [218]. A general video retrieval framework con-
sists of four steps: structure analysis; feature extraction;
data mining, classification and annotation; and query and
retrieval. Structure analysis aims to segment a video into a
number of structural elements with semantic content, using
shot boundary detection, key frame extraction, and scene
segmentation. Upon obtaining the structure analysis results,
the second step is to extract features-consisting mainly of
features of the key frames, objects, text, and motion for further
mining [219]{221]. This step is the basis of video indexing
and retrieval. Using the extracted features, the goal of data
mining, classification, and annotation is to find patterns of
video content and assign the video into predefined categories
to generate video indices. When a query is received, a similar-
ity measure method is employed to search for the candidate
videos. The retrieval results are optimized by relevance feed-
back.

The objective of multimedia recommendation is to sug-
gest specific multimedia contents for a user based on user
preferences, which has been proven as an effective scheme
to provide high-quality personalization. Most current rec-
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ommendation systems are either content based or collabora-
tive filtering based. Content-based approaches identify com-
mon features of user interest, and recommend to the user
other content that shares similar features. These approaches
fully rely on content similarity measures and suffer from the
problems of limited content analysis and over-specification.
Collaborative filtering-based approaches identify the group
of people who share common interests and recommend
content based on other group members’ behavior [222].
Hybrid approaches [223] exploit the benefits of both collab-
orative filtering and content-based methods to improve the
quality of recommendations.

NIST defines multimedia event detection [224] as detect-
ing the occurrence of an event within a video clip based
on an event kit that contains a text description about the
concept and video examples. The research on video event
detection remains in its infancy. Most current research on
event detection is limited to sports or news events, repetitive
patterns events such as running or unusual events in surveil-
lance videos. Ma et al. [225] proposed a novel algorithm for
ad hoc multimedia event detection, which addresses a limited
number of positive training examples.

E. NETWORK ANALYTICS

Because of the rapid growth of online social networks,
network analysis has evolved from earlier bibliometric analy-
sis [226] and sociology network analysis [227] to the emerg-
ing social network analysis of the early 2000s. Typically,
social networks contain a tremendous amount of linkage and
content data, where linkage data are essentially the graph
structure, representing communications between entities and
the content data contains text, images, and other multimedia
data in the networks. Obviously, the richness of social net-
work data provides unprecedented challenges and opportuni-
ties for data analytics. From the data-centric view, there are
two primary research directions in the context of social net-
works: linkage-based structural analysis and content-based
analysis [228].

Linkage-based structural analysis focuses on areas of link
prediction, community detection, social network evolution,
and social influence analysis, to name a few. Social networks
can be visualized as graphs, in which a vertex corresponds
to a person, and an edge represents certain associations
between the corresponding persons. Because social networks
are dynamic, new vertices and edges are added to the graph
over time. Link prediction aims to forecast the likelihood of
a future association between two nodes. There are a variety
of techniques for link prediction, which can be categorized
into feature-based classifications, probabilistic approaches
and linear algebraic approaches. Feature-based classification
methods choose a set of features for vertex-pairs and employ
current link information to train a binary classifier to predict
future links [229]. Probabilistic approaches model the joint
probability among the vertices in a social network [230].
Linear algebraic approaches calculate the similarities
between the nodes using rank-reduced similarity matri-
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ces [231]. Community refers to a sub-graph structure within
which vertices have a higher density of edges, whereas
vertices between sub-graphs have a lower density. Many
methods have been proposed and compared for community
detection [232], most of which are topology-based and rely
on an objective function that captures the concept of the
community structure. Du et al. [233] utilized the nature of
overlapping communities in the real world and proposed more
efficient community detection in large-scale social networks.
Research on social the evolution of networks aims to find
laws and derive models to explain network evolution. Several
empirical studies [234]-[236] have found that proximity
bias, geographic constraints, and certain other factors play
an important role in the evolution of social networks, and
several generative models [237] have been proposed to assist
the network and system design. Social influence results when
the behavior of individuals is affected by others within the
network. The strength of social influence [238] depends
on many factors, including relationships between persons,
network distance, temporal effects, and characteristics of
networks and individuals. Qualitatively and quantitatively
measuring the influence [239] of one person on others
can greatly benefit many applications, including marketing,
advertising, and recommendation. In general, the perfor-
mance of linkage-based structure analysis can be improved
when the content proliferating over the social networks is
considered.

Because of the revolutionary development of Web 2.0
technology, user-generated content is exploding on social net-
works. The term social media is employed to name such user-
generated content, including blogs, microblogs, photo and
video sharing, social book marketing, social networking sites,
social news and wikis. Social media content contains text,
multimedia, locations and comments. Almost every research
topic on structured data analytics, text analytics, and multi-
media analytics can be translated to social media analytics.
However, social media analytics face certain unprecedented
challenges. First, there are tremendous and ever-growing
social media data, and we must analyze them within a rea-
sonable time constraint. Second, social media data contains
many noisy data. For example, spam blogs are abundant
in the blogosphere, as are trivial tweets in Twitter. Third,
social networks are dynamic, ever-changing and updated
rapidly. In brief, social media is closely adhered to social
networks, the analysis of which is inevitably affected by
social network dynamics. Social media analytics refers to
text analytics and multimedia analytics in the context of the
social network, specifically, the social and network structure
characteristics. Research on social media analytics remains
in its infancy. Applications of text analytics in social net-
works include key word searches, classifications, clustering,
and transfer learning in heterogeneous networks. Keyword
searching utilizes both content and linkage behaviors [240].
Classification assumes that some nodes in social networks
have labels and that these labeled nodes can be used for
classification [241]. Clustering is accomplished by determin-
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ing sets of nodes with similar content [242]. Because social
networks contain a large amount of linked information among
different types of objects, such as articles, tags, images, and
videos, transfer learning in heterogeneous networks aims to
transfer information knowledge across links [243]. In social
networks, multimedia datasets are structured and incorporate
rich information such as semantic ontology, social interaction,
community media, geographical maps, and multimedia
comments. Research on structured multimedia analytics
in social networks is also called multimedia information
networks. The link structures of multimedia information net-
works are primarily logical and play a vital role in multi-
media information networks. There are four categories of
logical link structures in multimedia information networks:
semantic ontologies, community media, personal photograph
albums, and geographical locations [228]. Based on the
logical link structures, we can further improve the results
of the retrieval system [244], the recommendation system
[245], collaborative tagging [246] and other applications
[247], [248].

F. MOBILE ANALYTICS

With the rapid growth of mobile computing [249]-[251],
more mobile terminals (like mobile phones, sensors, RFID)
and applications are deployed globally. Mobile data traffic
reached 885 PBs per month at the end of 2012 [252]. The
huge volume of applications and data leads to the emer-
gence of mobile analytics; however, mobile analytics faces
challenges caused by the inherent characteristics of mobile
data, such as mobile awareness, activity sensitivity, noisiness,
and redundancy richness. Currently, mobile analytics is far
from mature; thus, we investigate only some of the latest and
representative analysis applications.

RFID allows a sensor to read a unique product identifica-
tion code (EPC) associated with a tag from a distance [253].
Tags can be used to identify, locate, track and monitor physi-
cal objects cost effectively. Currently, RFID is widely adopted
in inventory management and logistics. However, RFID data
poses many challenges for data analysis: (i) RFID data are
inherently noisy and redundant; (ii) RFID data are temporal,
streaming, high volume and must be processed on the fly. By
mining the semantics of RFID, including location, aggrega-
tion, and temporal information, we can infer certain primitive
events to track objects and monitor the system status. Further-
more, we can devise application logic as complicated events
and then detect the events to accomplish more advanced
business applications. A shoplifting example that uses high-
level complex events is discussed in [254].

Recent advances in wireless sensors, mobile technolo-
gies, and streaming processing have led to the deployment
of body sensor networks for real-time monitoring of an
individualars health. In general, healthcare data come from
heterogeneous sensors with distinct characteristics, such as
diverse attributes, spatial-temporal relationships, and physi-
ological features. In addition, healthcare information carries
privacy and security concerns with it. Garg et al. [255] pre-

VOLUME 2, 2014

sented a multi-modal analysis mechanism for the raw data
stream to monitor health status in real time. With only highly
aggregated health-related features available, Park et al. [256]
sought a better utilization of such aggregated information
to augment individual-level data. Aggregated statistics over
certain partitions were utilized to identify clusters and impute
features that were observed as more aggregated values. The
imputed features were further used in predictive modeling to
improve performance.

Under the metric discussed above, the vast majority of
analysis belongs to either descriptive analytics or predictive
analytics. Due to the complexity of classification, we only
summarized data analysis approaches from the data life-cycle
perspective, covering data sources, data characteristics, and
approaches, as illustrated in Table 7.

IX. HADOOP FRAMEWORK AND APPLICATIONS

Because of the great success of Google’s distributed file
system and the MapReduce computation model in handling
massive data processing, its clone, Hadoop, has attracted
substantial attention from both industry and scholars alike.
In fact, Hadoop has long been the mainstay of the big
data movement. Apache Hadoop is an open-source software
framework that supports massive data storage and processing.
Instead of relying on expensive, proprietary hardware to store
and process data, Hadoop enables distributed processing of
large amounts of data on large clusters of commodity servers.
Hadoop has many advantages, and the following features
make Hadoop particularly suitable for big data management
and analysis:

o Scalability: Hadoop allows hardware infrastructure to be
scaled up and down with no need to change data formats.
The system will automatically redistribute data and com-
putation jobs to accommodate hardware changes.

o Cost Efficiency: Hadoop brings massively parallel com-
putation to commodity servers, leading to a sizeable
decrease in cost per terabyte of storage, which makes
massively parallel computation affordable for the ever-
growing volume of big data.

o Flexibility: Hadoop is free of schema and able to absorb
any type of data from any number of sources. Moreover,
different types of data from multiple sources can be
aggregated in Hadoop for further analysis. Thus, many
challenges of big data can be addressed and solved.

o Fault tolerance: Missing data and computation failures
are common in big data analytics. Hadoop can recover
the data and computation failures caused by node break-
down or network congestion.

In this section, we describe the core architecture of the

Hadoop software library and introduce some cases both from
industry and the academy.

A. HADOOP SOFTWARE STACKS

The Apache Hadoop software library is a massive computing
framework consisting of several modules, including HDFS,
Hadoop MapReduce, HBase, and Chukwa. These modules
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TABLE 7. Taxonomy of big data analytics.

Analysis Domains Sources

Characteristics

Approaches

Customer transaction records

Structured data analytics Scientific experiments data

Structured records
Less volume and real time

Data mining [193]
Statistical analysis [192]

Logs
Email
Corporate documents
Government Rules and Regulations
Text content of webpages
Citizen feedback and comments

Text analytics

Unstructured
Rich textual
Context
Semantic
Language dependent

Document presentation [200]
NLP [201]
Information extraction [202] [203]
Topic model [204]
Summarization [205]
Categorization [206]
Clustering [207]
Question answering [208]
Opinion mining [209]

Web analytics Various webpages

Integration of text and hyperlink
Symbolic
Metadata

Web content mining [211]
Web structure mining [212] [213] [214]
Web usage mining [215]

Corporation produced multimedia
User generated multimedia
Surveillance
Health and patient media

Multimedia analytics

Image, audio, video
Massive
Redundancy
Semantic gap

Summarization [216]
Annotation [217]
Indexing and retrieval [218]
Recommendation [222] [223]
Event detection [225]

Bibliometric
Sociology network
Social networks

Network analytics

Rich content
Social relationship
Noisy & Redundancy
Fast evolution

Link prediction [229] [230] [231]
Community detection [232] [233]
Network evolution [234] [235] [236] [237]
Influence analysis [238] [239]

Key words search [240]
Classification [241]

Clustering [242]

Transfer learning [243]

. . Mobile apps Location based Monitoring [254] [255] [256]
Mobile analytics Sensors Person specific Location based minin
RFID Fragmented information e
‘ Pig Latin ‘ Hive ‘ ‘ Mahout Query & is the primary data storage substrate of Hadoop applications.
o i Analysis . .

J g | Loeterow [ Bay) [[Ceamind]]| o | TP An HDFS cluster consists of a single NameNode that manages
3 MapReduce § | Compuation the file system metadata, and collections of DataNodes that
a (Computation Model) = . . ..

IR T s - store the actual data. A file is split into one or more blocks,
s (column store) g Data and these blocks are stored in a set of DataNodes. Each block
g HDFS & Storage has several replications distributed in different DataNodes to
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,,,,,, (Hadoop Distributed FleSystem) _JL_ 1 __ _. prevent missing data. Apache HBase is a column-oriented
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(Distributed data collection) (Data Import & Export) ‘ Acquisition store mOdeled after GOOgle S Blgtable' ThllS, ApaChe HBase

FIGURE 14. A hierarchical architecture of Hadoop core software library,
covering the main function of big data value chain, including data import,
data storage and data processing.

fulfill parts of the functions of a big data value chain and
can be orchestrated into powerful solutions for batch-type big
data applications. The layered architecture of the core library
is shown in Fig. 14. We will introduce different modules from
the bottom-up in examining the structure of the big data value
chain.

Apache Flume and Sqoop are two data integration tools
that can accomplish the data acquisition of the big data value
chain. Flume is a distributed system that efficiently collects,
aggregates, and transfers large amounts of log data from
disparate sources to a centralized store. Sqoop allows easy
import and export of data among structured data stores and
Hadoop.

Hadoop HDFS and HBase are responsible for data stor-
age. HDFS is a distributed file system developed to run on
commodity hardware that references the GFS design. HDFS
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provides Bigtable-like capabilities as discussed in the last
section VI above on top of HDFS. HBase can serve both as
the input and the output for MapReduce jobs run in Hadoop
and may be accessed through Java API, REST, Avor or Thrift
APIs.

Hadoop MapReduce is the computation core for massive
data analysis and is also modeled after Google’s MapReduce.
The MapReduce framework consists of a single master
JobTracker and one slave TaskTracker per cluster node.
The master is responsible for scheduling jobs for the slaves,
monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master. The MapReduce
framework and HDFS run on the same set of nodes, which
allows tasks to be scheduled on the nodes in which data are
already present.

Pig Latin and Hive are two SQL-like high-level declara-
tive languages that express large data set analysis tasks in
MapReduce programs. Pig Latin is suitable for data flow
tasks and can produce sequences of MapReduce programs,
whereas Hive facilitates easy data summarization and ad hoc
queries. Mahout is a data mining library implemented on
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TABLE 8. Hadoop module summarization.

| Function | Module | Description
Data Acquisition Flume Data collection from disparate
sources to a centralized store
Sqoop Data import and export between
structured stores and Hadoop
Data Storage HDFS Distributed file system
Hbase Column-based data store
Computation MapReduce | group-aggregation computation
framework
Query & Analysis | Pig Latin SQL-like language for data flow
tasks
Hive SQL-like language for data query
Mahout data mining library
Management Zokeeper service configuration, synchroniza-
tion, etc.
Chukwa system monitoring

top of Hadoop that uses the MapReduce paradigm. Mahout
contains many core algorithms for clustering, classification,
and batch-based collaborative filtering.

Zookeeper and Chukwa are used to manage and monitor
distributed applications that run on Hadoop. Specifically,
Zookeeper is a centralized service for maintaining configura-
tion, naming, providing distributed synchronization, and pro-
viding group services. Chukwa is responsible for monitoring
the system status and can display, monitor, and analyze the
data collected.

Table 8 presents a quick summary of the function classi-
fication of Hadoop modules, covering most parts of the big
data value chain. Under this classification, Flume and Sqoop
fulfill the function of data acquisition, HDFS and Hbase are
responsible for data storage, MapReduce, Pig Latin, Hive,
and Mahout perform data processing and query functions, and
ZooKeeper and Chukwa coordinate different modules being
run in the big data platform.

B. DEPLOYMENT

Hadoop is now widely adopted industrially for various appli-
cations, including spam filtering, web search, click stream
analysis, and social network recommendation. Moreover,
much academic research is built upon Hadoop. In the follow-
ing, we survey some representative cases.

As announced in June 2012, Yahoo! runs Hadoop on
42,000 servers in four data centers to support Yahoo! products
and projects, such as Yahoo! search and spam filtering. Its
largest Hadoop cluster holds 4,000 nodes but will increase
to 10,000 with the release of Apache Hadoop 2.0. In the
same month, Facebook announced that their Hadoop cluster
processed 100 PB data, and this volume grew by roughly half
a PB per day in November 2012. Some notable organizations
that use Hadoop to run large distributed computations can be
found in [10]. In addition, there are a number of companies
offering commercial implementation and/or providing sup-
port for Hadoop, including Cloudera, IBM, MapR, EMC, and
Oracle.

The exponential increase of genomic data and the dra-
matic drop in sequencing costs have changed the landscape
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of biological and medical research. Scientific analysis is
increasingly data driven. Gunarathne et al. [257] used a cloud
infrastructure, Amazon AWS and Microsoft Azure, in addi-
tion to data processing frameworks-Hadoop and Microsoft
DryadLINQ, to implement two parallel biomedical applica-
tions: 1) the assembly of genome fragments and 2) dimen-
sion reduction in the analysis of chemical structures. The
data set in the latter application is 166-dimensional and fea-
tures 26 million data points. A comparative study of the
two frameworks was conducted based on performance, effi-
ciency, cost and usability. The study suggests that loosely
coupled science applications will increasingly be imple-
mented on clouds and that using the MapReduce frame-
work will offer a convenient user interfaces with little
overhead.

C. IMPROVEMENTS

Despite many advantages, Hadoop still lacks certain features
found in DBMS, which is over 40 years old. For example,
because Hadoop has no schema and no index, it must parse
each item when reading the input and transform the input
into data objects, which leads to performance degradation.
Hadoop provides a single fixed dataflow; nevertheless, many
complex algorithms are hard to implement with only Map and
Reduce in a job. The following represent several approaches
that are currently used to improve the pitfalls of the Hadoop
framework:

e Flexible Data Flow: Many algorithms cannot directly
map into MapReduce functions, including loop-type
algorithms that require state information for execution
and termination. Researchers have attempted to extend
Hadoop to support flexible data flow; HalLoop [258]
and Twister [259] are such systems that support loop
programs in MapReduce.

e Blocking Operators: The Map and Reduce functions are
blocking operations, i.e., a job cannot move forward to
the next stage until all tasks are completed at the original
stage. This property causes performance degradation
and makes Hadoop unsuitable for on-line processing.
Logothetis et al. [260] built MapReduce abstraction
onto their distributed engine for ad hoc data processing.
MapReduce Online [261] is devised to support online
aggregation and continuous queries. Li et al. [262] and
Jiang et al. [263] utilized hash tables for better perfor-
mance and incremental processing.

e I/O Optimization: Some approaches leverage index
structures or data compression to reduce the I/O cost in
Hadoop. Hadoop++ [264] provides an index-structured
file format that improves the 1/O cost. HadoopDB [265]
leverages DBMS as storage in each node to benefit from
the DB indexes.

o Scheduling: The Hadoop scheduler implements a simple
heuristic scheduling strategy that compares the progress
of each task to the average progress to determine
re-execution tasks. This method is not suitable for het-
erogeneous environments. Longest Approximation Time
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to End (LATE) scheduling has been devised to improve
the response time of Hadoop in heterogeneous envi-
ronments. In a multi-user environment in which users
simultaneously execute their jobs in a cluster, Hadoop
implements two scheduling schemes: fair scheduling
and capacity scheduling. These two methods lead to
poor resource utilization. Many researchers are working
to improve the scheduling policies in Hadoop, such as
the delay scheduler [266], dynamic proportional sched-
uler [267], deadline constraint scheduler [268], and
resource-aware scheduler [269].

o Joins: MapReduce is designed for processing a single
input. The extension of the supporting join operator
allows Hadoop to dispose multiple inputs. Join methods
can be roughly classified into two groups: Map-side
join [270] and Reduce-side join [271].

o Performance Tuning: Hadoop provides a general frame-
work to support a variety of applications, but the default
configuration scheme does not guarantee that all the
applications run the best. Babu et al. [272] proposed
an automatic tuning approach to find optimal system
parameters for the given input data. Jahani et al. [273]
presented a static analysis method for the automatic
optimization of a single MapReduce job.

o Energy Optimization: A Hadoop cluster commonly con-
sists of a large collection of commodity servers, which
consume a substantial amount of energy. An energy
efficient method for controlling nodes in a Hadoop clus-
ter must be devised. The Covering-Set approach [274]
designates certain nodes to host at least a replica of
each data block, and other nodes are powered off during
low-utilization periods. The All-In strategy [275] saves
energy by powering off all nodes until the job queue
exceeds a predetermined threshold.

Please refer to [276] and [277] for more details on this topic.

Hadoop is designed for batch-type application. In many

real-time applications, Storm [35] is a good candidate for
processing unbounded streams of data. Storm can be used
for real-time analytics, online machine learning, continuous
computation, and distributed RPC. Recently, Twitter dis-
closed their open project, called Summingbird [278], which
integrates Hadoop and Storm.

X. BIG DATA SYSTEM BENCHMARK

A. CHALLENGES

The TPC (Transaction Processing Performance Council)
series of benchmarks have greatly accelerated the devel-
opment and commercialization of traditional relational
databases. As big data systems mature, scholarly and indus-
trial researchers try to create TPC-like benchmarks to evaluate
and compare the performance of these systems. However, to
date, there are no standard benchmarks available. The unique
characteristics of big data systems present the following chal-
lenges for benchmark efforts [279]:

o System Complexity: Big data systems are commonly
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the organic composition of multiple modules or com-
ponents. These modules have different functions and
are coupled together. Modeling the entire system and
refining a unified framework suitable for every module
is not straightforward.

o Application Variety: A well-defined benchmark must
reflect the representative characteristics of big data
systems, such as the skew of the data types, the appli-
cation access pattern, and the performance requirements.
Because of the diversity of big data applications, extract-
ing the salient features is complicated.

e Data Scale: In the traditional TPC benchmarks, the test-
ing set is frequently much larger than the actual customer
data sets. Thus, the testing results can accurately indicate
the real performance. However, the volume of big data
is huge and ever growing; we must consider an effective
way to test the production with small data sets.

o System Evolution: Big data growth rate is increasing;
thus, big data systems must evolve accordingly to tackle
the emerging requirements. Consequently, a big data
benchmark must change rapidly.

B. STATUS QUO

Research on the big data benchmark remains in its infancy;
these studies can be divided into two categories: component-
level benchmarks and system-level benchmarks. Component-
level benchmarks, also called micro-benchmarks, aim to
facilitate performance comparison for a stand-alone compo-
nent, whereas system-level benchmarks provide an end-to-
end system testing framework. Of the components related to
big data, data storage is well developed and can be mod-
eled accurately. Thus, many micro-benchmarks have been
developed for the data storage component, which can be
categorized into three types:

e TPC Benchmark: The TPC series of benchmarks [280]
have been built on the industrial consensus of repre-
sentative behavior to evaluate transactional workloads
for relational databases. TPCs latest decision-supporting
benchmark, TCP-DS [281], covers some aspects of big
data systems. Specifically, TCP-DS can generate at most
100 terabytes (current limit) of structured data, initialize
the database, and execute SQL queries in both single-
and multi-user modes.

e No-SQL Benchmark: Because unstructured data dom-
inates the big data sets and NoSQL stores have pre-
viously demonstrated great potential in handling semi-
structured and unstructured data, Yahoo! developed
its cloud-serving benchmark, YCSB [159], to eval-
uvate NoSQL stores. YCSB consists of a workload-
generating client and a package of standard workloads
that cover salient parts of the performance space, such
as read-heavy workloads, write-heavy workloads, and
scan workloads. These three workloads were run against
four different data stores: Cassandra, HBase, PNUTs,
and a simple shared MySQL implementation. Other
research has [282], [283] extended the YCSB framework
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to integrate advanced features, such as pre-splitting, bulk
loading, and server-side filtering.

o Hadoop Benchmark: As MapReduce and its open source
implementation, Hadoop, gradually become the main-
stream in big data analytics, some researchers have tried
to construct the TPC-like MapReduce benchmark suite
with similar industrial consensus and representativeness.
GridMix [284] and PigMix PigMix [285] are two built-
in testing frameworks of the Apache Hadoop project,
which can evaluate the performance of Hadoop clusters
and Pig queries, respectively. Pavlo et al. [286] defined
a benchmark consisting of a collection of tasks and
compared Hadoop with two other parallel RDBMSs.
The testing results reveal the performance tradeoffs and
suggest that future systems should use aspects of both
types of architecture. GraySort [287] is a widely used
sorting benchmark that measures the performance of
very large types. These benchmarks can be considered
as complex superpositions of many jobs of various types
and sizes. By comparing and analyzing two produc-
tion MapReduce traces from Facebook and Yahoo!,
Chen et al. [288] developed an open source statistical
workload injector for MapReduce (SWIM). The SWIM
suite includes three key components: a repository of real
life MapReduce workloads, workload synthesis tools to
generate representative workloads, and workload replay
tools to execute the historical workloads. The SWIM
suite can be used to achieve realistic workload-based
performance evaluations and identify workload-specific
resource bottlenecks or optimization tools. More com-
plex analysis for production workload traces can be
found in the authors’ subsequent research [289].

Ghazal et al. [290] first developed an end-to-end big data
benchmark, BigBench, under the product retailer model.
BigBench consists of two primary components, a data
generator and a query workload specification. The data
generator can provide three types of raw data, structured,
semi-structured, and unstructured, with scalable volumes. By
borrowing the representative characteristics of the product
retailer from the McKinsey report [290], the query specifi-
cation defines the types of query data, data processing lan-
guage, and analysis algorithms. BigBench covers the “3 Vs”
characteristics of big data systems.

C. FUTURE BENCHMARK EXERCISE

The goal of testing benchmarks is to facilitate comparison of
the performance of various solutions. Therefore, the devel-
opment of a big data benchmark depends on mature and
blooming big data systems. For a given collection of big data
systems, a well-defined benchmark must choose a representa-
tive dataset as the input, model the application flow to extract
the typical operations to run on the dataset, and define the
evaluation metrics to compare the performance. There are two
core stages, data generation and application modeling, in the
evaluation procedure. In the context of big data, in addition
to producing simple structured data and unstructured data,
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the data generator must be able to generate a high volume of
data with complicated characteristics that reflect the inherent
nature of UGC and social networks, including hierarchy, rele-
vance, and rapid growth. Additionally, the application model
must describe the diversity and domain correlation of big
data applications, which is beyond the current abstraction,
including classical queries, sorting, and data mining.

XI. CONCLUSION AND FUTURE RESEARCH

A. CONCLUSION

The era of big data is upon us, bringing with it an urgent
need for advanced data acquisition, management, and analy-
sis mechanisms. In this paper, we have presented the concept
of big data and highlighted the big data value chain, which
covers the entire big data lifecycle. The big data value chain
consists of four phases: data generation, data acquisition,
data storage, and data analysis. Moreover, from the system
perspective, we have provided a literature survey on numer-
ous approaches and mechanisms in different big data phases.
In the big data generation phase, we have listed several poten-
tially rich big data sources and discussed the data attributes.
In the big data acquisition phase, typical data collection tech-
nologies were investigated, followed by big data transmission
and big data pre-processing methods. In the big data storage
phase, numerous cloud-based NoSQL stores were introduced,
and several key features were compared to assist in big data
design decisions. Because programming models are coupled
with data storage approaches and play an important role
in big data analytics, we have provided several pioneering
and representative computation models. In the data analytics
phase, we have investigated various data analytics methods
organized by data characteristics. Finally, we introduced the
mainstay of the big data movement, Hadoop, and big data
benchmarks.

B. FUTURE RESEARCH

Many challenges in the big data system need further research
attention. Below, we list the open issues covering the entire
lifecycle of big data, from the big data platform and process-
ing model to the application scenario:

e Big Data Platform: Although Hadoop has become a
mainstay in big data analytics platforms, it remains
far from mature, compared to DBMSs, which is over
forty years old. First, Hadoop must integrate with real-
time massive data collection & transmission and provide
faster processing beyond the batch-processing paradigm.
Second, Hadoop provides a concise user programming
interface, while hiding the complex background execu-
tion. In some senses, this simplicity causes poor perfor-
mance. We should implement a more advanced interface
similar to DBMS while optimizing Hadoop performance
from every angle. Third, a large-scale Hadoop cluster
consists of thousands or even hundreds of thousands of
servers, which means substantial energy consumption.
Whether Hadoop should be widely deployed depends
on its energy efficiency. Finally, privacy and security is
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an important concern in the big data era. The big data
platform should find a good balance between enforcing
data access control and facilitating data processing.
Processing Model: 1t is difficult for current and mature
batch-processing paradigms to adapt to the rapidly
growing data volume and the substantial real-time
requirements. Two potential solutions are to design a
new real-time processing model or a data analysis mech-
anism. In the traditional batch-processing paradigm, data
should be stored first, and, then, the entire dataset should
be scanned to produce the analysis result. Much time is
obviously wasted during data transmission, storage, and
repeated scanning. There are great opportunities for the
new real-time processing paradigm to reduce this type
of overhead cost. For instance, incremental computation
attempts to analyze only the added data and combine
that analysis with the original status to output the result.
In-situ analysis avoids the overhead of file transfer to the
centralized storage infrastructure to improve real-time
performance. Due to the value-sparse feature of big data,
anew data analysis mechanism can adopt dimensionality
reduction or sampling-based data analysis to reduce the
amount of data to be analyzed.

Big Data Application: Big data research remains in
its embryonic period. Research on typical big data
applications can generate profit for businesses, improve
the efficiency of government sectors, and promote the
development of human science and technology is also
required to accelerate big data progress.
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