
Received February 23, 2014, accepted April 1, 2014, date of publication May 6, 2014, date of current version May 16, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2322102

Source Code Revision History Visualization Tools:
Do They Work and What Would It Take
to Put Them to Work?
CHANG LIU, XIN YE, AND EN YE
School of Electrical and Engineering Computer Sciences, Ohio University, Athens, OH 45701 USA

Corresponding author: C. Liu (liuc@ohio.edu)

ABSTRACT Source code revision history visualization tools have been around for over two decades. Yet,
they have not become a mainstream tool in a typical programmer’s toolbox and are not typically available in
intergraded development environments. So, do they really work? And if they do, what would it take to put
them to work? This paper seeks to answer these two questions through experiments, surveys, and interviews.
A source code history visualization tool named TeamWATCH was implemented to visualize subversion
code repositories. Two comparative controlled experiments were conducted to evaluate the effectiveness
of TeamWATCH. The experimental results showed that the subjects using TeamWATCH spent less time
than subjects using the command-line subversion client and TortoiseSVN in answering the same set of
questions regarding source code revision history. In addition, surveys and interviews were conducted to
identify obstacles in adopting source code history visualization tools. Collectively, the results show that
source code history visualization tools do bring value to programmers. Key obstacles to wider adoption in
practice include nontrivial overhead in using the tools and perceived complexity in visualization.

INDEX TERMS Software engineering, version control repository, software development workspace
awareness, software comprehension, source code revision history, software visualization.

I. INTRODUCTION
Source code revision history visualization tools have been
around for over two decades. In 1992, the IEEE Transac-
tions on Software Engineering published a paper by Eick,
Steffen, and Sumner on Seesoft, a tool that visualized line-
oriented software statistics, including version control history
information [38]. Such tools seem to make sense because
software developers work in an information-rich team envi-
ronment. Quickly accessing overall project revision history
and efficiently locating specific revision details when needed
are essential in team collaboration. Then why are source
code revision history visualization tools still not integrated
in IDEs (Integrated Development Environments) today? We
set out to find out why developers are not using such tools
through experiments, surveys, and interviews. No experi-
ments on whether such revision history visualization tools
help improve developer efficiency have been reported in the
literature. Seesoft is too old and not available for experi-
ments. We designed and implemented TeamWATCH, a 3D
code revision history visualization tool that complements
traditional Subversion clients to facilitate the understanding
of overall project revision history. Two user studies were
conducted to evaluate TeamWATCH and test hypotheses that

software source code revision history tools help improve
developer efficiency. In addition, surveys and interviews were
conducted to seek subjective opinions on this type of tools.
The results are analyzed and summarized at the end of this
paper, along with recommendations on how to facilitate the
adoption of these tools in practice.
To put the discussion on software code revision history

visualization tools into perspective, let’s first take a look at
the concept of history awareness.

A. WORKSPACE AWARENESS AND HISTORY AWARENESS
As reported by Vessey and Sravanapudi [1], software engi-
neers spend about 70 percent of their time on cooperative
activities; collaboration is essential for software develop-
ment. Dourish and Bellotti considered awareness of each
other’s activities as what is critical for successful collabora-
tion in CSCW (Computer-Supported Cooperative Work), and
defined awareness in the context of shared workspace as ‘‘an
understanding of the activities of others, which provides a
context for your own activity’’ [2]. According to a two-month
field study of ‘‘collocated’’ software development teams at
Microsoft, Ko et al. found that developers frequently sought
awareness information about artifacts such as ‘‘how have

404
2169-3536 
 2014 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

resources I depend on changed’’, and awareness information
about coworkers such as ‘‘what developers’ coworkers have
been doing’’ [3]. However, developers also identified such
information as unavailable or difficult to obtain [3]. That is
to say, even collocated software developers have difficulty
acquiring coworker and artifact awareness information. The
importance of awareness about coworkers and artifacts and
inadequate tool support to obtain it has been substantiated
in other similar studies on software developers at Microsoft
[4]–[6]. This suggests that software development efficacy can
be materially improved if software developers can obtain
information relevant to their tasks more quickly and accu-
rately through enhanced awareness, which is also true in other
domains where human decision-making is partially based on
situation awareness [7].

As suggested by Dourish and Bellotti, information of past
activity and information of current activity were two facets
of a single view of awareness information [2]. Awareness
information includes both awareness of existing project arti-
facts (such as when the latest revision of an artifact was
committed, who has checked-in an artifact most often, and
how many revisions are contained in an artifact) and aware-
ness of ongoing activities by other team members (such as
who is online or not, which task they are working on, and
which artifacts they are manipulating). Gutwin et al. defined
workspace awareness as ‘‘the collection of up-to-the minute
knowledge a person uses to capture another’s interaction with
the workspace’’ [8]. Gutwin et al. also referred to group
awareness as ‘‘the understanding of who is working with
you, what they are doing, and how your own actions interact
with theirs’’ [9]. In this sense, group awareness is similar to
workspace awareness, albeit with a closer focus on people
instead of artifacts.

As shown in Figure 1, in software projects, the most impor-
tant elements are people, artifacts, and tasks. Artifacts are
often stored in source code version control repositories with
their history preserved. Tasks are often recorded in issue-
tracking databases or other project management documents.
General workspace awareness in the context of software

FIGURE 1. Differences among workspace awareness, group awareness,
and software history awareness

projects covers all interactions among all elements, whereas
group awareness is centered more closely on people. The
focus of this paper is history awareness, which centers on
source code and its revision history, as depicted by the shadow
(the darker ovals) in Figure 1. Software history awareness
is the understanding of revision history of source code, who
committed what at what time, and why.
According to Gutwin et al. [9]–[13], Pinelle et al. [14],

and Storey et al. [15], information about ‘‘who’’, ‘‘what’’,
‘‘where’’, ‘‘when’’ and ‘‘how’’ is essential for collaborations.
LaToz and Myers also reported that ‘‘Who, when, how, and
why was this code changed or inserted’’ was one of the
most frequent questions developers needed, and code his-
tory was one of the most frequent question categories that
developers asked [16]. Furthermore, Dagenais et al. reported
that newcomers joining a software project needed to explore
in an unfamiliar project landscape and get familiar with a
number of landscape features, many of which are related to
people, artifacts, and tasks [17]. Therefore, providing soft-
ware history information efficiently to help maintain software
history awareness not only benefits developers for their team
development, but also helps newcomers become familiar with
projects quickly.
History awareness is instrumental in software develop-

ment because design decisions, requirement changes, devel-
opment priorities, and other important information are often
implicitly embedded in the history of source code evolution.
Therefore, maintaining heightened history awareness is
highly relevant in team software development.

B. PROVIDING TOOL SUPPORT FOR
HISTORY AWARENESS
Given the definition above, it is reasonable to identify
the following desired properties of history awareness tools
to help developers effectively maintain heightened history
awareness.
Property 1, it should inform developers about the overall

structure of the code repository in an ‘‘at-a-glance’’ view.
Property 2, it should allow developers to easily identify

history and other attributes of individual items of interest.
Property 3, it should be capable to zoom into or center on

items relevant to current activities of the developer.
Property 4, it should allow developers to interactively

search for specific information when needed, and do so more
efficiently than traditional version control client software.
Property 5, as an awareness tool, most of the time, it should

remain in a developer’s peripheral view, not the focal view.
With these in mind, this study introduces TeamWATCH

(Team Workspace Awareness Toolkit and Collaboration
Hub), which is a software revision history visualization
tool that we implemented using a three-dimensional (3-D)
city metaphor. TeamWATCH is designed to help developers
and other project team members maintain history aware-
ness. TeamWATCH extracts historical information of artifacts
(such as files and folders), revisions, committing develop-
ers, and events (such as adding, deleting, and modifying

VOLUME 2, 2014 405



C. Liu et al.: Source Code Revision History Visualization Tools

artifacts) from software projects’ version control repositories.
It visualizes such information using a 3-D city metaphor.
By providing multiple types of information in one 3-D view,
TeamWATCH makes it easier for developers to obtain an
overall understanding of the whole project. Developers can
quickly acquire a general awareness of the size of the project,
how many developers worked in the project, how many revi-
sions has this project gone through, who contributed what to
this project, which file went through what kind of revisions,
etc. After obtaining the overview information, developers can
use filters to focus on the ROI (Region of Interest) for detailed
information such as what files have been modified in a spe-
cific revision; who and at what time committed a specific revi-
sion; who and at what time added, modified, deleted a specific
file. Furthermore, because TeamWATCH extracts historical
information directly from a repository’s logs, it does not rely
on any IDE (Integrated Development Environment) or any
client software for access to the repository. The visualization
runs on both personal computers (Windows andMac OS) and
mobile devices (e.g. iPhone and iPad), and makes it easier
for developers to stay aware of project history by putting
TeamWATCH on a second display.

There are no empirical results in the literature compar-
ing the efficacy of source code history visualization or
awareness tools with traditional version control clients that
are widely used in practice. Therefore, two comparative
experiments were conducted to evaluate the effectiveness
of TeamWATCH. The first comparative experiment com-
pares TeamWATCH and the command line Subversion [18]
client using the same set of historical information ques-
tions based on the source code repository of the open-source
Notepad++ project [19]. The second comparative experi-
ment compares TeamWATCH and TortoiseSVN, a popular
Subversion client with a GUI [20]. The results of these two
experiments will also shed light on whether software history
visualization tools in general are instrumental in software
development.

The rest of this paper presents design and implementa-
tion of TeamWATCH in Sections 2, experimental design in
Section 3, experimental result analysis in Section 4, a discus-
sion of threats to validity in Section 5, survey and interview
results in Section 6, related tools in Section 7, and a summary
in Section 8.

II. DESIGN AND IMPLEMENTATION OF TEAMWATCH
As suggested by Shneiderman, ‘‘A useful starting point
for designing advanced graphical user interfaces is the
Visual Information-Seeking Mantra: Overview first, zoom
and filter, then details-on-demand’’ [21]. The design of
the user interface of TeamWATCH was based on this
mantra. TeamWATCH supports users to search for informa-
tion through three steps: (1) gain perceptual experience and
overview information of the whole project; (2) use filters
to narrow down objects, then zoom in or out to locate the
ROI; (3) get detailed information from specific objects if
needed. Integration of the artifact filter, the author filter, and

the revision filter into the user interface supports developers
to efficiently find what they want through any combination of
these filters. These three steps fulfilled Properties 1 and 2 in
Section 1.2.
Based on the authors’ earlier work in SecondWATCH [22],

3-D visualization metaphors of buildings and city blocks
were used in TeamWATCH. In this visualization scheme,
shapes of objects are used to distinguish types of artifacts.
City districts (square blocks) represent folders; 3-D buildings
(round columns, which are stacks of cylinders) represent
files; floors of the buildings (cylinders) represent revisions.
Similar to Ripley’s Workspace Activity View, which uses
a stack of cylinders to represent a workspace with each
cylinder representing an artifact in it [23], TeamWATCH uses
a stack of cylinders to represent a file with each cylinder
representing a committed revision of this file. Because human
has remarkable perceptual ability to detect changes in size,
color, shape, movement, and texture for visual information
[21], some of these attributes are used to represent properties
of the files and the revisions. Authorship information was
mapped onto the color of the cylinders. Different colors repre-
sent different developers. Transparency was used to represent
whether files were deleted or not.
The layout of a project was mapped onto the (X, Y) coor-

dinates so that developers know project’s structure through
city’s layout. The area of the virtual city represents the size
of the project, and the area of each city district represents the
size of each folder. The location of a column represents the
location of a file in the project. Information of revisions was
mapped onto the vertical Z coordinate. The more cylinders
in a column, the more revisions this file has gone through
(revisions are ordered by the committed time with the latest
revision on top).
Table 1 summarizes the mapping between the metaphors

and relevant project historical information. Some elements
of this mapping were also used in CodeCity built by Wettel
and Lanza [24], [25], and sv3D (source viewer 3-D) built
by Marcus et al. [26]. CodeCity and sv3D are not project
awareness tools monitoring developers’ ongoing activities in
workspaces or historical information from repositories. They
are visualization tools that aim at providing 3-D representa-
tions for software systems to help program comprehension.
CodeCity visualizes classes (buildings represent classes and
districts represent packages); sv3D visualizes lines of source

TABLE 1. Mapping between the metaphors and the underlying project.

406 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

FIGURE 2. TeamWATCH visualization (a) Revision statistics; (b) Developer statistics; (c) A single cylinder;
(d) A stack of cylinders; (e) Filters; (f) Time Slider; (g) Blue district; (h) Transparent cylinders representing
deleted files; (i) Return to the main menu.

code (each file is represented by a container in which each
cylinder represents a line of code).

In addition to the 3-D visualization, TeamWATCH displays
textual information when necessary to allow developers to
examine details. Information such as path, author, action,
revision date and time of a specific revision of a file is
displayed on the corner of the TeamWATCH GUI when users
point mouse cursor to a cylinder representing that revision.
Overall statistical information about the project and the devel-
opers are displayed on the top left corner of the GUI. Top
bottom of the GUI shows filters based artifact names, author
names, and revision numbers.

As shown in Figure 2, TeamWATCH visualizes a soft-
ware project as a 3-D city. The city districts (blue blocks)
represents folders (Figure 2g). A stack of cylinders in
a column (Figure 2d) represents a file. Each cylinder
(Figure 2c) represents a revision of this file. Transparent
objects (Figure 2h) represent deleted files that no longer exist
in the latest revision. The GUI also shows revision statistics
(Figure 2a) and developer statistics (Figure 2b) informing
users how many revisions the project has gone through, and
how many developers contributed to this project with how
many revisions. By providing both the 3-D layout visualiza-
tion and historical statistics, TeamWATCH helps users obtain
project’s overview information efficiently. Developers can
establish an overall understanding of a project by briefly
browsing its visualization. They can quickly establish an
awareness of what the layout of the project looks like, how
many files and folders there are, who have contributed what,
how many revisions the project has gone through, which files
have been deleted, and whether the project structure has been
rearranged, etc.

To improve the efficiency of understanding a specific
portion of the project, TeamWATCH provides three filters and
a time slider. By using the filters (Figure 3a), users can look
at only certain files. Using both the file filter and the author
filter together, users can get information of how often and
when a developer modified certain files (Figure 3b). More
information of a revision of a file (Figure 3c) is presented
when the mouse cursor hovers over the corresponding cylin-
der. By using a combination of filters, TeamWATCH users
can quickly locate the ROI for a particular portion of the
project that is the focus of their current collaborative work.

FIGURE 3. Filtering by both the author name and the file name;
(b) Filtered visualization result; (c) Path, action, author, revision date and
time of a file’s specific revision.

VOLUME 2, 2014 407



C. Liu et al.: Source Code Revision History Visualization Tools

For example, ‘‘who has contributed to this artifact’’ can be
answered by using the artifact filter, and ‘‘what artifacts were
added, modified or deleted by this author’’ can be answered
by using the author filter. By using both artifact filter and
author filter, developers can quickly find out when an author
added, modified, or deleted an artifact.

Five real-world open-source projects were visualized in
TeamWATCH. They were Notepad++ [19], jEdit [27], Fire-
bird [28], Hugin [29], and OpenNMS [30]. Descriptions and
screenshots of these visualizations as well as TeamWATCH
software and user guide are available on the VITAL Lab
website [31].

TeamWATCH is implemented in a client-server architec-
ture, as shown in Figure 4. Arrows represent information
flow. The server side is implemented as a Java Web service.
The Extractor on the TeamWATCH server extracts project’s
historical log information from a repository through SCM
(Software Configuration Management) clients such as SVN
command in Subversion [18]. Specifically for the experi-
ments in this study, TeamWATCHonly supported Subversion.
The Extractor sends Subversion commands such as ‘‘svn log
–v � some_documenst.txt’’ to the Subversion client, and
obtains a log file of the project. The log file contains informa-
tion such as author, revision date and time, and files that were
added, modified, or deleted for every revision of the project.
The input to the Analyzer is the log information extracted
by the Extractor. The Analyzer extracts file information,
author information, revision information, and event infor-
mation from project’s log file, formats this information, and
sends it to the tree-mapping component. The tree-mapping
component maps project’s structure information onto
3-D coordinates based on the mapping strategy as described
in Table 1, using the Quantum Treemap algorithm [32]. Tree-
mapped output is then serialized into a string through the Seri-
alizer component. The final output of the TeamWATCHWeb
service is a serialized string to be sent to the TeamWATCH
client side for visualization. To avoid repeated analysis, both
the original log information and the final generated serialized
string information are stored.When the project source version
tree is updated, only newly committed information needs

FIGURE 4. The TeamWATCH Architecture.

to be calculated and mapped onto an existing 3-D layout.
For example, if the serialized 3-D layout result of a project
with 735 revisions is stored in the database, when someone
committed a new revision 736, information of revision 1 to
735 can be retrieved from the database; only information of
revision 736 needs to be processed.
The TeamWATCHclient was implemented as a stand-alone

application using a 3-D game engine and development tool
named Unity 3D [33]. The client side of TeamWATCH con-
sists of two components: the SCM menu, and the awareness
information viewer. The SCM menu allows users to either
select an existing (as a built-in) visualized project offline
or connect to the TeamWATCH server to load and visual-
ize another project. The TeamWATCH server provides the
client side with the serialized data of the project so that
the TeamWATCH client can visualize it. The visualization
component in the client side obtains information from the
Serializer on the server side, and presents the final visual-
ization for users. Because TeamWATCH visualizes historical
information based on a project’s logs, which can be checked
out through a Subversion client, it does not rely on any IDE
to collect information. The server side of TeamWATCH is
implemented as a web service, and the client side is imple-
mented as a stand-alone application running on multiple
platforms including Windows PCs, Mac computers, and iOS
devices1, with which developers can set up a 2nd display to
display awareness information. This helps fulfill Property 5
as described in Section 1.2. This study chose not to imple-
ment the TeamWATCH client directly as an Eclipse plug-
in, because visualization requires large space to display but
as an awareness tool, TeamWATCH is most fitted to stay in
view constantly but mostly not in focal view. It would be
desirable, though, to implement an Eclipse plug-in2 to inform
TeamWATCH in which files developers are interested so that
Property 3 in Section 1.2 can be fulfilled as well.

III. EXPERIMENT DESIGN
Though software revision history visualization tools have
been reported in the literature (e.g. Seesoft [38]), there was
no user study on whether software history visualization tools
helped improve developer efficiency. To answer the question
of whether and how TeamWATCH helps facilitate the under-
standing of project revision history as comparedwith tradition
SVN3 clients (i.e. SVN clients without 3D visualization),
two controlled experiments were conducted. The experiments
were designed to evaluate the efficiency of searching and
understanding software history information between subjects
using TeamWATCH and subjects using the command-line
SVN client and TortoiseSVN (a SVN client with GUI).
In each experiment, subjects from both groups were asked

to answer the same set of questions, which were based on

1It is also compatible with Android devices, although an Android
TeamWATCH client has not been released yet.

2Such a plug-in was implemented in SecondWATCH but has yet to be
integrated into TeamWATCH.

3The term ‘‘SVN’’ in this paper refers to the Apache Subversion tool.

408 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 2. Null hypotheses and alternative hypotheses.

historical information from the source code version control
repository of an open-source project. The first experiment
uses a between-subject design. To further eliminate bias
introduced by varied subject background and experience,
the second experiment uses a within-subject design. In both
experiments, subjects’ subjective opinions about the tools and
their objective performance data were captured and evaluated.

A. RESEARCH QUESTIONS AND HYPOTHESES
The experiment was intended to address the following five
research questions.

1) Does the use of TeamWACH help increase the correct-
ness of searching software history information from
version control repository, compared with traditional
SVN clients such as the command-line SVN client and
TortoiseSVN?

2) Does the use of TeamWATCH help reduce the time to
search software history information from version con-
trol repository, compared with traditional SVN clients?

3) Whether users using TeamWATCH are more satisfied
with their tool in searching software history informa-
tion from version control repository, compared with
users using traditional SVN clients?

4) In searching of what kind of software history infor-
mation does TeamWATCH perform significantly better
than traditional SVN clients, and why?

5) In searching of what kind of software history informa-
tion do traditional SVN clients perform significantly
better than TeamWATCH, and why?

The null hypotheses and the alternative hypotheses that
correspond to the first three research questions are described
in Table 2.

The first three research questions would be answered
through quantitative analyses. The fourth and fifth questions
would be answered through qualitative analyses.

B. INDEPENDENT AND DEPENDENT VARIABLES
In both controlled experiments, the tool used by sub-
jects in searching software history information is the only
independent variable, because the intention is to test the
null hypotheses and to answer the research questions by

comparing the effectiveness and performance of Team
WATCH over a baseline in software history information
exploration. Therefore, TeamWATCH and the chosen base-
line are the two levels of the independent variables.

1) CHOOSING A BASELINE
To evaluate the general assumption that software history
awareness by tool support can improve developer efficiency,
this study compares the performance of subjects with history
awareness tools such as TeamWATCH and the performance
of subjects without any form of awareness tools in doing
the same tasks. Therefore, the baseline chosen should be
neither any form of awareness tools nor any materials with
answers filled in intentionally for the experiment. To repre-
sent users searching software history information under their
normal working environments but without a history aware-
ness tool, traditional SVN clients such as SVN command and
TortoiseSVN were chosen as the baselines of the
experiment.
In the first controlled experiment, control subjects were

allowed to use any mainstream Subversion clients. However,
all subjects preferred using the command-line SVN client.
After introduction and exercises, they all demonstrated pro-
ficiency in combining SVN commands with shell commands
such as ‘‘svn log -r 711:735 -v -q| grep filename -c’’ to search,
filter historical information from the repository. Therefore,
the command line Subversion client was used in the exper-
iment as the baseline.
In the second controlled experiment, a popular Subversion

client with GUI, TortoiseSVN [20], was chosen as the base-
line, because it was an easy-to-use Subversion client sup-
porting both SVN operations and 2-D graphical views, and
it is an up-to-date SVN client widely used by practitioners.
It had been downloaded 2,052,557 times during the period
from January 1st to April 1st in 2013. TortoiseSVN version
1.7.12 released onApril 4th 2013 supporting Subversion 1.7.9
was used in the experiment.

2) DEPENDENT VARIABLE
The dependent variables of the experiment are: (1) the cor-
rectness of answers for each question for which information

VOLUME 2, 2014 409



C. Liu et al.: Source Code Revision History Visualization Tools

searched from the version control repository of the object
system, (2) the time used in answering each question, and
(3) subjects’ satisfactions with tools they used in answering
each question.

Also recorded is general feedback from subjects toward
their feelings in the experiment, after they answered all
the experimental questions. Such feedback serves as impor-
tant complementary material for qualitative analysis of why
subjects are satisfied or unsatisfied with TeamWATCH, the
command-line SVN client, or TortoiseSVN.

C. CONTEXTUAL PROJECT
An open-source project named Notepad++, a source code
editor and Microsoft Windows Notepad replacement on
Sourceforge, was chosen as the object system for this experi-
ment because of the following reasons: (1) It was a real-world
project actively used by users; (It was downloaded 101,005
times from January 1st 2013 to April 16th 2013 [34].) (2) Its
log files and historical information were accessible from the
Sourceforge Subversion repository; (3) Its development had
gone through over five years and accumulated enough histor-
ical information (1035 revisions); (4) Its size was suitable for
running smoothly on the computers used in the study that did
not contain any dedicated graphics cards; (With over 934 files
in more than 96 folders, it was big enough for the visualiza-
tion to be interesting, but not too large to degrade graphical
performance during the experiment.) (5) It was developed
by a small software team of four members. (This way, the
subjects were not forced to learn about too many developers
in the short period of time during experiment.) Therefore, the
Notepad++ project was a suitable project for this experiment
on the effectiveness of TeamWATCH on improving efficiency
of software history exploration for small software teams.

D. SUBJECTS
In the two controlled experiments, Computer Science under-
graduate and graduate students aged from 19 to 35 were
recruited to serve as the subjects. Twenty subjects were
recruited for the first experiment. Thirteen subjects from
a class dual-listed for both undergraduate and graduate
CS students were assigned to the treatment group, which used
TeamWATCH. Their average experience in version control
system such as CVS, SVN, and GIT were 5.38 months.
Seven other subjects were individually recruited and placed
in the control group. The control subjects had an average
of 13-month experience on version control systems, more
than twice as compared to the treatment group. In the treat-
ment group, 7 out of 13 participants had more than one-year
experience in 3-D games. Background info on 3-D gaming
for the control subjects was not collected because it was
irrelevant; the control subjects did not use 3-D tools at all.
In the control group, all 7 subjects showed proficiencies in
SVN commands. When asked to choose a SVN client, they
all chose the command-line SVN client.

In the second controlled experiment, nineteen CS
undergraduate and graduate students were recruited and

randomly assigned to two groups. Their average experience
with version control systems such as CVS, SVN, and GIT
was 4.05 months. Their average experience on 3-D games or
3-D applications was 96.63 months. Twelve of the nineteen
subjects were assigned to group A, and the other seven to
group B. The difference in the sizes of the two groups was
the result of the random selection, not intentional. To reduce
subject dependency on one tool, subjects in both groups
were asked to use TeamWATCH and TortoiseSVN in turns
to answer two sets of questions in two rounds. In the first
round, subjects were asked to work on the Question Set
A, with Group A using TeamWATCH and Group B using
TortoiseSVN. In the second round, subjects were asked to
work on Question Set B, with Group A using TortoiseSVN
and group B using TeamWATCH. The tool swap between
the two rounds ensured that no tool could gain an advantage
because the subjects may become more familiar with the
project after they work on it in the first round. The two
cohorts of subjects in the two experiments were from different
classes andwere prepared differently for the experiments. The
designs of the two experiments were also different. Therefore,
the results were not comparable between the two experiments.

E. TASK
The design of the experimental tasks aims at evaluating
the effectiveness of TeamWATCH as compared to tradi-
tional SVN clients on helping developers keep aware of
software history information. The experimental questions are
designed to represent awareness information of software his-
tory required by developers in their team activities. Gutwin
[8]–[13] considered the following as important awareness
information: (1) who did what where and when, (2) how
an operation happened, and (3) how an artifact turned into
its current state. Pinelle [14] also coded the mechanics of
collaboration in which the basic awareness information was
described as who, where and what. These principles were
followed in our experiment and evaluation question design.
To test our hypotheses, answer the research questions, and

evaluate the TeamWATCH tool, sixteen questions in five
categories were designed for the subjects to answer, as shown
in Table 3. ‘‘Who’’ represents information about develop-
ers; ‘‘What’’ represents what happened to the artifacts and
what happened in previous revisions; ‘‘Where’’ represents
locations (folders) that developers worked on; ‘‘When’’ rep-
resents revision time; and ‘‘How’’ represents how artifacts
were developed. This set of questions covers both overall and
detailed information of developers, artifacts, revisions, and
events. Their answers cover information in the ‘‘who, what,
where, when, and how’’ categories that are frequently asked
about in team developments. These experimental questions
were tested before the actual experiment to make sure that
they were understandable and reasonable in the context of the
project.
Separately, Sillito et al. [35] described 44 types of code-

based questions programmers asked in software develop-
ment, they also observed programmer behaviors around

410 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 3. Questions that subjects were asked to answer on an open-source project, notepad++.

these questions. They categorized these 44 types of questions
into 4 categories. They found that questions belonging to the
‘‘finding a focus point’’ or the ‘‘expanding a focus point’’
categories were better supported by tools, and questions in
the ‘‘understanding a subgraph’’ or the connecting ‘‘groups
of subgraphs’’ categories were only partially supported by
tools. Our study tries to find out the impact of TeamWATCH
in answering both questions of a focus point of the project
such as ‘‘who at what time revised a file’’ and questions of the
overall project such as ‘‘what happened to thewhole project in
a major revision’’. Nine of the sixteen experiment questions,
shown in Table 3, belong to the ‘‘finding or expanding a
focus point’’ categories that need detailed information related

to an entity. The other seven questions belong to the ‘‘under-
standing a subgraph’’ category that needs overall information
of the project.
Alwis et al. [36] assigned 36 types of programmer’s con-

ceptual queries into 5 categories, which were inter-class,
intra-class, inheritance, declarations, and evolution. Our work
focuses on the evolution category to answer questions about
files, developers and revisions. All sixteen questions in
Table 3 fall under the evolution category as defined by Alwis
et al.

4Question 12 was used only in the first experiment.
5Question 13 to 16 were used only in the second experiment.

VOLUME 2, 2014 411



C. Liu et al.: Source Code Revision History Visualization Tools

The rightmost result column of Table 3 is based on the
results from the experiment, which are discussed later in this
section.

F. PROCEDURE
Two separated controlled experiments were conducted. The
first experiment evaluates the efficacy of TeamWATCH in
answering project history related questions, compared with
SVN command. The second experiment focuses on the com-
parison of TeamWATCH and TortoiseSVN.

The first experiment was conducted with each group sepa-
rately. Before the start of this experiment, the treatment group
was presented with a 10-minute introduction plus a 5-minute
exercise (totally 15 minutes of training) of TeamWATCH.
During the training period, participants were allowed to ask
questions about problems they encountered.

During the experiment, subjects from both groups were
asked to answer the same set of questions (Q1 to Q12) as
described in Table 3. The treatment group was asked to use
TeamWATCH to search information for answers, and the
control group was asked to use the SVN command to do the
same. Subjects in both groups were provided with answer
sheets, on which they were asked to write down their answers
for each question, and they were also asked to record the start
time and end time of answering each question. Subjects were
asked to answer each question in three minutes. If a subject
feels the tool not suitable for answering a question, or if a
subject cannot find an answer for a question in three minutes,
the subject was asked to write down the reason why an answer
cannot be found before skipping to the next question. How-
ever, when analyzing the experimental result, the accurate
time was used to calculate the mean value, even though some
subjects spent and record more than three minutes. Both the
accuracy of their answers and the time spent for each question
were analyzed later.

After answering each question, all participants were then
asked to fill a 5-point Likert scale survey based on their
satisfaction of how helpful they felt using TeamWATCH or
the SVN command to answer each question. Participants’
satisfactions were used to evaluate the consistency between
their subjective feelings and their objective experimental
results.

At the end of the experiment, subjects from the treat-
ment group were asked to fill another 5-point Likert scale
survey to provide their feelings of using TeamWATCH in
this experiment that whether they would like to continue
to use TeamWATCH, whether they would like to introduce
this tool to their friends, whether they felt TeamWATCH is
more helpful than traditional Subversion clients such as the
SVN command or TortoiseSVN in searching software his-
tory information from repositories, etc. Control subjects were
not asked to answer these questions because they were not
exposed to TeamWATCH. Subjects from both groups were
encouraged to provide additional feedback on their experi-
ence in this experiment, which is included in the discussion
later in this section.

The second experiment was conducted slightly differently.
To reduce subject dependency on one tool, subjects were
divided into two groups and the experiment into two phases.
Subjects swapped the tool they used between the two phases.
Experiment questions used are shown in Table 3. Q1 to Q11
are the same as in the first experiment. Q13 to Q16 are added
to further evaluate how TeamWATCH performs on searching
holistic information of project revision history as compared to
TortoiseSVN. These questions were divided into two question
sets. Question Set A contains Q1, Q3, Q4, Q5, Q7, Q10, Q11,
and Q13. Question Set B contains Q2, Q6, Q8, Q9, Q14,
Q15, and Q16. Questions in A are independent with questions
in B. As discussed in subsection 3.4 Subjects, subjects were
randomly divided into two groups A and B. In the first phase
of the experiment, subjects in Group A were asked to answer
Question Set A using TeamWATCH, while subjects in Group
B were asked to use TortoiseSVN. In the second phase of the
experiment, Group A subjects were asked to answer Question
Set B using TortoiseSVN, while Group B subjects were asked
to use TeamWATCH. After completing both Question Sets A
and B, all subjects were asked to fill a survey providing feed-
back on the use of TeamWATCH. Correctness, time spent on
searching answers, and satisfaction of using the assigned tool
for answering each question were recorded for quantitative
analysis. Survey results and general feedback from subjects
were recorded for qualitative analysis.

IV. EXPERIMENT RESULTS
The experiment results on efficiency in tasks related to soft-
ware source code history and satisfaction for the tools are
compared in the following sub-sections. General feedback
from the subjects is also discussed. The overall results are
presented in the end of this section.

A. ANALYSIS OF CORRECTNESS AND TIME
To better understand the difference between TeamWATCH
and traditional Subversion clients, comparisons of mean cor-
rectness of answers per person to each question and mean
time per person used to answer each questionwere performed.
Figure 5 shows mean correctness scores of answers across
subjects to each question. The correctness score of answer
for each question was determined by how much correct infor-
mation is provided by subjects. Partial credits are allowed.
For example, for Q1 ‘‘List all authors who have contributed
to the Notepad+ project, then identify who made the most
contributions’’, participants were expected to provide five
names of developers. They would get a correctness score of
100% if they provided all five names correctly; they would
get 80% if they missed one; 60% if they missed two. Figure 5,
besides, shows the average time needed per person to answer
each question.
In both the first and the second experiments, subjects using

TeamWATCH did well in Q1 ‘‘List all authors who have
contributed to the Notepad+ project, then identify who made
the most contributions.’’, Q4 ‘‘Roughly how many deleted
files are there in the repository? 0, 5, 10, 20, 50, 100, 700,

412 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

FIGURE 5. Comparison of the average correctness and average time spent for each question.6

TABLE 4. Comparison of average correctness and average time in the first experiment.

1500?’’, and Q11 ‘‘Which file went through the most revi-
sions?’’ For both Q1 and Q4, subjects using TeamWATCH
achieved significantly higher efficiency than subjects using
SVN command, and achieved significantly higher correctness
than subjects using TortoiseSVN. For Q11, no subjects using
SVN command, and only one subject using TortoiseSVN
provided a correct answer. Some of them gave up within a
short period of time realizing they could not find the answer

through SVN commands. Others tried some time before they
gave up. This shows that TeamWATCH is an enabling tool
when holistic understanding of project history is needed,
and can help programmers in situations where detail-oriented
traditional Subversion clients simply cannot help.

6Question 12 evaluates only TeamWATCH and SVN commands.
Questions 13 to 16 evaluate only TeamWATCH and TortoiseSVN.

VOLUME 2, 2014 413



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 5. Comparison of average correctness and average time in the second experiment.

Both the mean correctness and the mean time were taken
into account when evaluating the efficiencies of experimental
groups in answering each question. A non-parametric sta-
tistical test was applied in this comparison since the proba-
bility distributions of results from both the treatment group
and the control group were unknown, as were common in
this type of studies. The Mann-Whitney U test was applied
to assess significance levels of the two groups. Results are
shown in Table 4 and Table 5, in which n is the number of
participants in an experiment group answered the question;
U is the Mann-Whitney U test statistic, which is then used
to determine P, which in turn indicates whether the result
was statistically significant. In order to understand which
group achieved a better correctness and which group used
less time, the higher mean correctness scores as well as the
lower mean time were bolded. Results showing statistical
significant differences were highlighted. The dark grey color
indicates that the treatment group did better than the control
group in answering a question; the light grey color indicates
the reverse situation.

1) CORRECTNESS – RESEARCH QUESTION 1
As indicated by the results of the first experiment in Table 4,
subjects using TeamWATCH achieved significantly higher
correctness for Q7 and Q11, but had significantly lower
correctness for Q5 and Q6, compared with SVN subjects.
In the second experiment, the result as shown in Table 5,
TeamWATCH subjects performed significantly better than
TortoiseSVN subjects for Q1, Q4, Q6, Q11, Q13, Q14,

and Q16. Even though TeamWATCH subjects achieved better
correctness than TortoiseSVN subjects, it did not outperform
SVN subjects. Therefore, we could not reject H10, which
indicates that there is no evidence in this experimental result
showing the advantage of TeamWATCH over SVN com-
mands on the accuracy of searching software history infor-
mation.

2) TIME – RESEARCH QUESTION 2
Subjects using TeamWATCH spent significantly less time
than subjects using SVN commands for 6 out of 12 questions
in the first experiment shown in Table 4. In the second exper-
iment, as shown in Table 5, TeamWATCH subjects used less
time than TortoiseSVN subjects for 11 out of 15 questions
(significantly for 5 including Q11 and Q13, with which most
subjects using TortoiseSVN failed to find an answer in three
minutes; non-significantly for 6). It is therefore reasonable to
reject H20 in favor of H2a, which means that TeamWATCH
reduces the time used in searching software history informa-
tion, compared with the traditional SVN clients.

3) TASK ANALYSIS – RESEARCH QUESTION 4 AND 5
As shown in Table 4 and Table 5, there are significant dif-
ferences (p < 0.05) between subjects using TeamWATCH
and subjects using SVN commands or TortoiseSVN to search
overall information about developers (Q1, a ‘‘Who’’ ques-
tion), overall information of what happened in past revi-
sions and in current revision (Q4, a ‘‘What’’ question),
and holistic understanding of the past revisions of a file

414 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

(Q11, a ‘‘How’’ question). To answer these three questions,
subjects using TeamWATCH achieved significantly either
higher correctness or higher efficiency than subjects using
SVN commands or TortoiseSVN, in both the first and the
second experiment. TeamWATCH performed significantly
better in searching project overall information to answer these
three questions.

In addition, subjects using TeamWATCH in the second
experiment achieved significantly higher correctness and effi-
ciency than subjects using TortoiseSVN in obtaining a holistic
understanding of how the project was organized (Q13), how
different developers cooperated (Q14), and how developers
contributed to the same part of the project (Q16). The result
of these questions in the second experiment is consistent
with the result of the first experiment, which showed that
the 3-D visualization in TeamWATCH helps obtain holistic
understanding of the project history more efficiently than
traditional SVN clients. This was evidence of the intuitiveness
of the TeamWATCH 3-D visualization, and indicated that
TeamWATCH’s advantage was most obvious when a holistic
understanding of the project history was relevant and instru-
mental.

For Q4 and Q8 in the first experiment, the treatment group
demonstrated significantly higher efficiency, but the control
group achieved non-significantly higher correctness scores.
Both questions required subjects in the treatment group to
use TeamWATCH to locate a specific 3-D object among
many. It was possible that some subjects located the object,
but as they looked up to record the information from the
top left corner, their cursors drifted and information of a
near-by object was recorded instead. This identified an area
to improve for this particular TeamWATCH implementa-
tion. But it was not nec-essarily a weakness for the general
3-D visualization methodology underlying TeamWATCH.
In fact, the significantly higher efficiency of the treatment
group showed that this could instead be another area of
strength.

For Q5 ‘‘What happened in revision 460?’’ and Q6 ‘‘How
many files were modified in the latest revision? When did
the last revision happen’’, the control group using SVN
commands spent non-significantly less or similar time, and
achieved significantly higher mean correctness scores. This
showed that SVN commands were advantageous to pro-
grammers to obtain well-defined, detail-oriented specific
information. For Q5, subjects using TortoiseSVN did signifi-
cantly better as well, likely because that Subversion explicitly
logged detailed information of changes in a revision, and that
the log information can be easily accessed by SVN commands
and TortoiseSVN. In contrast, subjects using TeamWATCH
only knew that many files were deleted (as indicated by trans-
parent cylinders) and many others were created in a specific
revision. However, they would not know that these two sets of
files were related unless they check out detailed information
of these objects.

For Q9, Q10, Q12 and Q15, subjects using TeamWATCH
obtained non-significantly lower correctness scores

(significantly only for Q9 in the 2nd experiment), but spent
non-significantly less time (expect for Q10 in the 2nd
experiment). To answer Q3, Q9 and Q10, subjects using
TeamWATCH had to navigate and locate the ROI for detailed
information in the 3-D scene; to answer Q6 and Q12, subjects
using TeamWATCH had to count the number of many spe-
cific objects. Some subjects may have missed some objects
when navigating the 3-D scene, which led to lower mean
correctness scores. This may be related to some subjects’
lack of experience with 3-D navigation. Six out of thirteen
subjects in the treatment group in the first ex-periment had
less than one year or no experience in 3-D gaming. These
six subjects had lower mean correctness score than the other
seven subjects more experienced in 3-D for Q6 (mean score
of the 6 less experienced subjects µ1 = 41.67 versus mean
score of the other 7 subjects µ2 = 71.43), Q9 (µ1 = 66.67
vs. µ2 = 85.71), Q10 (µ1 = 50.00 vs. µ2 = 71.43),
Q3 (µ1 = 66.67 vs. µ2 = 85.71), and Q12 (µ1 =
50.00 vs. µ2 = 51.43). In contrast, subjects in the second
experiment had more experience in 3-D gaming (an average
of 96.63 months), and hence achieved higher correctness as
shown in Table 5.
For all seven questions in the ‘‘Understanding a sub-

graph’’ category, Q1, Q4, Q7, Q11, Q13, Q14, and Q16
in Table 3, TeamWATCH subjects performed better than
SVN commands and TortoiseSVN. This result shows that
TeamWATCH is more suitable for answering questions that
required higher-level understanding of the project repository.
Furthermore, the sixteen questions in Table 3 are all related

to project evolution, which was reported by Alwis et al.
as not being well supported by current tools [36]. Subjects
using TeamWATCH did better than subjects using traditional
SVN clients in answering ten out of these sixteen questions,
achieved either higher correctness or higher efficiency. This
result provides evidence for the advantages of TeamWATCH
in helping answer conceptual queries related to project
evolution.
To summarize, the experiment result showed that (1)

TeamWATCH was much better in answering questions that
required holistic understanding of software project history,
in some cases enabling subjects to answer questions that
they could not answer using SVN commands (Q7, Q11)
and TortoiseSVN (Q4, Q11, Q13); (2) SVN commands
and TortoiseSVN were more advantageous in obtaining
well-defined, detail-oriented specific information (Q5 and
Q6 when using SVN commands, Q5 and Q9 when using
TortoiseSVN); and (3) TeamWATCH enabled subjects to
achieve higher time efficiency (significantly and non-
significantly for 12 out of 16 questions designed to cover
the full spectrum of awareness issues of ‘‘who, what, where,
when, and how’’) in exploring both overall and detailed soft-
ware history information.

B. ANALYSIS OF THE RESULTS ON SATISFACTION
In the first experiment, subjects in the treatment group were
generally satisfied with using TeamWATCH to complete the

VOLUME 2, 2014 415



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 6. Mean satisfaction of the two groups in the first experiment.

tasks in the experiment. Even though some of them were
not experienced with 3-D games, they felt comfortable using
TeamWATCH to search historical information for answers
after a 15-minute introduction and training of the tool.
To evaluate the difference between satisfactions of both
groups, all subjects were asked to respond to a 5-point Lik-
ert scale survey (1 = not helpful at all; 5 = the tool did
everything I wanted) that whether they felt TeamWATCH
or SVN command was helpful in answering each question.
Mean satisfaction scores across individuals for each question
are shown in Table 6, where n is the number of participants in
each group and U is the Mann-Whitney U test statistic.

Subject satisfactions in the second experiment, as shown in
Table 7, coincide with the result in the first experiment that
subjects were more satisfied with using TeamWATCH than
using TortoiseSVN for 10 out of 15 questions (significantly
for 7 and non-significantly for 3).

1) SATISFACTION – RESEARCH QUESTION 3
Results show that the treatment group in the first experiment
wasmore satisfied for 10 out of 16 questions (significantly for
Q1, Q2, Q7, Q11, Q12, Q13, Q14, Q16, and nonsignificantly
for Q9, and Q15). The treatment group was less satisfied only
for 2 out of 12 questions (significantly for Q10 and non-
significantly for Q3). In the second experiment, subjects were
significantly more satisfied with TeamWATCH for 7 out of
15 questions, and significantly less satisfied for only 2 ques-
tions. The total mean satisfaction across individuals using
TeamWATCH was 3.92, whereas the total mean satisfaction
of subjects using SVN commands was 3.0, and subjects using
TortoiseSVN was 3.47. This shows that subject satisfactions
with TeamWATCHwere higher than subjects with SVN com-
mands and TortoiseSVN. Therefore, we consider it sufficient

to reject H30 in favor of H3a, which means that users using
TeamWATCH are more satisfied with their tool than users
using the traditional Subversion client in searching software
history information they require.

2) CONSISTENCY WITH CORRECTNESS AND TIME
Furthermore, in the first experiment, the lower mean satis-
factions of the control group for Q11 and Q7 (mean = 1.0,
standard deviation = 0.0 for Q11; mean = 1.2, deviation =
0.45 for Q7) are consistent with the experimental results that
none in the control group was able to provide an answer
for Q11 and only 1 out of 7 participants found the correct
answer for Q7 using Subversion. In comparison, the mean
satisfactions of the treatment group were 3.91 for Q11 and
3.83 for Q7.
When being asked what happened in revision 460 (Q5) and

how many files were modified in the latest revision (Q6),
the treatment group was more satisfied even though their
correctness scores were significantly lower. The reason may
be the same as discussed in the previous sub-section. Some
subjects in the treatment group had less experience in
3-D navigation, and may not be aware that they had missed
several 3-D objects (files) by the way they set up their camera
positions and angels when viewing the 3-D scene in which
there were many objects.
Results also showed that the treatment group was signif-

icantly less satisfied than the control group (mean of 2.45
versus 4.60, p < 0.05) for Q10 ‘‘What is the last time ‘yniq’
committed a revision’’. The reason was because subjects
using TeamWATCH needed to filter out objects committed
by ‘‘yniq’’ first, then find out which has the latest revision
number, while the control subjects just need one command
‘‘svn log –q| grep yniq’’.

416 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 7. Mean satisfaction of the two groups in the second experiment.

It is true in the second experiment that subjects were
significantly less satisfied with TeamWATCH for Q5 and
Q10, while they did significantly worse than subjects using
TortoiseSVN for answering these two questions.

Overall, subjects’ satisfaction results are consistent with
their efficiency results. Subjects achieved better time efficien-
cies and were more satisfied with TeamWATCH than using
SVN commands or TortoiseSVN, in most cases.

C. QUALITATIVE ANALYSIS OF GENERAL FEEDBACK
Subjects from the treatment group in the first experiment
and all subjects in the second experiment were asked to
respond to general feedback questions on TeamWATCH
usability on a 5-point Likert scale at the end of this exper-
iment. Four subjects from the treatment group (selected
based on their availability) and all control subjects were
interviewed on their use of TeamWATCH and Subversion,
respectively.

Sixteen out of thirty-two (50%) subjects in both the first
and second experiment agreed or strongly agreed with the
statement that they would like to use TeamWATCH in their
future projects involving version control. Only 5 out of
32 (15.6%) disagreed or strongly disagreed. Furthermore,
2 interviewees stated that they would like to use
TeamWATCH if this tool is compatible with their future
projects and is accessible. One subject commented that the
3-D city view made searching software history information
like playing an interesting game with fun.

For the statement that ‘‘I would recommend TeamWATCH
to other developers’’, 16 subjects (50%) agreed or
strongly agreed. Only 3 (9.4%) disagreed or strongly
disagreed.
One subject in the treatment group commented that

he felt TeamWATCH would be helpful for those who
had little experience with the command-line Subver-
sion client or traditional Subversion GUI clients such as
TortoiseSVN. The learning curve was much smoother. Sep-
arately, one interviewee from the control group said that
he felt more experience with Subversion would be instru-
mental in completing the tasks. Both of these suggest that
TeamWATCH could be particularly helpful to program-
mers who are not experienced in traditional Subversion
clients.
Nineteen out of thirty-two (59.4%) subjects in both the

experiments agreed or strongly agreed with the statement
‘‘TeamWATCH was more helpful than Subversion command
line and traditional GUI clients’’. But 9 subjects were neu-
tral with this statement. One subject in the treatment group
of the first experiment happened to be among those who
were interviewed. He said that he circled neutral because he
knew little about the SVN commands and TortoiseSVN for
comparison.
Twenty-eight out of thirteen-two (87.5%) subjects agreed

or strongly agreed with statement ‘‘the visualization is intu-
itive and easy to understand’’.
One subject in the first experiment said that he felt it was

hard to adjust the camera when navigating the visualization.

VOLUME 2, 2014 417



C. Liu et al.: Source Code Revision History Visualization Tools

FIGURE 6. Comparison of overall mean correctness, time, and satisfaction for all groups.

He suggested smoother rotation of the camera when zooming
in and zooming out.

One control subject wrote down a piece of feedback next to
the answer for Q1 ‘‘List all authors who have contributed to
the Notepad+ project, and list who made the most contribu-
tions’’ in the answer sheet that he had to list the whole log and
count the number manually. This explains why the treatment
group achieved significantly higher efficiency in answer-
ing Q1. This is also consistent with our assumption that sta-
tistical information and overview information in a 3-D view
can help improve the efficiency of exploring software history
information.

Overall, the subjective feedback was consistent with the
objective experimental results, and offered support to the
conclusion that TeamWATCH helped improve efficiency in
software history information exploration.

D. OVERALL RESULTS
Figure 6 shows the overall mean correctness score, the overall
mean time, and the overall mean satisfaction score across
questions and subjects in both the treatment group and the
control group. Results show that subjects using TeamWATCH
achieved an overall mean correctness of 81.05% with an
overall mean time of 65.91 seconds. In contrast, subjects
using SVN commands spent more than twice as much
time (144 seconds) but only achieved a slighter lower
mean correctness score (79.2%). Subjects using Tortois-
eSVN obtained a 60% correctness score but spent an aver-
age time of 91.23 seconds. This shows that subjects using
TeamWATCH spent 27% less time and achieved higher
correctness. In terms of satisfaction, in a 5-point Likert
scale (1 = not helpful and 5 = very helpful), the over-
all mean satisfaction of subjects using TeamWATCH was
3.92, whereas the overall mean satisfaction across individu-
als using TortoiseSVN was 3.47 and individuals using SVN
commands was 3. The higher mean satisfaction of sub-
jects using TeamWATCH is consistent with its lower mean

time spent. This suggests that subjects using TeamWATCH
achieved higher efficiency, and were more satisfied with
TeamWATCH than subjects using SVN commands and
TortoiseSVN.
The experimental result confirmed the effectiveness of

TeamWATCH in helping answer questions related to software
source code historical information. Subjects in the treatment
group in general demonstrated competence in searching for
information using the 3-D user interface, even though all of
them were new to TeamWATCH, and some were even unfa-
miliar with 3-D environments before the 15-minutes training.
One participant with more than one year Subversion experi-
ence commented that a 3-D user interface was more under-
standable than traditional SVN clients and thus improved his
confidence using this tool. When being asked ‘‘Is it true that
‘harrybsharry’ and ‘donho’ used to work together closely by
modifying the same files, but not any more’’ (Q7), subjects in
the treatment group provided correct answers quickly by find-
ing whether two colors representing two authors overlapped
on the same locations. In contrast, most subjects using SVN
commands and TortoiseSVN gave up on this question, and
one explained that it would be too time-consuming to com-
pare all works of one author’s with all of another’s. Through
intuitive perception of colors, shapes, and spatial relationship
in a 3-D visualization, developers can easily become aware
of a project’s overall historical information, which may be
time-consuming for users of conventional SVN clients to
obtain from the repository. This experimental result clearly
demonstrates that TeamWATCH possesses Properties 1, 2,
and 4 in Section 1.2.

V. THREATS TO VALIDITY
A. INTERNAL VALIDITY
1) SUBJECTS
The number of subjects in the experiment is low. In addi-
tion, the difference between the number of subjects in the
treatment group (13 subjects in the first experiment) and

418 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

the number of subjects in the control group (7 subjects in
the first experiment) is also a potential threat. In the second
experiment, Group A had 12 subjects, but Group B had
only 7 subjects. The results of the comparison between two
groups would be more accurate, if we could recruit more
subjects.

Subjects in both experiments were CS graduate and
undergraduate students, and they had low experience in
Subversion, compared to experienced professional software
engineers. However, before the experiments, subjects were
presented with an introduction of Subversion, and were asked
to use SVN commands and TurtoiseSVN to answer exercise
questions similar to the experimental questions. They were
comfortable with using SVN commands and TurtoiseSVN to
answer the experimental questions after the brief training.

Separately, in the first experiment, subjects in the treatment
group were less experienced in Subversion than those in
the control group. This is likely not a threat because it is
conceivable that the difference in efficiency could be even
greater if similar groups were used for both the control group
and the experiment group.

2) BASELINE
The baseline in this study was SVN commands in the first
experiment and TortoiseSVN in the second experiment. These
two traditional Subversion clients are the most popular tools
currently available for searching software revision history
in-formation. When being asked to choose whatever SVN
clients they felt comfortable with, controlled subjects in the
first experiment chose SVN commands, and they searched
the project repository using various SVN commands and shell
commands proficiently.

3) TASK
To mitigate the threat that the experimental question design
may be biased to the advantage of TeamWATCH, the most
common software history information required frequently
by developers were selected. In the designed tasks, some
questions requiring detailed information (such as how many
and what files were modified in the last revision) were more
biased to the advantage of traditional version control clients.

4) DATA DIFFERENCE
The treatment group searched information for answers using
TeamWATCH, while the control group used SVN commands
or TortoiseSVN. The information required to answer every
question was from the same software repository. Therefore,
there was no bias for data between two groups.

B. EXTERNAL VALIDITY
1) SUBJECTS
Subjects in both the control group and the experiment group
are Computer Science students. Their experience in software
development is different from real-world professional soft-
ware developers, who are the ultimate target audience of

this prototype tool. These subjects might also have different
understanding of the experimental project and have different
experience in various kinds of 3-D games. The experimental
results from these subjects may not be generalized to a large
population of industry practioners in real world.

2) BASELINE
In this study, the direct comparisonwas amongTeamWATCH,
SVN commands, and TortoiseSVN. The immediate result
from the experiment did not directly cover other Subversion
clients with graphical representation of certain repository
information. However, TortoiseSVN is an easy-to-use client
for both SVN operations and 2-D graphical views integrated.
It is a popular SVN client widely used by many developers.
It represents one of the most efficient SVN clients currently
used by developers. The direct comparison study between
TeamWATCH and TortoiseSVN is appropriate to obtain the
conclusion that TeamWATCH allows developers to be more
efficient in searching for source code historical information
than conventional SVN clients.

3) OBJECT SYSTEM
The experimental project (Notepad++) chosen in this study
was a medium size project with more than 934 files and 1035
revisions developed by four developers. While further evalua-
tion of TeamWATCH’s effectiveness on larger sized projects
(e.g. those with more than 1000 files and more than 10000
revisions) developed by a larger team is desirable, current
results from this experiment are informative and worthwhile
to share with the Software Engineering community.

4) TASK
The sixteen questions used in the two controlled experiments
did not cover all types of questions developers may encounter
in collaborative work. Nevertheless, these questions were
designed based on the ‘‘who, what, when, where, how’’
criterion and represented the most frequently encountered
questions regarding software source code history.

5) TEAMWATCH
TeamWATCH cannot represent all history awareness tools.
Therefore, even though the experiment would be a fair eval-
uation of the TeamWATCH tool, to generalize the specific
outcome from TeamWATCH to software history awareness
in general could be a threat to the validity of the gen-
eral result. However, better tool designs will likely pro-
duce even better results than what has been shown with
TeamWATCH.

VI. SURVEY AND INTERVIEW
So far, the experiments showed that source code revision
history visualization tools such as TeamWATCH were indeed
instrumental to developers. But why have not any tools like
this been integrated in IDEs and made available to developers
on a daily basis?What would it take for developers to actually
adopt these tools in practice? To shed some light on these

VOLUME 2, 2014 419



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 8. Interview details.

questions, in 2013, we conducted a survey among 33 com-
puter science senior undergraduate students and graduate
students. In addition, we interviewed an experienced profes-
sional software project manager.

A. AN INTERVIEW WITH A SOFTWARE PROFESSIONAL
After TeamWATCH was demonstrated to a software profes-
sional with over 15 years of experience in software develop-
ment, software testing, and software project management, he
expressed strong interests in using the tool. He also believed
that the adoption of such a tool would benefit a software
development team. He was not certain if a software devel-
opment organization would incorporate this tool right away,
though. In the interview, he discussed a number of concerns
as listed in Table 8. It was clear that that while he saw a
few additional desired features on top of what he had seen in
the demo, the main concerns were cost/benefit tradeoff and
whether the benefit would be much greater than both actual
and perceived cost in time and money.

B. A SURVEY OF 33 SENIOR AND GRADUATE
COMPUTER SCIENCE STUDENTS
In a survey of 33 Computer Science senior undergradu-
ate and graduate students who had already learned about
TeamWATCH through demonstrations and presentations,
when asked ‘‘If you were to manage a software project that
involves 10+ developers and 10k+ lines of source code for
3+ years with potential personnel turnover, would you adopt
a source code revision history visualization tool like the ones
shown in class?’’, 32 or 97% of them answered yes; only 1 or

3% chose ‘‘no’’.When askedwhy, most of them (31 out of 32)
offered concrete scenarios in which they thought this tool may
help them as developers, e.g. ‘‘I can see what we developed
more and in the case that there was little or no development;
we can look over that portion,’’ ‘‘It would help see who did
the most work, etc.’’ ‘‘Yes, because it will give me a lucid idea
about the working of the team.’’
When asked an open-ended question ‘‘Why do you think

modern IDEs such as Visual Studio, XCode, Eclipse do not
currently provide source code revision history visualization
features?’’, subjects speculated on vague reasons such as
‘‘Fairly new concept but I think it will catch on,’’ ‘‘It will take
a lot of memory/space?’’, or even privacy concerns, which
are not really an issue because TeamWATCH only visualizes
what is already accessible. However, later, when a list of
concrete factors was provided and the subjects were asked
to rank what ‘‘could be potential obstacles in adopting such
code visualization tools’’, the subjects showed their concerns
as listed in Table 9. It was clear that among the provided
list of potential obstacles, the subjects were more worried
about the visualization itself (and therefore the utility of
the tool) than other factors such as cost and management
buy-in.

C. SUMMARY OF THE INTERVIEW AND THE SURVEY
Both the professional developer in the interview and the com-
puter science students in the survey considered the tool useful
and desirable. Further discussions and questions revealed
that the experienced developer wanted more elements in the
visualization but was concerned by cost/benefit tradeoff and

420 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 9. Potential obstacles in adopting source code visualization tools and their rankings by subjects.

management buy-in, whereas the student subjects were more
concerned about understanding the current visualization and
less about management buy-in, something they had less expe-
rience with.

VII. RELATED SOFTWARE TOOLS
TeamWATCH is not alone in using a 3D metaphor in visu-
alization or attempting to provide awareness information
about a software project. TeamWATCH is similar to sev-
eral types of tools in some aspects. A quick discussion
of those tools can help us understand where TeamWATCH
or source code revision history visualization tools stand in
general.

A. SOFTWARE PROJECT AWARENESS TOOLS
Software project awareness tools typically retrieve informa-
tion from several information sources, which is consistent
with what developers do without awareness tools. According
to Gutwin et al. [12], developers in open-source projects
tend to maintain both general awareness of the whole team
and more detailed knowledge of people that they plan to
work with. First, developers maintain a broad awareness
of who are the main people working on their project, and
what their areas of expertise are. They obtain these kinds
of awareness information from three sources: mailing lists,
text chats, and commit logs. Second, when developers plan
to work in a particular area, they must gain more detailed
knowledge about who are the people with experience in that
part of the code. Developers maintain this specific awareness
by using a variety of information sources available on the
project. These information sources include the ‘‘maintain’’
field in the source tree, version control repository logs, issue
trackers, help from senior developers, and project document.

They also post queries to the project mailing list. In short,
open-source developers maintain awareness by manually
‘‘pulling’’
information from several information sources. This was also
true for commercial software developers as found by de
Souza, Redmiles, and Dourish [37]; Ko et al. [3]; LaToza et
al. [6] and Biehl et al. [5].
Many tools have been built to help developers main-

tain awareness in team software development. Some of
these tools such as Seesoft [38], Evospace [39], [40],
COOP/Orm [41], BSCW [42], Xia [43], Augur [44], and
Rationalizer [45] provide awareness of activities based on
information currently available in the repository. Among
these tools, Seesoft is one of the earliest tools visualizing
historical information. It visualizes line-oriented statistics of
source code [38], [46]. Seesoft visualizes historical infor-
mation about authorship, timeline, and description of revi-
sions of projects in version control systems. Different from
Seesoft, TeamWATCH aims to provide file-based information
such as ‘‘who and at which revision modified a file’’ rather
than line-based information such as ‘‘who revised a source
code line’’.

B. PROGRAM COMPREHENSION TOOLS USING
3-D CITY METAPHORS
H.Gall,M. Lanza [40] and P. Dugerdil [47] led the EvoSpaces
project that helped developers with their software analysis
and maintenance by providing a visualization of the evolving
software system, using multi-dimensional navigation spaces.
In the overarching EvoSpaces project, R. Wettel [24], [25],
[48]–[50] developed the CodeCity project, which utilized a
3-D city metaphor to represent classes, methods, and
packages. CodeCity mainly concentrates on helping users

VOLUME 2, 2014 421



C. Liu et al.: Source Code Revision History Visualization Tools

understand software project structure and intentions rather
than providing awareness information such as a developer’s
history activities on specific files, or events happened on
artifacts during a specific time period. Similar with Lange-
lier’s approach [51], CodeCitymaps packages to districts, and
classes in a package to buildings in the relevant district. In
CodeCity, the height of a building represents the number of
methods in the class (by utilizing a boxplot-based mapping
technique), the size represents the number of attributes, and
the color represents the number of source code lines. Wettel
et al. extend their approach by mapping design problems
to colors [50], and introduce a coarse-grained level and a
fine-grained level of visualization for helping software evo-
lution analysis [48]. Even though users can step forward and
backward in time, one scenario of the visualization shows
only the software structure at that time. It does not help
gain insight of the project evolution in one scene, nor does
it help obtain information of relationship among developers,
artifacts and revisions. They perform a controlled experiment
[25] showing the advantage of the visualization of CodeCity
against required data in an Excel sheet in answering a set
of program comprehension related questions. Even though
TeamWATCH utilizes a city metaphor as well, it was mapped
to different concepts to visualize the historical relationship
among developers, artifacts, and revisions to help maintain
what was referred to history awareness, which are both the
overall comprehension of the software evolution and the
details of each revision (for example, who at what time
reconstructed the project, how many and what files were
revised, added, or deleted by a developer in a specific revision,
etc.).

Besides CodeCity, in the EvoSpaces project,
S. Boccuzzo [52]–[54] designed the CocoViz tool, which
integrated audio into a 3-D common space metaphor to
represent concepts such as code smells or design ero-
sion. CocoViz was focused on supporting the understanding
of software structures and evolution, and helping answer
common software comprehension questions. The unifying
EvoSpace tool combined successful concepts from both
CodeCity and CocoViz, and had additional features such as
the visualization of execution traces. Boccuzzo et al. [54]
categorized common software comprehension tasks into five
categories, which were Functionality, Relationship of Code
Entities, Features and their Implementation, Architecture
and Design, and Testing. They introduced an automated
workflow to help locate software entities based on these
comprehension tasks. Their proposed workflow was imple-
mented in their CocoViz tool. In their workflow, users first
select a comprehension task such as finding code smells or
finding siblings of a method, and they can finally obtain
a customized visualization of entities such packages and
classes relevant to the selected task. Even though a similar
3-D visualization is used in TeamWATCH, the semantics of
the TeamWATCH city metaphor differs significantly from
the metaphor in the EvoSpaces project. The EvoSpaces
project mainly focuses on program comprehension tasks

in terms of packages and classes, whereas TeamWATCH
aims to help developers maintain awareness on the revision
history.

C. WORKSPACE AWARENESS TOOLS FOR
MONITORING POTENTIAL CONFLICTS
Some tools such as Palantir [55], [56], JAZZ [57], FAST-
Dash [5], SecondWATCH [22], Workspace Activity Viewer
[23], and War Room [58] visualize up-to-date information
of ongoing changes in developers’ local workspaces. Palan-
tir, Workspace Activity Viewer, CollabVS [59], and Celine
[60] provide filter mechanism to lower developers’ cogni-
tive load. That is, developers only see the changes they are
interested in. Jazz, CollabVS, and State Treemap [61] pro-
vide communication mechanisms. Palantir, CollabVS, and
TUKAN [62] support indirect conflict detection through
dependency analysis. Palantir, JAZZ, FASTDash, War Room,
CollabVS, Celine, and State Treemap mainly focus on cur-
rent information regarding ongoing changes to artifacts, not
historical revision information. Only SecondWATCH and
Workspace Activity Viewer present awareness information in
a 3-D form. SecondWATCH, a tool developed by the authors
before TeamWATCH, was designed to include an Eclipse
plugin to help developers maintain workspace awareness by
monitoring teammates’ local workspace activities. Unlike
SecondWATCH, which focuses on providing develop-
ers’ local workspace awareness information, TeamWATCH
focuses on improving efficiency of searching through histori-
cal information. Both SecondWATCH and Workspace Activ-
ity Viewer show historical awareness information in detailed
views, e.g. a snapshot of all changes to artifacts at a particular
time. TeamWATCH does that, and also provides statistical
information such as the total revision number, the list of
contributors, and contributions of every developer to support
quick understanding of the overview of project revision his-
tory.

D. OTHER RELATED SOFTWARE
VISUALIZATION FRAMEWORK
Langelier et al. [51] introduced a visualization frame-
work for quality analysis of large-scale software system. In
their city metaphor, districts represented packages; build-
ings represented classes; the size and color of each build-
ing represented software quality characteristics such as CBO
(Coupling Between Objects) and WMC (Weighted Meth-
ods per Class). Their visualization aims at helping analyze
software quality such as which classes are associated with
each other, while TeamWATCH aims to help identify history
information such as who at what time revised which specific
file.
Marcus et al. [26], [63] designed sv3D, in which files were

mapped to containers; lines of texts from source codes were
mapped to cylinders in each container; colors represented
control structures; and the height of a cylinder represented
the nesting level. Alam et al. [39] depicted a 3-D virtual city
in which the larger the building, the larger the size of the file.

422 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

TABLE 10. Comparison of select awareness tools.

However, neither tools considered the evolution and revision
of a project’s source code. They just provided visualizations
of the project’s current structure.

Steinbrückner and Lewerentz [64] described a three-staged
visualization approach which consisted of a ‘‘logical primary
model’’ decomposing a system into subsystems, a ‘‘geometric
secondary model’’ representing the decomposition from the
first stage into a hierarchical street layout, and a ‘‘tertiary
models’’ mapping and visualizing software properties into
city metaphors for different scenarios. In their visualization
scenarios, streets down the hills indicated growing subsys-
tems; towers in the high land surrounded by more contours
represented subsystems with more revisions; the size and
color of a tower represented its properties. Although it helps
comprehension of software evolution, the models miss recon-
struction information. Users could easily observe deleted
models from empty plots, but they could not figure out what
were deleted and whether the models were reconstructed at
other plots. Besides, the models do not show detailed infor-
mation for each revision in their visualization. As the authors

stated, their visualization mainly focuses on helping users
create a mental map of system for product properties and pro-
cess events localization. Again, our approach concentrates on
maintaining history awareness, gaining overall comprehen-
sion and detailed information of history relationship among
developers, artifacts, and revisions. Besides the overall recon-
struction information, TeamWATCH visualization provides
detailed information such as the developer’s name, revision
number, commit time, its path, and event (add, delete, or
modify) for a specific revision of a file.

E. DISCUSSION
Different from the tools discussed above, TeamWATCH
was designed as a revision history awareness tool that
complements traditional version control clients to provide
users with fast understanding of the overall project revision
history. Table 10 shows side-by-side comparison between
TeamWATCH and the four most representative ones of the
related tools discussed above, namely Seesoft, CodeCity,

VOLUME 2, 2014 423



C. Liu et al.: Source Code Revision History Visualization Tools

FASTDash, and Palantir. These four tools were selected
because they were higher-profile, more accessible, more
similar to TeamWATCH, or better described in the literature.
In the table, the awareness information row lists the type of
awareness each tool focuses on; the developer information
row covers how each tool provides information about devel-
opers’ current and past activities, the artifact information row
refers to how artifacts’ current status or historical informa-
tion are presented; the event information row summarizes
how each tool shows events such as adding, modifying, and
deleting artifacts; the revision information row shows how
revision numbers and revision dates associated with artifacts
are displayed. As shown in Table 10, Seesoft focuses on
providing source code lines historical statistics. CodeCity,
as a representation of the software structure visualization
tools, concentrates on visualizing software structure and rela-
tionship among classes, packages, and properties of classes.
To help program comprehension and reverse engineering,
both CodeCity and CocoViz introduced their 3-D city
metaphors, the appearances of which are similar to the
metaphor used by TeamWATCH, although with differ-
ent meanings. FASTDash and Palantir aim at mon-
itoring developers’ and files’ current status to help
increase workspace awareness. Compared with these tools,
TeamWATCH helps maintain project history awareness
by facilitating efficient search and understanding of soft-
ware historical repository information through an intu-
itive 3-D visualization, and provides history information on
source code files level. The focus of TeamWATCH is to
1) supply users with source file level awareness information
about project revision history, and 2) provide an intuitive
user interface to help search project revision information
efficiently.

With all the differences listed above in mind, it is important
to note that the general principle of ‘‘awareness through visu-
alization’’ behind TeamWATCH and these awareness tools is
the same. Among these tools, only Seesoft and TeamWATCH
focus on source code history awareness. The experiment
results presented in this paper provide much needed empirical
data to justify further research and development as well as the
adoption of such tools in practice.

VIII. SUMMARY
Software revision history information, which is frequently
requested and searched by software developers, is essential
in collaborative team developments. This paper discusses
whether source code revision history visualization tools are
beneficial to developers in the context of software history
awareness.

TeamWATCH, a 3-D source file and revision visualization
tool that helps developers explore software history informa-
tion efficiently is presented. TeamWATCH aims at providing
an intuitive 3-D visualization of software history information
from source control repositories so that developers can obtain
overview information of a project quickly to maintain soft-
ware history awareness. The visualization in TeamWATCH

was designed to support the natural cognitive process of
understanding the overview first, zooming in to an area
of interest later, and searching for details when necessary.
In TeamWATCH, different types of software history infor-
mation such as developer, artifact, revision, and event infor-
mation were mapped into different metaphors in a 3-D view.
Filters were integrated into the GUI to allow dynamic selec-
tion and filtering of the visualization. Detailed information
about each item was displayed on demand. Statistical history
information was presented directly on the user interface.
Experimental results from two controlled experiments

evaluating the efficacy of TeamWATCH, compared with SVN
commands and TortoiseSVN, provided support to the general
hypothesis that appropriate history awareness tool support
improves the efficiency of history information exploration in
team software development. Specifically, 3-D visualization
of the complete software revision history by TeamWATCH
effectively improved developer comprehension of source
code revisions and project evolution. It was clear that
TeamWATCH was superior when it came to questions that
required better comprehension of the big picture. Because
of that, TeamWATCH subjects achieved better results in all
‘‘subgraph’’-type questions in Table 3.
To seek further insight on why this type of tools is not

currently widely used by developers in practice, an interview
and a survey were conducted, which revealed concerns on
cost/benefit trade-off, management buy-in, and intuitiveness
of the visualization. Even though virtually all subjects wanted
to use tools like this, further efforts addressing these concerns
will be necessary to make the argument for adopting this
type of tools in practice more convincing. Designing these
tools as an awareness tool that stays outside the focal view
of developers may help lower the cost for developer adoption
in terms of developer attention and overhead. (TeamWATCH
was designed to be an awareness tool running on a 2nd moni-
tor, but it was used as the primary tool in the experiments, not
as an awareness tool.) Making the visualization both more
intuitive and richer may help smooth out the learning curve
and add utility to the tool.

ACKNOWLEDGMENT
The authors would like to thank Ohio University under-
graduate and graduate students who participated in this
study.

REFERENCES
[1] I. Vessey and A. P. Sravanapudi, ‘‘CASE tools as collaborative support

technologies,’’ Commun. ACM, vol. 38, no. 1, pp. 83–95, Jan. 1995.
[2] P. Dourish and V. Bellotti, ‘‘Awareness and coordination in shared

workspaces,’’ in Proc. CSCW, 1992, pp. 107–114.
[3] A. J. Ko, R. DeLine, and G. Venolia, ‘‘Information needs in collocated

software development teams,’’ in Proc. 29th ICSE, 2007, pp. 344–353.
[4] A. Begel, Y. P. Khoo, and T. Zimmermann, ‘‘Codebook: Discovering and

exploiting relationships in software repositories,’’ in Proc. 32nd ICSE,
2010, pp. 125–134.

[5] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, ‘‘FASTDash:
A visual dashboard for fostering awareness in software teams,’’ in Proc.
CHI, 2007, pp. 1313–1322.

424 VOLUME 2, 2014



C. Liu et al.: Source Code Revision History Visualization Tools

[6] T. D. LaToza, G. Venolia, and R. DeLine, ‘‘Maintaining mental mod-
els: A study of developer work habits,’’ in Proc. 28th ICSE, 2006,
pp. 492–501.

[7] M. R. Endsley, ‘‘Toward a theory of situation awareness in dynamic sys-
tems,’’ Human Factors, J. Human Factors Ergonomics Soc., vol. 37, no. 1,
pp. 32–64, 1995.

[8] C. Gutwin and S. Greenberg, ‘‘Workspace awareness for groupware,’’ in
Proc. CHI, 1996, pp. 208–209.

[9] C. Gutwin, R. Penner, and K. Schneider, ‘‘Group awareness in distributed
software development,’’ in Proc. CSCW, 2004, pp. 72–81.

[10] C. Gutwin and S. Greenberg, ‘‘The effects of workspace awareness support
on the usability of real-time distributed groupware,’’ ACM Trans. Comput.-
Human Interact., vol. 6, no. 3, pp. 243–281, Sep. 1999.

[11] C. Gutwin and S. Greenberg, ‘‘Themechanics of collaboration: Developing
low cost usability evaluation methods for shared workspaces,’’ in Proc.
WETICE, 2000, pp. 98–103.

[12] C. Gutwin, M. Roseman, and S. Greenberg, ‘‘A usability study of aware-
ness widgets in a shared workspace groupware system,’’ in Proc. CSCW,
1996, pp. 258–267.

[13] C. Gutwin and S. Greenberg, ‘‘A framework of awareness for small
groups in shared-workspace groupware,’’ in Proc. CSCW, 2002,
pp. 411–446.

[14] D. Pinelle, C. Gutwin, and S. Greenberg, ‘‘Task analysis for groupware
usability evaluation: Modeling shared-workspace tasks with the mechanics
of collaboration,’’ ACM Trans. Comput.-Human Interact., vol. 10, no. 4,
pp. 281–311, Dec. 2003.

[15] M. D. Storey, C. Davor, and D. M. German, ‘‘On the use of visualization to
support awareness of human activities in software development: A survey
and a framework,’’ in Proc. SOFTVIS, 2005, pp. 193–202.

[16] T. D. LaToza and B. A. Myers, ‘‘Hard-to-answer questions about code,’’ in
Proc. PLATEAU, 2010, pp. 8:1–8:6.

[17] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and
J. P. de Vries, ‘‘Moving into a new software project landscape,’’ in Proc.
32nd ICSE, 2010, pp. 275–284.

[18] (2013, Apr. 18). Apache Subversion: Enterprise-Class Centralized Version
Control for the Masses [Online]. Available: http://subversion.apache.org/

[19] (2013, Apr. 18). Notepad++: A Free Source Code Editor and Notepad
Replacement [Online]. Available: http://notepad-plus-plus.org/

[20] (2013, Apr. 18). TortoiseSVN: The Coolest Interface to (Sub)Version Con-
trol [Online]. Available: http://tortoisesvn.net/

[21] B. Shneiderman, ‘‘The eyes have it: A task by data type taxonomy
for information visualizations,’’ in Proc. IEEE Symp. VL, Sep. 1996,
pp. 336–343.

[22] E. Ye, L. A. Neiman, H. Q. Dinh, and C. Liu, ‘‘Second-
WATCH: A workspace awareness tool based on a 3-D virtual world,’’ in
Proc. 31st ICSE-Companion, May 2009, pp. 291–294.

[23] R.M. Ripley, A. Sarma, and A. van der Hoek, ‘‘A visualization for software
project awareness and evolution,’’ in Proc. 4th IEEE VISSOFT, Jun. 2007,
pp. 137–144.

[24] R. Wettel and M. Lanza, ‘‘Program comprehension through software hab-
itability,’’ in Proc. 15th IEEE ICPC, Jun. 2007, pp. 231–240.

[25] R. Wettel, M. Lanza, and R. Robbes, ‘‘Software systems as cities: A con-
trolled experiment,’’ in Proc. 33rd ICSE, 2011, pp. 551–560.

[26] A. Marcus, L. Feng, and J. I. Maletic, ‘‘3D representations for software
visualization,’’ in Proc. SOFTVIS, 2003, pp. 27–ff.

[27] (2013, Apr. 18). jEdit: Programmer’s Text Editor [Online]. Available:
http://www.jedit.org/

[28] (2013, Apr. 18). Firebird: True Universal Open Source Database
[Online]. Available: http://www.firebirdsql.org/

[29] (2013, Apr. 18). Hugin: Panorama Photo Stitcher [Online]. Available:
http://hugin.sourceforge.net/

[30] (2013, Apr. 18). The OpenNMS Project [Online]. Available:
http://www.opennms.org/

[31] (2013, Apr. 18). VITAL Lab: Virtual Immersive Technologies and Arts for
Learning Laboratory [Online]. Available: http://vital.cs.ohiou.edu/

[32] B. B. Bederson, B. Shneiderman, and M. Wattenberg, ‘‘Ordered and quan-
tum treemaps: Making effective use of 2D space to display hier-archies,’’
ACM Trans. Graph., vol. 21, pp. 833–854, Oct. 2002.

[33] (2013, Apr. 18). Unity: Game Engine [Online]. Available:
http://unity3d.com/

[34] (2013, Apr. 18). The Notepad++ Download Statistics [Online]. Available:
http://sourceforge.net/projects/notepad-plus/files/stats/timeline

[35] J. Sillito, G. C. Murphy, and K. De Volder, ‘‘Asking and answering ques-
tions during a programming change task,’’ IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 434–451, Jul. 2008.

[36] B. de Alwis and G. C. Murphy, ‘‘Answering conceptual queries with
Ferret,’’ in Proc. ACM/IEEE 30th ICSE, May 2008, pp. 21–30.

[37] C. R. B. de Souza, D. Redmiles, and P. Dourish, ‘‘‘Breaking the code’,
moving between private and public work in collaborative software devel-
opment,’’ in Proc. GROUP, 2003, pp. 105–114.

[38] S. G. Eick, J. L. Steffen, and J. Sumner Eric E., ‘‘Seesoft-a tool for
visualizing line oriented software statistics,’’ IEEE Trans. Softw. Eng.,
vol. 18, no. 11, pp. 957–968, Nov. 1992.

[39] S. Alam, ‘‘Evospaces: 3D visualization of software architecture,’’ in Proc.
SEKE, 2007, pp. 500–505.

[40] M. Lanza, H. Gall, and P. Dugerdil, ‘‘EvoSpaces: Multi-dimensional navi-
gation spaces for software evolution,’’ in Proc. 13th Eur. CSMR, Mar. 2009,
pp. 293–296.

[41] B. Magnusson and U. Asklund, ‘‘Fine grained version control of con-
figurations in COOP/Orm,’’ in Proc. SCM-6 Workshop Syst. Configuration
Manag., 1996, pp. 31–48.

[42] W. Appelt, ‘‘WWW based collaboration with the BSCW system,’’ in Proc.
SOFSEM, 1999, pp. 66–78.

[43] X. Wu, A. Murray, M. Storey, and R. Lintern, ‘‘A reverse engineering
approach to support software maintenance: Version control knowledge
extraction,’’ in Proc. 11th WCRE, Nov. 2004, pp. 90–99.

[44] J. Froehlich and P. Dourish, ‘‘Unifying artifacts and activities in a visual
tool for distributed software development teams,’’ in Proc. 26th ICSE,
May 2004, pp. 387–396.

[45] A. W. J. Bradley and G. C. Murphy, ‘‘Supporting software history explo-
ration,’’ in Proc. 8th MSR, 2011, pp. 193–202.

[46] T. Ball and S. G. Eick, ‘‘Software visualization in the large,’’ Computer,
vol. 29, pp. 33–43, Apr, 1996.

[47] P. Dugerdil and S. Alam, ‘‘Execution trace visualization in a 3D space,’’ in
Proc. 5th ITNG, 2008, pp. 38–43.

[48] R. Wettel and M. Lanza, ‘‘Visual exploration of large-scale system evolu-
tion,’’ in Proc. 15th WCRE, 2008, pp. 219–228.

[49] R. Wettel and M. Lanza, ‘‘Visualizing software systems as cities,’’ in Proc.
4th IEEE VISSOFT, Jun. 2007, pp. 92–99.

[50] R. Wettel and M. Lanza, ‘‘Visually localizing design problems with dishar-
mony maps,’’ in Proc. 4th SOFTVIS, 2008, pp. 155–164.

[51] G. Langelier, H. Sahraoui, and P. Poulin, ‘‘Visualization-based analysis
of quality for large-scale software systems,’’ in Proc. 20th ASE, 2005,
pp. 214–223.

[52] S. Boccuzzo and H. C. Gall, ‘‘CocoViz with ambient audio software
exploration,’’ in Proc. IEEE 31st ICSE, May 2009, pp. 571–574.

[53] S. Boccuzzo and H. C. Gall, ‘‘Software visualization with audio
supported cognitive glyphs,’’ in Proc. IEEE ICSM, Sep./Oct. 2008,
pp. 366–375.

[54] S. Boccuzzo and H. C. Gall, ‘‘Automated comprehension tasks
in software exploration,’’ in Proc. 24th IEEE ASE, Nov. 2009,
pp. 570–574.

[55] A. Sarma, Z. Noroozi, and A. van der Hoek, ‘‘Palantir: Raising aware-
ness among configuration management workspaces,’’ in Proc. 25th ICSE,
May 2003, pp. 444–454.

[56] A. Sarma, D. Redmiles, and A. van der Hoek, ‘‘Palantir: Early detection
of development conflicts arising from parallel code changes,’’ IEEE Trans.
Softw. Eng., vol. 38, no. 4, pp. 889–908, Jul. 2012.

[57] S. Hupfer, L. Cheng, S. Ross, and J. Patterson, ‘‘Introducing collaboration
into an application development environment,’’ in Proc. CSCW, 2004,
pp. 21–24.

[58] C. O’Reilly, D. Bustard, and P.Morrow, ‘‘The war room command console:
Shared visualizations for inclusive team coordination,’’ in Proc. SOFTVIS,
2005, pp. 57–65.

[59] R. Hegde and P. Dewan, ‘‘Connecting programming environments to sup-
port ad-hoc collaboration,’’ in Proc. 23rd IEEE/ACM ASE, Sep. 2008,
pp. 178–187.

[60] J. Estublier and S. Garcia, ‘‘Process model and awareness in SCM,’’ in
Proc. 12th Int. Workshop Softw. Configuration Manag., 2005, pp. 59–74.

[61] P. Molli, H. Skaf-Molli, and C. Bouthier, ‘‘State Treemap: An awareness
widget for multi-synchronous groupware,’’ in Proc. 7th Int. Workshop
Groupware, 2001, pp. 106–114.

[62] T. Schummer and J. M. Haake, ‘‘Supporting distributed software devel-
opment by modes of collaboration,’’ in Proc. 7th ECSCW, 2001,
pp. 79–98.

VOLUME 2, 2014 425



C. Liu et al.: Source Code Revision History Visualization Tools

[63] A. Marcus, D. Comorski, and A. Sergeyev, ‘‘Supporting the evolution of a
software visualization tool through usability studies,’’ in Proc. 13th IWPC,
May 2005, pp. 307–316.

[64] F. Steinbruckner and C. Lewerentz, ‘‘Representing development history in
software cities,’’ in Proc. 5th SOFTVIS, 2005, pp. 193–202.

CHANG LIU received the Ph.D. degree in infor-
mation and computer science from the Univer-
sity of California at Irvine, Irvine, CA, USA, in
2002. He is currently an Associate Professor of
Computer Science with Ohio University, Athens,
OH, USA, where he is the Founding Director
of the VITAL Laboratory. His research focuses
on software engineering and immersive technolo-
gies. Sponsors of his projects include the National
Science Foundation and the U.S. Environmental

Protection Agency.

XIN YE is currently pursuing the Ph.D. degree with
the School of Electrical Engineering andComputer
Science, Ohio University, Athens, OH, USA. He
received themaster’s degree in communication and
information systems from the Beijing Institute of
Technology, Beijing, China, in 2006.

EN YE is currently pursuing the Ph.D. degree with
the School of Electrical Engineering and Com-
puter Science, Russ College of Engineering and
Technology, Ohio University, Athens, OH, USA.
His research focuses on using 3-D virtualization
created on top of game engines (e.g., Unity3D)
and online virtual worlds to enhance collaboration
in software development. He also developed 3-D
online learning games to enrich education.

426 VOLUME 2, 2014


