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ABSTRACT In this paper, we study control problems that can be directly applied to controlling the rotational
motion of eye and head.Wemodel eye and head as a sphere, or ellipsoid, rotating about its center, or about its
south pole, where the axes of rotation are physiologically constrained, as was proposed originally by Listing
and Donders. The Donders’ constraint is either derived from Fick gimbals or from observed rotation data of
adult human head. The movement dynamics is derived on SO(3) or on a suitable submanifold of SO(3) after
describing a Lagrangian. Using two forms of parametrization, the axis-angle and Tait–Bryan, the motion
dynamics is described as an Euler–Lagrange’s equation, which is written together with an externally applied
control torque. Using the control system, so obtained, we propose a class of optimal control problem that
minimizes the norm of the applied external torque vector. Our control objective is to point the eye or head,
toward a stationary point target, also called the regulation problem. The optimal control problem has also
been analyzed by writing the dynamical system as a Newton–Euler’s equation using angular velocity as
part of the state variables. In this approach, explicit parametrization of SO(3) is not required. Finally, in the
appendix, we describe a recently introduced potential control problem to address the regulation problem.

INDEX TERMS Orthogonal group, quaternions, Riemannian metric, Newton-Euler’s equation, Euler-
Lagrange’s equation, Listing’s law, Donders’ law, optimal control, potential control, regulation problem.

I. INTRODUCTION
We analyze the problem of controlling the pointing direc-
tion of a rigid body, actuated by controllers that rotate the
body. Our motivation stems primarily from the problem of
controlling the orientation of human head/eye complex (see
[1] and [2] for an early reference to the eye and head move-
ment problem, respectively), where the goal is to eventually
point the head or the eye towards a point target. The target
could be stationary or moving giving rise to, respectively,
a regulation [3] or a tracking problem [4]. In this paper, we
restrict ourselves to regulation problem only. In 3D, even after
pointing towards a target, the orientation of a rigid body, being
controlled, remains ambiguous. For the eye control problem,
this is undesirable, particularly because while viewing an
object, orientation ambiguity would imply that the image of a
target would have rotational ambiguity on the retina. In order
to handle the rotation ambiguity during the process of turning
the head and the eye, the orientation space is often restricted
in ways that will be discussed later in this paper. This fact
was observed since 1845 by physiologists such as Listing [5],
Donders [6] and Helmholtz [7], to name a few.

Simply speaking, Listing had observed that eye rotations
are constrained to have only two degrees of freedom and
their orientations are completely prescribed by their gaze

directions. There is an alternative, but equivalent language
to describe the Listing’s constraint. It states that all possible
orientations of the eye, away from the primary position (typi-
cally looking straight ahead), are obtained by rotating the eye
about an axis of rotation restricted to a fixed plane that goes
by the name Listing’s Plane (see Fig. 1).
Complementary to the eye movement problem, Donders

studied the possible orientations human head can attain, under

FIGURE 1. Listing’s plane, fixed to the head, is shown along with eye in
the primary gaze direction.
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spontaneous head movement, and proposed that the ‘axes of
head rotations’ (suitably scaled) away from a primary head
position, is restricted to a fixed surface that goes by the name
Donders’ Surface [8]– [10] (see Fig. 2). In essence, Donders’
law of head movement generalizes the Listing’s Law of eye
movement. Whereas the Listing’s plane is fixed and is typi-
cally held constant,1 Donders’ surface is also assumed fixed
but changes from one human subject to another [12], [13]. For
the same physical task of ‘head pointing’, it follows naturally
that two human subjects would orient their heads differently
guided by their respective Donders’ surfaces.

FIGURE 2. Donders’ surface, fixed to the torso, is shown along with head
in the primary pointing direction.

The control objective considered in this paper is to regulate
the rotation of eye or head, i.e. to change the orientation from
a given initial to a desired final gaze/pointing direction. The
control problem is described under the assumption that the
state space is the unconstrained SO(3), or it is constrained to
be a sub manifold LIST for the eye movement or DOND for
the head movement. Although, typically we assume that the
eye and head are spheres rotating about its center, we have
also considered the case when they can be ellipsoidal and
in the case of head, rotating about the south pole. Thus we
simulate the problemwhen the head is rotating about the neck.
The parameters of the ellipsoid is chosen to match roughly
the size of an adult human eye and human head. Finally, two
different Donders’ constraints have been considered in this
paper. The first one is the constraint arising from Fick gimbals
and the second one has been borrowed from [13], where the
parameters had been obtained from recorded human head
movement data.2

In order to execute the task of rotation, suitably attached
muscles produce torques. In the case of eye movement, three
pairs of torque producing extra-ocular muscles, are recruited
roughly along the three independent axes. Many previ-
ous, eye movement control studies have looked at detailed
muscle models, as in [14]– [18]. A recent survey on the
head movement control has been described in [19]. To sim-
plify our presentation of the control problem in this paper,

1Studies have indicated (see for example [11]), that Listing’s plane tilts
slightly with the changing orientation of the head. In this paper, we will not
concern ourselves with this tilt.

2In [13], six Donders’ surfaces were reported.

neuromuscular systems have not been looked at. We con-
sider externally applied torques that are either in the form
of generalized torques, tied to the parameters of the space
of allowed orientations or in the form of external torques
described with respect to the inertial frame. The torques
are assumed unconstrained by the dynamics of muscles and
neurons.
In sections II - V, this paper presents an overview from

[4], [12], [13], and [20] in a tutorial style. We have intro-
duced two parameterizations of S3 and introduced the spaces
LIST and DOND. Listing’s and two versions of Donders’
theorem are described in section IV.3 These theorems char-
acterize orientation ambiguity for a specified gaze/pointing
direction. Riemannian metric and the corresponding geodesic
equations are introduced in section V, for eye/head shaped
like a perfect sphere. This assumption was relaxed in
section VI, where a procedurally new approach to writing the
Riemannian metric was introduced. Using the axis-angle
and the Tait-Bryan parameters, we also compute the angular
velocity vector and define kinetic energy using the angular
velocity and the moment of inertia. In sections VII and VIII,
eye and head movements are introduced as a dynami-
cal system using respectively the Euler-Lagrange’s equa-
tion and Newton-Euler’s equation. Finally, section IX ends
the paper by considering examples from optimal control.
We add an appendix to talk about the potential control
approach, which is particularly relevant for Lagrangian
systems.

II. BACKGROUND GEOMETRY OF S3 AND SO(3)
Since every orientation can be viewed as a point in SO(3),
eye and head movements can be described as trajectories in
SO(3), the space of rotations. Parametrization of points in
SO(3) can be easily obtained from a parametrization of S3,
the unit sphere in IR4. We consider a map between S3 and
SO(3) given by

rot : S3→ SO(3), (1)

described as [
q0 q1 q2 q3

]T
7−→ Q, (2)

where

Q=

q20+q21−q22−q23 2(q1q2−q0q3) 2(q1q3+q0q2)
2(q1q2+q0q3) q20+q

2
2−q

2
1−q

2
3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q20+q
2
3−q

2
1−q

2
2

.
(3)

The map ‘rot’ in (1) is surjective but not 1−1. This is because
both q = [q0,q1,q2,q3]T and −q in S3 has the same image.
The columns of the 3×3 matrix (3) are orthonormal and we
shall interpret them as coordinates attached to the rotating
body.4 Additionally, we use the convention that the third

3It is unclear if Listing and Donders actually wrote these as theorems.
What is clear, is that their intention was to restrict the orientation space is
such a way that gaze/pointing vector would uniquely specify the complete
orientation.

4The matrix Q describes the instantaneous orientation of the rigid body.
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column is the ‘gaze direction’, when the rotating body is the
eye. Likewise it is the ‘pointing direction’ for the head. We
define the following projection map

proj : SO(3)→ S2, (4)

described as

Q 7−→

 2(q1q3+q0q2)
2(q2q3−q0q1)
q20+q

2
3−q

2
1−q

2
2

.
The mapping ‘proj’ cannot be 1−1 because the dimension of
the domain is greater than the range. The following proposi-
tion due to Helmke [21] describes the pre-image of ‘proj’ as
follows.
Proposition I (Helmke): Let us denote the composite map

proj ◦ rot by L. If q and q̄ are two unit quaternions, to be
viewed as points in S3, such that L(q)= L(q̄), then there exists
a unit quaternion of the form u= (a,0,0,b) where a2+b2= 1
such that q̄= q • u. �
Remark I: Points in S3 can be viewed as unit quaternions

[22], [23], and we denote quaternion multiplication by the
symbol •. �

It follows that, Proposition I characterizes the orientation
ambiguity for a specific heading (gaze) direction. Pre image
of L is a circle in the space of all orientations. It was remarked
in the introduction (section I), that an important problem in
the physiology of human eye and head rotation is to be able
to disambiguate the orientation ambiguity, during regulation.
The eye (when head is fixed) and head (when torso is fixed)
handle this problem by imposing Listing’s and Donders’
constraints, respectively.5

III. TWO PARAMETERIZATIONS OF S3

The space SO(3) of rotations can be parameterized in several
ways. The possible candidates include Euler angles [24],
Tait-Bryan angles [25], [26], axis-angle pairs [27], Euler-
Rodrigues parameters [28], [29], an older name for the unit
quaternion parameters [30] etc. The Euler angles and the Tait-
Bryan angles are similar in the sense that they decompose
a specific rotation as a cascade of three simple rotations.
In these two parameterizations, the angles describe the
amount of each simple rotations along a specific coordi-
nate axis. Axis-angle representation, utilizes the fact that
every rotation can be represented with respect to a unit axis
vector by a specific angle in the anticlockwise direction.
This idea is also utilized in Euler-Rodrigues parametrization
(equivalently the quaternion parameters) where the unit axis
vector is scaled by a trigonometric function of the rotation
angle. The resulting ‘rotation vector’ can be identified as the
homogeneous coordinates of a unit vector in IR4, equivalently
a point in S3.
Remark II: In this paper, we do not use Euler angles

to describe a point on SO(3), because historically this has

5The scenario when eye and head are both moving has not been discussed
in this paper, see [4].

not been used in the literature on ‘eye’ and ‘head’ move-
ments. Note that head movements are typically described
using Euler-Rodrigues parameters [31], [32], whereas eye
movements have been described in [12] and [20], using axis-
angle pairs. �
As described in section II, our main interest is in param-

eterizing the space of orientations SO(3). It turns out that
it is much cleaner to parameterize S3 instead, because of
the map ‘rot’ (1). In this section we describe two alternative
parameterizations of S3, that have been used by the authors
to study eye and head movement problems.

A. AXIS-ANGLE PARAMETRIZATION
We consider a parametrization of a point in S3 using three
angle variables θ , φ and α as follows6

q(θ,φ,α)=


cos φ2

sin φ2

cosθ cosα
sinθ cosα

sinα


, (5)

where we assume θ ∈ [0,π ], φ ∈ [0,2π ] and α ∈ [−π2 ,
π
2 ].

Let us define

Q(θ,φ,α) = rot(q(θ,φ,α)). (6)

By computing w=Q(θ,φ,α)v, where v, w are vectors in IR3,
one can show that w is obtained by rotating v by an angle φ
about the axis  cosθ cosα

sinθ cosα
sinα

,
rotated in an anticlockwise direction. If we assume that
cos φ2 6= 0, one can normalize the homogeneous coordinates
in (5) and obtain the vector

ζ =

 tan φ2

 cosθ cosα
sinθ cosα

sinα

, (7)

as coordinates of S3 for this chart. The vector ζ in (7) will be
called the rotational vector.7

B. TAIT BRYAN PARAMETRIZATION
In this subsection, we introduce the Tait-Bryan angles
[25], [26], given by φ1, φ2 and φ3, as follows

q(φ1,φ2,φ3)=


sin φ12 sin φ22 sin φ32 + cos φ12 cos φ22 cos φ32
cos φ12 sin φ22 cos φ32 + sin φ12 cos φ22 sin φ32
sin φ12 cos φ22 cos φ32 − cos φ12 sin φ22 sin φ32
cos φ12 cos φ22 sin φ32 − sin φ12 sin φ22 cos φ32

 ,
(8)

where we assume that φ1 ∈ [−π,π ], φ2 ∈ [−π2 ,
π
2 ], φ3 ∈

6This parametrization has been introduced in [12].
7Rotational vectors will be used in defining Listing’s plane and Donders’

surfaces later in section IV318 VOLUME 2, 2014
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[−π,π ]. These parameters were introduced in the context
of head movement in [13]. Tait-Bryan parameters generalize
a typical Fick gimbal system, [33], [34], which we now
describe (see [35] for an earlier reference on Euler Angles).

A 2-gimbal system has two axes of rotations, where the
assumption is that the first axis is fixed and the second axis
rotates with the head, when the head rotates about the first
axis. Subsequently, the head also rotates about the second
axis. Following Fick gimbals, we assume that the fixed axis
is the vertical axis, which is perpendicular to the ground and
passes through the center of the head. The initial orientation
of the second axis is horizontal and is perpendicular to the
primary heading direction, also passing through the center of
the head. We denote the anticlockwise rotation angle about
the fixed (yaw) axis by φ1, and the anticlockwise rotation
angle about the nested horizontal (pitch) axis by φ2. The roll
is assumed to be zero and the final orientation of the head is a
combination of the two rotations, yaw and pitch. If we define
φi to be the angle of rotation with respect to the axis i, for
i= 1,2,3, the nesting of the three axes is shown in Fig. 3a.

FIGURE 3. Tait-Bryan angles are φ1, φ2, φ3, where φi is counterclockwise
head rotation, with respect to axis i . (a) Generalized gimbal frame.
(b) Head showing gimbal axes.

Tait-Bryan parametrization generalizes the gimbal sys-
tem by introducing a third axis, initially along the line of
gaze perpendicular to the vertical and horizontal axes of the
gimbal system. We assume that the third axis rotates with
respect to the first two axes of the gimbal system by angles
φ1 and φ2 respectively. Finally we assume that the head
rotates anticlockwise by an angle φ3 with respect to the
nested third (roll) axis. Quaternion representation of the
Fick gimbals is given by

q(φ1,φ2) =


cos φ12 cos φ22
cos φ12 sin φ22
sin φ12 cos φ22
−sin φ12 sin φ22

, (9)

obtained by imposing φ3 = 0 in (8). Writing q =
[q0,q1,q2,q3]T as in section II, it follows from (9) that for
the Fick gimbals, we obtain8

q0q3 = −q1q2. (10)

Remark III: If L is the composite map described in Propo-
sition I, one can parameterize the gaze/pointing directions

8This relation (10) has already been introduced in [36] and [37].

as

L(q(θ,φ,α))=

 sin2 φ2 sin(2α)cosθ + sinφ cosα sinθ
sin2 φ2 sin(2α) sinθ − sinφ cosα cosθ

cos2 φ2 − sin2 φ2 cos(2α)


(11)

and

L(q(φ1,φ2,φ3))=(sinφ1 cosφ2, −sinφ2, cosφ1 cosφ2)T .
(12)

Note that for the Tait-Bryan parametrization, the gaze vector
is independent of the roll angle φ3. This is intuitive because
the roll, by definition, is rotation about the gaze directional
axis. �

IV. THE SPACES LIST AND DOND
Listing’s law asserts that, for eye movement, the rotational
vector ζ in (7), is restricted to the plane,α= 0, called Listing’s
plane. Equivalently, the axis of rotation is restricted to a fixed
plane given by q3 = 0.We define LIST to be the submanifold
of S3 and SOL(3) to be the submanifold SO(3) satisfying the
Listing’s constraint. Using the axis-angle parametrization, we
have the following sequence of maps

[0,π ]× [0,2π ]×
[
−
π

2
,
π

2

]
q
−→ LIST

rot
−→ SOL(3)

proj
−−→ S2

(13)
defined by

(θ,φ,0) 7−→


cos φ2

sin φ2 cosθ
sin φ2 sinθ

0

 7−→ Q(θ,φ,0)

7−→

 sinθ sinφ
−cosθ sinφ

cosφ

 ,
and the following theorem due to Listing.
Theorem I (Listing): Under the Listing’s constraint, the

map

SOL (3)−


 cos2θ sin2θ 0

sin2θ −cos2θ 0
0 0 −1

 proj
−−→ S2−


 0

0
−1


(14)

described by (13) is one to one and onto. �
Proof of the Listing’s theorem has been sketched in [12].

If we choose the convention that (0,0,1)T is the frontal gaze
direction, it would follow that (0,0,−1)T is the backward
gaze direction. Listing’s theorem claims that for all but the
backward gaze direction, every other gaze direction com-
pletely specifies the rotation matrix in SOL(3), hence the
orientation of the eye.
Donders’ law generalizes Listing’s law by asserting that,

for the head movement, the rotation vectors ζ in (7) are
not spread out in a 3-D volume but instead fall in a single
two-dimensional surface, known as the Donders’ surface (see
Fig. 2). Existence of a Donders’ surface has been established
in sufficient details in [9], [36], and [38]– [41]. It is observed

VOLUME 2, 2014 319



B. K. Ghosh et al.: Geometric Approach to Head/Eye Control

that the Donders’ surface is a saddle shaped surface, with
non-zero torsional component at oblique facing directions,
obtained by mildly twisting a plane (see Fig. 4 for the
Donders’ surface (10) originating from Fick gimbals). Two
Donders’ surfaces reported in [13] have also been sketched
in Fig. 5.

FIGURE 4. Donders’ surface (10) corresponding to the Fick gimbal scaling
q0 in (2) to 1. The scaled coordinates are q̄i =

qi
q0

for i = 1,2,3. The
coordinate q̄3 along the vertical line shows the nonzero torsion.
The horizontal plane is coordinatized by q̄1 and q̄2.

FIGURE 5. Using measured data on human head orientations, six
Donders’ surfaces have been displayed in [13]. In this figure, we display
surfaces 2 and 13 and call them S2 and S13. The coordinate axes match
Fig. 4 but are scaled differently. (a) Donders’ surface S2. (b)Donders’
surface S13.

At this point, it would be natural to ask what would
be the appropriate generalization of the Listing’s theorem
in the case of DOND. As in LIST , we define DOND
to be the submanifold of S3 and SOD(3) to be the submanifold
of SO(3) satisfying the Donders’ constraint. Using the axis
angle parametrization, let us describe the Donders’ surface
(see [12]) by constraining α as

α = ε sin(2θ ), (15)

and write down the rotational vector as

ζdond =

 tan φ2

 cosθ cos(ε sin(2θ ))
sinθ cos(ε sin(2θ ))

sin(ε sin(2θ ))

, (16)

where the parameter ε is assumed to be a small positive or
negative constant. The motivation to consider Donders’ sur-
face in the form (15) follows from [42], wherein the following
was observed about a typical head movement
When the axis of rotation is horizontal or vertical (i.e. when

θ is a multiple of π2 ), headmoves without any torsion. At other
angles of rotation, there is a gradual increase in torsion.

As in (13), we have the following sequence of map

[0,2π ]× [0,2π ]
q
−→ DOND

rot
−→ SOD(3)

proj
−−→ S2 (17)

defined by

(θ,φ) 7−→


cos φ2

sin φ2 cosθ cos(ε sin(2θ ))
sin φ2 sinθ cos(ε sin(2θ ))

sin φ2 sin(ε sin(2θ ))


7−→ Q(θ,φ,ε sin(2θ )) 7−→

11
12
13

,
where

11 = sinθ sinφ cos(ε sin(2θ ))+ cosθ sin2
φ

2
sin(2ε sin(2θ ))

12 =−cosθ sinφ cos(ε sin(2θ ))+sinθ sin2
φ

2
sin(2ε sin(2θ ))

13 = cos2
φ

2
− sin2

φ

2
cos(2ε sin(2θ )). (18)

The following theorem for the Donders’ surface has been
described in [12].
Donders’ Theorem II: Under the Donders’ constraint (15),

the map proj in (17) is 2− 1, for all points in the range S2

outside a closed and bounded set4 that contains the backward
pointing direction. Furthermore, almost everywhere in 4 the
map proj is 4−1. �
Sketch of the set 4 from [12] is shown in Fig. 6. The

size of the set 4 is small, for small values of ε and when
ε approaches 0 the set 4 approaches the backward pointing
direction. Moreover the map proj in (17), degenerates to a
1−1 map. It would follow that Listing’s theorem (Theorem I)
is recovered in the limit when ε approaches 0.
Remark IV: Donders’ surfaces described as in (15) were

introduced in [12] for the first time. However, we would like
to note that under small angle hypothesis, i.e. if the angles
φ and α are sufficiently small, the Donders’ constraint (10),
arising from Fick gimbals, can be approximated as

α = −
1
4
φ sin(2θ ),

which would be in the form (15), where ε = −φ4 . �
In [31] and [32], Donders’ surfaces are described as a

quadratic surface using quaternion parameters q0,q1,q2,q3
from (2) as follows

q̄3 = h0+2h1q̄1+2h2q̄2+h11q̄21+h22q̄
2
2+2h12q̄1q̄2, (19)

where q̄i =
qi
q0
, i = 1,2,3. The quadratic surface represen-

tation of the Donders’ surface has been subsequently used
by the authors in [13]. Two of the surfaces are shown in
Fig. 5. Using the Tait-Bryan parametrization (8), the Donders’
surface equation (19) can be written as a quadratic equation
in tan φ32 given by

t tan2
φ3

2
+ s tan

φ3

2
+ r = 0, (20)

where t , s and r are functions of φ1 and φ2, detail derivation of
which are omitted. For those angle variables φ1, φ2 for which
s2 − 4 t r ≥ 0, we solve φ3 as a function of φ1 and φ2.
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FIGURE 6. Backward pointing direction of the head is shown in the figure as the south pole. The shaded region
4 around the south pole is the set of pointing directions where the number of possible orientations satisfying
Donders’ constraint is generically 4. Outside the shaded region 4, the number of possible orientations of the
head for a specific pointing direction is two (counting multiplicities). The value of ε for the Donders’ constraint
(15) are shown in the captions above. (a) ε = 0.1. (b) ε = 0.2. (c) ε = 0.3.

When the discriminant is strictly positive, one can solve
φ3 up to two distinct choices. Since, specifying the angles
φ1 and φ2 completely specifies the pointing direction of the
head given by (12), the two choices of φ3 for a given pointing
direction would correspond to two distinct orientations. The
following theorem completely summarizes the picture.
Donders’ Theorem III: For the angle variables φ1

and φ2 for which the discriminant s2 − 4tr > 0 there exist
precisely two distinct orientations that satisfy the Donders’
constraint (19) while corresponding to the specific pointing
direction (12). These two orientations are given by two dis-
tinct values of φ3. On the other hand, when the discriminant
s2 − 4 t r < 0 no orientation would satisfy both the specific
heading direction (12) and the Donders’ constraint (19). �
Proof of Donders’ Theorem III: The unit quaternion (8) can

be factored as the product

q(φ1,φ2,φ3) =


cos φ12 cos φ22
cos φ12 sin φ22
sin φ12 cos φ22
−sin φ12 sin φ22

•

cos φ32

0
0

sin φ32

, (21)

where we recall that ‘‘•’’ denotes quaternion multiplication.
Let L be the composite map introduced in Proposition I, it fol-
lows from Proposition I that all preimages of L(q(φ1,φ2,φ3))
are of the form

cos φ12 cos φ22
cos φ12 sin φ22
sin φ12 cos φ22
−sin φ12 sin φ22

•

a
0
0
b

, (22)

where (a,b) are arbitrary points on the unit circle i.e. a2 +
b2 = 1. The point of the proof of Donders’ Theorem III is to
ascertain how many of these quaternions satisfy the Donders’
constraint (19). It would follow that the circle of quaternions
would either intersect the quadratic Donders’ surface at two
points or no point depending upon sign of the discriminant
function s2 − 4tr . �

Remark V: A surprising consequence of Donders’
Theorem III is that not all head pointing directions are
attainable if the Donders’ constraint (19) is satisfied. The
unattainable pointing directions, sketched in blue, are shown
in Fig. 7 for the Donders’ surfaces S3, S4, S8 and S13
from [13]. �

FIGURE 7. Head pointing directions for subjects with Donders surfaces
sketched in [13]. Points in blue are head pointing directions that are not
attainable by rotations satisfying the Donders’ constraint from the primary
head position. Index of the Donders’ surfaces are in the captions above.
The blue region of unattainable pointing directions for S2 is imperceptibly
small, and is therefore not shown. (a) Data from surface S3. (b) Data from
surface S4. (c) Data from surface S8. (d) Data from surface S13.

Remark VI: Carefully observing the conclusions from the
two descriptions of the Donders’ surfaces (15) and (19), as
evidenced by the Donders’ Theorems II and III, we conclude
that the mapping proj, in (17), is 2− 1 for a large section of
pointing directions9 in S2. In practice, this section typically
includes the entire frontal pointing directions. For (15), some
pointing directions have 4 preimages whereas for (19), some

9When the Donders’ surface arises from the Fick gimbal (10), one of the
two preimages of proj, has an orientation that correspond to the head being
inverted (φ3 =±π ), and is therefore physiologically unattainable.
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pointing directions have no preimage. These pointing direc-
tions are typically located in the backward hemisphere, and
hence they are physiologically unattainable. �

V. RIEMANNIAN METRIC AND GEODESICS
We begin our derivation of the Riemannian metric (see [43]),
by assuming that the eye/head is a perfect sphere and its
inertia tensor is equal to a scalar multiple10 of the identity
matrix I3×3. As described in [20], one can calculate a left
invariant Riemannian metric on SO(3) using the isometric
submersion rot introduced in (1). Using the axis-angle param-
eters from (5), the Riemannian metric on SO(3) has been
computed in [12] as

g =
[
dθ dφ dα

]
GAA

[
dθ dφ dα

]T
, (23)

where

GAA =

 sin2 φ2 cos2α 0 0
0 1

4 0
0 0 sin2 φ2

 . (24)

Using the Riemannian metric (23), one can write down an
expression for kinetic energy KE given by

KE =
1
2

(
sin2

φ

2
cos2α θ̇2 +

1
4
φ̇2 + sin2

φ

2
α̇2
)
. (25)

Using the Tait-Bryan parametrization (8), the Riemannian
metric on SO(3) can be written as

g =
[
dφ1 dφ2 dφ3

]
GTB

[
dφ1 dφ2 dφ3

]T
,

(26)
where

GTB =

 1
4 0 −

1
4 sinφ2

0 1
4 0

−
1
4 sinφ2 0 1

4

 . (27)

The kinetic energy KE is easily written, analogously, as

KE =
1
2

(
1
4

[
φ̇21 + φ̇

2
2 + φ̇

2
3

]
−

1
2
sinφ2 φ̇1φ̇3

)
.

(28)

Remark VII: In this remark, we would like to point out
when the RiemannianMatrixGAA andGTB are singular. From
(24) and (27) it is clear that GAA is singular when φ = 0
or when α = ±π2 . It follows from (11) that GAA is singular
precisely when the gaze/pointing direction is (0 0 1), i.e.
along the primary direction (looking/pointing straight ahead).
Likewise, GTB is singular when sinφ2 =±1. It follows from
(12) that GTB is singular precisely when the gaze/pointing
direction is (0 ∓ 1 0), i.e. looking/pointing straight down
or up.11 �

10We will choose this scalar multiple to be 1
4 .

11From the point of view of location of singularities, we would argue that
Tait-Bryan is preferable to axis-angle parametrization.

Using the Riemannianmetric (23) for SO(3), the associated
geodesic equation12 is given by

θ̈ + θ̇ φ̇ cot φ2 −2θ̇ α̇ tanα = 0
φ̈− θ̇2 sinφ cos2α− α̇2 sinφ = 0
α̈+ 1

2 θ̇
2 sin(2α)+ φ̇α̇ cot φ2 = 0.

(29)

Using the Riemannianmetric (26) for SO(3), the associated
geodesic equation is given by(

φ̈1
φ̈3

)
=

(
tanφ2 secφ2
secφ2 tanφ2

)(
φ̇1
φ̇3

)
φ̇2

φ̈2 = −cosφ2 φ̇1 φ̇3. (30)

Remark VIII:On the submanifold LIST of SO(3), described
by α= 0, the Riemannian metric (23) degenerates to the form
(see [20])

g =
[
dθ dφ

]
GLIST

[
dθ dφ

]T
, (31)

where

GLIST =

(
sin2 φ2 0
0 1

4

)
. (32)

The corresponding geodesic equation on LIST is given by

θ̈ + θ̇ φ̇ cot φ2 = 0
φ̈− θ̇2 sinφ = 0.

(33)

�
For the Riemannian metric (23), it is well known that the

geodesic curves on SO(3) are great circles. The following
result from [12] is somewhat surprising.
Theorem IV (Geodesic Curve on SO(3) and LIST ): Pro-

jection of the geodesic curves of SO(3), that are solutions
of equations (29) or (30), on the gaze/pointing space S2, via
the mapping proj defined in (4), is a circle. Projection of the
geodesic curves of LIST , that are solutions of equation (33),
on the gaze/pointing space S2, via the same mapping proj
defined in (4), is a circle that always pass through a fixed
vector (0,0,−1)T . �

It will turn out that the circular shape of the geodesic curve
is not retained when eye/head is modeled as an ellipsoid.

VI. DERIVATION OF ANGULAR VELOCITY
Let ω be the angular velocity of the rotating eye/head with
respect to an universal coordinate (also called inertial coordi-
nate), assumed fixed, and attached to the torso. Let q be the
quaternion described in (5) and in (8). The time derivative q̇
of q can be expressed as (see [46])

q̇ =
1
2
ω̃ •q, (34)

where

ω̃ =

(
0
ω

)
12Geodesic equations were computed in [20] using Christoffel symbols

[44] and Connection [45].
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MAA =

−cosα (2cosθ sinα sin2 φ2 + sinθ sinφ) cosα cosθ (1− cosφ) sinθ − cosθ sinα sinφ
−sin(2α) sinθ sin2 φ2 + cosα cosθ sinφ cosα sinθ cosθ (cosφ−1)− sinα sinθ sinφ

2cos2α sin2 φ2 sinα cosα sinφ

. (36)

GLIST =

(
[m1+m2+2m3+ (m1+m2−2m3)cos(3φ)+ (m2−m1)cos(2θ )(1+ cos(3φ))] sin2 φ2

(m2−m1)
2 (2cosφ−1)sin(2θ ) sinφ

(m2−m1)
2 (2cosφ−1)sin(2θ ) sinφ 1

2 (m1+m2+ (m1−m2)cos(2θ ))

)
,(42)

is a quaternion whose vector part is the angular velocity ω.
Using (5), (8) and (34), one can explicitly compute the vector
ω in terms of the axis-angle or Tait-Bryan parameters in the
following form

ω = M 2̇, (35)

where M is a 3×3 matrix. In the axis-angle parameters

2 = (θ,φ,α)T

the matrix MAA is given by (36), as shown at the top of this
page. In the Tait-Bryan parameters

2 = (φ1,φ2,φ3)T (37)

the matrix

MTB =

 0 cosφ1 cosφ2 sinφ1
1 0 −sinφ2
0 −sinφ1 cosφ1 cosφ2

.
A simple algebraic manipulation shows that

GAA =
1
4
MT
AA MAA, (38)

and

GTB =
1
4
MT
TB MTB. (39)

Choosing the moment of inertia to be 1
4 I3×3, where I3×3 is a

3 by 3 identity matrix, we compute that the kinetic energy

KE =
1
2

(
ωT
(
1
4
I3×3

)
ω

)
matches precisely the definition chosen earlier in (25)
and (28).
Remark IX: When the moment of inertia is an arbitrary

symmetric, positive definite matrix J (in the body coordi-
nate), we define kinetic energy given by

KE =
1
2

(
ωT J̄ ω

)
=

1
2

(
2̇T (MT J̄ M

)
2̇
)
,

where

J̄ = QT J Q, (40)

is moment of inertia in the inertial coordinate, and where
Q has been defined in (3). If we define the Riemannian matrix
as

GAA = MT
AA J̄ MAA and GTB = MT

TB J̄ MTB, (41)

we obtain Riemannian metric analogous to (23) and (26). �

FIGURE 8. A geodesic curve from a typical human eye projected on the
gaze space, under Listing’s constraint. The moment of inertia is
constructed from the parameters of a typical human eye and has been
chosen as m1 = 1.0211, m2 = 1.0000, m3 = 1.0417. The parameters have
been normalized making the smallest mi to be 1. (a) Projection of a
single geodesic curve on LIST in the gaze space using axis-angle
parametrization. The initial conditions are θ = π

8 , θ̇ = 1, φ = π
4 , φ̇ = 2. The

figure shows the front view. (b) The figure shows the back view of the
geodesic curve in Fig. 8a. Note that the curve passes through the
backward gaze point repeatedly. (c) Projection of a geodesic curve on
LIST in the gaze space using axis-angle parametrization. The initial
conditions are θ = π

16 , θ̇ = 1, φ = π
8 , φ̇ = 3. (d) The figure shows the back

view of the geodesic curve in Fig. 8c. Note that the curve passes through
the backward gaze point repeatedly.

Remark X: When J = diag(m1,m2,m3), the determinants
of the Riemannian matrices GTB and GAA from (41) are
obtained as

det(GTB) = m1m2m3 cos2φ2,

and

det(GAA) = 16 m1m2m3 cos2α sin4
φ

2
.

These determinants do not change even when the moment of
inertia of the body is an arbitrary symmetric, positive definite
matrix J . It follows that the singularities of GTB and GAA are
precisely as was described in Remark VII. Likewise, one can
define GLIST as

GLIST = MT
LIST J̄ MLIST ,
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where MLIST is the first two columns of the matrix MAA in
(36). The matrix GLIST

13 is given by (42), as shown at the top
of the page. and we compute

det(GLIST )=4m3(m1 cos2 θ+m2 sin2 θ ) sin4
φ

2
+m1m2 sin2φ,

so that GLIST is singular precisely when φ = 0, i.e. when
the gaze/pointing direction is looking straight ahead. The
main point of this remark is to verify that the structure of the
matrix J does not move the singular points of the correspond-
ing Riemannian matrix G. �

VII. CONTROLLED LAGRANGIAN DYNAMICS
AND EULER-LAGRANGE’S EQUATION
Wedescribe the eye and head rotation as a Lagrangian dynam-
ics [47], where the dynamics is described using a Lagrangian
L where

L = KE − PE, (43)

and the corresponding Euler-Lagrange’s equation

d
dt

(
∂L

∂β̇

)
−

(
∂L
∂β

)
= τβ . (44)

The kinetic energy functions (KE) are already introduced in
sections V and VI. The movement dynamics is additionally
affected by a potential energy term PE14 and an externally
applied input (τβ ), where β represents the angle variables θ ,
φ, α for the axis-angle parametrization and φ1, φ2, φ3 for
the Tait-Bryan parametrization. The notation τβ is for the
generalized torque. Let

T = (T1, T2, T3)T ,

be the external torque applied to the eye or head, represented
in the inertial coordinate referred to in section VI, we remark
that the generalized torque vector τ = (τθ ,τφ,τα)T is related
to T by a transformation described as

τ = MT T (45)

where M has been defined in (35). From (45), we obtain the
following15

‖T‖2 = τT (MTM )−1 τ. (46)

The right hand side of (46) evaluates to

1
4
sec2α csc2

φ

2
τ 2θ + τ

2
φ +

1
4
csc2

φ

2
τ 2α . (47)

for the axis-angle parameters. In the Tait-Bryan parametriza-
tion, the corresponding right hand side of (46) is given by

sec2φ2 τ 2φ1 + τ
2
φ2
+ sec2φ2 τ 2φ3 + 2sinφ2 sec2φ2 τφ1τφ3 .(48)

13Thematrices (32) and (42) should be compared, and one should note that
when J is not a multiple of the identity matrix, the diagonal structure of the
G matrix is lost. This makes the problem of computing optimal controllers
for ellipsoidal bodies, much harder.

14Throughout this paper, the potential energy term is assumed to be absent.
It is added only in the appendix X, where we introduce potential based
control.

15The notation ‖ · ‖ is the standard Euclidean norm.

We finish this section by writing the description of the
Euler-Lagrange equation (44), for specific parameteriza-
tions on SO(3) and LIST considered in equations (29), (30)
and (33). We continue to assume that the potential function
PE in (43) is identically 0. Attaching the term G−1τ to the
right hand sides of (29), (30) and (33), we obtain

θ̈ + θ̇ φ̇ cot φ2 −2θ̇ α̇ tanα = sec2α csc2 φ2 τθ
φ̈− θ̇2 sinφ cos2α− α̇2 sinφ = 4τφ
α̈+ 1

2 θ̇
2 sin(2α)+ φ̇α̇ cot φ2 = csc2 φ2 τα.

(49)

on SO(3) using axis-angle parametrization;(
φ̈1
φ̈3

)
=

(
tanφ2 secφ2
secφ2 tanφ2

)(
φ̇1
φ̇3

)
φ̇2

+ 4 sec2φ2

(
1 sinφ2

sinφ2 1

)(
τφ1
τφ3

)
φ̈2 = −cosφ2 φ̇1 φ̇3 + 4 τφ2 . (50)

on SO(3) using Tait-Bryan parametrization; and

θ̈ + θ̇ φ̇ cot
φ

2
= csc2

φ

2
τθ

φ̈− θ̇2 sinφ = 4 τφ . (51)

on LIST using axis angle parametrization. The equations (49)
and (51) were already introduced in [12]. The equation (50)
is new.
Remark XI: The Euler-Lagrange equation (44) can be writ-

ten in a compact form (see [13]) as

G2̈ + Ġ2̇ − ∇2L = τ, (52)

where G is the Riemannian matrix, L is the Lagrangian (43),
2 = (θ1,θ2,θ3) is the parameter vector16 and τ is the vector
of generalized torques. Finally, we define ∇2 is the gradient
operator with respect to 2 defined as

∇2 =

(
∂

∂θ1
,
∂

∂θ2
,
∂

∂θ3

)T
. (53)

When J is an arbitrary symmetric, positive definite matrix,
we can use the definition of G in (41) to write the Euler-
Lagrange’s equation using (52). �

VIII. CONTROLLED RICCATI DYNAMICS
The approach that we had been using so far in this paper, to
describe a rigid body dynamics, is to either use axis-angle or
the Tait-Bryan parameters. In this section, instead of using the
Euler-Lagrange equation, we propose to use Newton-Euler
formulation of the dynamics [35].We begin with a discussion,
which is perhaps quite standard (see [3]).
Let us start with a fixed inertial coordinate frame, denoted

by e. A rigid body is rotating with respect to the frame e and
we assume that a frame b is attached to the body (called the
body frame). Let x and xb be coordinates of a vector with

16For LIST the parameter vector is 2 dimensional and the definition of ∇X
in (53) has to be adjusted accordingly. On SO(3), 2 is either (θ,φ,α) for
axis-angle or (φ1,φ2,φ3) for Tait-Bryan parameters.
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respect to frames e and b, respectively, it follows that the
coordinates are related by

xb = Q x,

where Q is the rotation matrix introduced in (3). Let J be a
constant moment of inertia matrix of the rigid body in the
body frame, and let ωb be the angular velocity vector in the
body frame b. Finally let Tb be the expression of the external
torque in the body frame, we have the following, well known,
dynamic equation

J ω̇b(t) = −ωb(t)× (Jωb(t)) + Tb(t). (54)

A simple algebraic manipulation yields the following descrip-
tion of the dynamic equation in the inertial coordinates

J̄ (t) ω̇(t) = −ω(t)× (J̄ (t) ω(t)) + T (t), (55)

where J̄ (t) has been defined (40) in remark IX, and note that
T (t) is the external torque in the inertial frame. Note also that
ω is the angular velocity vector in the inertial frame, as was
introduced earlier in (35).
Remark XII: For a rigid body, the matrix J is a constant

but the matrix J̄ (t) is not. It would therefore appear that the
equation (54) is simpler to use compared to (55). In this paper,
however, we use the latter equation. This is because, in the
equation (34), the angular velocity vector ω is defined in the
inertial frame. �

Rewriting (34) as

d
dt


q0
q1
q2
q3

 = 1
2


0
ω1
ω2
ω3

 •

q0
q1
q2
q3

, (56)

where we recall that • is quaternion multiplication. The equa-
tion (56) is to be viewed as an equation on the projective space
IP3 [48], [49]. When q0 6= 0, we define coordinates on the
projective space given by

q̄i =
qi
q0
, for i= 1,2,3.

In these coordinates, the dynamics (56) can be written as

2

 ˙̄q1˙̄q2
˙̄q3

 =
ω1
ω2
ω3

 +
 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

  q̄1
q̄2
q̄3



+

ω1 0 0 0 ω3 ω2
0 ω2 0 ω3 0 ω1
0 0 ω3 ω2 ω1 0





q̄21

q̄22

q̄23

q̄2q̄3

q̄1q̄3

q̄1q̄2


. (57)

The dynamical system (57) is the Riccati Dynamics [50],
corresponding to the homogeneous system (56) (see [51] for
Riccati connection to homogeneous systems). The pair of
equations (55), (57) describe a controlled Riccati equation.
The control is given by external torque vector T (t) on the
eye/head represented in the inertial coordinates.
Remark XIII: When the moment of inertia matrix J =

1
4 I3×3, where I3×3 is the identity matrix, the equation (55)
reduces to

ω̇(t) = 4T (t). (58)

Substituting the description of ω in terms of the derivative of
the angle parameters from (35) we write

ω̇(t) = M 2̈ + Ṁ 2̇. (59)

Combining, (58) and (59) we obtain

2̈ + M−1Ṁ 2̇ = 4M−1 T (t), (60)

which is an alternative description of the Euler-Lagrange’s
equations (49) and (50) (see also (52)). Multiplying (52) by
G−1 and equating the right hand side with the right hand side
of (60) we obtain

T (t) =
1
4
M G−1 τ (t). (61)

Since G is 1
4M

TM , we recover (45) from (61).
When the moment of inertia matrix J is an arbitrary sym-

metric, positive definite matrix, the calculations made in this
remark can be repeated and we can recover (45) as well. �

FIGURE 9. Geodesic pointing directions from a human head of ellipsoidal
shape rotating about the south pole. The moment of inertia matrix, in
body coordinates, is diag(.2718, .0529, .2698) in kg m2 units. The initial
conditions are at φ1 = φ2 = φ3 = 0, and φ̇1 = φ̇2 = φ̇3 = 5. (a) Using
Tait-Bryan parametrization, the geodesic curve on SO(3) has been
projected onto the pointing space S2. Simulation time is 10 secs.
(b) Geodesic curve on SO(3) projected on S2 as on the left, where
the simulation time is continued for 100 secs.

IX. EXAMPLES OF OPTIMAL CONTROL PROBLEM
The optimal control problems we discuss here are introduced
in greater details in [4]. Typically, our interest is to rotate
the human eye or the head from one gaze/pointing direc-
tion to another, in a finite time interval which we assume
to be [0,1]. We therefore assume that the state variables
2 and 2̇ have prescribed values17 at t = 0 and at t = 1.

17Typically one could assume that 2̇(0)= 2̇(1)= 0.
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There are of course multiple ways to steer the eye/head
between the two gaze/pointing directions, and our goal is to
achieve this objective18 with minimum cost, as measured by
a cost function.

Recall from (52) that we can write the Euler Lagrange’s
equation as

2̈ = F, (62)

where
F = G−1

[
τ − Ġ 2̇ + ∇2L

]
.

For both eye and head, one of our goal is to calculate an
optimal generalized torque vector τ that minimizes a cost
function in the form

CF =
∫ 1

0

δ

2
‖T‖2, (63)

where ‖T‖2 has been computed in (46), and δ is a constant
weight. Oneway to compute the optimal control is to augment
the dynamics (62) as a part of the cost function (63) and write

CF =
∫ 1

0

δ

2
‖T‖2 + p(t)T

(
F − 2̈

)
dt. (64)

The variable p(t) is the Lagrange-Multiplier and is called the
costate variable in this context. We define

H =
δ

2
τT Z (2) τ + pTF,

where Z (2)= (MTM )−1 and rewrite (64) as

CF =
∫ 1

0
(H − pT 2̈) dt. (65)

A necessary condition for optimal control is obtained by
taking the variation [52] of (65) with respect to 2, p and τ
and setting the result to zero. We obtain

2̈ =
∂H
∂p
= F; p̈ =

∂H
∂2
−

d
dt

(
∂H

∂2̇

)
. (66)

The optimal control τ is obtained as

τ = −
1
δ
(GZ )−1p.

The equation (66) is called the Hamiltonian-Equation and
the function H is called the Hamilton’s function. Note in
particular that when J = 1

4 I3×3, then the optimal generalized
torque control τ takes a simple form given by

τ = −
4
δ
p. (67)

The states of the equation (66) are 2, 2̇, p, ṗ, and typically
we are given initial and final values 2(0), 2̇(0), 2(1), 2̇(1).
Remark XIV: From the point of view of eye and head

rotations, often we are interested in restricting the state 2 to

18It has been argued in [4] that other objectives, such as tracking a
prescribed trajectory, are important as well, for example in Eye/Head
coordination.

a submanifold of SO(3), such as LIST or DOND. We define
the constrained space as

D(2) = 0.

In this case, we modify the function H as

H̄ =
δ

2
τT Z (2) τ + pTF + λ D,

where λ(t) is another Lagrange-Multiplier. The cost function
CF is now written as

CF =
∫ 1

0
(H̄ − pT 2̈) +

ε

2
λ̇2 dt, (68)

where the last term is a penalty term, that has been added
to make λ smooth. We obtain an equation similar to (66) as
follows

2̈ =
∂H̄
∂p
= F; p̈ =

∂H̄
∂2
−

d
dt

(
∂H̄

∂2̇

)
; λ̈ =

1
ε
D(2).

(69)
The optimal control is still given by (67). �
We now sketch some specific examples of the optimal

control problem.

A. OPTIMAL CONTROL USING AXIS-ANGLE PARAMETERS
Using the axis-angle parametrization, we start by looking
at the dynamical system (49). Our goal is a synthesize an
optimal controller that minimizes a cost function in the form

δ

2

∫ 1

0
‖T (t)‖2dt =

δ

2

∫ 1

0

1
4
sec2α csc2

φ

2
τ 2θ + τ

2
φ

+
1
4
csc2

φ

2
τ 2α dt. (70)

Recall that the cost function originally considered in [13] is

δ

2

∫ 1

0
‖τ (t)‖2dt =

δ

2

∫ 1

0
τ 2θ (t) + τ

2
φ (t) + τ

2
α (t) dt, (71)

where τ is the vector of generalized torque. We now restrict
the state space to satisfy Listing’s constraint α = 0, by
defining D(2) = α. In Fig. 10, the corresponding optimal
trajectory has been plotted. In comparing the two cost func-
tions (71) and (70), we would like to remark that perhaps
minimizing (70) is more practical and reasonable, since it
minimizes the magnitude of the external torque. On the other
hand, the cost function (71) was used in [12]. Fig. 10 shows
that the optimal trajectories, for the two cost functions, are
close although generalized torques produce trajectories of
shorter length.

B. OPTIMAL CONTROL USING TAIT-BRYAN PARAMETERS
As is subsection IX-A, we are now looking at the dynamical
system (50), together with a cost function in the form

δ

2

∫ 1

0
‖T (t)‖2dt =

δ

2

∫ 1

0
sec2φ2

×
[
τ 2φ1 (t) + τ

2
φ3
(t) + 2sinφ2 τφ1τφ3

]
+ τ 2φ2 (t) dt. (72)

326 VOLUME 2, 2014



B. K. Ghosh et al.: Geometric Approach to Head/Eye Control

FIGURE 10. Sphere rotating about center satisfying Listing’s constraint.
The center of the circle in the above two figures shows frontal gaze
direction. The black curve is when the cost function (71), minimizes the
vector of generalized torque τ . The blue curve is when the cost function
(70), minimizes the vector of external torque T . In Fig. 10b, the black and
blue curves cannot be seen separately. (a) The eye moves from
left/bottom to left/top. The initial conditions are θ(0)= π

4 , φ(0)= π
6 ,

α(0)= 0, θ̇(0)= φ̇(0)= α̇(0)= 0. The final conditions are θ(1)= 3π
4 ,

φ(1)= π
6 , α(1)= 0, θ̇(1)= φ̇(1)= α̇(1)= 0. (b) The eye moves from

left/bottom to right/top. The initial conditions are θ(0)= π
4 , φ(0)= π

6 ,
α(0)= 0, θ̇(0)= φ̇(0)= α̇(0)= 0. The final conditions are θ(1)= 5π

4 ,
φ(1)= π

6 , α(1)= 0, θ̇(1)= φ̇(1)= α̇(1)= 0.

We compare our optimal trajectories with the one obtained
using cost function in the form

δ

2

∫ 1

0
τ 2φ1 (t) + τ

2
φ2
(t) + τ 2φ3 (t) dt, (73)

considered in [13]. The optimal trajectories are sketched in
Fig. 11, assuming that the states are restricted to satisfy
Donders’ constraint. We have used Donders’ surface S2 from
surface 2 in [13] and from the Fick gimbals.19 We have used
the cost function (72) in Fig. 11a and the cost function (73)
in Fig. 11b. We note, once again, that generalized torques
produce trajectories of shorter length.

C. OPTIMAL CONTROL USING CONTROLLED
RICCATI DYNAMICS
In this section, we would like to refer back to the
Riccati dynamics (57) from section VIII. We also consider
the dynamics of the angular velocity vector ω given by
(58). We would like to optimally regulate the eye movement
while minimizing the cost function (63). As in (64), we
augment the cost function by considering a new cost function
given by

CF =
∫ 1
0

δ
2

(
T 2
1 +T

2
2 +T

2
3

)
+ p1

[
1
2

(
ω1+q̄3ω2−q̄2ω3+q̄21ω1+q̄1q̄2ω2+q̄1q̄3ω3

)
−˙̄q1

]
+ p2

[
1
2

(
ω2+q̄1ω3−q̄3ω1+q̄22ω2+q̄1q̄2ω1+q̄2q̄3ω3

)
−˙̄q2

]
+ p3

[
1
2

(
ω3+q̄2ω1−q̄1ω2+q̄23ω3+q̄1q̄3ω1+q̄2q̄3ω2

)
−˙̄q3

]
+ p4 [T1−ω̇1]+p5 [T2−ω̇2]+p6 [T3−ω̇3] dt.

(74)
Additionally, if the state variable is to be restricted to

the Listing’s plane, q̄3 = 0, we further augment the cost
function (74) with the Listing’s constraint and obtain the
following

CFLIST = CF +
∫ 1

0
λq̄3+

ε

2
λ̇2 dt. (75)

19Donders’ surface arising from Fick gimbals is given by φ3 = 0. Donders’
surface S2 is described in the form (20).

FIGURE 11. Optimal control of a sphere rotating about center. In blue
curve, the Donders’ surface is chosen as S2, from surface 2 in [13]. The
red curve is when the Donders’ surface is from Fick gimbal. Initial and
final conditions of the angle φ3 is calculated using the Donders’ surface.
(a) The initial condition is φ1(0)= φ2(0)= π

6 , φ̇1(0)= φ̇2(0)= φ̇3(0)= 0.
The final condition is φ1(1)= φ2(1)=− π6 , φ̇1(1)= φ̇2(1)= φ̇3(1)= 0. The
cost function minimizes the magnitude of the external torque T in inertial
coordinates. (b) The initial condition is φ1(0)= φ2(0)=− π6 ,
φ̇1(0)= φ̇2(0)= φ̇3(0)= 0. The final condition is φ1(1)= φ2(1)=− π6 ,
φ̇1(1)= φ̇2(1)= φ̇3(1)= 0. The cost function minimizes the magnitude
of the generalized torque τ .

FIGURE 12. Projection of the solution to the Euler-Lagrange’s equation
(81), assuming potential energy PE is zero, has been plotted starting from
the head pointing direction a. For c = 0, in (79), the projection of the
geodesic is plotted as a blue curve from a to d . For c = 0.25 the projection
of the solution is plotted as a green curve from a to c . Finally for c = 0.50
the projection is plotted as a red curve from a to b. The figure
demonstrates that all curves trace out a portion of the geodesic.

As commented in remark XIV, the variable λ is another
Lagrange’s multiplier and the last term in (75) is a penalty
term, added in order to make λ smooth. Lastly, if the state
variable is to be restricted to theDonders’ surface arising from
the Fick gimbal, q̄3+ q̄1 q̄2 = 0, we further augment the cost
function (74) with the corresponding Donders’ constraint and
obtain the following

CFFICK = CF +
∫ 1

0
λ [q̄3+ q̄1 q̄2]+

ε

2
λ̇2 dt. (76)
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FIGURE 13. Simulations of the human head being potentially controlled.
The figures show movement of the head on the pointing space. In the
caption above, S2 is used to mean the Donders’ surface from surface 2
in [13]. Blue curve is the trajectory of a typical human head, satisfying
Donders’ surface S2 (see Fig. 5a). Black curve is same as the blue curve
except that the human head is replaced by a sphere. Finally the red curve
is same as the blue curve except that the Donders’ surface is replaced by
Fick gimbal. All rotations are about the south pole (neck). (a) The initial
conditions are φ1 =

π
6 , φ2 =

π
6 . The final conditions are φ1 =

π
6 , φ2 =−

π
6 .

The angle φ3 is calculated using the Donders’ surface. The blue and the
black curves are overlapping. (b) The initial conditions are φ1 =

π
6 ,

φ2 =
π
6 . The final conditions are φ1 =−

π
6 , φ2 =−

π
6 . The angle φ3 is

calculated using the Donders’ surface.

FIGURE 14. Sphere rotating about center. Optimal curve joining the
gaze/pointing directions (0,0,1)T (frontal gaze direction, shown as north
pole) and (0,−1,0)T (gaze direction looking straight down). The former is
a singular point of axis-angle parametrization and the latter is a singular
point of Tait-Bryan parametrization. In this simulation, we have used the
q parametrization. The initial and the final conditions on ˙̄qi are zero for
i = 1,2,3. Black color is when state is restricted by Listing’s constraint.
Red color is when state is restricted by Donders’ surface arising from
Fick gimbal.

The optimal control is synthesized by taking variation with
respect to vectors q̄, ω, p and T and λ. In Fig. 14, the optimal
trajectories have been plotted when the body is made to move
between two gaze/pointing directions assuming that the state

FIGURE 15. Optimal torques from Fig. 14. Dashed lines are when the state
is constrained by Listing. Continuous lines are when the state is
constrained by Fick gimbal. Black, Blue and Red shows T1, T2 and T3
respectively. It is interesting to note that although the torque profiles in
this figure are substantially different, the optimal trajectories in Fig. 14
are close.

is constrained by Listing’s (respectively Fick) constraint. The
end points are deliberately chosen as points where either the
dynamical system using axis-angle or the Tait-Bryan param-
eters hit a singularity. Simulation shows that although the
optimal trajectories in Fig. 14 are ‘close’, the optimal torque
functions (shown in Fig. 15) are not.

X. CONCLUSION
A geometric approach to controlling eye and head movement
is introduced in this paper, even when the eye and the head are
not perfect spheres and when the head is not rotating about
its center. Taking parameters from a typical human adult, eye
and head geodesic trajectories have been simulated and their
projections on the gaze/pointing space have been plotted. Fur-
thermore, choosing the same parameters, and assuming that
the Donders’ surface is borrowed from one of the six human
subjects reported in [13], we have plotted the potentially
controlled trajectories. These trajectories are compared under
a more relaxed assumption when the Donders’ surface comes
from a simplified Fick gimbal and when the head is replaced
by a perfect sphere. It is interesting to observe that the non-
spherical shape did not affect the trajectories appreciably.
The paper also introduces a non-Lagrangian approach to

solving optimal control problems by writing a Riccati dynam-
ics on S3, where the control torque affects the angular veloc-
ity vector. In this, so called Newton-Euler formulation, the
dynamical system (57) does not have a singularity. However,
the variables q̄i, i = 1,2,3 are not defined when q0 = 0, i.e.
when φ = π , equivalently when the gaze/pointing direction
is backwards. Additionally, an obvious disadvantage is the
lack of a suitable potential control approach. Although mus-
cle models are not discussed in this paper, they have been
introduced in [20] using a Lagrangian formulation of the
dynamics.

As a final remark, we would like to point out the following
partial list of application areas where we think this paper will
make contact in the future.
• Gaze Stabilization Therapy: All animals are con-
fronted with the problem of stabilizing gaze in spite
of disruptive effects of locomotory action [53]. For
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humans, the head and body movements are to be com-
pensated by an opposite movement of the eye [4]. It is
believed that the compensatory eye movement is imple-
mented by vestibular error sensory feedback. Vestibular
signals also play a role in motor learning over repeated
trials, using an efference copy signalling [54]. Modeling
and optimal control problems in the gaze stabilizing
circuit of patients with chronic bilateral vestibular loss,
would be important for their therapy (see [55]).

• Motion Parallax in Humanoid Robotics: Motion par-
allax is the displacement in the retinal position of the
projection of an object as an animal moves through the
environment [56]. It has been reported in owls, insects,
birds and mammals [57], [58], that parallax resulting
from head and eyemovements contain depth information
that can compliment stereopsis techniques well-known
in Robotics [59], [60]. The motion models presented in
this paper can be extended to estimate motion parallax,
with possible application to humanoid robots [61].

• Multi-Ocular Vision in Human Robot Team: Human
vision is binocular [15], yet it is unclear how two eyes
are controlled simultaneously to focus between targets
(see [62]). A well known principle for binocular control
is due to Hering [63], wherein it has been proposed
that the control action on the two eyes can be decom-
posed into version and vergence components (see [64],
[65]). The motion models of eye and head rotations,
presented in this paper, can be used to study binoc-
ular control, and to teams of vehicles equipped with
visual capabilities (that include human and robot vision).
A possible scenario for control action is to orient vehi-
cles and the visual sensors, to maximize motion parallax
(as described above). The control action can also be
to minimize motion parallax (also called motion cam-
ouflage) in 3D, possibly with a team of agents [66]
equipped with orientable vision sensors. Such problems,
arising from predator/prey dynamics in Biology, are of
military interest as well [67].

• Wearable Electrooculography in Video Games:
Human activities, such as reading or driving, can be rec-
ognized from eye movement activities [68], that include
a pattern of saccade, fixation and blinking. Electroocu-
lography (EOG) is an inexpensive method for mobile
eye movement recordings and can be implemented using
wearable sensors [69]. EOG can be used as an input
modality for video gaming purposes as well [70].Model-
ing of 3D eye movement tasks, while a subject performs
a series of natural activities, would benefit from EOG
measurements in the future.
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APPENDIX A
GEODESIC CURVES OF AN ADULT HUMAN
EYE AND HEAD
Adult human eye is almost spherical but not precisely so.
In this appendix, we model the human eye as an ellip-
soid and sketch the corresponding geodesic trajectories.
In Fig. 8, a geodesic trajectory on LIST, projected on the
gaze space, is shown in two colors for two different initial
conditions,20 and two different views of the gaze space. The
rotation of the eye is about the center. The moment of inertia
matrix is chosen as J = diag(m1,m2,m3), where the ratios of
the parameters m1, m2, m3 is chosen to match a typical adult
human eye21 (see [72]– [74]). Note that whenm1 =m2 =m3,
their geodesic equations specialize to what was described in
(33). Simulations for this special case has been sketched in
an earlier paper [12]. It is interesting to note from Fig. 8
that a single geodesic trajectory, projected on the gaze space,
repeatedly passes through the backward gaze direction.
Likewise, the geodesic curves on SO(3), using the Tait-

Bryan parameters, that generalizes (30), have been obtained
for a typical human head (shaped like an ellipsoid).22 The
moment of inertia matrix, in body coordinates, is given by
diag(.2718, .0529, .2698) in kg m2 units. The rotation of the
ellipsoid is assumed to be with respect to the bottom, South
Pole, of the ellipsoid.23 The projection of the geodesic curve
on the pointing space S2, is sketched in Fig. 9. Deviating
from the circular trajectory on S2, when m1 = m2 = m3,
sketched in [12], the pointing directions from the geodesic
curve appears to tumble over all possible directions. Sim-
ulation shown in Fig. 9b shows that projection of a single
geodesic curve, covers practically the whole of S2.
Remark XV: Existence of geodesic curves on a

Riemannian manifold, that are not closed curves as in
Figs. 8, 9, have been discussed by Boothby [45], p. 185 and
by Hilbert and Cohn-Vossen [76], pp. 222–224.

APPENDIX B
ROLE OF THE POTENTIAL AND THE DAMPING FUNCTION
In the main body of this paper (section VII), we have assumed
that the potential function PE is zero. It turns out that by
adding a potential function, one can change the equilib-
rium point of the Euler-Lagrange’s equation (52). In this
appendix, we add a damping term to make this equilibrium

20We omit writing the geodesic equation, because these equations
(obtained using Mathematica) is too long to be put in this paper.

21An adult human eye has approximately a vertical diameter of 24 mm,
a horizontal diameter of 25 mm and anterior to posterior diameter of
24.5 mm. The eye can be modeled as an ellipsoid. For moment of inertia
calculations, see [71].

22We have used an ellipsoid with horizontal diameter 6 10
16 in, back to front

diameter 6 14
16 in, and height 8 6

16 in.
23To calculate the moment of inertia matrix, we use the parallel axis

theorem [75], to shift the point of rotation from the center of mass of the
ellipsoid to the south pole.
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point, asymptotically stable. The main idea presented here is
from [13].

We start by separating the Kinetic and the Potential energy
terms in (52) as follows

G2̈ + Ġ2̇ −
1
2
2̇T (∇2G) 2̇ = 0 (77)

where

0 = −∇2(PE) + τ, (78)

and where G, 2 and τ are already defined in section VII
(see Remark XI). If we choose a damping control in the form

τ = −c G 2̇, (79)

where c > 0, then the state 2 would asymptotically set-
tle down to any one of the minima of the potential energy
function PE . One can drive the state to a suitable location
by selecting PE appropriately. This, in essence, is what was
introduced as a potential control in [13]. We state the follow-
ing as a proposition from [77].
Proposition II: For the dynamical system (77), the feed-

back (79) minimizes the cost function

J (20, 2̇0) =
∫
∞

0
2c2 KE + 0T G−1 0 dt, (80)

where 20 is the initial condition on the state. When the
moment of inertia matrix is 1

4 I3×3, one can define an external
torque vector T = M G−1 0 from (61) and the cost function
(80) reduces to

J (20, 2̇0) =
∫
∞

0
2c2 KE +

1
4
‖T‖2 dt.

�
Note that0 (and hence T ) has contributions from the potential
energy and the generalized torque. Note also that the cost
function (80) has an infinite horizon.

The potential control strategy has been applied onto the
human head and the results have been sketched in Figs. 13a
and 13b. The potential function we have used is taken from
[13] and is given by

PE = A (1 − |qT (2) q0|).

The point q0 is the unit quaternion, where the potential func-
tion PE is assumed to take a minimum value. We have also
used a damping term given by (79), where c= 25. Finally the
parameter A in the potential function is chosen to be 5 in order
that the dynamical system (77) settles down in approximately
1 unit of time. In Fig. 13, potential control trajectories have
been plotted, in the pointing space S2, using three different
scenarios (described in the caption). All rotations are assumed
to be about the south pole, simulating the neck. Based on
Fig. 13, it would appear that the shape of the head did not
significantly affect the shape of the potentially controlled
trajectories (evident from the blue and black curves in the
Figs. 13a and 13b), but the shape of the Donders’ surface did
make a difference (evident from the red curve in Fig. 13a).

In the final part of this appendix we comment on the struc-
ture of the damping term (79). We assume that the potential
function is zero and combine (77), (78) and (79), to obtain

G2̈ + (Ġ + cG)2̇ −
1
2
2̇T (∇2G) 2̇ = 0. (81)

The following proposition can be easily verified by direct
simulation.
Proposition III: Let 2c(t) be solution of (81) for some

initial condition2c(0)=w0, 2̇c(0)=w1, where c is a param-
eter in (81). For every value of c ≥ 0,2c(t) traces out a por-
tion of the geodesic curve starting from (w0,w1) on the state
space. �

Note that by substituting c = 0, we obtain as solution of
(81), the geodesic curve. As is evident from Figures 8 and 9,
the geodesic curves do not have a stationary point. It turns
out that by increasing the value of c from 0, the curve 2c(t)
traces out only a portion of the geodesic curve, i.e. for each c
the trajectory comes to a stop. This has been demonstrated in
Fig. 12. We can therefore conclude that the shape of the solu-
tion curves of (81) does not change by changing coordinates,
since the geodesic does not.
Proof of Proposition III: Let 20(t) be solution of (81)

(assuming c = 0) for some initial condition 20(0) = w0,
2̇0(0) = w1. Let f (τ ) be a strictly monotone function and
define Y (τ )=20(f (τ )). By direct computation, one can show
that Y (τ ) is a solution of the equation

G(Y )Y ′′+Ġ(Y )Y ′−
1
2
Y ′T (∇YG(Y ))Y ′−

f ′′(τ )
f ′(τ )

G(Y )Y ′ =0,

(82)
where ′ denotes derivative with respect to τ . Let us now
choose f (τ ) in such a way that − f ′′(τ )

f ′(τ ) is a constant, which
we set it equal to c. It would follow that

f (τ ) = −
1
c
e−cτ + d,

where d is the constant of integration. The function Y (τ )
satisfies (81) and we write

Y (τ ) = 20(−
1
c
e−cτ + d).

Assuming that the solution of (81) is unique for each choices
of c, it would follow that all solutions of (81) must follow the
trajectory of (81) for c= 0. This completes the proof. �
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