
Received December 13, 2013, accepted February 10, 2014, date of publication March 3, 2014, date of current version March 17, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2309396

Piecemeal Development of Intelligent
Applications for Smart Spaces
EILA OVASKA AND JARKKO KUUSIJÄRVI
VTT Technical Research Centre of Finland, Oulu 90571, Finland

Corresponding author: J. Kuusijärvi (jarkko.kuusijarvi@vtt.fi)

This work was supported in part by the SOFIA/ARTEMIS Project and in part by the RECOCAPE/EU Project through the EU, Finnish
Funding Agency for Technology and Innovation, and VTT Technical Research Centre of Finland.

ABSTRACT Software development is facing new challenges as a result of evolution toward integration
and collaboration-based service engineering, which embody high degrees of dynamism both at design time
and run-time. Short times-to-market require cost reduction by maximizing software reuse. Openness for
new innovations presumes a flexible development platform and fast software engineering practices. User
satisfaction assumes situation-based applications of high quality. The main contribution of this paper is the
piecemeal service engineering (PSE) approach developed for and tested in application development for smart
spaces. The intent of PSE is to maximize the reuse of existing knowledge of business and design practices and
existing technical assets in the development of new smart-space applications. Business knowledge is mostly
informal and domain-dependent, but architectural knowledge is generic, at least semiformal, and represented
in principles, ontologies, patterns, and rules that together form a reusable architectural knowledge base for
fast smart-space application development. The PSE facilitates the incremental development of intelligent
applications by supporting abstraction, aggregation, and adaptability in smart-space development.

INDEX TERMS Service engineering, semantic, dynamic, architectural knowledge, reuse.

I. INTRODUCTION
Smart spaces are shared information search domains, acces-
sible and understood by all the authorized applications that
access them. Shared information is about things existing
in the environment or about the environment itself. Thus,
smart spaces provide information about physical environ-
ments, shared with inherently dynamic applications that are
preferably developed by users themselves. Smart spaces
merge two technology fields: the Internet and context-aware
computing. The Internet provides generic communica-
tion facilities, while context-aware computing addresses
application-domain specifics and the user’s situation [1].
Thus, the Internet of Things (IoT) [2] is one of the main
terms related to the development of smart spaces. The IoT
focuses on uniquely identifiable objects that are virtually
represented in the semantic web-like structure. The IoT first
referred to physical objects, but thereafter the understand-
ing of Things enlarged to also cover logical entities. Thus,
Things can mean any entity that can have a unique identifier.
Briefly, the IoT provides a smart way of connecting entities
and sharing data among these entities. Another term related
to smart spaces is Big Data [3] that refers to large-scale
data collected from heterogeneous sources. For example,

a smart-city application may need data from sensors embed-
ded into the environment, local and/or global systems, the
web and the behavior and preferences of citizens. The mon-
itored data are analyzed with intelligent algorithms to solve
the problem in hand and/or provide enriched services for
citizens for their everyday lives. Thus, IoT is a prerequisite for
collecting data, but is additionally required for mining, han-
dling and providing the data for the user where and whenever
needed. Therefore, new data management technologies are
required for querying, filtering, analyzing, reasoning about
and representing the semantic information in an accurate,
understandable and personalized way for smart-space users.
Moreover, these applications are likely to be created at run-
time, when all factors that influence service creation are avail-
able. This type of predictive functionality requires advanced
intelligence realized by self-management capabilities that are
able to self-configure the system properties in a way that best
matches the situation in hand [4]. In other words, the systems
and their applications are to be dynamic in nature. Thus, the
IoT makes the structure of networked systems dynamic, and
semantic data enables interacting with the systems’ internal
states dynamically. The third factor that demands fast and
flexible smart-space application development is crowds [5],

VOLUME 2, 2014

2169-3536 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 199



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

i.e., end-users and communities that participate in creating
intelligent applications based on data collected from het-
erogeneous sources (e.g., the Internet, smart spaces, sensor
networks, etc., that provide open data). A crowd is composed
of ordinary people who have problems, andwho possess basic
skills to solve these problems by developing applications
that meet their requirements if there are ready-made building
blocks that make application development easy, fast and fasci-
nating. There exists experimental evidence that documented
patterns improve understanding of source code, enable pro-
fessionals to trust the quality of source code and reduce the
effort to analyze the source code [6]. However, there is still a
lack of systematic approaches for development and evaluation
of adaptive and pervasive applications, and a lack of empirical
studies as to what extent ontologies can be used for large scale
deployments with user involvement and assessment [7].

To contribute to meeting these new challenges, we intro-
duce a novel approach for creating adaptive smart-space
applications that we call Piecemeal Service Engineering
(PSE). These applications are aggregated from pieces of mod-
els and code artifacts that define concepts, data, functional-
ity, and the behavior of software pieces. All the models are
defined separately. Briefly, the main goal of a smart-space
application is to define how the selected pieces work together.
Thus, the application description defines what pieces are
to be combined and how it is to be done. The role of the
architectural knowledge base (AKB) is to ease and speed up
the development of smart-space applications. The AKB pro-
vides knowledge as principles, ontologies, models, patterns
and rules implemented by appropriate modeling languages
such as OWL [8], UML [9] and SPARQL [10]. Thus, the
languages used also represent knowledge that is considered
standards in the related engineering domains. Therefore, the
knowledge base provides a stable development platform for
applications that may evolve frequently. Dynamism and adap-
tation are defined by rules, analysis models and the order of
execution of functionalities to be performed when a specific
application-dependent event occurs.

The paper has been structured as follows. Section II gives
the background information of other researchers’ studies
and our own research results. Sections III and IV introduce
the PSE approach with an example application. Section V
presents the evaluation results from the case studies carried
out in the laboratory and industrial settings. The conclusions
section gives closing remarks.

II. BACKGROUND
A. MODEL- AND KNOWLEDGE-DRIVEN SOFTWARE
ENGINEERING
Model-Driven Architecture [11] is an approach that guides
the specification of information systems. Here, a model
means a formal specification of part of the function, structure
and behavior of a system. The idea is to separate descrip-
tions of functionality from the implementation specifica-
tions and thus provide interoperability and portability of

a system. Implementation-independent descriptions last
longer than implementation specifications that change as
soon as a better technology is available.
Software architecture modeling concentrates on multiple

views. ISO/IEC/IEEE Std. 42010 [12] recommends an archi-
tectural view as a representation of a whole system from a
perspective of a related set of concerns. Architectural views
have formed the bases of a number of design methods during
the last few years. Considerable interest exists in applying
UML and various views to modeling software (product-
line) architectures [13]. Moreover, several methods have
been developed to model architecture views with the UML
notation [14]. The focus has been on providing a common
understanding of a system of systems under construction and
to determine its/their commonalities and variabilities. Thus,
these methods have focused on managing design-time vari-
abilities. Recently, the focus has transferred to representing
and managing the diversity of systems’ behaviors at run-
time. For example in [15], model-driven engineering methods
are extended to integrate new functionalities and behaviors
into running enterprise systems by integrating organizational
and coordination theories with model-driven architecting to
manage the development and deployment of dynamic service-
oriented business applications. The approach has similari-
ties to ours, but smart spaces are ecosystems that embody
dynamism on all levels: business collaboration and network-
ing, implementation technology, communication, informa-
tion, functionality, behavior and coordination levels. Thus,
due to this dynamism, coping with the complexity of smart
spaces is extremely important.
The open issues of dynamic systems are how to minimize

information communication/processing overheads and adapt
the behaviors of applications to changing conditions in their
operational environment [16]. Because information over-
heads have an impact on performance, applications should
avoid exchanging and reasoning about information that is
potentially useless for them.Moreover, environments that run
intelligent smart-space applications are open, heterogeneous,
and variable [1]. Therefore, it is crucial to ensure on-the-
fly interoperability by adaptive middleware technologies and
applications that behave adaptively and efficiently in several
deployment settings and run-time conditions [16]. Adaptive
architectures and ontologies for defining commonalities of
contexts, services and quality attributes form the basis for
defining common vocabularies that intelligent applications
can exploit. An extensive analysis of self-adaptive systems
and their capabilities is given in [17]. Here we summarize
some of the most important capabilities to illustrate the cur-
rent status of methodologies provided for intelligent appli-
cation development, ontologies used for enhancing modeling
architectures and managing context and quality at run-time.
The approach introduced in [18] integrates model-driven

development and ontologies. It is based on the model abstrac-
tions of MDA and commonly used modeling languages such
as UML and OWL. The approach also enhances the software
engineering process with a domain ontology for modeling

200 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

platform-independent applications and a context ontology
for reasoning. The approach is abstract; it lacks informa-
tion about how the context ontology is to be specified and
processed at run-time, and how it is to be transformed for
the use of intelligent applications. In [7], a thorough survey
of software technologies of adaptive user-centric pervasive
software tackles the existing software technologies for formal
modeling, knowledge representation and reasoning. Those
authors have concluded that the literature still lacks contribu-
tions concerning, among others: i) systematic approaches for
design, development and evaluation of adaptive and pervasive
systems and applications, ii) an elaborate analysis of the rules
used in adaptive and pervasive systems, and iii) proofs reflect-
ing that existing proposals can scale well for large deploy-
ments. This paper focuses on these issues and contributes to
solving them in smart-space application development.

The development of adaptive and pervasive applications is
heavily based on the context modeling and reasoning tech-
niques used for achieving adaptability. In [19], the authors
represent object-role based models, spatial models and ontol-
ogy based models as the approaches of context modeling.
Architectural adaptation approaches have been surveyed and
compared in [4]. Because the applicability of technologies
heavily depends on the requirements of the application and
its users, there is need for diverse technologies. However,
irrespective of the technologies used, the focus should be
on smooth integration of human intelligence and machine
capabilities, with emphasis on human aspects and on cost-
effective development methodologies and tools that support
the development-time and run-time adaptations [7].

The context-aware service-creation framework [20]
includes several artifacts that support smart-space develop-
ment: context ontology, a context modeling language and a
tool environment that assists in context-aware service cre-
ation. The tool environment supports context model defini-
tion and validation, context model-to-model transformation
and context model-to-code generation. The transformation
provides a mapping from the context metamodel to the
target metamodel. The approach tackles the structural and
static parts of intelligent application creation. However, the
dynamic aspects of context-aware services are not supported.

Recently, interest in using ontologies for describing and
managing quality attributes has increased due to the grow-
ing awareness of the importance of quality characteristics
in service oriented systems. Moreover, the quality aspects
need to be managed not only at design-time but also at
run-time. In [21], an ontology for non-functional require-
ments was introduced with three views: an intra-model
dependency view for describing the relations between the
software entities, an intermodal dependency view for describ-
ing the structure of interdependent entities, and a mea-
surement view for defining measurable requirements. These
views are required for managing quality properties at run-
time. The intermodal view defines what the quality property
is and how to implement it. The intramodel dependencies are
used for reasoning purposes, and the metrics are used for

defining quality goals and measuring how well these goals
have been met.

B. OUR EARLIER WORK ON MODEL AND KNOWLEDGE
DRIVEN SOFTWARE ENGINEERING
Our earlier work has focused on enhancing the use of architec-
tural knowledge in the development of service-oriented archi-
tectures. First, we defined a service taxonomy, a reference
service architecture and a set of basic services as reusable arti-
facts for developing wireless services andmobile applications
based on styles, patterns and communication standards [22].
Second, we enhanced our approach by defining a method for
specifying quality requirements in an unambiguous way [23]
so that systematic quality evaluation, e.g., concerning integra-
bility, extensibility and reliability, could be carried out from
architectural models.We also developed a set of tools for eval-
uating quality from models and running systems [24], [25].
In [24] and [26] the ontology orientation is used for

defining quality-attribute ontologies, especially for defining
their metrics. On the one hand, the quality- and model-
driven designmethodology, which is also introduced, exploits
ontology-oriented design for specifying, representing and
managing quality attribute specific knowledge by ontologies.
On the other hand, architectural knowledge is specified, rep-
resented and managed as styles and patterns. Both types of
models can evolve separately. The mapping of quality prop-
erties to functional elements of architecture is made by a tool
chain that supports each development phase of the model and
quality driven service engineering.
In [27], the vision of the Piecemeal Service Engineering

(PSE) approach was introduced for the first time. The vision
was inspired by our experience with software product fam-
ilies, model-driven development, ontology-oriented design
and our first steps in the development of smart spaces [1].
Recently, we have developed an adaptation framework for
the run-time quality management of situation-based services
[28], [29]. However, there are still some obstacles for dynamic
and intelligent applications. Reusable solutions are required
both for reasoning and for adaptation. We selected a W3C
standard language, SPARQL, for context reasoning. How-
ever, analysis models and reasoning support for run-time
quality management are almost totally missing. Studies are
still required to provide viable solutions to design and imple-
ment dynamism in smart-space applications and to apply
the developments in both small and large scale applications.
Thus, the solutions, methodologies and tools should provide
a scalable and cost-efficient way of developing intelligent
smart-space applications.

III. PIECEMEAL SERVICE ENGINEERING APPROACH
Our contribution is the PSE approach intended for smart-
space application development. The approach is kept as sim-
ple as possible, so that application developers can focus
on application specifics and need not concern themselves
with generic technical and, in most cases, complex things.
Thus, the complexity is covered by the artifacts stored in the

VOLUME 2, 2014 201



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

FIGURE 1. Workflow of the piecemeal service engineering approach.

knowledge base and provided for the use of the application
developers through the smart-space application development
tools (Fig. 1). Before the content of the knowledge base can
be exploited, it must be created and stored in a standard way.
Therefore, only standard modeling languages, such as OWL,
UML and SPARQL, and tools that support these languages,
are used. Here, we focus on the application development, i.e.,
how to create new applications by exploiting the content of
the knowledge base. Therefore, the main phases (depicted in
Fig. 1) of the approach answer the following questions:

1. How to take into account the business, domain and
technical concerns in smart-space application develop-
ment?

2. How to break down the application idea into pieces
and how can different actors contribute the application
development?

3. How to carry out the behavior-driven smart-space
application development?

4. How to test an adaptive smart-space application?
The PSE approach is an iterative and incremental devel-

opment approach. The above main phases of PSE are iter-
ated, and depending on the development phase and type
of the application, one can iterate all of them or a selec-
tion of them, taking into account that all of the phases
following the selected first phase are to be executed.
In these four main phases, several methods and tools are used.
To keep this presentation understandable, we illustrate the

steps with examples, or refer to other publications where fur-
ther information and examples are given. The following sub-
sections present the specification part of the PSE. Thereafter,
Section IV presents the development part. First, the phases
and their outcomes are introduced. Thereafter, we discuss
the knowledge provided to the application developers and
what new knowledge could be created during the application
development. Whenever possible, we also give examples of
how and with what tools to exploit the existing knowledge.

A. PSE: SPECIFICATION PHASE
1) SMART-SPACE APPLICATION INNOVATION
The first phase of the PSE - the Smart-space Application
Innovation - mainly addresses the domain aspects of the
application development, also taking into account the busi-
ness drivers and technical constraints. The phase proceeds by
carrying out the following activities:
• Idea identification – What type of application? What is
it for and to whom will it be delivered? Why? These
are questions to be discussed in the group of business,
domain, and technical professionals that collects ideas
for new applications. The work results in a list of draft
ideas for applications with justifications why they are
important. A brainstorming workshop with a facilitator
is used as a method for collecting application ideas.

• Idea scoping and analyses – The ideas are analyzed
from different viewpoints. Business analysis defines and

202 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

justifies potential markets, value networks, roles of part-
ners in the value network, costs and pricing. Domain
analysis provides information about the trends in the
application fields by forecasting and analyzing the stake-
holders’ future needs. An application idea may also
be pre-evaluated with end-users via participatory meth-
ods and supporting tools (e.g., interviews and social
media for collecting users’ opinions, and thereafter,
co-designing user-application interactions via visual
models, paper prototypes or mockups). The domain
analysts also assist business people to scope the value
network and estimate what the value of the new appli-
cation would be for each actor in the network. Tech-
nical experts analyze what technical challenges there
would be in the development of the application. The
following is also analyzed: what existing assets are
available, what is their quality and openness? What
new assets and technologies are required? Different
feature, domain and quality analysis methods may be
used. Risk analyses that have their own methods are
to be made from all viewpoints: business, technology
and the application domain. Generally, different types
of analyses are made, each needing different methods
and practices. We do not go into details here. This
phase results in the initial description of a smart-space
application and related analytical reports on its expected
impacts, available assets and identified risks and their
severities.

The smart-space application innovation phase exploits the
knowledge base and tools as follows:
• Business know-how is dependent on the organizational
culture, on individuals and on the business practices of
how business knowledge is collected, stored and shared
in the organization. Forecasts provide analyzed informa-
tion about markets and technology trends. Some compa-
nies provide commercial business analysis services on
markets, value networks, partnerships, interest groups,
etc., that may help in decisionmaking. However, the core
of business knowledge is kept secret. To some extent it
can be opened to partners with long-term relationships
with the organization. Part of the business knowledge
is tacit, and if documented it is confidential. Thus,
a generic (semi-)formal method for sharing business
knowledge is difficult to establish. If business patterns
can be identified, they are kept as internal knowledge
and/or shared informally.

• Assets – Documents of existing assets are used to resolve
their availability, suitability and quality for the applica-
tion development in hand. The decision to utilize these
assets impacts on scheduling, costs, profits, etc.

• Architectural knowledge – Technical and business peo-
ple can use the architectural knowledge base to esti-
mate what artifacts can be used as is, possibly modified,
what the quality of the artifacts is and if the quality is
satisfactory. The architectural knowledge and tooling is
used to estimate the quality and functionality of existing

resources, and thereafter, the effort and cost required for
the application development.

• Tooling – In analyzing the existing artifacts of the
architectural knowledge base, the following tools are
used [30]: Protégé is used for analyzing ontologies.
Stylebase is used for evaluating existing architectural
models. If there are model and code assets, the RAP tool
can be applied to predict the reliability and availability
from the models and/or test them in a running system via
the ComponentBee. Open source tools for sharing and
managing architecture knowledge have been explored in
[31] and [32].

Example - Enhancing an existing smart environment
The SUM-SS (the Seamless Usage of Multiple Smart

Spaces) pilot (described in [28]) consists of multiple smart
environments (e.g., smart city, office, and home), multiple
devices (laptops, tablets, mobile phones), and integrates mul-
tiple technologies. The intent of the example application is
to enhance this existing smart environment, and specifically
the smart home/office part of it, with a new device that
will improve the user experience and motivate the users of
a smart building to act in ways that decrease energy con-
sumption. To demonstrate the first phase of PSE, the existing
smart environment, containing a home automation system
that allows the energy consumption by different devices to
be monitored, is enhanced by a new system, LumEnActive
[33], that projects information onto different surfaces. A new
smart-space application (SSA) is required for this new system
to indicate which devices are consuming the most energy,
and thereafter propose energy-saving tips to the users. This
new application helps to save energy by making users aware
what devices consume the most energy. In addition, it allows
authenticated and authorized users of the space to control the
energy consumption by turning off selected devices. Some
parts of the application are readily available in the AKB:
for example, the energy consumption data of the devices,
reasoning agents for calculating costs, user authentication and
access control, and some simple uses cases of the LumEn-
Active system used to display static information on walls.
This new application requires integration of these assets into
a working scenario in the smart space.

2) SMART-SPACE APPLICATION CO-CREATION
The second phase of the PSE - the Smart-space Application
Co-creation – is crucial because the success of the SSA
development mainly depends on how the development work
is divided into parts, what dependencies there are between
these pieces and what their priority order is, and how the
co-workers contribute their development. This phase includes
the following activities:
• Describing a usage scenario of an application – This
activity continues the work of the first phase by
using brainstorming in small groups as a method for
innovating technical aspects of the new application.
People from different technology areas are involved in
the work. Application domain experts also provide their

VOLUME 2, 2014 203



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

knowledge for describing the scenario of the SSA. The
result is a revised version of the SSA scenario descrip-
tion that includes a short narrative story with a con-
text description that gives an understanding of why and
where the SSA is needed, and how and by whom it is
used. Thus, the usage scenario specification motivates
developing the application by giving hints on technolo-
gies that could be used for implementation.

• Breaking a usage scenario into pieces –The next activity
is to break down the scenario description of the SSA
into a meaningful set of use cases that illustrate specific
aspects of the scenario. The work is performed concur-
rently by a set of focused teams.
◦ One team looks the SSA from the application

domain point of view: they define the end-user
stakeholders, their interests in and requirements for
the application as a set of use cases.

◦ Another team focuses on the stakeholders involved
in the development and maintenance of the SSA.
Thus, they look at the actors who are involved
in the life cycle management of the SSA (prod-
uct/service managers, architects, designer, testers,
etc.), and define the use cases from their viewpoints.
For example, what is the architectural style to be
followed and the technological constraints the SSA
implementation has to fulfil?

◦ A third team focuses on what contextual informa-
tion is required for application’s situational behav-
ior, how it is to be collected, shared, analyzed,
interpreted and used by the application. In practice,
the third team has to check and describe how the
use cases defined by teams 1 and 2 work together,
i.e., how the SSAmust behave in different situations
and if all required pieces have been defined by the
developers.

◦ The rest of the teams each focus on a specific qual-
ity attribute: the security team looks the scenario
from the security viewpoint, the performance team
describes how performance and scalability issues
are to be considered, and so on.

Thus, as a result of the usage scenario description activity
there is a collection of use cases that describe the same
usage scenario from different viewpoints. These descriptions
are kept separate because they have different priorities and
evolution, and their reuse is easier when their intent is focused
and easy to understand. For example, security has so many
sub-characteristics that it is easier for reuse purposes to break
the security goal down further and store smaller pieces of
use cases. This phase results in a reusable usage scenario
and related use cases. Thus, the SSA description is a set of
behavioral models stored in the architectural knowledge base
for reuse.

The smart-space application co-creation phase exploits the
knowledge base and tools as follows:
• Business knowledge – provides information about
previous SSA descriptions that were evaluated but

not realized. Thus, some of the SSA ideas accepted for
development may not have been implemented, and the
reasons behind these decisions are valuable in making
feasibility checks while defining further the usage sce-
nario and use cases in hand. Thus, knowledge of unsuc-
cessful earlier actions in SSA development is reused to
avoid repeating the mistakes.

• Assets – The key artifact is the SSA description and
the related analysis reports provided as output from the
first phase – the SSA innovation. The available SSA
descriptions are used for analyzing the differences of
applications. Existing usage scenarios and use cases
may provide ready-made building blocks for the SSA
co-creation phase, especially while defining the use
cases from different viewpoints. This will have impact
on prioritizing use cases. It is also important that all
artifacts stored in the knowledge base prior to this par-
ticular SSA co-creation phase can be reused. This is
especially important for defining timing, cost and tech-
nological constraints, and prioritizing and scheduling
how to develop and maintain the SSA.

• Architectural knowledge – In defining the SSA usage
scenario, the architectural knowledge used covers the
design principles. Instead of defining a style as a struc-
tural diagram, we analyzed 56 application scenarios
of three types of smart spaces: personal spaces, smart
indoor spaces and smart cities. The analysis resulted
in 16 quality requirements and 12 high priority func-
tional requirements; these requirements were used as
architectural drivers while defining the 12 design prin-
ciples, i.e., the architectural style of the interoperabil-
ity platform (IOP) for different types of smart spaces.
[1] Table 1 introduces a set of design principles that
all SSAs exploiting the IOP must follow. As seen, the
principles define only the basic architectural elements,
such as shared information and service, and the capa-
bilities that address functionality and/or quality, such as
extensibility, security and context. Thus, this knowledge
has impact on which viewpoints of the SSA architecture
must be defined, i.e., what use cases are needed. In addi-
tion to design principles, architectural design decisions
may also be needed to define principles (i.e., design
decisions) related to the development and maintenance
processes [34].

• Tooling – In this phase no specific tools are required.
However, the use of a standard tooling environment is
beneficial, especially one with support for design flow.
Therefore, we preferred to use the Eclipse platform and
the TOPCASED tool that is one of the plug-ins running
on top of the open source tool platform. Prioritization
of use cases could be managed, e.g., by a simple Excel
form. However, due to the life cycle management and
evolution of the SSA application, it might be necessary
to use an appropriate web-based project management
tool. For commercial software, Atlassian JIRA [35] is
a good agile project management tool. For an open

204 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

TABLE 1. Fragment of design principles.

TABLE 2. Use Case 1: Authentication.

TABLE 3. Use Case 2: Authentication.

source and/or free tool, Agilo for trac [36] is a good
choice.

Example – Enhancing an existing smart environment
Our usage story for the enhanced smart-space environment

is as follows: When entering the smart home, Anna sees a
spot of information on the wall that shows the five devices
consuming most energy. However, Anna wants to know what
devices and appliances are monitored, and what the current
indoor conditions are. Therefore, she authenticates herself to
the smart home. Because Anna’s authentication level gives
rights to obtain detailed information on specific objects in
the house, the requested status information is mirrored on

TABLE 4. Use Case 3: Authentication.

the wall. She notices that temperature is too high and wants
to increase cooling. However, because Anna’s authentication
level does not give rights to control the indoor conditions, she
is asked to contact the house owner, John, to obtain the rights
for control, or to stop three devices that are warming the room
the most. Anna selects the last option and stops the devices
through her mobile phone according to the instructions given
on the wall.
Tables 2–4 depict three reusable use cases of a high-level

use case of ‘Authenticate the user’, which is part of a usage
scenario of ‘Accessing different sensitivity-level information
in the garden’. The use cases show how to handle different
authentication levels for one case in a smart greenhouse
demonstrator [37] and SUM-SS pilot [28] (information secu-
rity specific usage scenarios). The goal is to adapt these
use cases for the energy-efficient smart home environment.
First, when the gardener arrives at the greenhouse he/she is
1) authenticated by physical presence and analyzing the cer-
tification level (e.g., by touching a NFC tag). Second, when
the gardener walks in the garden, he/she is 2) authenticated
biometrically by walking recognition and authorized to view
specific details of the garden. Third, when the gardener wants
to modify private information (modify inventory, change
prices, etc.) he/she is 3) authenticated by asking his/her

VOLUME 2, 2014 205



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

FIGURE 2. Behavior-driven application development.

username and a password. The selection of the authenti-
cation method is typically done case-by-case. However, an
intelligent algorithm can be used for making this selection
automatically.

IV. PSE: DEVELOPMENT PHASE
A. BEHAVIOR-DRIVEN APPLICATION DEVELOPMENT
The third phase of the PSE – Behavior-Driven Application
Development - starts the application design by exploiting the
usage scenario description, the set of use cases that define
the specific viewpoint of the usage scenario and the reusable
artifacts provided in the AKB. The term ‘intelligent applica-
tion’ is used to describe the intelligent collaboration of a set
of SSAs at a given time. These SSAs are able to behave intel-
ligently due to their inherent dynamism that enables proactive
and reactive responses to the end-users’ needs.

The behavior-driven application development consists of
two activities (Fig. 2): i) First, application behavior is
described by integrating the pieces of artifacts from the AKB.
ii) Next, the application behavior description is transformed
to the target language. If the actors (i.e., software agents and
services) required for the application and specified in the use
cases are already available in the AKB, the transformation
concerns only translation of the rules used into SPARQL
queries.

The Describe Behavior Activity includes the following
steps:

1) Use the usage scenario description as a starting point
for defining the main behavior of the application.

Define the agents and services required for the behavior
and define the interaction between the actors.

2) Annotate the behavior description (sequence diagrams)
with the concepts and properties from the related
ontologies.

3) Select the appropriate rules related to the selected ontol-
ogy and map them to the actor in the specific state. If no
appropriate rule is available, define it in textual format.

The activity results in an annotated message sequence dia-
gram or a set of them.
The Describe Behavior activity exploits the knowledge

base and tools as follows:
Assets – The key assets are the usage scenario description

of the SSA under development and the related set of use cases.
Architectural knowledge from the AKB is heavily used:

ontologies, models, patterns and rules. While principles form
the first body of the AKB, ontologies form the second.
Ontologies were developed concurrently and in an itera-
tive way, and resulted in a domain ontology, context ontol-
ogy, security ontology and run-time performance ontology.
Domain ontologies were distilled from the application sce-
narios defined for four smart spaces; personal, home, work,
and city.
The context ontology development was started by defin-

ing the levels the context ontology was to cover: physical,
digital, situational, historical, user and social contexts [28].
The physical context ontology defines the concepts related to
environmental monitoring objects. The digital context ontol-
ogy defines the concepts related to the actors and features

206 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

that are involved in service creation and in the execution
environment. Thus, the digital context could also be called a
spatial context.Within the context of a specific SSA, however,
the situation and user contexts are used for scoping the context
further. The situational context defines the temporal view of
an SSA and the user context sets specific restrictions and
preferences as to how the service/application should behave.
Moreover, historical and social contexts may give additional
knowledge for more intelligent reasoning according to the
user’s background and the intent of the social community for
which the user is acting. Because context ontology plays a
key role in several architectural levels and forms the core
artifact for dynamism and adaptation, we consider the context
ontology as a core ontology of smart spaces; it is required in
every application that intends to behave in an intelligent way
by taking into account the space and time where and when the
behavior occurs.
Information security measuring ontology (ISMO) [38]

takes two existing ontologies as a starting point: the Software
Measurement Ontology (SMO) [39] and the Ontology for
Information Security (OIS) [40]. The purpose of combining
these two ontologies is to achieve an ontology that makes it
possible to measure the fulfilment of security requirements,
i.e., security goals and levels. In other words, the purpose is
to enable an operational measurement of security correctness.
Therefore, the requirements are described with the vocabu-
lary from the OIS. Fulfilment of requirements is measured
with indicators that combine several measures defined in the
SMO. The security measures, i.e., indicators, are different for
each security goal; e.g., the levels of authentication and non-
repudiation are measured with different measures. However,
these measures can utilize the same base measures. The same
security goal can be achieved with different countermeasures,
which in turn might require their own measures. Hence, there
are only a few concept-to-concept mappings between these
two ontologies, but additional mappings appear when the
measures are instantiated. By using a terminology of these
two ontologies, a mapping refers to the equivalent property
between the concepts of these two ontologies. Adding map-
pings for instantiated measures requires domain expertise,
i.e., the capability to recognize applicable measuring tech-
niques for a particular security goal and related mechanisms.
Furthermore, the mapping requires a capability to recognize
threats that affect the particular security goal and/or mecha-
nism. The mappings and usage of ISMO are discussed more
thoroughly in [38].
Architectural models and patterns form the third body

of reusable architectural knowledge in the AKB. Depend-
ing on the interoperability level [28], different architectural
patterns are used. The semantic interoperability is supported
by the information broker (SIB) architecture [41]. The focus
is on understanding data, and information is used as an
object of integration without the knowledge of how it is
used. The RDF Schema, ontologies and semantic web tech-
nologies provide means to implement the semantic broker
architecture.

Dynamic interoperability is supported by a micro-
architecture that follows the MAPE-K (Monitor, Analyze,
Plan and Execute – with Knowledge) pattern. The focus is on
context changes, and events are used as objects of integration.
Models are used for defining abstractions, concepts, rela-
tionships, rules, functionality and behavior on the dynamic
interoperability level of agents. These agents may also follow
specific patterns and form reusable building blocks. For
example, the run-time monitoring framework introduced in
[42] uses the Façade pattern to provide a coherent interface for
agents to communicate with the semantic information broker.
Separation of concerns is followed also, to improve reusabil-
ity by offering unique interfaces for ontology providers,
application logic and dynamic behavior. Behavior can be
changed at run-time due to the use of the Strategy pattern.
Moreover, the monitor manager enables to enhance the mon-
itoring framework at run-time by adding new monitors and
controlling them via well-defined interfaces. Thus, the same
architectural pattern can be applied to design both simple and
more complex monitors. To change the ontology at run-time,
a configuration URI is provided by each monitor. This allows
a monitor agent to be configured via the semantic information
broker service.Moreover, a specific wrapper layer is provided
for agents that use different programming languages.
Rules have an important role in application descriptions,

and therefore they have been introduced separately in Fig. 2.
Rules can be related to monitoring, analysis or adaptation
and they can be static or dynamic. On one hand, the moni-
toring rules related to (security) base measures are static and
are implemented as software monitors executed as part of
applications. Adaptation rules, on the other hand, are dynamic
and can easily be changed at run-time [28]. Analysis may
concern context or quality attributes such as security and
performance. Thus, the analysis rules are primarily static, i.e.,
they are predefined in the analysis models referred in the
ontology. However, the link to the relevant analysis model can
be changed at run-time, and therefore new analysis models
can be added to the running systems [29].
The rules are represented in English IF-THEN-ELSE struc-

tures or logical operations. The type of description language
depends on what is described. Analysis models are described
with statements close to natural English. Context-related rules
are mostly defined with IF-THEN-ELSE structures, whereas
logical operations are useful, for example, for describing
security adaptation rules. The main criterion for selecting a
rule specification language is that its abstraction level fits the
level of abstraction required from the behavior description,
and the rules are understandable for all stakeholders involved
in the application development. Thus, the behavior descrip-
tion is the only design artifact that describes the application
as a whole.
Tooling – In creation and use of the AKB, the following

tools can be used. The Protégé tool [43] was used for defining
ontologies. The quality attribute ontologies, e.g., the security
ontology, are thereafter imported to the Quality Profile Editor
[26] (see Fig. 1) that makes it possible to create quality

VOLUME 2, 2014 207



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

profiles for the SSA and map them to the UML models of
the SSA. However, we wanted to keep quality ontologies
and UML models separate so that the ontologies could easily
evolve and be updated after application deployment. Thus,
we did not use QPE, but stored the ontologies used into the
semantic information broker (SIB), thus being part of the IOP.
Stylebase [26] is a tool for AKB management. A designer
uses it to find appropriate patterns for developing the SSA.
Smart Modeler [44] can be used to create a visual model of
the application by utilizing existing model blocks from AKB
repositories. A block can be, for example, implementation
of one use case. As for a continuous integration platform in
the development teams, Jenkins [45] can be used to automate
building.

As part of Behavior-Driven Application Development,
the Rule Specification is feasible when performed as
follows:

1. Select why the rule is required by positioning its place
in the MAPE-K model (Fig. 3).

2. Define why you need the rule. The intent of the rule can
be related to context, security or performance manage-
ment.

3. Decide if a static rule is sufficient or if a dynamic
one is required. This decision heavily relates to the
evolvability and extensibility of the system/space but
also increases the complexity and might result in
decreased performance. Typically, rules are first cre-
ated static and later refined and implemented as
independent dynamic models that can be updated at
run-time.

4. Define the analysis results as a set of trade-off analysis
rules, e.g., the rules for ranking security first instead of
performance or vice versa.

FIGURE 3. Taxonomy of rules.

As a result of this phase, the behavior of the SSA is defined
in a set of rules that are implemented by a real rule language
(more dynamic) or a specific programming language (more
static).

The Transform to Programming Language activity exploits
the knowledge base as follows:
Architectural Knowledge: The last body of the AKB

foundations includes standards and related implementa-
tions. Modeling and programming exploit standard languages
and schemas such as UML [9], OWL [8], RDF [46] and
SPARQL [10]. UML is used for representing architectural
models and OWL for ontology descriptions. In case of

intelligent services, the means of representing semantics
plays an important role. Therefore, the RDF schema was
selected for representing semantics of data as RDF triples.
After several experiments, SPARQL was selected for making
queries to a semantic triple data base and making decisions
based on rules defined as logical sentences or mathematical
expressions as part of the related ontologies, e.g., security
ontology and context ontology. The goal of making ontolo-
gies reusable was guaranteed by selecting a standard descrip-
tion language for them, storing the defined ontologies as RDF
triples in the same storage with data and making queries with
a standard query language.
The initial rule classification (Fig. 3) helps in finding an

appropriate rule for the case in hand by addressing the sought-
for rule’s intent (why), objective (what) and means (how).
When the rule classes are mature enough, the rule taxonomy
can be defined for searching for an appropriate rule via an
identificationmark. In this way, the rules can become reusable
assets for different types of intelligent applications. Examples
of some static and dynamic rules are provided in the following
experiment section.
Tooling – Smart Modeler can be used by developers to

make new rules or utilize existing rules from the knowledge
base. An end-user programming [47], [48] tool can be used
also by end-users to create simple rules or reuse existing rules
from their earlier applications.
Example – Enhancing an existing smart environment
In the earlier phase, we depicted the use cases for authen-

tication. Here we define the use cases for the new application
and the rules related to the existing use cases and the new
ones if needed. The behavior can described more precisely
as sequence diagrams (see [28]), but in this this case we use
textual presentation.
Reused use cases:
• Security use case 1

(a) Description: User can authenticate him/herself in
the home space.

(b) Solution: Rule – Monitor (Security, Static) see
Fig. 3. The user authenticates herself to the home
space.

• Adapted security use case 2
(a) Description: Depending on the authentication

level, different information is projected to
the environment with the LumEnActive sys-
tem or different actions can be taken. Level
<= 2: Controlling of home appliances not
allowed and information shown. Level 3:
Controlling of specific (e.g., humidity, tempera-
ture) home appliances allowed.

(b) Solution: Rule – Monitor, Analyze, Plan (Secu-
rity, Dynamic). The authentication service is
adapted to the situation using dynamic secu-
rity rules, so they can be changed at run-time
according to needs (see the taxonomy of rules
(Fig. 3).

208 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

Newly created use cases:
• Use case 1: When a person enters to the room, the
system displays the top 5 energy consuming devices on
the wall. Rule: monitor (Context, Static, and Dynamic).
Example rules for this scenario as IF-THEN-ELSE:
1) IF motion sensor shows movement or user(s) is/are
authenticated, THEN display top-5 energy consumers,
ELSE do nothing.

• Use case 2: When there are several persons in the room,
the system displays general energy saving tips. Rule:
analyze (Context, Static, Dynamic).

• Use case 3: When there is no activity in the room,
nothing is displayed. Rule: monitor (Context, Dynamic).

• Use case 4: When a user controls some device through
the SIB, the system displays the current energy con-
sumption of that device by projecting the information
onto a surface near the device. Rule: analyze (Context,
Dynamic).

These new use cases do not describe where the logic
must reside. One use case can contain multiple rules that
complete the behavior of that particular use case. For exam-
ple, in (newly created) Use case 1 we decided that the
LumEnActive system should contain more static rules, e.g.,
behavior for different use cases. The LumEnActive sys-
tem also contains a static rule to show Use case 4 for
30 seconds and return to the previous use case; other use
cases are shown until the next one is requested to be shown.
Use cases 1 to 2 display at a predetermined position in
the wall; Use case 4 displays above the device that is
controlled.

B. INCREMENTAL TESTING OF SMART-SPACE
APPLICATIONS
Testing of intelligent applications can be coarsely classified
as follows:
• GUI application – End-user application that combines
static and/or dynamic rules, normal programming logic,
and GUI(s).

• Legacy adapter – Glue software that uses static or
dynamic rules or just makes the legacy software
available in the semantic information broker without
dynamicity.

• Dynamic agent – Agent that is fully controlled and
guided by the dynamic rules assigned for it.

Testing the functionality of agents is a rigorous task
because most of the testing is conducted with asynchronous
data that is being produced and consumed from the SIB. For
example, if a planning rule makes a trade-off between perfor-
mance and security, to avoid reconfigurations at rapid rate it
should react only when it has all the necessary information.
The testing phase is divided into three main activities (see
Fig. 4):
• Testing an SSA with the test cases in the test envi-
ronment, i.e., unit and integration testing according to
steps 1-4.

FIGURE 4. Testing process of intelligent applications.

• Testing an SSA as part of a smart space, i.e., collabora-
tion and system testing according to steps 5-6.

• Testing an SSA by end-users in field tests according to
step 7.

The Interactive Quality Visualization (IQVis) tool can be
used in various steps to visually see the interactions between
different aspects of the tested software [49]. With the IQVis
tool, the system qualities can be monitored and viewed at
run-time. For example, different teams can see how different
qualities vary and how trade-offs are made at run-time in
a given scenario. With the help of configurable monitoring
(e.g., [42]), the IQVis tool can be exploited even further.
The testing process (for dynamic agents) (Fig. 4) includes

the following steps:
1. The testing process starts by creating a test plan and test

cases following the defined usage scenarios.
2. RDF datasets are then defined according to the usage

scenarios to cover the functionality defined in use cases
with test suites (i.e., many test cases for one use case).
The RDF datasets help in automating the testing of
single queries; they are attached to the specific test
cases. The RDF dataset constitutes a single moment
in time, including all the context information related
to that query. It is essentially a snapshot of the con-
text in the smart space at a given point in time. The
RDF datasets provide static semantic information to
be used with automated test cases to cover the basic
functionality. A more advanced utilization of datasets
is to start with the context needed in a use case and
execute SPARQL queries that modify the dataset, and
then execute follow-on queries that utilize information
modified in the previous query.

3. The test cases made for a single query and a single
agent are then executed using a query engine supporting
SPARQL and RDF, e.g., Apache Jena [50]. Thus, the

VOLUME 2, 2014 209



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

unit testing (3a) uses different RDF datasets to test
the queries with different contexts. A test harness is
recommended in this step; test-driven development is
a good practice for testing individual queries, because
the test cases can be done according to the usage
scenarios, reusing them from the AKB, and there-
fore, the development process is sped up with veri-
fied scenarios and test cases. The RDF datasets are
also reused in regression testing (3b). Regression tests
should be executed, e.g., when i) ontology is changed,
ii) a new query is introduced, or iii) existing queries
are refactored to verify that the modifications are as
intended.

4. The integration testing is made in the bottom-up fash-
ion because bugs in queries are discovered faster. Test-
ing software components that work with live data is
tedious. They are not the best possible type of com-
ponents to test with unit testing, but have benefits in
discovering the easiest and most common bugs before
moving to live testing the system. Therefore, different
datasets are used to test how the queries affect each
other. A test harness is recommended in this phase
also. Moreover, the SIB can also be used a testing
platform. SIB is often required because of its subscribe
feature.

5. In collaboration testing, multiple agents are combined
and tested to see whether their interactions are correct.
The tests are made in the actual execution environ-
ment to see how the application functions in a real
environment. This step is closer to integration test-
ing than system testing. If the combined agents that
form an intelligent application do not include a GUI,
a separate unit test might be unnecessary, but the logic
of an agent has to be tested in the form of rules. If
the combined agents have a GUI and/or static logic
parts, unit tests must be conducted before starting the
integration testing with dynamic parts of the intelli-
gent application. The usual case is that static software
components are enhanced by adding a dynamic part
that enables some type of intelligence, e.g., an ability
to adapt the application behavior according to mea-
sured context information. Moreover, the GUI is also to
be tested.

6. In the system testing, the system as a whole with all
the relevant applications, agents and platform services
functioning together are tested in a real environment,
i.e., in the selected smart space(s).

7. Finally, the SSPA is tested in field tests, where real end-
users (typically non-ICT professionals) use the services
in their processes and activities. This phase needs its
own test plan for collecting users’ experiences and
analysis of the collected feedback data.

The incremental testing phase for smart-space applications
exploits the knowledge base and tools as follows:
• Assets – Previously created test cases and user stories can
be utilized from the knowledge base in the creation of

new test cases. Accompanying snapshots of smart-space
situations can also be utilized to drive the smart-space
application(s) into the correct stage for testing individual
requirements.

• Tooling – Both Atlassian JIRA [35] and Agilo for trac
[36] can be used for the testing process to identify dis-
covered bugs. In addition, BugZilla [51] can be used
to notify development teams of bugs found. For the
management of test cases, Tarantula [52] can be used to
describe the test cases to be used in scenarios and also
reuse existing cases.

Example – Enhancing an existing smart environment
Here we show how the testing was conducted in this lab-

oratory example. We give examples of datasets used to unit
test the required SPARQL queries of one example use case.
Our purpose is not to show every step in detail, but to give
a rough view of the process. For this reason, we concentrate
on testing the dynamic application and leave out testing static
rules.
The reused use cases (defined in the previous section) had

already been tested and were therefore usable directly from
the AKB without extensive testing. Examples of security
analysis rules and measures used for authentication are pre-
sented in [38]. Their functionality with our newly created use
cases had to be verified in the collaboration and system tests.
Following the testing process described earlier, we now

present how the parts of new Use case 1 were tested.

1. We defined the test cases for the use case. We needed
to test the functionality for detecting the users, and the
functionality for showing the top 5 energy consumers,
as follows:

Test suite 1 for testing detecting user presence:

• Test case 1: Motion sensor detects no movement and
there are no logged-in users.

• Test case 2: Motion sensor detects no movement and
there are logged-in users.

• Test case 3: Motion sensor detects movement and there
are no logged-in users.

• Test case 4: Motion sensor detects movement and there
are logged-in users.

Test suite 2 for testing showing top five energy consumers:

• Test case 1: Show Use case 1 and list ten devices with
different energy consumptions in the room. The infor-
mation of the topmost five energy consumers is sent to
LumEnActive system according to the domain ontology.

• Test case 2: Same as the Test case 1, but show Use case 1
is false.

• Test case 3...N: Variable energy consumptions.

Test suite 3 for testing the LumEnActive side with RDF
datasets consisting of five different devices.

2. We realized the test cases. Two example Test case
RDF N3 [53] datasets for Use case 1 (without prefixes)
containing the expected results that the query should
return (for test reports) are presented below:

210 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

#Simplified RDF dataset for Test Case 1.1: Motion sensor
detects no movement and there are no logged in users.

:sensor rdf:type :MotionSensor.
:sensor :hasMovement 0.
d:Space :hasLoggedInUsers 0.
:TestCase :ExpectedResultObject :False.

#SimplifiedRDFdataset for Test Case 1.2:Motion sensors
detects no movement and there are logged in users.

:sensor rdf:type :MotionSensor.
:sensor :hasMovement 0.
d:Space :hasLoggedInUsers 1.
:TestCase :ExpectedResultObject :True.

3. We realized a rule to a SPARQL query, e.g., as a stub
that does not pass all the tests. This enabled us to run
the query against different datasets.

#StubQuery: Detect movement in the room (without pre-
fixes)

CONSTRUCT {
:Agent :showTopEnergyConsumers :True.

}WHERE{
?sensor rdf:type :MotionSensor.
?sensor :hasMovement 1.

}
As seen, the above query lacks a check for logged-in users.

This bug can be discovered in the unit tests, if they are
exhaustive enough. Amotion sensor does not showmovement
if people do not move enough, even though users are present,
and therefore information on logged-in users needs to be
shown. The final rule is presented below. It has passed all
the unit tests made for the use case. The SPARQL query also
requires other properties, e.g., hasLoggedInUsers, which is
reasoned in another rule, but is not presented here, because
it was developed and tested earlier. A more difficult bug to
discover is that, e.g., Use case 3 (also Use case 2) uses the
same information as this query for Use case 1 and shows
energy tips when there are multiple users. We therefore had to
add a check on the number of users in this query. This type of
bug is discovered at the latest in integration or collaboration
tests, where the behavior overlaps. The final query for the Use
case 1 is presented below:
#Query 1.1: Detect movement in the room final version
PREFIX : <http://www.SOFIA.net/Context#>
PREFIX d: <http://www.SOFIA.net/Domain#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>

CONSTRUCT {
d:Agent d:showScenario 1.

}WHERE{
?sensor rdf:type :MotionSensor;

:hasMovement ?mov.
d:Space :hasLoggedInUsers ?users.
BIND(?mov + ?users AS ?res).
FILTER(?res > = 1).
FILTER(?users < 2).

}

After unit tests, one agent’s functionality is tested with the
semantic information broker. Thereafter, the system tests can
be performed with the actual execution environment from
the end-user perspective to ensure the correct behavior of
different use cases.

V. EVALUATION RESULTS
The PSE approach has been tested in different test-beds. Parts
of the PSE approach have been evaluated in 1) different use
cases with simple technology and feature demonstrations to
2) pilots of multiple smart spaces communicating with each
other and 3) full industrial use cases with industrial partners.
The groups of users testing the approach have evolved from
developers and few end-user testers in laboratory cases to
real end-user testers of the applications developed by the
approach, and also end-users creating new smart ad-hoc
applications themselves with their mobile devices. Testing of
the PSE approach most recent at this writing was conducted
in an end-user programming use case [47], [48] and simul-
taneously in a contract project with an industrial customer
to build a semantic facility-management system, which was
trialed on School premises at the city of Oulu [54]. This
last industrial use case, especially, utilized all of the building
blocks of PSE and AKB to introduce quickly a semantic
facility data management system with which users can inter-
act. Table 5 summarizes the selected test cases from early
individual demonstrations (from 12 different demonstrations
scenarios (rows 1...12 in Table 5) in which building blocks
of PSE were tested) to testing of the entire approach in the
pilot and follow-up industrial projects. The column ‘Case,
year’ describes the name of the use case and the year it was
conducted, ‘Lessons learned’ gives what was learned about
application development in the experiment, ‘New knowledge
pieces’ notes what new knowledge or assets were introduced
into the AKB with this use case, and ‘Evaluated part’ stands
for the part of the PSE approach that is evaluated. The num-
bering is as follows:
1. Smart-space Application Innovation
2. Smart-space Application Co-creation
3. Behavior-Driven Application Development
4. Incremental Testing of Smart-space Applications
Table 5 summarizes how the PSE approach has been

continuously developed during our smart-space application
development over the 4-5 year period. PSE provides the
following advantages:
• Because the PSE approach relies heavily on standard
technologies and especially semantic web technologies
and ontologies, it has been very useful in integrating
different types of systems.

• The advantage is that the approach can be used basically
with any type of dynamic semantic web technology. We
have utilized it with smart spaces and SIB technologies,
but it has been used also without them, e.g., with the
Virtuoso semantic database. Therefore, this is partially
a technology-independent approach.

• The PSE approach does not compete with agile methods

VOLUME 2, 2014 211



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

TABLE 5. Summary of the evaluation of the PSE: lessons learned and knowledge created in each evaluation activity.

such as Scrum; instead, it can be used together with
them. The goal is the same – to ease the development
complexity by providing the developers tools and knowl-
edge that can be reused case after case.

• The benefits of the PSE approach grow after smart-
space development iterations, because the knowledge
base gains new information. Therefore, existing assets
are exploited by combining services and components
in application development. Thus, PSE generates cost
savings.

• Innovation is independent on location, distance and
missing expertise. For example, a multi-national group
of persons was able to set up an innovative application
to demonstrate a new application for an international
audience based on a phone call and a week of coding
labor. Additionally, end-users who evaluated the pilot
addressed the novelty of the implemented smart envi-
ronment and saw real impact on easing everyday life
and having potential access into newmarkets. Thus, PSE
encourages innovation and collaboration in an effective
way.

• Integration of different solutions (i.e., networks, servers,
systems, and applications) is straightforward and non-
laborious, and pieces of assets are able to interoper-
ate. Due to the AKB (and especially ontologies and
mechanisms for handling them), interoperability of
assets is achieved. Thus, the use of the PSE with

the AKB saves time and effort in all development
phases – from scenario specification to application
testing.

• Domain ontologies are valuable tools for teaching
novices the specialty of a particular domain. Thus, the
AKB also provides tools for skills development, not only
application development.

• The development process is much faster when there are
earlier scenarios available for reuse, either directly or
with small modifications/additions. In the case example,
we had earlier scenarios, test cases, and rules made for
the security domain and this reduced the time to develop
this example case. Test-driven development was applied
because it fits well into creating dynamic rules from the
scenario descriptions.

In spite of many advantages there are still limitations and
issues that need further improvement:
• Identification of business patterns has not progressed
enough. Therefore, future studies should focus on busi-
ness ecosystems of smart environments. Particularly,
stakeholder roles, businessmodel elements and value co-
creation methods should be explored both in open and
closed smart environments.

• Smart-space users are active and willing to improve
their experiences with personalized applications. There-
fore, the programming and visualization facilities of
the end-user programming tool needs to be extended

212 VOLUME 2, 2014



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

and improved. Additionally, the use of open data
together with private data needs further study.

• Description methods for defining application scenarios
need to be systematized so that scenario descriptions
can be reusedmore extensively. Visualization techniques
could be used to illustrate and share the application ideas
among different stakeholders.

• Evolution of ontologies needs new technologies: the
evolution should be handled at design time, i.e., in the
software development process, and as an operative activ-
ity of the dynamic smart environment. This last is chal-
lenging because ontology alignment and interweaving is
to be handled at run-time, if not in real time.

• The search possibilities of reusable artifacts should be
addressed more deeply, even though Stylebase can be
utilized for that purpose. The descriptions and context
of the artifacts should be very informative.

• Prioritization of run-time qualities (e.g., security, perfor-
mance) should be more easily addressable in the devel-
opment phase and also in the testing phase. At the stage
of this work, prioritization is mostly decided in iterations
between the development teams. Being able to configure
these at run-timewould be useful for advanced end users.
This requires codified design decisions to be provided by
the AKB.

Rule-based adaptation at run-time is very difficult to test,
especially when we have multiple non-functional qualities
and context situations to be taken into account. Testing these
types of situations requires further research and tools to be
able to cover all of the possible outcomes of adaptations in
one agent and adaptations taking place in multiple agents at
once. This problem is not specific to PSE (and there exists
much research in rules, race conditions, and test coverage,
etc.), but it poses problems for the PSE approach as well.

VI. CONCLUSION
The new technologies such as semantic web and autonomic
computing provide enriched means to solve problems in the
development of intelligent smart-space applications. In this
paper, the PSE approach was introduced for dealing with
these issues by applying model and ontology orientation for
describing design knowledge, which is further exploited as
pieces of artifacts at run-time for creating intelligent appli-
cations. The use of the PSE approach was illustrated by a
laboratory example and validated in an incremental way in
laboratory and industrial case studies. First, the main build-
ing blocks were tested separately in demonstrations. Second,
the tested building blocks were integrated incrementally by
developing three releases of a cross-domain pilot study that
covered four different smart spaces: smart personal spaces,
smart home, smart office and smart city. The applications
developed were also evaluated by end users in three differ-
ent test environments. Finally, the PSE was applied to the
development of smart operation and maintenance applica-
tions tested by end users in the field. In summary, a faster
development process was gained through reusable, tested and

verified assets developed based on the design knowledge of
the AKB.

REFERENCES
[1] E. Ovaska, T. Salmon Cinotti, and A. Toninelli, ‘‘The design principles and

practices of interoperable smart spaces,’’ in Advanced Design Approaches
to Emerging Software Systems: Principles, Methodologies and Tools. Her-
shey, PA, USA: IGI GLobal, 2012, pp. 18–47.

[2] (2013, Sep. 26). Internet of Things [Online]. Available:
http://en.wikipedia.org/wiki/Internet_of_Things

[3] (2013, Sep. 26). Big Data [Online]. Available:
http://en.wikipedia.org/wiki/Big_data

[4] E. Ovaska, L. Dobrica, A. Purhonen, and M. Jaakola, ‘‘Exploration of
technologies for autonomic dependable service platforms,’’ in Proc. 6th
Int. Conf. Softw. Database Technol., Seville, Spain, 2011, pp. 115–124.

[5] (2013, Sep. 26). Crowdsourcing [Online]. Available:
http://en.wikipedia.org/wiki/Crowdsourcing

[6] C. Gravino, M. Risi, G. Scanniello, and G. Tortora, ‘‘Do professional
developers benefit from design pattern documentation? A replication in the
context of source code comprehension,’’ in Proc. 15th Int. Conf. MODELS,
2012, pp. 185–201.

[7] A. Soylu, P. De Causmaecker, D. Preuveneers, Y. Berbers, and P. Desmet,
‘‘Formal modelling, knowledge representation and reasoning for design
development of user-centric pervasive software: A meta-review,’’ Int. J.
Metadata, Semantics Ontol., vol. 6, no. 2, pp. 96–125, 2011.

[8] (2013, Jan. 30). OWL [Online]. Available: http://www.w3.org/TR/owl2-
overview/

[9] (2013, Jan. 30). Unified Modeling Language (UML) 2.4.1, OMG, New
York, NY, USA [Online]. Available: http://www.omg.org/spec/UML/2.4.1/

[10] (2012, May 25). SPARQL Query Language for RDF, W3C Recommenda-
tion [Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[11] ‘‘MDA guide version 1.0.1.,’’ in Document No. omg/2003-06-01, 2003.
[12] Systems and Software engineering—Architecture Description,

ISO/IEC/IEEE, Standard 42010:2011, 2011.
[13] H. Gomaa, Designing Software Product Lines with UML: From Use

Cases to Pattern-Based Software Architecture. Redwood City, CA, USA:
Addison-Wesley, 2005.

[14] J. Osis and E. Asnina, Model-Driven Domain Analysis and Software
Development: Architectures and Functions, J. Osis and E. Asnina, Eds. IGI
Global, 2010, p. 518.

[15] J. C. Nieves et al., ‘‘Coordination, organisation and model-driven
approaches for dynamic, flexible, robust software and services engineer-
ing,’’ in Service Engineering. New York, NY, USA: Springer-Verlag, 2010,
pp. 85–115.

[16] M. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny, ‘‘The role of
models@run.time in supporting on-the-fly interoperability,’’ Computing,
vol. 95, no. 3, pp. 165–190, 2013.

[17] M. Salehie and L. Tahvildari, ‘‘Self-adaptive software: Landscape and
research challenges,’’ACMTrans. Autonomous Adaptive Syst., vol. 4, no. 2,
article 14, 2009.

[18] A. Soylu, P. De Causmaecker, and P. Desmet, ‘‘Context and adaptivity in
pervasive computing environments: Links with software engineering and
ontological engineering,’’ J. Softw., vol. 4, no. 9, pp. 992–1013, 2009.

[19] C. Bettini et al., ‘‘A survey of contextmodelling and reasoning techniques,’’
Pervas. Mobile Comput., vol. 6, no. 2, pp. 161–180, 2010.

[20] A. Achilleos, K. Yang, and N. Georgalas, ‘‘Context modelling and a
context-aware framework for pervasive service creation: A model-driven
approach.,’’ Pervas. Mobile Comput., vol. 1, no. 6, pp. 281–296, 2010.

[21] M. Kassab, O. Ormandjieva, andM. Daneva, ‘‘An ontology based approach
to non-functional requirements conceptualization,’’ in Proc. 4th Int. Conf.
Softw. Eng. Adv., 2009, pp. 299–308.

[22] E. Niemelä, J. Kalaoja, and P. Lago, ‘‘Towards an architectural knowledge
base for wireless service engineering,’’ IEEE Trans. Softw. Eng., vol. 31,
no. 5, pp. 361–379, May 2005.

[23] E. Niemelä and A. Immonen, ‘‘Capturing quality requirements of
product family architectures,’’ Inf. Softw. Technol., vol. 49, 11–12,
pp. 1107–1120, 2007.

[24] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho, ‘‘Knowl-
edge based quality-driven architecture design and evaluation,’’ Inf. Softw.
Technol., vol. 52, no. 6, pp. 577–601, 2010.

[25] M. Palviainen, A. Evesti, and E. Ovaska, ‘‘The reliability estimation,
prediction and measuring of component-based software,’’ J. Syst. Softw.,
vol. 84, no. 6, pp. 1054–1070, 2011.

VOLUME 2, 2014 213



E. Ovaska, J. Kuusijärvi: Piecemeal Development of Intelligent Applications for Smart Spaces

[26] A. Evesti, E. Niemelä, K. Henttonen, and M. Palviainen, ‘‘A tool chain for
quality-driven software architecting,’’ in Proc. Softw. Product Line Conf.
SPLC, Sep. 2008, pp. 360–360.

[27] E. Ovaska, ‘‘Ontology driven piecemeal development of smart spaces,’’ in
Proc. 1st Int. Conf. Ambient Intell., 2010, pp. 148–156.

[28] S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi, and
A. Evesti, ‘‘Situation-based and self-adaptive applications for the
smart environment,’’ J. Ambient Intell. Smart Environ., vol. 4, no. 6,
pp. 491–516, 2012.

[29] A. Evesti, J. Suomalainen, and E. Ovaska, ‘‘Architecture and knowledge-
driven self-adaptive security in smart spaces,’’ Computers, vol. 2, no. 1,
pp. 34–66, 2013.

[30] (2013, Sep. 27). QADA Tools [Online]. Available:
http://www.vtt.fi/sites/qada/qada_tools.jsp?lang=en

[31] K. Henttonen and M. Matinlassi, ‘‘Open source based tools for sharing
and reuse of software architectural knowledge,’’ in Proc. Joint Working
IEEE/IFIP Conf. Softw. Archit. (WICSA) 3rd Eur. Conf. Softw. Archit.
(ECSA), Cambridge, MA, USA, Sep. 2009, pp. 41–50.

[32] R. C. de Boer and H. van Vliet, ‘‘Experiences with semantic Wikis for
architectural knowledge management,’’ in Proc. 9th Working IEEE/IFIP
Conf. Softw. Archit., WICSA, 2011, pp. 32–41.

[33] Conante. (2012, Jun. 19). LumEnActive [Online]. Available:
http://www.conante.com/products/lumenactive/?lang=en

[34] P. Kruchten, ‘‘An ontology of architectural design decisions in software-
intensive systems,’’ in Proc. 2nd Groningen Workshop Softw. Variability
Manag., Groningen, The Netherlands, 2004.

[35] (2013, Dec. 4). Atlassian JIRA [Online]. Available:
https://www.atlassian.com/software/jira

[36] (2013, Dec. 4). Agilo for Trac [Online]. Available:
http://www.agilofortrac.com/

[37] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen, and
S. Stenudd, ‘‘Semantic information interoperability in smart spaces,’’
in Proc. 8th Int. Conf. Mobile Ubiquitous Multimedia (MUM), 2009,
pp. 158–159.

[38] A. Evesti, R. Savola, E. Ovaska, and J. Kuusijärvi, ‘‘The design, instatiation
and usage of information securitymetrics ontology,’’ inProc. 2nd Int. Conf.
Models Ontol. Based Des. Protocols, Archit. Services, Budapest, Hungary,
2011, pp. 1–9.

[39] F. García et al., ‘‘Towards the consistent terminology of software measure-
ment,’’ Inf. Softw. Technol., vol. 48, no. 8, pp. 631–644, 2006.

[40] A. Herzog, N. Shahmehri, and C. Duma, ‘‘An ontology for information
security,’’ in Techniques and Applications for Advanced Information Pri-
vacy and Security: Emerging Organisational. NewYork, NY, USA: Ethical
and Human Issues, 2009.

[41] J. Honkola, H. Laine, and R. Brown, ‘‘Smart-M3 interoperability plat-
form,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Riccione, Italy,
2010, pp. 1041–1046.

[42] J. Kuusijärvi and S. Stenudd, ‘‘Developing reusable knowledge processors
for smart environments,’’ in Proc. IEEE/IPSJ 11th Int. Symp. Appl. Inter-
net, Munich, Germany, 2011, pp. 286–291.

[43] (2014, Feb. 25). Protégé. A Free, Open-Source Ontology Editor
and Framework for Building Intelligent Systems [Online]. Available:
http://protege.stanford.edu/

[44] M. Palviainen and A. Katasonov, ‘‘Towards ontology-driven development
of applications for smart environments,’’ in Proc. 8th PERCOM Work-
shops, 2010, pp. 696–701.

[45] (2013, Dec. 4). Jenkins CI. An Open-Source Continuous Integration Tool
[Online]. Available: http://jenkins-ci.org/

[46] (2013, Jan. 30). RDF Vocabulary Description Language, RDF-Schema
[Online]. Available: http://www.w3.org/TR/rdf-schema/

[47] M. Palviainen, J. Kuusijärvi, and E. Ovaska, ‘‘Framework for end-user
programming of cross-smart space applications,’’ Sensors, vol. 12, no. 11,
pp. 14442–14466, 2012.

[48] M. Palviainen, J. Kuusijärvi, and E. Ovaska, ‘‘A semi-automatic end-user
programming approach for smart space application development,’’ Pervas.
Mobile Comput., 2013.

[49] J. Kuusijärvi, ‘‘A demo on using visualization to aid run-time verification of
dynamic service systems,’’ in Proc. 3rd Int. Conf. Softw. Test., Verification,
Validation Workshops (ICSTW), Paris, France, 2010, pp. 319–324.

[50] (2013, Dec. 4). Apache Jena [Online]. Available: http://jena.apache.org/
[51] (2013, Dec. 4). BugZilla [Online]. Available: http://www.bugzilla.org/
[52] (2013, Dec. 4). Tarantula [Online]. Available: http://www.

testiatarantula.com/
[53] (2014, Feb 25). Notation 3: A Readable RDF Syntax [Online]. Available:

http://www.w3.org/TeamSubmission/n3/
[54] I. Niskanen, A. Purhonen, J. Kuusijärvi, and E. Halmetoja, ‘‘Towards

semantic facility data management,’’ in Proc. 3rd Int. Conf. Intell. Syst.
Appl., 2014.

[55] A. Evesti and E. Ovaska, ‘‘Ontology-based security adaptation at run-
time,’’ in Proc. 4th IEEE Int. Conf. Self-Adaptive Self-Oranizing Syst.
(SASO), Oct. 2010, pp. 204–212.

[56] S. Pantsar-Syväniemi, J. Kuusijärvi, and E. Ovaska, ‘‘Context-awareness
micro-architecture for smart spaces,’’ in Advanced in Grid and Pervasive
Computing. Decatur, GA, USA: GPC, 2011.

[57] (2011, Sep.). Smart Door Video [Online]. Available: www.
youtube.com/watch?v=anRW0y2r1Q0

[58] (2011). Artemis ITEA2 Co-Summit [Online]. Available: http://www.
artemis-ia.eu/cosummit2011_home

[59] (2011). Artemis Technology Conference [Online]. Available: http://www.
artemis-ia.eu/atc_2011_home

EILA OVASKA received the Ph.D. degree from the
University of Oulu in 2000. Before 2000, she was a
Software Engineer, a Senior Research Scientist and
a Leader with the Software Architectures Group,
VTT Technical Research Centre of Finland. Since
2001, she has been a Research Professor with
VTT and an Adjunct Professor with the University
of Oulu. Her current areas of interest are service
architectures, self-monitoring, and self-adaptation.
She has acted as aWorkshop andConferenceOrga-

nizer and as a Reviewer for scientific journals and conferences. She has co-
authored over 130 scientific publications. She is a member of the IEEE and
IEEE Computer Society.

JARKKO KUUSIJÄRVI received the B.Sc. (Tech.)
and M.Sc. (Tech.) degrees from the University of
Oulu in 2008 and 2010, respectively. Since 2010,
he has been a Research Scientist with the VTT
Technical Research Centre of Finland. His current
areas of research interests include mobile applica-
tions, ontology-driven software engineering, secu-
rity visualization, and cyber security.

214 VOLUME 2, 2014


