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ABSTRACT Recent years have seen increasing popularity of storing and managing personal multimedia
data using online services. Preserving confidentiality of online personal data while offering efficient
functionalities thus becomes an important and pressing research issue. In this paper, we study the problem
of content-based search of image data archived online while preserving content confidentiality. The problem
has different settings from those typically considered in the secure computation literature, as it deals with data
in rank-ordered search, and has a different security-efficiency requirement. Secure computation techniques,
such as homomorphic encryption, can potentially be used in this application, at a cost of high computational
and communication complexity. Alternatively, efficient techniques based on randomizing visual feature and
search indexes have been proposed recently to enable similarity comparison between encrypted images. This
paper focuses on comparing these two major paradigms of techniques, namely, homomorphic encryption-
based techniques and feature/index randomization-based techniques, for confidentiality-preserving image
search. We develop novel and systematic metrics to quantitatively evaluate security strength in this unique
type of data and applications. We compare these two paradigms of techniques in terms of their search
performance, security strength, and computational efficiency. The insights obtained through this paper and
comparison will help design practical algorithms appropriate for privacy-aware cloud multimedia systems.

INDEX TERMS Content based image retrieval, secure search, secure cloud computing, homomorphic
encryption, visual words, min-hash, random projection, order preserving encryption.

I. INTRODUCTION
With the arrival of the cloud computing paradigm and the
proliferation of online services, the Internet stores not only
information for sharing, but also a large amount of per-
sonal data demanding restricted access and privacy protec-
tion. Secure management of personal data stored online is
an increasingly important issue, which demands a balance
between data confidentiality and availability. Technologies
that can enable secure online data management are going to
be critically important for cloud computing to reach its full
potential.

Traditional privacy protection for online personal data
focuses on access control and secure data transmission to
ensure that the data can be securely transmitted to the
server and unauthorized people cannot access the data. Once

the data arrives at the server, the server decrypts the data
and operates on plaintext in order to provide services to
users, such as search and data summarization. This makes
the user’s private information vulnerable to untrustworthy
service providers and malicious intruders. For example, per-
sonal photo albums can potentially be viewed by a sys-
tem administrator if stored online in plaintext. Encryption
of the data stored on the server using traditional crypto-
graphic ciphers directly makes it difficult for the server to
process the data, and for the user to retrieve information
from the encrypted database. Therefore, it is both desir-
able and necessary to develop technologies for information
retrieval over encrypted databases that can protect users’ pri-
vacy without sacrificing the usability and accessibility of the
information.
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Due to the widespread use of digital cameras and smart-
phones, digital images have become a significant part of
today’s personal data collections. Storing and managing
large volume of image data online is a desirable option for
convenient data access anywhere anytime. Motivated by
these important technological trends, we study in this
paper the problem of content-based search of online image
database, such as a personal online album, while minimizing
information leak and preserving data confidentiality against
unauthorized access including the service provider, with
focus on comparing two major types of techniques, namely,
homomorphic encryption and distance preserving randomiza-
tion. Below, we first review some related work.

A. RELATED WORK
Prior work in the area of information retrieval in the
encrypted domain focused on text documents. Song et al. [1],
Brinkman et al. [2], and Boneh et al. [3] explored Boolean
search to identify whether a query term is present in an
encrypted text document. Swaminathan et al. [4] proposed a
framework for rank-ordered search over encrypted text docu-
ments, so that documents can be returned in the order of their
relevance to the query term. In that work, several protocols
are studied to address different operational constraints such as
different communication cost allowed to perform the secure
search. Secure text retrieval techniques can also be applied
to keyword based search of image data. However, keyword
search relies on having accurate text description of the content
already available, and its search scope is confined to the exist-
ing keyword set. In contrast, content-based search over an
encrypted image database provides more flexibility, whereby
sample images are presented as queries and documents with
similar visual content in the database are identified.

An emerging area of work related to confidentiality
preserving image retrieval is secure signal processing, which
aims at performing signal processing tasks while keeping the
signals being processed secret. Erkin et al. [5] provided a
review of related cryptographic primitives and some applica-
tions of secure signal processing in data analysis and content
protection. However, applying cryptographic primitives to the
task of content-based image retrieval is not straightforward.
Effective image retrieval typically relies on evaluating the
similarity of two documents using the distance between their
visual features, such as color histograms, shape descriptors,
or salient points [6]. By design, traditional cryptographic
primitives do not preserve the distance between feature vec-
tors after encryption. Given the much larger data volume
for image data than that of text and other generic data, effi-
ciency and scalability are critical for image retrieval but can
be difficult to achieve using cryptographic primitives alone.
Another work by Shashank et al. [7] addresses the problem
of protecting the privacy of the query image when searching
over a public database, where the images in the database
are not encrypted. By appropriately formulating the query
message and response message during multiple rounds of
communication between the user and the server, the server

is made oblivious to the actual search path and thus unaware
of the query content.
Recent work in the area of secure computation for privacy

protection addressed related but different problems under
various application settings [8]–[13]. Yiu et al. [8] considered
privacy preserving range query over geospatial coordinates
using a k-dimensional tree. Extending such technique to
image retrieval is difficult because features used for content-
based image retrieval are high dimensional vectors and
kd-tree is known to be inefficient in high dimensional spaces.
Wong et al. [9] proposed secure k-NN computation that can
determine which of two encrypted database entries has a
smaller distance to the query, while keeping the actual dis-
tance value secret. This work can potentially be used for rank-
ordered image retrieval, but the efficiency is limited because
each comparison only answers a binary question of which
one among the two being larger or smaller. Erkin et al. [10],
Sadeghi et al. [11] and Osadchy et al. [12] studied privacy
preserving face recognition, where one party verifies the exis-
tence of a given face image in a database hosted on another
party’s servers. The two parties want to keep their own data
secret from each other. Additive homomorphic encryption
schemes are used to allow similarity computation in the
encrypted domain. Recent work by Yan et al. [14] proposed
more efficient protocols based on garbled circuit for general
biometric matching problem. The common properties of such
biometric matching work are that two parties are involved
in the computation and communication cost is inevitable
because there have been no efficient homomorphic encryp-
tion schemes yet that allow both addition and multiplication.
Given that cryptography based approaches are typically too

heavy-weight in terms of computation and communication,
Lu et al. [15], [16] studied the problem of confidentiality-
preserving image search from a practical perspective and
proposed techniques that are efficient to be used for practical
applications. By jointly utilizing image processing, informa-
tion retrieval, and cryptographic primitives, the techniques
proposed in [15] and [16] randomize the visual features
and search indexes with approximate distance preserving
property so that the content similarity between encrypted
image content can be directly computed by the server without
interacting with the user. Compared to homomorphic encryp-
tion used in secure computation, these techniques do not have
the highest security as required for cryptographic ciphers, but
still provide a good amount of randomness and protection
on the visual features and the search process. The advantage
of being highly efficient makes them good candidates for
practical web applications that have less stringent require-
ment on security but demand high efficiency and least user
involvement.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
The problem of confidentiality-preserving content-based
search of image has both practical applications and challeng-
ing research issues. The application settings of this prob-
lem are quite different from existing secure computation
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work [10]–[13] and therefore brings interesting research val-
ues: (1) the search is rank-ordered where the server needs
to return the documents ranked according to their similarity
to the query, while existing secure computing work typi-
cally focus on a binary matching problem, such as biomet-
ric matching and keyword search, and the server may be
made oblivious to the binary matching result; (2) the user
owns all the data and the server merely offers storage and
search functionality, while in secure multiparty computation
scenario, both parties have their own private data that need
to be kept secret from each other when computing a joint
function; (3) we consider retrieval over large volumes of
image data using high dimensional visual features, which
requires efficient processing and good scalability in order to
be practical; (4) The application considered in this paper is
more consumer-oriented, which has less stringent require-
ment on security but demands highly efficient solutions and
least user involvement; while the applications considered in
secure computation literature typically involve very sensitive
data such as biometrics, thus demanding very high security at
the cost of heavier computation and communication cost.

In this paper, we review and compare two major types
of techniques for the problem of confidentiality-preserving
image search. The first type is based on homomorphic encryp-
tion and cryptography protocols. We discuss how existing
additive homomorphic encryption and the recent advance-
ment in fully homomorphic encryption can be potentially
used for image search. The second type is the randomization
techniques for visual features and search indexes [15], [16].
We compare these two types of techniques in terms of their
search accuracy on an actual encrypted image database, as
well as their security strength and computational efficiency.
The comparative study here also applies to the problem
of searching general multimedia data with multiple media
modalities. We hope such a quantitative comparison between
these two major techniques on secure search may reveal
some insights on the practical design of secure computation
techniques for real-world application in this era of cloud
computing.

The paper is organized as follows: Section II formulates
the problem of confidentiality preserving image search and

discuss its unique application settings. Section III reviews
the two major types of techniques for secure search, namely,
the homomorphic encryption based techniques and the
feature/index randomization based techniques. Section IV
provides detailed quantitative comparison in terms of search
accuracy, security strength, and computational efficiency
of the two types of techniques. Conclusions are drawn in
Section V.

II. PROBLEM FORMULATION
We now use image as an example to discuss the problem
formulation. In order to protect data privacy, images need
to be encrypted before being transferred to a remote server.
Image encryption can be done using state-of-the-art ciphers
such as AES or RSA by treating images as ordinary data, or
using image specific encryption such as selective and format-
compliant encryption [17]–[19] to enable post-processing
such as transcoding. As these techniques are built upon estab-
lished cryptographic encryption tools, it is computationally
difficult for an adversary to decrypt the encrypted image files.
In modern image retrieval techniques, content similarity

is typically evaluated using search indexes or visual fea-
tures, such as color histograms and salient points, instead of
comparing images pixel by pixel. Therefore, encryption of
images alone is not sufficient for privacy preserving retrieval
because search indexes and visual features in plaintext can
reveal information about image content. For example, a color
histogram with large values for the blue components would
indicate the presence of sky or ocean, and salient features
such as SIFT [20] can reveal information about distinctive
objects in the image. In order to be able to search through
the encrypted database without leaking information from the
plaintext search indexes or image features, image features or
indexes need to be properly protected on the user side before
being transferred to the server. The computation of image
similarity then needs to be carried out on those protected
features and indexes. A system model for the confidentiality-
preserving search scenario is shown in Fig. 1, where the left
part depicts the database construction stage and the right part
depicts the search stage. There are two entities in this model:

FIGURE 1. System model for confidentiality-preserving image retrieval.

VOLUME 2, 2014 127



W. Lu et al.: Confidentiality-Preserving Image Search

a user who owns the private image collections, and a server
who stores the encrypted data and performs retrieval based
on a given encrypted query. During database construction, the
user encrypts the images using standard ciphers and protects
visual features or search indexes. After encryption, the user
sends the encrypted images and protected features/indexes
to the server for storage. During search, the user sends the
similarly protected visual feature or search index of the query
image to the server, who performs search using only the
protected features or indexes. Finally, a list of encrypted
images are ranked by their similarity to the query and returned
to the user. The block ‘‘Build search index’’ corresponds to
techniques of feature encryption or randomization, which we
will discuss in Section III.

This secure search problem and formulation have
several unique properties that are different from existing
secure computation literature: (1) In secure two-party compu-
tation problem, each party will hold its own data in plaintext,
and they want to compute a joint function without revealing
their own data. Each party will perform computation on its
plaintext data and the encrypted data from the other party.
In our application, although there are two parties, the user
and the server, only one party, i.e., the user owns the entire
data. The server merely stores the encrypted data and helps
perform some computation task. The server needs to do the
computation entirely in the encrypted domain. (2) We are
considering rank-ordered search where the server needs to
return the documents ranked according to their similar to the
query, while existing secure computing work typically focus
on a binary matching problem, such as biometric matching
and keyword search, and the server may be made oblivious
to the binary matching result. The requirement of return-
ing images to the user inevitably reveals some information
about the ciphertext, i.e., the returned images will be likely
to be all similar to the query. Such a property may affect
the security level that can be achieved and the design of
secure search techniques. (3) The data that we consider in
this application is personal image collection and the visual
features from those image data. There is an inherent semantic
gap between low level visual features and high level concepts,
and we can expect that the security requirement on such data
will not be as stringent as that required for highly sensitive
data such as biometrics. Therefore, a proper understand-
ing on the security objective and security-efficiency trade-
off will be critical in the design of privacy-aware search
techniques.

III. TECHNIQUES FOR CONFIDENTIALITY-PRESERVING
SEARCH
In this section, we review existing techniques that can
serve as candidate solutions for confidentiality-preserving
image search. Two major types of techniques will be dis-
cussed here. One is based on homomorphic encryption
and cryptographic protocols that are commonly used in
secure computation literature. The other is based on dis-
tance preserving randomization for visual features and search

indexes [15], [16]. The comparison of these techniques in
terms of search performance, security strength, and compu-
tational efficiency will be discussed in Section IV.

A. HOMOMORPHIC ENCRYPTION AND
CRYPTOGRAPHIC PROTOCOLS
Semantically secure homomorphic public-key encryption
schemes are central cryptographic tool for many secure multi-
party computation problem. Below, we briefly review the
basics of simple additive homomorphic encryption and recent
advance of fully homomorphic cryposystems, then discuss
how such techniques can be applied for the problem of secure
image search.

1) ADDITIVE HOMOMORPHIC ENCRYPTION
In an additive homomorphic cryptosystem, given encryptions
[a] and [b], the encryption of their summation [a + b] can
be computed by [a + b] = [a][b], where all the com-
putations are performed in the encrypted domain, without
decryption. Following the above property, the multiplication
of an encrypted value [a] with a known constant b in the clear
can be computed as [ab] = [a]b.
One of the representative additive homomorphic cryptosys-

tem is proposed by Paillier [21], which is based on the
decisional composite residuosity problem. Let n = pq of
size k , where p and q are large prime numbers and k is the
required bit length of the security key typically from the
range 1000 − 2048. Randomly select a base g (g = n + 1
will do). Then to encrypt a plaintext message m ∈ Zn,
the user will select a random value r ∈ Zn and computes
the ciphertext c = gmrn mod n2. The parameters (n, g) are the
public keys and the pair (p, q) serves as the private key. Given
a ciphertext c, its plaintext message m can be obtained by
m = L(cλ mod n2)

L(gλ mod n2)
mod n2, where L(u) = u−1

n . It is easy
to see that the Paillier is additively homomorphic and for
an encryption [m], re-randomizing it can be done without
knowing the private key by [m]rn mod n2. More details of
the Paillier cryptosystem can be found in [21].

2) FULLY HOMOMORPHIC ENCRYPTION
Earlier homomorphic cryptosystems [21]–[24] support either
addition or multiplication between encrypted values, but not
both operations at the same time. This brings challenges
to many secure computation problems because many opera-
tions such as computing the Euclidean distance between two
encrypted vectors require both addition and multiplication.
With only additive or multiplicative homomorphic cryptosys-
tem, a cryptography protocol that involves communication
between the two computing parties is typically required.
More recently, in a breakthrough work, Gentry [25] con-

structed a fully homomorphic encryption (FHE) scheme
capable of evaluating an arbitrary number of additions and
multiplications (thus compute any function) on encrypted
data. The mathematics and construction details in [25] are
quite involved, but the basic idea can be summarized as
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follows. An initial ‘‘somewhat homomorphic’’ scheme based
on ideal lattice is constructed to allow evaluation of essen-
tially unlimited addition and a certain amount of multiplica-
tion. This initial scheme is somewhat homomorphic because
the errors in the ciphertext grows with more operations, so
only a limited amount of multiplication can be supported.
To achieve fully homomorphic encryption, the ciphertext has
to be re-encrypted through a technique called ‘‘bootstrap-
ping’’, so that errors in the ciphertext can be cleaned and an
unlimited number of operations can be allowed.

Following this first construction of fully homomorphic
encryption, there have been subsequent developments that
try to improve the efficiency of FHE [26]–[30]. Although
the most recent solutions of FHE have improved upon the
initial construction of Gentry, with more efficient encryption
and shorter ciphertexts, there is still a considerable amount of
effort until FHE can be practical for real-world applications. It
has been discussed in [31] the possibility of using a somewhat
homomorphic encryption, which is more efficient than their
FHE counterparts, for applications that require only a limited
amount of multiplication.

3) USING HOMOMORPHIC ENCRYPTION
FOR IMAGE SEARCH
As discussed in Section II, the application of rank-ordered
image search has different settings from many secure com-
putation work such as privacy-preserving face recognition
[10], [11]. The challenge here is that the database has access
only to the encrypted images and encrypted features, and
rank-ordered search results rather than a binary exact match-
ing is required. To the best of our knowledge, there is no
existing work that address the problem of rank-ordered image
search using homomorphic encryption. Below, we discuss
possible scenarios and constructions of using homomorphic
encryption for secure image search.

We first provide some notations. We assume that there
are N images in the database, and each image has a visual
feature fi ∈ Rn. The query image is denoted as Q and its
visual feature is q ∈ Rn. Paillier homomorphic encryp-
tion of a plaintext message m is denoted as [m], and fully
homomorphic encryption is denoted as [[m]]. The encryption
of a feature vector is just the encryption of its individual
components, i.e., [f] = {[f1], [f2], . . . , [fn]}.
(1) Scenario-1: Additive homomorphic with encrypted

query: In this base-line scenario, we use additive homomor-
phic encryption to encrypt the visual features of both the
database images and the query image. Since the database
will return a list of encrypted images similar to the query
image, encrypting the feature of the query image is important
to prevent the server from inferring the content of returned
images using the query feature.

The computational task in this scenario is to compute
distance between encrypted vectors [f] and [q]. Take the
commonly used L2 distance as example, we need to com-
pute

∑n
i=1(fi − qi)2 using only encrypted values [fi], [qi].

Unfortunately, with additive homomorphic encryption alone,
such computation is impossible without decryption because
the computation involves both addition and multiplication.
Since the database holds only the encrypted features without
knowing the secret key, in order to proceed with the com-
putation, the database needs to send back all the encrypted
features [fi], i ∈ {1, . . . ,N } to the user. The user then
decrypts all the features and compute distances on his/her
end. The ranking result on the computed distances will be
sent back to the database to retrieve similar images. Although
the visual features typically have smaller size than the image
itself, this naïve base-line scenario is still highly impractical
because each query will require the database sending back the
entire database of encrypted features. To be more efficient,
the user might as well stores all the visual features on his/her
local machine and computes similarity by his/herself. This
alternative costs storage space and computational burden on
the user and fails to utilize the computation power of online
services.
(2) Scenario-2: Additive homomorphic with plaintext

query: In order to fully utilize the computational power of the
cloud, we need to minimize the computation and involvement
on the user side. In this scenario, we make a relaxation such
that the query feature is not encrypted but sent in plaintext to
the database.
The computational task in this scenario is to compute

distance between an encrypted feature [f] and a plaintext
feature q. This can be done directly in the database without
communication with the user. We give two examples with dot
product and L2 distance, respectively. Computing dot product
between a plaintext vector and an encrypted vector is directly
supported by additive homomorphic. To see this, the dot
product f · q =

∑n
i=1 fiqi can be computed in the encrypted

domain as [f · q] = 5n
i=1[fi]

qi , where q is the plaintext query
feature. For L2 distance, ‖f − q‖2 =

∑n
i=1(fi − qi)2 =∑

f 2i − 2
∑
fiqi +

∑
q2i . The encrypted distance value thus

can be computed as [
∑
f 2i ] · (5[fi]qi )−2 · [

∑
q2i ]. To allow

the database compute the distance without interacting with
the user, the user can provide the database an encrypted value
[
∑
f 2i ] for each feature in the database.

TheN encrypted distance values between the query feature
and every database feature will then be sent back to the user
for decryption and ranking. The security consideration of
allowing the query feature in clear is that the database can
infer the content of the query image and the final images
returned from the search. To mitigate such a security con-
cern, the user can add some noise to the ranking result, so
that not all requested images will be similar to the query.
Adding noise increases security at the cost of less accurate
search.
(3) Scenario-3: Fully homomorphic with encrypted

query: In this last scenario, we consider that FHE is used to
encrypt features from both the query and database images.
Despite that there is no efficient FHE implementations
available, this scenario still helps us understand how FHE,

VOLUME 2, 2014 129



W. Lu et al.: Confidentiality-Preserving Image Search

if efficiently available in the future, can help address the
problem of confidentiality-preserving image search.

With both query and database features encrypted by FHE,
the computation of any distance function between [[f]] and
[[g]] can be done directly in the encrypted domain with-
out interaction with the user. However, the ranking of the
encrypted distance values cannot be done alone by the
database. This is because a semantically secure FHE should
prevent the database from learning any information from the
ciphertext, therefore, the database cannot learn ranking infor-
mation from the encrypted distances without interacting with
user. To obtain the final ranking, the database can either send
N encrypted distance values to the user or send N (N − 1)/2
encrypted binary values indicating the pair-wise relation of
encrypted distances. The user then computes the ranking and
requests similar images from the database. We can see that
even FHE cannot completely eliminate the interaction with
the user in order to complete the task of content-based image
search.

B. RANDOMIZATION TECHNIQUES FOR VISUAL
FEATURES AND SEARCH INDEXES
Given the high computational and communication complex-
ity involved in using homomorphic encryption for the task
of rank-ordered image search, Lu et al. [15], [16] proposed
to address the problem from a practical perspective and ask
what can be done now as efficient solutions for this kind
of practical applications. Considering that such consumer-
oriented applications have less stringent security requirement
than that required for highly sensitive data such as biomet-
rics, but requires high efficiency and minimum user involve-
ment, privacy-aware search techniques that are efficient and
provides a reasonable amount of protection can be interest-
ing alternatives to homomorphic encryption based schemes.
Below, we briefly review two types of such alternatives pro-
posed in [15] and [16], namely, distance preserving random-
ization of visual features and search indexes, respectively.

1) DISTANCE PRESERVING RANDOMIZATION OF
VISUAL FEATURES
The idea of feature randomization is to scramble the content
of visual features but approximately preserve the distance
between features after randomization. Three types of feature
randomization schemes are proposed in [15], namely, bit-
plane randomization, random projection, and the randomized
unary encoding.

a: BIT-PLANE RANDOMIZATION
The motivation behind the bit-plane randomization is that
feature vectors with small distances are likely to have sim-
ilar patterns among their most significant bit-planes (MSB).
Given a feature vector f = [f1, . . . , fn] ∈ Rn, each component
fi is represented in its binary form as [bi1, . . . , bil]T , where
bi1 is the first MSB, bil is the least significant bit (LSB),
and l is the total number of bit-planes. The jth bit-plane of

f is composed of the jth MSB of the n feature components,
denoted as [b1j, b2j, . . . , bnj]. To scramble the feature vector,
each bit-plane is XORedwith a binary randomvector and then
randomly permuted. The XOR pattern and permutation for
the same jth bit-plane is the same so that Hamming distance
between corresponding bit-planes is exactly preserved. The
randomization of the jth bit-plane is illustrated in Fig. 2,
where [r1j, r2j, . . . , rnj] is the binary random vector used
for XOR.

FIGURE 2. Randomization of the j th bit-plane.

All the randomized bit-planes are reassembled to form
the randomized feature vector E(f) = [f̃1, . . . , f̃n]. The dis-
tance between two randomized feature vectors E(f) and E(q)
is computed using a weighted sum of Hamming distances
between their individual bit-planes:

dE (E(f), E(q)) =
n∑
i=1

l∑
j=1

|b̃(f)ij − b̃
(q)
ij | × 2−j. (1)

This distance metric between randomized features is an upper
bound on the L1 distance between the original features:

dE (E(f), E(g)) ≥
n∑
i=1

∣∣∣∣∣∣
l∑
j=1

(b(f)ij − b
(g)
ij )× 2−j

∣∣∣∣∣∣ = ‖f− g‖1.

b: RANDOM PROJECTION
The motivation to use random projection as a feature random-
ization technique is that close points in a high dimensional
space will be mapped to close points in a low dimensional
space with high probability. Random projection has been
proposed to be used for secure image retrieval [15] and secure
biometric matching [32].
Given a feature vector f ∈ Rn, a key-dependent Gaussian

random matrix R ∈ Rm×n with independent standard Gaus-
sian components will be generated. The randomized feature
will be computed as

E(f) = R · f = [r1 · f, . . . , rm · f] ∈ Rm, (2)

where ri · f is the dot product between the ith row of R and f.
The distance preserving property of random projection can
be derived by considering the L1 distance of randomized
features:

dE (E(f), E(g))

=

m∑
i=1

|ri · f− ri · g| =
m∑
i=1

‖ri‖2 · ‖f− g‖2 · | cos(θi)|

= ‖f− g‖2 ·
m∑
i=1

‖ri‖2 · | cos(θi)| ≈ c · ‖f− g‖2 (3)
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Here, θi is an independent and identically distributed random
variable representing the angle between the vector f − q
and the random vector ri. By the law of large numbers,
‖ri‖2 ≈ const and

∑m
i=1|cos(θi)| ≈ const. Thus, the distance

dE (·, ·) between randomized features is proportional to the
L2 distance between the original feature vectors with high
probability [33].

The security of random projection based scheme is due to
the fact that without knowing the secret key and thus the
projection matrixR, it is extremely difficult to reconstruct the
exact original features from the projected ones.

c: RANDOMIZED UNARY ENCODING
To further improve security, randomized unary encoding is
proposed by combining the idea of bit-plane randomization
and random projection. Given f = [f1, . . . , fn], its unary
encoding U(f) is:

U(f) = [U(f1),U(f2), . . . ,U(fn)],
U(fi) = 11 · · · 11︸ ︷︷ ︸

fi

00 · · · 00︸ ︷︷ ︸
M−fi

.

Here M is the maximum possible value for any component
of f. This unary encoding U(f) is XORed with a vector
of binary random variables r and then randomly permuted.
The XOR and random permutation preserve the Hamming
distance among U(f),∀f, which also equals the L1 distance
between original feature vectors. Denoting the randomization
by XOR and permutation as E1(·), we have ‖E1(U(f)) −
E1(U(g))‖2 = ‖f− g‖1. Finally, random projection is applied
on E1(U(f)), which reduces the randomized feature length and
serves as an additional layer of randomization to improve
security. Denote the random projection as E2(·), the overall
randomization function E(·) is E(f) = E2(E1(U(f))) ∈ Rm.

Considering the L1 distance of randomized features, we have
the approximate distance preserving property

dE (E(f), E(q)) ≈ c · ‖E1(U(f))− E1(U(q))‖2 = c · ‖f− q‖1.

2) DISTANCE PRESERVING RANDOMIZATION
OF SEARCH INDEXES
Since image features are typically high dimensional vectors,
comparing every pair of such vectors when doing a search
is computationally prohibitive for a large database. Mod-
ern image retrieval techniques often achieve efficiency and
scalability through well-designed search indexes. Below, we
briefly review search index randomization technique pro-
posed in [16].

a: SECURE INVERTED INDEX
Inverted index [34] is a widely used indexing structure in text
document retrieval, where each keyword has an associated
inverted index listing the documents that contain this key-
word and the number of occurrences of this word in each of
these documents. Only documents that appear in the query
word’s inverted index need to be considered during retrieval.
By utilizing the visual words representation of images [35],

inverted index can be constructed for image documents and
facilitates efficient search and retrieval over large image
databases.
In order to generate inverted index, a vocabulary tree is first

created, where each node in the tree denotes a representative
feature vector and each leaf node represents a visual word.
Such a vocabulary tree can be constructed using hierarchical
k-means clustering on a set of training features. Given the
vocabulary tree, each visual feature of an image will be
treated as a word and assigned to the closest visual word in
the vocabulary tree, as shown in Fig. 3. An example of the
inverted index is given in Fig. 4, which shows that image Ij
contains wj occurrences of the visual word i.

FIGURE 3. Inverted index generation by content owner.

FIGURE 4. Data structure of inverted index.

To randomize the inverted index, a random permutation
τ (·) is first applied on the word IDs so that the ith word
will now have an ID τ (i). Following that, order preserving
encryption (OPE) [36] is applied on all the word frequency
values in the inverted indexes so that encrypted values have a
distribution closer to uniform, thus minimizes the amount of
information leaked to the server. At the same time, the preser-
vation of the order information ensures that image similarity
can still be compared in the encrypted domain.
After randomizion, the visual words representations of the

query image and an image in the database are denoted by
{E(Q1), . . . , E(QV )} and {E(D1), . . . , E(DV )}, respectively,
where V is the total number of visual words, and Qi and Di
represent the occurrence frequency of word i in the query and
database images, respectively.
The similarity of two images is then measured by the

Jaccard similarity between E(Q) and E(D):

Sim(Q,D),
|E(Q) ∩ E(D)|
|E(Q) ∪ E(D)|

,

∑V
i=1min(E(Qi), E(Di))∑V
i=1max(E(Qi), E(Di))

. (4)

As the order information used in min(·, ·) and max(·, ·) is
preserved by the order preserving encryption, the Jaccard
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similarity computed from the encrypted indexes reflects the
similarity of the plaintext indexes.

b: SECURE MIN-HASH
The min-Hash algorithm, first proposed by Broder et al. [37],
provides another efficient way to compute the Jaccard
similarity between the visual words representations of two
images. The basic idea of the min-Hash algorithm is as fol-
lows: For any given set A such as the visual words represen-
tation, its min-Hash is defined asm(A, f ) = argminx∈A f (x),
where f is a randomized hash function with the property that
Pr[f (x) < f (y)] = Pr[f (x) > f (y)] = 0.5, ∀x, y ∈ A and
x 6= y. The probability that two sets have the same min-
Hash value is given by their Jaccard similarity defined in
Equation (4).
To compare the similarity between a query image and

an image in the database, their visual words representations
{Q1,Q2, . . . ,QV } and {D1,D2, . . . ,DV }will be converted to
two sets:

A(QMH ) = {X1
1 , . . . ,X

Q1
1 , . . . ,X1

N , . . . ,X
QN
N },

A(DMH ) = {X1
1 , . . . ,X

D1
1 , . . . ,X1

N , . . . ,X
DN
N }.

Here, X ji is a unique element indexed by i and j. The min-
Hash values generated from A(Q) and A(D) are essentially
elements randomly selected from the two sets, and they
satisfy

Pr[m(A(QMH ), f )=m(A(DMH ), f )]

= Sim(QMH ,DMH )=

∑N
i=1min(Qi,Di)∑N
i=1max(Qi,Di)

.

(5)

In order to obtain a reliable estimate of Sim(Q,D), k inde-
pendent hash functions f1, f2, . . . , fk are used to generate
k min-Hash values for A(Q) and A(D), respectively. The
concatenation of the k min-Hash values for A(Q) forms a
sketch of the image Q, and a sketch of the image D is formed
similarly. The number of identical values in their sketches,
denoted by s(Q,D) = |{i : 1 ≤ i ≤ k|mi(Q) = mi(D)}|,
is then used to measure the similarity between the two
images.

IV. COMPARISON METHODOLOGY AND RESULTS
In this section, we compare the two major types
of confidentiality-preserving search techniques discussed
above, namely, homomorphic encryption based and fea-
ture/index randomization based. Detailed experiments and
quantitative analysis are provided in terms of their search
accuracy, security strength, and computational efficiency.

A. COMPARISON ON SEARCH ACCURACY
For the task of content-based image search, a good search
accuracy means that the top ranked images have high simi-
larity to the query. Due to the semantic gap between visual
features and high level concepts, irrelevant images may be

returned as similar images and degrade the search accuracy.
A good confidentiality-preserving search technique should
retain as good search accuracy as possible when compared
to conventional search without any protection.

1) EXPERIMENT SETUP
We perform the content-based search experiments on an
image database containing 1000 color images from the Corel
dataset [38]. These images are grouped by content into
10 categories, with 100 images in each category of African,
Beach, Architecture, Buses, Dinosaurs, Elephants, Flowers,
Horses, Mountain, and Food. Image sizes are either 256×384
or 384 × 256. We choose this database for its existing cate-
gorization and it has been used as ground-truth for evaluating
color image retrieval [39] and image annotation [40]. Sam-
ple images from the database are shown in Fig. 5. Another
thing worth mentioning here is that the secure computation
techniques discussed in this paper only operate on image
features or search indexes rather than on image itself, and
the computation of image features is done on the user side
before sending all the data to the server. Therefore, the choice
of dataset and image size is less critical here.

FIGURE 5. Selected content of the Corel dataset (figure from [39]).

We use global color histogram for the homomorphic
encryption based techniques and feature randomization tech-
niques, and use localized color histogram to generate indexes
for the index randomization techniques. The color histograms
are in the HSV (Hue, Saturation, and Value of brightness)
color space [41]. For localized color histogram, we divide an
image into 256 blocks and extract a 128-dimensional color
histogram from each block by quantizing the three channels
of hue, saturation, and intensity value into 8, 4, and 4 levels,
respectively. To generate the visual words representation, we
obtain a training set of 256,000 local histograms from the
entire database and perform hierarchical clustering to build
the vocabulary tree. Each node in the vocabulary tree except
the leaf nodes has 10 children and the tree has height 3, which
gives 103 visual words.
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Search accuracy is evaluated using precision-recall curves,
where precision and recall are defined as

precision =
# of positive images among returned images

# of returned images
,

recall =
# of positive images among returned images

# of positive images in the database
.

A higher precision value at a given recall value indicates bet-
ter retrieval performance. Our experiments use every image in
the database as a query, and positive images are those images
in the same category as the query.

2) COMPARISON ON SEARCH ACCURACY
For conventional content-based image search without
any protection, color histograms can be compared using
L1 distance. In the confidentiality-preserving search, the color
histogram is either encrypted using homomorphic encryp-
tion or scrambled using feature/index randomization
techniques.

Between the two types of confidentiality-preserving tech-
niques, feature/index randomization technique scrambles
the visual features or search indexes, and approximately
preserves the distance between original features. The approx-
imate distance preserving property ensures that the search
accuracy is preserved with only slight degradation. To under-
stand the search accuracy after involving homomorphic
encryption, we note that homomorphic encryption operates
on integer values. This implies that if the feature vector is
in floating point, it has to be properly scaled and quan-
tized. This brings quantization error to the distance com-
putation, although such error can be made quite small thus
the impact on the search performance is small. The color
histogram used in this experiment contain only integer values,
so homomorphic encryption will not cause quantization error
and the distance between encrypted features will be exactly
preserved. Therefore, we expect confidentiality-preserving
search using homomorphic encryption to have the same per-
formance as the conventional search. This is confirmed in our
experiments.

Based on the experiment set-up discussed in the previous
subsection, we obtain the search accuracy for index random-
ization techniques that operate on local color histograms,
feature randomization techniques that operate on global color
histograms, and homomorphic encryption based techniques
for both local and global color histograms, respectively.
The results are shown in Fig. 6. For techniques that oper-
ate on search indexes extracted from local color histograms
[Fig. 6(a)], both the homomorphic encryption and secure
inverted index retain the accuracy of using plaintext indexes.
The secure min-hash technique has a slight performance drop
at hash length 256, but its performance can be made close to
the plaintext index by increasing the hash length. It should
be noted that the distance metric used in secure inverted
index and secure min-hash are the Jaccard similarity and the
number of identical elements, respectively. Computing such
distance metrics between vectors encrypted by homomorphic
encryption is involved and requires heavy communication
with the user.
For techniques that operate on global color histogram

[Fig. 6(b)], the search accuracy using homomorphic encryp-
tion technique is the same as the search accuracy using
plaintext features, and is better than the other three feature
randomization techniques, namely, bit-plane randomization,
random projection, and randomized unary encoding. We can
see from this figure that random projection and randomized
unary encoding preserve the search accuracy with a slight
degradation. However, the search accuracy of using random
projection and randomized unary encoding can also be made
arbitrarily close to the performance of plaintext search by
increasing the feature dimension. Among the three feature
randomization techniques, bit-plane randomization has rela-
tively larger degradation on the search accuracy because the
distance between randomized features is only an upper bound
on the original L1 distance.
The comparison above demonstrates that homomorphic

encryption can retain the exact search accuracy of a con-
ventional scheme that operates on plaintext features, while
the index and feature randomization techniques also achieve

FIGURE 6. Comparison of search accuracy between different techniques. (a) Index randomization vs.
Homomorphic encryption. (b) Feature randomization vs. Homomorphic encryption.

VOLUME 2, 2014 133



W. Lu et al.: Confidentiality-Preserving Image Search

performance very close to that of the homomorphic encryp-
tion. The gap between index/feature randomization tech-
niques and plaintext search can be made arbitrarily small
by increasing the feature dimension for techniques such as
random projection, randomized unary encoding, and secure
min-hash. It should be noted that homomorphic encryption
will greatly expand the encrypted feature size, which we will
discuss later in Section IV-B.4.

B. COMPARISON ON SECURITY-EFFICIENCY TRADE-OFF
In this section, we discuss the security concerns for the appli-
cation of confidentiality preserving image search, develop a
suite of metrics, and demonstrate quantitative results on the
protection level achieved by the different techniques; we will
then specifically discuss the challenges in employing tech-
niques such as homomorphic encryption and cryptography
protocols in terms of their computational and communication
complexity.

1) SECURITY OBJECTIVE FOR RANK-ORDERED
IMAGE SEARCH
In the confidentiality preserving image search scenario con-
sidered in the paper, the server stores only the encrypted
images and randomized features, and performs retrieval based
on randomized query features.Wemodel the server as a semi-
honest adversary, i.e., it follows the execution requirement of
the protocol but may use what it sees during the execution
to infer additional information. Such a semi-honest model is
applicable to such scenarios as web service providers, who
would like to learn as much as possible about the users for
benefits such as better targeted ads, but would not deliberately
break the users’ privacy. A user who uses these third-party
services wants to utilize the service’s computational power
for reliable storage, easy access, and better organization of
his/her private data set, but wants to reveal as little informa-
tion as possible to the server beyond what is necessary for the
server to provide the necessary services.

Given that the database images are already encrypted using
highly secure ciphers, the security objective will be to mini-
mize information revealed from the encrypted or randomized
features and from the search process. Content-based image
retrieval relies on comparison of different types of visual
features to capture visual or semantic similarity between
images. Storing raw features without any protection or ran-
domization is never wise, because visual features can reveal
important information about image content. First of all, raw
features have fixed structure, from which an adversary can
infer certain aspects of image content. For example, each bin
in a color histogram reveals proportion of that color in the
image. A large proportion of blue color might indicate sky or
sea, while a large proportion of green color can suggest trees
or grasses. Second, storing raw features allows an adversary
to compare them with features of other known images. For
example, a close match of salient features such as SIFT can
give an adversary high confidence that an encrypted image
may contain certain objects such as buildings and landmarks.

Both the homomorphic encryption based technique and fea-
ture/index randomization techniques will hide the fixed visual
feature structure and values, andmake it difficult for an adver-
sary to probe the content of encrypted images using known
images.
The second source of information leakage is from

the search process, where the server will compute distance
between the query feature and all the features stored in
the database. The result is a list of images ranked by their
similarity to the query. The information revealed in this pro-
cess is the similarity among database images. We will see that
such an information leakage is inevitable for the application
of rank-ordered search. The first major reason is that the
server provides the search functionality and needs to return
the similar images. Therefore, the server will know that the
returned images are similar to each other. This is different
from some secure multi-party computation problem such as
binary matching of biometrics or text keywords where only a
binary answer is returned and the server can be made obliv-
ious of the matching result. We will show in the following
subsections that the utility requirement of returning similar
images has some inherent security implications that need
to be taken into account when designing secure solutions.
The second reason is efficiency. Allowing the server to com-
pare distance between randomized features is necessary to
achieve a practical scheme that avoids multiple rounds of
communication between the server and the user, as is typically
required in secure multi-party computation. This is particu-
larly important for search over large image databases beyond
a few hundred or thousand entries, because for each query, the
communication bandwidth involved in sending intermediate
encrypted values, such as homomorphicly encrypted distance
values with respect to all database entries, back to the user for
distance comparison is formidably expensive.
For homomorphic encryption based technique, the server

can infer image similarity by observing the search results.
For feature/index randomization techniques, the server can
directly compute feature distances to infer the similarity infor-
mation about the encrypted images, and learn the distance
distribution between the raw features, because the randomiza-
tion techniques are approximately distance-preserving. For
text documents, the relative frequency of letters or words may
reveal its plaintext counterpart, but image content and their
signal representations are far more diverse than letters and
words. Therefore, we expect that the distribution of distances
among visual features encodes only a limited amount of
information and cannot be easily used to infer the plaintext
image content by an adversary. In the following subsections,
we design several experiments to study the security implica-
tion of revealing distance distribution and validate the above
arguments.

2) PROTECTION ON INDIVIDUAL FEATURES
As we mentioned earlier, the raw visual features have fixed
structure, so that each element in a feature vector has phys-
ical meanings that may reveal image content information.
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Simple permutation of the feature vector is not sufficient
because visual feature values typically have smoothness and
correlation property that can be exploited. Homomorphic
encryption of each feature value essentially converts the
feature vector into a random vector where each component
can be considered as an i.i.d. random variable; feature/index
randomization techniques scramble the feature structure and
increase randomness of the resulting feature values by jointly
using cryptographic primitives and signal processing tech-
niques, while approximately preserving distance between fea-
ture vectors.

We use three different metrics to measure the level of
protection achieved by the different encryption and ran-
domization techniques. The three metrics are autocorrelation
function, entropy, and conditional entropy of the feature vec-
tors. We also generate random feature vectors whose values
are drawn from i.i.d. uniform distribution to simulate the
results that we can expect from homomorphic encryption of
the feature vectors.

FIGURE 7. Autocorrelation function on randomized features.

The first metric, the autocorrelation function of a
feature vector, measures how correlated the neighbouring
feature elements are. The autocorrelation function for the raw
color histogram, visual words representation, and random-
ized features/indexes using different algorithms are shown in
Figs. 7 and 8.We can see that the original color histogram and
visual words representation both have non-negligible correla-
tion for lags larger than 0, which means there exists at least

some correlation between nearby feature values. For both
encrypted and randomized features/indexes, the correlation
between neighboring feature values or index dimensions have
been reduced to close to 0, similar to what we can expect from
a sequence of i.i.d. random numbers.

FIGURE 8. Autocorrelation function on randomized indexes.

The other two metrics are entropy and conditional entropy
of the feature vectors. Given all the feature vectors gener-
ated from the 1000 images in the Corel image database, we
quantize the entire range of feature values into 256 levels.
We then consider the quantized feature value as a random
variable and measure its entropy. A higher entropy indi-
cates the feature value has a distribution closer to uniform,
thus higher randomness. The conditional entropy H (X2|X1)
measures randomness of a feature value given its immediate
neighbor. The conditional entropy can be approximated by
H (X2|X1) = −

∑
ij µiPij logPij, where µi is the ensemble

distribution of the feature values and Pij is the transition
probability.
The entropy and conditional entropy for randomized fea-

tures/indexes from different algorithms are shown in Table 1.
The results are averaged over 50 runs of randomized features
generated by different secret keys. We can see that both the
raw color histogram and visual words representation have
relatively low entropy and conditional entropy, which implies
that raw features and indexes have limited randomness and
demonstrate inherent smoothness and correlation among
feature values. The features encrypted by homomorphic

TABLE 1. Entropy and conditional entropy for randomized features/indexes.
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encryption are expected to have i.i.d. uniform distribution,
so their randomness is compared to uniform random vectors,
which achieves the highest entropy and entropy rate. The fea-
ture/index randomization techniques also generate protected
features with high entropy similar to that of pure random
vectors. Since we used 256 levels to quantize the feature
values, the maximum possible entropy is 8 bits for a uniform
random variable, and lower for a Gaussian random variable.
The features from random projection and randomized unary
encoding follow Gaussian distribution, and we can see their
randomness is close to what can be achieved by a Gaussian
random vector; while the other randomized features/indexes
all approximately follow an uniform distribution, and their
entropies are close to 8 bits.

The above experiments indicate that the feature/index ran-
domization techniques can generate features and indexes that
have similar randomness to a pure random vector or features
after the homomorphic encryption. The feature structure is
scrambled, and the correlations among individual feature
values are significantly reduced. The physical meaning in the
feature vectors are therefore hidden from the adversaries.

3) PROTECTION ON THE SEARCH PROCESS
During the search process, the server will compute distance
between randomized features and return a list of encrypted
images ranked by their similarity to the query. Therefore,
the server will know that the returned images are likely to
be similar, and for feature/index randomization techniques,
the server will also know the distance distribution among the
randomized features. In this subsection, we carry out several
experiments to see if revealing such information will be of
significant security concern for feature/index randomization
techniques.

a: CLUSTERING ON RANDOMIZED FEATURES
For homomorphic encryption schemes, the distance between
feature vectors are encrypted and thus not directly obtainable
by the server. From server’s perspective, the encrypted fea-
tures are the same as a set of i.i.d. uniform random vectors.
For feature/index randomization techniques, since the server
can compute the distances between randomized features, it
will be able to perform clustering of all the features in the
database and group encrypted images into clusters where each
cluster contains images that are likely to be similar to each

other. In the Corel image database that we used here, there
are 10 categories each with 100 images. A perfect clustering
will generate 10 categories each with the exact 100 images
from that category. The better clustering that the server can
obtain using the distances among features, the more informa-
tion about the database is revealed from the feature distance
information.
We carry out K-means clustering on the randomized fea-

tures/indexes as well as on the i.i.d. uniform random vectors
that we expect from homomorphic encryption, respectively.
We assume that the server knows the number of clusters in
the database as prior knowledge. We employ two scores to
measure the randomness of the clustering result. The first one
is the average entropy of image categories over the 10 clus-
ters. We consider the image category as a random variable,
taking values from 1 to 10. After clustering, each cluster
will contain a list of images each with a category number.
The entropy of image category can be computed for each
cluster and averaged to get a value of average cluster entropy.
A perfect clustering will generate an average cluster entropy
of 0, and a higher entropy indicates that the clustering is more
random andmore different from the ground-truth. The second
score is the number of unique image categories among the
10 clusters. For each cluster, we consider the dominant image
category as a cluster category, and then count the total number
of unique cluster categories from the clustering. A perfect
clustering will generate 10 unique categories. The cluster-
ing results are shown in Table 2, which have averaged over
50 runs of K-means clustering with different initial random
centroids.
Several points can be learned from the results in Table 2.

First, clustering on the random feature vectors or vectors
after homomorphic encryption achieve the highest entropy
and fewest unique cluster categories, indicating their clus-
tering result is most different from the ground-truth. Second,
the randomized features and indexes from the randomization
techniques achieve similar randomness to that of the raw
color histogram. This can be expected from the approx-
imate distance preserving property of the randomization
algorithms. Third and most importantly, even the clus-
tering results on raw color histogram are still somewhat
different from the ground-truth. We observed that each
cluster typically contains images from 3 to 6 different
categories. This can be mainly attributed to the semantic

TABLE 2. K-mean clustering results.
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gap in image search, where low level visual features cannot
capture very well high level semantic concepts. In other
words, there is a gap from knowing the visual features to
knowing the semantic concept of the image, which actu-
ally helps add another favorable uncertainty layer for image
related security applications.

b: IMAGE CATEGORY INDISTINGUISHABILITY
From previous experiment, we know that the server is not
able to obtain the ground-truth clustering from the random-
ized features. In this subsection, we perform experiments to
demonstrate that even if the server can obtain the ground-
truth clustering, these clusters of randomized or encrypted
features will be highly indistinguishable from the server’s
point of view.

We assume that the server has the prior knowledge of the
category names in the database, but does not know which
name corresponds to each of the 10 clusters of encrypted
images. In the Corel image database used in this paper,
the 10 categories are ‘‘African’’, ‘‘Beach’’, ‘‘Architecture’’,
‘‘Buses’’, ‘‘Dinosaurs’’, ‘‘Elephants’’, ‘‘Flowers’’, ‘‘Horses’’,
‘‘Mountain’’, and ‘‘Food’’. The first experiment we carry out
here is to see that given a plaintext image from one of the
10 categories, whether the server can successfully associate it
with the correct cluster of encrypted images. Since the server
does not know the secret key used in randomization, we will
randomize the feature of the known plaintext image using
a randomly chosen key and use the randomized feature as
query to compare with features in the database. The retrieval
performance of using every image in the database as query but
randomize its feature using a randomly chosen key is shown
in Figs. 9 and 10.

FIGURE 9. Retrieval using a wrong key for feature protection schemes.

Since the database has 100 images in each of the
10 categories, a random selection from the database would
imply a precision value around 0.1 for all recall values.
From this figure, we can see that the retrieval precision
of feature/index randomization techniques is reduced to

FIGURE 10. Retrieval using a wrong key for secure index schemes.

around 0.1 if a different secret key is used to randomize the
feature or index. In other words, a query index randomized by
a different key from the correct one will be equally like to be
closest to any randomized feature in the database. Therefore,
without knowing the correct secret key, retrieval from an
encrypted database is equivalent to picking images randomly
from the database. The chance of the server associating a
plaintext image of known category to the correct cluster in
the encrypted database is no better than random guessing.
Next, we carry out an experiment to see when the server has

multiple plaintext images from some image category, whether
the distribution of visual features among those images of
the same category can be used to differentiate clusters of
encrypted images. For each of the 10 categories in the Corel
database, we first divide the 100 images in that category
equally into two sets Si1, Si2, i = 1, 2, . . . , 10, each with
50 images. The distance distributions from {Si1} are used as
query to search for the closest match in distance distributions
from {Si2}. The purpose of such an experiment is to see
whether the distance distribution of visual features has suf-
ficient discriminative power to differentiate different image
categories. The less distinctive the distance distributions are
among image categories, the less information about the image
database is revealed. Kullback-Leibler divergence is used as
a distance metric for the distributions, and the probability
of correct match over 100 runs with different secret keys is
shown in Table 3.

From the table, we can see that for the 10 categories in the
Corel database used in this paper, the probability of correctly
matching two distance distributions from the same category
is 40% for both the raw color histogram and visual words
representation. This relatively low match accuracy, as com-
pared to the search accuracy using visual features, implies
that distance distribution between the visual features is not
a very good discriminative feature to differentiate different
image categories. After randomization, the match accuracy
on the randomized features and indexes are further reduced.
Especially for randomized unary encoding, the match
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TABLE 3. Search accuracy using distance distribution of different categories.

accuracy is close to 10%. This means that for M = 10
categories of images, obtaining category information after
randomized unary encoding is essentially a random guess
with an accuracy of 1/M . So for a larger image database
with more categories, thus largerM , we can expect the match
accuracy to further decrease.

The experiments in this subsection show that due to
the extremely diverse representation of image data and the
semantic gap between the visual features and semantic con-
cept, it is extremely difficult for an adversary to learn use-
ful information about the image content from the distance
distribution of visual features. Measured by the suite of
scores developed in the above experiments, the feature/index
randomization techniques can achieve security performance
close to that of homomorphic encryption.

4) CHALLENGES IN EMPLOYING HOMOMORPHIC
ENCRYPTION BASED TECHNIQUES
From the previous comparisons, we have seen that homo-
morphic encryption schemes achieve exactly the same search
accuracy as that using plaintext features, and offer the highest
amount of randomness in terms of confidentiality protec-
tion for the visual features and the search process. The fea-
ture/index randomization techniques, although not designed
as encryption schemes, come very close to the performance
of homomorphic encryption schemes in terms of both search
accuracy and minimal information leakage from correlation,
entropy, and clustering aspects. In this section, we discuss
some practical challenges and considerations when employ-
ing these two types of techniques for confidentiality preserv-
ing rank-ordered image search.

a: SECURITY BENEFIT OF CRYPTOGRAPHIC APPROACHES
Feature/index randomization techniques proposed in [15]
and [16] are designed with efficiency and distance pre-
serving property in mind, but strictly speaking, they are
not encryptions as those commonly used cryptographic
ciphers. Secure cryptographic ciphers require semantic secu-
rity, which demands randomized encryption. Due to the
distance preserving requirement, the feature/index random-
ization schemes are deterministic. Homomorphic encryption,
on the other hand, offers randomized encryption and prevents
the server from computing distance between encrypted fea-
tures directly. In some secure computation problems such as
those involve highly sensitive text documents and biomet-
rics, such a security benefit of randomized encryption and

computation results obfuscation would be important.
However, as we shall see next, for rank-ordered image search,
the security benefit from homomorphic encryption may not
always justify its high computational complexity.
In the comparisons presented in the previous section, we

have shown that distance distribution among visual features
does not leak sensitive information about the image content
in the database. Furthermore, the requirement for the server
to return a list of encrypted images similar to the query brings
some inherent security implication that may diminish the
benefits from cryptographic techniques such as homomorphic
encryption. The main reason is that the utility requirement of
returning similar images inevitably reveals the information
that those returned images are similar to each other. There-
fore, even if the encryption for the individual features are
semantically secure, some information about the ciphertext
will be revealed.
The less appropriateness of requiring semantic security is

similar to the application of statistical databases, where the
database is required to return global statistical information
about the private data it holds. Such a utility requirement
makes semantic security impossible for statistical database,
as shown by Dwork [42]. Instead, differential privacy is used
to quantify security from a different perspective for those
applications where ciphertext carries utility to the adversary
and semantic security is impossible. Typical technique to
achieve differential privacy is to add noise to the returns
from the database at the cost of noisy and less useful results.
Exploring differential privacy formulation for the problem of
image search can be an interesting issue for future research,
but may not be trivial or feasible given the unique application
settings of the problem considered in this paper. In summary,
we can see that using homomorphic encryption does not bring
significant security benefit over feature/index randomiza-
tion techniques for the problem of confidentiality-preserving
image search.

b: EFFICIENCY COST OF CRYPTOGRAPHIC APPROACHES
In addition to the limited security benefit, the huge com-
putational and communication complexity is another major
limitation of employing homomorphic encryption schemes
at this moment. First of all, today’s popular homomorphic
encryption techniques such as Paillier’s cryptography sys-
tem, are computationally intensive and incurs a large amount
of ciphertext expansion. to offer a practical sense of the
complexity, we list in Table 4 a comparison between the
Paillier homomorphic encryption and several randomization
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TABLE 4. Efficiency comparison of feature randomization schemes.

TABLE 5. Summary of comparison.

algorithms reviewed in this paper. The encryption time and
ciphertext size are for all 1000 features/indexes in the Corel
database. All implementations are in C/C++ and run on a
Linux desktop with 3.0GHz dual core CPU and 4GB RAM.
The homomorphic encryption implementation is based on
a C library from http://acsc.cs.utexas.edu/libpaillier/. The
randomized features are stored in binary format and fur-
ther compressed using ZIP. We can see that homomorphic
encryption takes 2-4 orders of magnitude of longer time to
encrypt the 1000 color histograms from the Corel database,
and results in 2-3 orders of magnitude of larger expansion
on the feature size. The ciphertext expansion also implies
that homomorphic encryption will incur high communication
cost in order to transfer the encrypted features to the server.
Among the feature/index randomization techniques, random-
ized unary encoding and secure min-hash have relatively
longer running time, because they have more randomization
steps in their algorithms.

Fully homomorphic encryption is an active research area
today. The current complexity is still much higher than Pail-
lier and far from being practical. Therefore, we do not include
fully homomorphic encryption in this comparison. Given the
promising progress seen in recent years, we look forward to
potential break-through along this line of research and believe
that advances on both the homomorphic encryption and joint
signal processing and randomization techniques would help
expand the solution space to accommodate a broad vari-
ety of applications with different trade-off and performance
requirements.

C. SUMMARY OF COMPARISON
In this section, we compared the two types of techqnieus
for confidentiality-preserving image search, namely, homo-
morphic encryption based techniques and feature/index
randomization techniques. The main advantages and

disadvantages of both techniques are summarized in
Table 5.
The advantages of using homomorphic encryption are that

it retains the search accuracy of plaintext features and offers
randomized encryption so that the server cannot obtain dis-
tance between encrypted features directly. The disadvantage
is that the currently established homomorphic techniques are
too computation and communication intensive to be practi-
cal, requiring frequent user involvement in order to obtain
the ranking results. On-going and future advancement in
cryptography techniques, such as that on efficient fully
homomorphic encryption and light weight secure comparison
protocols [43], [44], will be critical in making cryptography
based approach more practical for the application of content-
based image retrieval.
On the other hand, feature/index randomization techniques

have the advantage of being highly efficient and requiring
minimum user-involvement. The search accuracy and confi-
dentiality protection offered by feature/index randomization
are very close to that of homomorphic encryption schemes.
The limitation of feature/index randomization is that they are
deterministic methods and thus the server can learn distance
distribution of randomized features. We have provided var-
ious experiments to demonstrate that the revealing distance
distribution is not a significant security concern for image
data, and that the utility requirement of rank-ordered search
has some inherent security implications that may diminish the
security benefit of using homomorphic encryption.

V. CONCLUSION
In this paper, we have studied the problem of confidentiality-
preserving content-based image search. This problem has
many practical applications such as secure online services
that help manage personal image collections, and the prob-
lem also has several challenging research issues, such as
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achieving a good trade-off between security and efficiency
for practical applications that demands high efficiency and
least user involvement. We have reviewed two major types
of techniques for this problem, namely techniques based on
homomorphic encryption, and techniques based on visual
feature and search index randomizations. We have provided
quantitative comparison of these two types of techniques
in terms of search accuracy, security strength, and com-
putational efficiency. The homomorphic based technique is
more secure but too heavy-weight in terms of computa-
tional complexity, communication load, and user involve-
ment for practical applications, while the feature/index
randomization techniques offer very high efficiency using
deterministic distance-preserving randomization at the cost
of revealing some information about the distance distribution
among randomized features. Both techniques achieve good
search accuracy as compared to conventional search that does
not have privacy protection. We hope the comparison study
offered in this paper can provide useful insights in designing
privacy-aware techniques for the problem of confidentiality-
preserving image search as well as other real-world secure
online applications with various levels of security and
efficiency requirements.
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