
Received December 19, 2013, accepted February 7, 2014, date of publication February 11, 2014, date of current version
February 20, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2305658

Some Fundamental Cybersecurity Concepts
KELCE S. WILSON1 (Senior Member, IEEE) AND MÜGE AYSE KIY2
1Patent Litigation, BlackBerry, TX 75094, USA
2BlackBerry, Washington, DC 20001, USA

Corresponding author: K. S. Wilson (kwilson@softwareipattorney.com)

ABSTRACT The results of successful hacking attacks against commercially available cybersecurity protec-
tion tools that had been touted as secure are distilled into a set of concepts that are applicable to many
protection planning scenarios. The concepts, which explain why trust in those systems was misplaced,
provides a framework for both analyzing known exploits and also evaluating proposed protection systems
for predicting likely potential vulnerabilities. The concepts are: 1) differentiating security threats into
distinct classes; 2) a five layer model of computing systems; 3) a payload versus protection paradigm; and
4) the nine Ds of cybersecurity, which present practical defensive tactics in an easily remembered scheme.
An eavesdropping risk, inherent in many smartphones and notebook computers, is described to motivate
improved practices and demonstrate real-world application of the concepts to predicting new vulnerabilities.
Additionally, the use of the nine Ds is demonstrated as analysis tool that permits ranking of the expected
effectiveness of some potential countermeasures.

INDEX TERMS Computer hacking, computer security, reverse engineering, software protection.

I. INTRODUCTION
The four concepts introduced here enable comparison and
evaluation of protection systems, including both analyzing
defeats by known exploits and also predicting likely vulnera-
bilities. In this section we will introduce these concepts which
will be expanded in the sections that follow.

These concepts resulted from one of the authors’ partic-
ipation in an early test and evaluation program run by the
U.S. Department of Defense (DoD) [1]. The DoD engaged
penetration testers (a.k.a. ‘‘white hat hackers’’) to attack its
own computer protection systems and report back the results
of their attempts, with the intent that such testing would
expose weaknesses so that protections could be strength-
ened. In the early 2000s, the DoD sought an explanation for
how both the protection experts and the white hat hackers
could simultaneously claim victory in the same testing project
(i.e., the same hacking test).

The explanation is disturbing due to the potential that
the situation is spread across the cybersecurity community:
the protection experts and hackers each defined victory
differently. Protection experts defined victory as preventing
hackers from completing the specific attack vectors against
which the protections ostensibly defended, whereas hackers
defined victory as being able to complete at least some serious
attack vectors that they believed had injured the integrity of
the computing asset. In the early stages of the testing program,
the protection experts and the white hat hackers had each been
focusing on different attack vectors.

As a result, a significant discovery was made: Each
of the ‘‘protected’’ computing assets had retained notable
vulnerabilities, despite being labeled as ‘‘protected’’ by
experts. Different protection systems left a different set of
vulnerabilities intact, but all protection systems that were
available in the commercial marketplace left at least some.
Although individual experts may have been quite competent
in addressing a particular set of attack vectors, it was apparent
that different experts had been concentrating on different
sets, without coordination to ensure completeness across all
potential attacks. There was some degree of overlap, but not a
common set of test vectors against which all experts had been
evaluating proposed protection systems.
Upon realization of this situation, and its gravity, the claims

of victory by the white hat hackers in the early tests were
analyzed for commonality. This differentiated security threats
into distinct classes, producing three threat classes that will
be discussed in the next section: piracy, tampering, and
reverse engineering [2]. A matching set of protection cate-
gories was then identified: license enforcement, anti-tamper,
and anti-reverse engineering. The test planning efforts then
leveraged this categorization in subsequent test projects to
analyze various available security products for effectiveness
against each different threat class. Another significant dis-
covery was then made. There was no one-size-fits-all pro-
tection system available in the commercial marketplace.
This meant that an effective cybersecurity program would

require additional work. The owner of a computing asset

116

2169-3536 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, 2014



Wilson and Kiy: Some Fundamental Cybersecurity Concepts

would need to ascertain all threat classes against which a
defense was desirable. Only then could the proper security
product be selected for use, and in many situations, more
than a single security product would be needed. This added
a complicating factor. Not only would each security product
require evaluation for effectiveness against each threat class
for which protection was advertised, but each product would
also require evaluation for compatibility with other products
that might be used contemporaneously.

Additionally, it became obvious that a protection system
that was implemented using only programming techniques
within application software could be defeated by attack tools
that intercepted calls from the software to the operating
system (OS) and falsified or altered the outgoing or incoming
data [3]. This type of vulnerability persisted, even if the
protection system had been designed well enough to provide
a solid defense against software-based attacks, such as the
use of an application-layer debugger. The idea of ‘‘tunneling
under the castle wall’’ – effective inmedieval warfare – turned
out to be similarly effective in cyber warfare. Essentially,
a protection system could only be reliably effective against
attacks that occurred at the same system layer in which the
protection system had been implemented, or attacks at higher
layers.

An easily-understood example of ‘‘tunneling under’’ a
protection system is the use of virtual machines and other
tools to perform execution run tracing and data falsification.
These tools can force many protections to reveal secrets that
are relied upon for security. Once the secrets are revealed,
protections that rely upon those secrets for security can be
defeated. Thus, even if well-designed, protections can be
vulnerable to attacks from lower layers. A definition of com-
puting layers is needed that enables meaningful analysis of
whether an attack is at the same layer as a protection system,
beneath it, or above it.

The common privilege ring model for computer
security [4] does not reach with sufficient refinement into
hardware-based protections, and the TCP/IP stack model for
networked computing systems [5] is not sufficiently tailored
to security issues to properly model protections and attacks.
A new five layer model was developed that reaches down-
ward into separate hardware layers and upward into software
layers.

To focus risk mitigation efforts against a class of attack that
includes code lifting, a payload vs. protection paradigm
is introduced to explain how program functionality can be
separated from protections. In a code lifting attack, some
protections are not so much defeated as merely sidestepped.
Such attacks use a two-phase plan of:

1. Separating desirable portions of the computing asset
from at least some of the protections – to produce a
less-protected version – and then

2. Attacking the less-protected version [2], [6].

This is more feasible when the computing asset is software
rather than a hardware device, and the protection system is
software-only.

Finally, a collection of best practices is proposed as the
nine Ds of cybersecurity. Although the nine Ds are not
a comprehensive list, they do include both the three tenets
of cybersecurity proposed by the DoD [7], [8], as well as
lessons-learned about implementation flaws introduced by
human error. The nine Ds are presented in a manner that is
designed to be easily remembered by security system imple-
menters.
The concepts here should facilitate categorizing secu-

rity products by the protection offered, rating the products’
effectiveness within each threat class, analyzing breaches of
existing protections, and predicting likely vulnerabilities of
proposed protection system designs. By iterating analyses
of proposed designs and addressing predicted vulnerabilities,
more effective protection system designs can be achieved.

II. THE THREE SECURITY THREAT CLASSES
The key to achieving effective protection system design is
developing a strategy based upon an analysis of relevant
threats [2], [7], [8]. A good strategy will counter all rele-
vant threats ensuring adequate coverage of each threat class,
rather than merely using whatever technologies that happen
to be available. The process should begin by ascertaining the
entire set of threats that are of concern to the owner of a
computing asset and then analyzing the degree of each threat.
Computing assets may be hardware or software, including
application program software, networks and solo computing
systems intended for either secure site operation or mobility
in uncontrolled environments. As used here, the term comput-
ing system refers to a combination of hardware and software
that is necessary to make use of that hardware.
A classification system is proposed for the threat classes;

(1) piracy, (2) tampering, and (3) reverse engineering.
There are varying degrees of intensity within each threat

class, due to varying levels of hacker capability and com-
puting asset value. The variations in hackers’ capabilities
are described in the section on the nine Ds. It should be
noted that there will be differences in specific relevant threats
for application security versus network security scenarios,
although the general concepts introduced here are relevant to
both. See page 38 of [2]. In some situations, certain attacks
may not be an issue; authors of freely-distributed programs
may not worry about piracy.
Fig. 1 provides a representation of a threat environment,

illustrating attacks against a computing asset from three
different directions, labeled as piracy, tampering, and reverse
engineering. These will be discussed in turn.
Piracy is defined here as unauthorized use; it takes many

forms. These include distributing an excessive number of
software copies, moving a copy to an unauthorized location,
an excessive number of different people using a single copy,
using a copy beyond a specific date or a specified num-
ber of trial uses, and using supposedly prohibited features
(for example, saving data in certain file formats).
The counter to piracy is license enforcement; examples

include node-locking and hardware components such as
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FIGURE 1. Graphical depiction of threat classes and protection categories.

dongles that are more difficult to replicate than merely copy-
ing software.

The second attack class is tampering: unauthorized
alteration of a computing asset. There are multiple types of
unauthorized alteration, including altering functionality or
capability, introducing malicious logic, and disabling or mod-
ifying security controls. Examples include computer viruses
and introduction of ‘‘Easter eggs’’ and ‘‘backdoors’’ (a.k.a.
‘‘trapdoors’’) by malicious software developers [9].

Functionality changes can take different forms, such as
degrading software capability to deprive authorized users of
proper functionality and increasing capability for improper
use by others. Introduction of malicious logic can also take
multiple forms; a virus can migrate to remote sites and a
programmer can covertly introduce malicious logic during
development. Developer-inserted malicious logic occurs for
reasons such as revenge and to facilitate future attacks.

Some common anti-tamper protections against network
attacks are firewalls and anti-virus products, with firewalls
providing prospective protection and anti-virus products
providing remedial protection. Anti-tamper protections for
application software include secure loaders, integrity checks,
self-healing that can automatically reverse some hacks, and
the use of a secure development environment (SDE) to protect
against malicious or careless programmers.

The third attack class is reverse engineering, which
involves learning how a program operates and can be used
for stealing intellectual property (IP). IP theft can provide
a competitive advantage if an attacker (a.k.a. ‘‘hacker’’)
can inexpensively learn trade secrets that are buried in a

program’s functionality. This can be an acutely painful
economic problem when the original developer had spent
considerable expense developing and refining the ideas
implemented in the program.

FIGURE 2. Graphical depiction of an attack on a computing asset.

Reverse engineering is also often used as a first step in
defeating protections [10]. A graphical depiction of this is
given in Fig. 2, illustrating how reverse engineering eases
tampering, which then permits piracy. Examples of this
approach include an attacker identifying specific protection
algorithms used, the location of encryption keys, and the
memory addresses of critical functionality. Common attack
methods include profiling behavior, performing run traces,
and disassembling and decompiling an executable binary file.
Anti-reverse engineering protections include encrypting

the executable file and performing code obfuscation, whether
of the source code, the binary executable, or both.
Tampering may support reverse engineering when an

attacker makes targeted alterations to data or an executable
file and correlates those alterations with observed behav-
ior changes. Iterating observations with successively better-
targeted tampering can permit incremental advances in the
reverse engineering effort. Thus, anti-tamper and anti-reverse
engineering protections may be complementary.
One way to leverage synergy is to design anti-tamper

protections, such as self-healing, to prevent the disclosure
of information that permits attackers to learn which alter-
ations work toward defeating other protections. Even license
enforcement can assist with a mutual defense by reducing
propagation of computing assets, reducing the exposure to
additional skilled attackers in different locations.
Unfortunately, many defensive protections are effective

in only a single threat class or against only some of the
attack vectors within a single threat class. Some protections,
however, offer broad protection within a first threat class
and a lesser degree of protection against a second threat
class – perhaps effectiveness against only a small set of attack
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vectors within that second threat class. This is because the
different classes of threats are so disparate that it is unlikely
a single defensive measure can adequately address all attack
vectors within all of the threat classes.

In general, protections should be integrated to the fullest
extent that is practical. A well-engineered combination can
produce synergistic results when some of the protections
enhance the effectiveness of others. Conversely, a poorly-
engineered combination can undercut effectiveness when a
failure of one protection measure facilitates attacks against
another protection measure.

Well-designed protection systems should defend against all
relevant attack vectors and may employ multiple protection
measures to cover multiple threat classes, multiple threats
within each class, and multiple layers.

III. THE FIVE LAYER MODEL
It is useful to model computing systems as comprised of
multiple layers to facilitate analyses. Well-known examples
are the TCP/IP stack model that currently has variations in
four, five, and seven layers, and also the four layer privilege
ring model. A five layer model, illustrated in Fig. 3, is based
on straightforward groupings of observable attack vectors.

FIGURE 3. Five layer model illustrating a flawed layer 3.

The proposed five layer system is
1. Application layer/ User Access
2. OS Interface / System Calls
3. OS Kernel, OS primary functionality
4. HW Interface / Firmware / BIOS, boot kernel
5. Hardware (HW), CPUs, memory, interposers
In general, protections can be implemented at any layer and

protections will be needed at each layer. In the Fig. 3 notional

system, the two top layers have protections. A vulnerability,
represented as a time bomb, is in a lower layer: the OS kernel.
This presents an opportunity for an attacker to ‘‘tunnel under’’
the protections.
In some cases, application security might be software-only.

Even if it had been well-designed and implementation was
flawless, some vulnerability in the lower layer OS kernel
could be used to defeat the application layer protections. For
example, consider the case of an anti-tamper protection that
performs self-checking and automatic repair of critical data
and instructions. Such protection can be implemented purely
within software and will enable an application to check its
own integrity and make repairs. However, if the OS kernel
has been compromised, the self-checking might be redirected
to a different memory location.
In this scenario, two copies of the application program

will be loaded into memory. One remains intact while the
other executes in a tampered state. When the executing
copy performs a self-check, the flawed OS can redirect the
self-check mechanism to the intact copy. Alternatively, if the
self-check uses checksums for integrity determination, theOS
can place forged checksum values into critical memory loca-
tions. The self-check protection will operate with an incorrect
determination, and there will be no repairs.
The following should govern the use of the model:

• Even ideal protections with perfect implementation can
potentially be defeated by lower layer attacks.

• A vulnerability at one layer can create one above.
• A vulnerability can negate lower layer protections.
• Protections should be implemented at each layer.
• Protections at different layers should be integrated.

An example of using the five layer model concept is the
BlackBerry security system. BlackBerry integrates design of
hardware, OS, and applications on the mobile device itself
with infrastructure elements and management controls to cre-
ate an integrated security solution [11]. The effectiveness of
this integrated approach has been at least somewhat validated
by the US DoD’s action of forcing some of its employees
to return to BlackBerrys and give up iPhone and Android
devices [12].
Integration of protection systems at different layers might

provide synergistic effects, similar to those noted for protec-
tions against different threat classes. Even beyond integrating
protection systems with each other, there may be a further
need to integrate protection systems with the actual function-
ality that gives the computing asset its value.

IV. PAYLOAD VS. PROTECTION
A computing asset may be viewed as a combination of two
parts: (1) the functionality that gives an asset value (i.e.,
‘‘payload’’), and (2) the measures that the asset owner puts
in place to control its use (i.e., ‘‘protection’’). The payload is
the functionality that is available to authorized users and the
protection is the set of features that ensure both trustworthy
operation of the functionality and also that the functionality
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is available only to authorized users. The terms ‘‘hacking’’
and ‘‘cracking’’ (see p. 37 of [2]) refer to attempts to access
functionality in violation of the protection.

An attacker can attempt to access a payload by removing
or altering protections. This may be easier when a protection
is ‘‘bolt-on’’ and operates independently from payload logic.
Some ‘‘bolt-on’’ security products are competently designed
for both effectiveness and ease-of-use. Unfortunately though,
if security is easily tacked onto an existing software package,
it might be just as easily separated as illustrated in Fig. 4.

FIGURE 4. Graphical depiction of the payload vs. protection paradigm.

One example of an attack that separates payload from
protection is code lifting [2]–[6]. It is a two-phase attack that
can sidestep at least some protections rather than attempting
to defeat them outright. First, valuable functionality is copied
from a binary file that comprises an executable module or a
critical data set of an ostensibly protected program. Next, this
functionality is then placed into a shell program that provides
the proper execution environment. Although creating the shell
program does require effort, the level of effort may be lower
than either the effort required for independent development
or defeating in-place protections.

Ideally, a comprehensive cybersecurity strategy should be
implemented from the very beginning of a project so that pro-
tections can be thoroughly integrated. However, bolt-on type
security may have cost and schedule advantages. An example
of a bolt-on protection is an encryption wrapper that operates
on an executable program to produce a combination product:
a secure launcher and an encrypted program that is decrypted
just in time for execution and is deleted after execution com-
pletes. For such systems, the protection step may have less
impact on development because validation of the payload
functionality can be completed prior to final security work.

The post-security testing merely needs to ensure that the pro-
tection system did not damage functionality. Attacks against
such protections include a memory grab that attempts to copy
the decrypted executable and store it in an executable state.
If protections had been put into the executable portion of the
program, the memory grab or other code lifting attack might
bring the protections along.
If the integration is sufficiently thorough, it may be difficult

for an attacker to distinguish between desirable functionality
and the protection logic. The attacker may need to purchase
a copy of the same security product that had been used, and
apply it to a test program.
Differential analysis performed on the attacker’s original

and protected test programs might provide insight into the
security product’s signature and facilitate later attacks [13].
Protections found by this signature exploitationmethodmight
be defeated simply by jumping over or replacing the protec-
tion instructions with no-operation commands (NOPs).
A strategy for preventing the separation of payload and

protection is to integrate protection measures so thoroughly
within the payload’s core functional logic that the process of
separation becomes too difficult. One approach is to weave
protection and payload logic such that altering protection
logic will also damage payload logic to the point that the
payload loses its value to the attacker. Unfortunately, this
may be impractical; time and budget constraints may dictate
a more modest plan. Cybersecurity requires a balancing act
between many factors, and cost is one of them [14].

V. THE NINE Ds OF CYBERSECURITY
Using the nine Ds proposed here can help achieve a decent
balance. They provide easily-remembered guidelines, and are
inspired by the DoD’s three tenets of cybersecurity [7], [8],
which are:

1. Focus on what is critical;
2. Move critical access points ‘‘out of band;’’ and
3. Detect, React, Adapt.

The DoD proposes that protection systems should have
characteristics of feasibility, adoptability, and sustainability.
The focus of protections should be to reduce:

1. System susceptibilities,
2. Access to potential system flaws by hostile parties, and
3. Capacity of hostile parties to exploit system flaws.

A. HISTORY AND SIGNIFICANCE OF THE NINE Ds
One of the white hat hacking tests mentioned in the Intro-
duction section involved a computing asset that had been
protected by a commercially available security product that
incorporated patented technology and was the subject of
multiple peer-reviewed academic articles. The academic
work ‘‘proved’’ that the underlying protection theory was
secure. In preparation for the test, something on the order of
100 engineering hours, using the protection company’s best
technical experts, were spent tailoring the application of the
security product to the computing asset.
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The result? Defeat within a mere seven minutes by one of
the authors of this article [2].

This type of thing was, unfortunately, quite common:
academic theories failing completely in real-world testing.
So, in addition to analyzing defeats in order to classify them
according to attack types, computing system layers, defeated
versus sidestepped, another analysis was performed: was the
defeat attributable to an inherent weakness in the underlying
theory, or was it instead human error in the implementation?.

In the test just mentioned, the defeat of the system was a
result of human error, rather than the underlying theory. The
engineers had access to journals and articles, but the body of
academic work was useless to prevent the protection failure.

Human error occurs despite the availability of a plethora
of literature on some topic. It occurs because the engineers
and technicians implementing a system can individually track
only a limited number of concepts simultaneously, and com-
munication among team members also has limits.

What was needed to reduce the risk that human error
would degrade a protection system’s effectiveness was a focus
aid – something to assist planners and implementers with
simultaneously tracking more of the relevant concepts reli-
ably. An analysis of the human errors led to a valuable insight:
Most of the errors were a result of violating one of the DoD’s
three tenets or failing to heed one of the concepts introduced
here.

A list of points to remember was compiled and each of the
memory points was (somewhat contortedly) associated with
a word that began with a common letter: D.

The nine Ds proposed here should be easy to remember
and thus assist with reducing the occurrence of embarrassing
human error.

B. DETER ATTACKS
An attacker needs three things for a successful attack:

1. The will to attempt an attack;
2. The ability to succeed with the attack; and
3. Access to the system.

Deterrence measures are those that work to reduce an
attacker’s will to attempt an attack, such as threats of legal
action or other punitive measures. Unfortunately, deterrence
is prone to failure. Protections that work against ability are
technical protection measures (‘‘TPMs’’). Curtailing system
access can often be accomplished through policies.

C. DETECT ATTACKS
Detection of malicious activity is necessary if affirmative
reactions will be part of the defensive strategy. One example
is a password fail counter that triggers a memory wipe upon
the counter reaching a threshold value. Another is a ‘‘phone
home’’ system that reports attacks to a monitoring location.

Other detection systems might include behavior monitors
that watch for indications of compromise. For example, an
excessive amount of data traffic might indicate that a running
program has been altered to forward data to a remote site.

D. DRIVE UP DIFFICULTY
Driving up difficulty often involves the use of TPMs to make
attacks more expensive. Attackers can be defeated by driving
the level of difficulty beyond their ability to cope.
Attacker skill can be stratified in five basic levels:
1. A Script Kiddy can only perform pre-fabricated attacks

that were prepared by someone else.
2. A Novice can create new attacks with existing tools.
3. An Expert can create more capable attack tools, but

may face resource constraints when operating alone.
4. Funded Organizations are groups of experts that can

develop sophisticated attacks based on novel tools.
5. Nation States can access world-class expertise and are

effectively free from resource constraints.
Organized crime groups that steal banking credentials for

large-scale theft projects are funded organizations. In general,
no protection system should be considered immune from
possible defeat by a nation state.
Three considerations for analyzing difficulty are [7], [8]:
1. Inherent system weakness;
2. Attacker (hacker) access to the weakness; and
3. Attacker (hacker) capability to exploit the weakness.
Attacker capability is something over which a protection

specialist has no control. As new attack tools are developed,
attacker capability will increase over time. This leaves only
the first two considerations, weakness and access, for driv-
ing up difficulty. The options are to reduce inherent system
weakness and restrict availability to reduce attacker access.
In addition to skill level, it is also possible to classify

attackers as either rational or irrational. A rational attacker
performs a cost/benefit analysis and proceeds only if the ratio
is favorable. Cost is measured not only with currency, but also
with time and other resource demands. For some computing
assets, the benefit of a successful attack can be very high. For
example, if protected IP has national security significance or
high competitive value, a successful exploit could be worth
millions of dollars. Benefits can be valued by some attackers
as more than merely monetary. There may be an element
of emotion involved, such as ego or a desire for revenge.
To defeat rational attackers, a protection system need only
present a sufficient level of difficulty to render the attackers’
perceived cost/benefit ratio unfavorable.
In contrast, an irrational attacker will proceed regardless of

the perceived cost or benefit. Irrational attackers are unlikely
to be deterred, and can often be stopped only by insurmount-
able difficulty or insufficient access. Fortunately, the more
highly-skilled attackers are likely to be rational.

E. DIFFERENTIATE PROTECTIONS
As mentioned in the section titled Three Security Threat
Classes, protection systems should each be focused on
one or more specific threats that had already been identi-
fied. This requires (1) ascertaining each proposed system’s
likely performance against the identified threats, (2) ensuring
that interactions among various proposed contemporaneous
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systems do not hinder performance goals, and (3) ensuring
that there is an acceptable level of expected resilience against
each threat.

F. DIG BENEATH THE THREAT
As mentioned in the Five Layer Model section, an attack at
a layer that is lower than a particular protection may be able
to defeat that protection – even if that protection is perfectly
implemented. It follows then, that a protection at a lower layer
than an expected attackmay be able to defeat the attack – even
if that attack is expertly conducted.

G. DIFFUSE PROTECTION THROUGHOUT THE PAYLOAD
As mentioned in the Payload vs. Protection section, protec-
tions can be integrated throughout a payload’s core functional
logic to drive up difficulty for code lifting attacks. The goal
of this D should be to force the attacker into a choice: either
bring along functioning protections or else forfeit the payload
value.

H. DISTRACT WITH DECOYS
Attackers will stop either when they become frustrated or
when they believe that they have succeeded. Encouraging a
false belief in success is a valid protection option.

I. DIVERT ATTACKERS TO OTHER TARGETS
Another effective strategy is to divert attention to a more
attractive target elsewhere. The well-known adage about not
needing to outrun a bear, if you can outrun one other person,
can also apply to cybersecurity. You could ‘‘win’’ merely by
persuading an attacker to target someone else.

J. DEPTH OF DEFENSE
The concept of defense in depth is a valuable one for use
against sophisticated attackers [15]. A real-world, practical
implementation is that only after an attacker has defeated
some protections will other protections manifest themselves.
The value in this is that the second and higher tier defenses
are not exposed for study by lower skill attackers who lack
the resources, will, or access to defeat the first tier defenses.

One example of this is the use of a secure launcher that
performs just-in-time decryption of the primary executable
program that, in addition to being encrypted in its resting
state, also uses obfuscation and self-healing. In this example,
the first tier of protection is the encryption of the binary
executable, which keeps the binary from being edited with
a hex editor. This first tier of defense is useful against static
attacks, which are aimed at an executable as it resides on
permanent media. The secure launcher can be leveraged to
prevent static attacks and make dynamic attacks more diffi-
cult. Dynamic attacks are those that are implemented against
a running program.

The use of the secure launcher can offer protection by

1. Detecting the presence of attack tools on the system,
2. Decrypting the primary executable only after determin-

ing the environment to be safe from these attack tools,

3. Monitoring for malicious activity, such as memory grab
attempts, and

4. Ensuring that upon completion of execution the mem-
ory and hard drive swap space are cleared of residual
data and instructions.

Obfuscation protection is thus only visible to an attacker
after the encryption protection has been defeated, for exam-
ple through a memory grab or a run trace. Only then, after
the obfuscation has been sufficiently defeated to enable an
attacker to identify critical sections for tampering, will any
self-healing defenses manifest themselves. Hopefully, the
encryption and obfuscation will prevent identification of
self-healing defenses prior to their activation.

VI. DISTURBING CONSIDERATIONS FOR MOBILE
TELECOM DEVICES: REAL-WORLD APPLICATION
OF THE CONCEPTS
Smartphones can’t always protect not-so-smart users.
Mobile telecommunications (‘‘telecom’’) devices, such as

smartphones, present some significant security challenges.
Due to their mobility and small size, they have a high potential
to be lost or stolen, and thus fall into hostile hands. In such
a scenario, a mobile telecom device is under the physical
control of an attacker. The control may be permanent, perhaps
for the purpose of learning valuable information such as bank
account numbers or possibly copying sensitive documents.
Alternatively, the control may be temporary, to surreptitiously
insert malware and return the device to the unwitting owner,
who then unknowingly discloses private information at a
later time. To combat these threats, the devices need to pro-
tect themselves without assistance, similar to the paradigm
for application-centric security practices. For some devices,
though, assistance may be available in the form of a remotely-
initiated data wipe.
Additionally, because mobile telecom devices are

complex computing platforms that operate on public net-
works, a comprehensive security plan must also include
network-centric security practices. An attacker may attempt
to access a device remotely, through Trojan horse malware or
breaking in through a poorly-protected wireless port.
Combining the factors of high mobility, small form factor

and computational power, with usage in cellular, WiFi, and
Bluetooth networks, we see that mobile telecom devices may
be facing one of the worst possible environments for security
threats. The emergence of self-assembling ad hoc networks
will present a new generation of security challenges. Compre-
hensive security programs, based on the concepts introduced
here, can help to mitigate some of the risks.
Unfortunately, though, many users happily load spyware

onto their own devices. They do this with the mistaken belief
that the harmful programs are merely innocent applications –
either fun games or valuable utility software [16]. One way
to address this risk is by limiting software installation to only
those programs that have been subjected to a security review
and endorsed with a code signing certificate.
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Also, there is a potentially catastrophic vulnerability that
currently exists in telecom devices – likely including the
one that you are using right now. Smartphones and notebook
computers can be converted into covert eavesdropping and
tracking devices to spy on their users, even when the users
believe that the devices have been turned ‘‘off’’ [17]. This
can occur because (1) the shutdown procedures are logic-
controlled, and (2) ‘‘off’’ isn’t really ‘‘off’’ in the traditional
sense that power is no longer being supplied to process-
ing circuitry. Even when mobile telecom devices are turned
‘‘off’’ by their users, some software-implemented function-
ality, such as alarm clocks and other timers, continues to
operate. Thus, the device often isn’t truly powered down to
a thoroughly non-operable state.

When contemplating that shut-down procedures are
controlled by logic, a frightening threat scenario emerges:
Malware might alter logic that controls a shut-down proce-
dure so that a device merely appears to be ‘‘off’’ by dark-
ening the screen and managing other observable behavior.
This altered state can deceive the user, even as the device
surreptitiously continues to operate one or more of the micro-
phone, camera, or GPS or other sensor systems. Collected
information can then be offloaded at a time and in a manner
that is likely to escape detection by the user.

Had you already been aware of this risk, or have you been
exposing yourself to it?

Note that, despite the plethora of theoretical academic
work on cybersecurity topics, major threats continue to exist
entirely unnoticed. However, this threat is easily understood
in light of the practical concepts introduced here.

It is also possible to rate the potential effectiveness of
proposed and available countermeasures using the nine Ds
and the five layer model. For example, one effective counter-
measure (apart from the obvious of not having any telecom
device in the vicinity of a sensitive conversation) is to remove
the battery. This is a solution in the lowest layer (hardware).
and ‘‘digs beneath the threat’’ to provide a robust solution, as
suggested by the nine Ds. Another hardware-based solution
is to place the mobile device in a box or holster that blocks
light, sound and wireless signals.

Protection systems for mobile devices that exist only in
the upper layers are inherently less secure. For example,
Samsung’s Knox product and Good Technology’s mobile
device management (MDM) system have both been shown
to be insecure as a result of Android OS vulnerabilities
[18], [19]. Both of these real-world examples fit the situation
illustrated in Fig. 3. It is important to note that because the
OS is lower in the five layer model – and not within the
control of either company – security risks will likely persist
no matter how much effort is put into enhancing upper layer
software.

In contrast, a mobile device implementing a protection
solution that comprehensively integrates security from hard-
ware up through the OS and into software layers, and uses
code signing and integrity verification of critical device
control logic can be expected to provide superior resistance to

attack. Nevertheless, because a malicious logic attack against
shut-down procedures would occur in one of the layers one
through four, it is clear that a hardware solution is a strong
contender for a solid defensive plan. One such solution is
the use of a mechanical switch that has no logic bypass and
physically removes power or otherwise disables one or more
sensors and/or wireless operability.
Using the concepts introduced here not only makes it easy

to predict and understand the attack itself, but also enables
evaluation of proposed solutions and nearly instantaneous
identification of where potential defensive measures could be
implemented.

VII. SUMMARY
Four important cybersecurity concepts were described in the
context of lessons-learned from successful hacking attacks
against cybersecurity protection tools that had been touted
as ‘‘secure’’ by protection experts. The concepts explain why
trust in those systems was misplaced and are: (1) differentiat-
ing security threats into distinct classes; (2) a five layer model
of computing systems; (3) a payload vs. protection paradigm;
and (4) the nine Ds of cybersecurity.
The value of the concepts was illustrated by examining a

disturbing cybersecurity threat that is easily understandable
and nearly trivially predictable in light of these concepts –
but yet had previously been largely overlooked or unknown.
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