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ABSTRACT Motion planning is a fundamental research area in robotics. Sampling-based methods offer an
efficient solution for what is otherwise a rather challenging dilemma of path planning. Consequently, these
methods have been extended further away from basic robot planning into further difficult scenarios and
diverse applications. A comprehensive survey of the growing body of work in sampling-based planning
is given here. Simulations are executed to evaluate some of the proposed planners and highlight some
of the implementation details that are often left unspecified. An emphasis is placed on contemporary
research directions in this field. We address planners that tackle current issues in robotics. For instance,
real-life kinodynamic planning, optimal planning, replanning in dynamic environments, and planning under
uncertainty are discussed. The aim of this paper is to survey the state of the art in motion planning and to
assess selected planners, examine implementation details and above all shed a light on the current challenges
in motion planning and the promising approaches that will potentially overcome those problems.

INDEX TERMS Planning, sampling, randomization, RRT, PRM, path, motion, autonomous robots.

I. INTRODUCTION
Autonomous robots are characterized by their ability to exe-
cute tasks deprived of any human intervention. Decision
making requires full or partial knowledge of the surrounding
environment, or workspace, in which the agent is operating.
Recent advances in sensor technology have enabled the use of
reliable multisensory perception systems [1]–[5]. Uncertainty
in the perception stage leads to accumulated localization
errors [6]. Processing of collected data and accounting for
errors is essential for accurate mapping and localization [7].
The planning stage involves devising a collision free strat-
egy from the current location, or configuration, to a desired
goal location, or configuration. The current configuration
is estimated in the localization stage whereas a behavioral
planner can provide a goal configuration [8], [9] (the notion
of a configuration will be discussed later). Path planning
is a purely geometric process that is only concerned with
finding a collision free path regardless of the feasibility of the
path. Kinodynamic planning, on the other hand, considers the
kinematics and dynamics of the robot. Once a path is specified
the final procedure is motion control or execution [10]–[12].
The full potential of autonomous vehicles is yet to be fully
exploited in enriching human lives. Nevertheless there exist
several applications such as self-driving cars, forklifts, mining
trucks, unmanned aerial vehicles (UAV), military drones,

cleaning mobile robots, planetary rovers, rescue robots and
many more.

A. PATH PLANNING
Planning is not only one of the fundamental problems in
robotics [13]–[15], it is perhaps the most studied [16].
Early efforts to develop deterministic planning techniques
showed that it is computationally demanding even for sim-
ple systems [17]. Exact roadmap methods such as visibility
graphs [18]–[20], Voronoi diagrams [21], [22], Delaunay
triangulation [23], adaptive roadmaps [24] attempt to capture
the connectivity of the robot search space. Cell decomposition
methods, in which the workspace is subdivided into small
cells, have been applied in robotics [25]. Search algorithms
such as Dijkstra [26] and A* [27] find an optimal solution
in a connectivity graph, whereas D* [28] and AD* [29] are
tailored to dynamic graphs. The use of graph search methods
involves discretization of the workspace and their perfor-
mance degrades in high dimensions. The work in [30]–[32],
generates state lattices using motion primitives and combines
them with graph search algorithms but, it still suffers from
undesirable discretization. Efficient discretization can be
achieved on the expense of completeness and high-resolution
discretization is computationally expensive. The emergence
of novel computational methods inspired their use in path
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planning. Methods such as Fuzzy Logic Control [33]–[35],
Neural Networks [36], Genetic Algorithms [37], [38], Ant
ColonyOptimization [39] and SimulatedAnnealing [20] have
all been applied in robot path planning. Khatib [40] proposed
a potential field method such that artificial forces repelled the
robot away from the obstacles and attracted it towards the goal
position. Potential fields were also applied for mobile robots
in [41], however they suffered from falling into local minima
and performed poorly in narrow regions [42]. Sensor based
reactive planning methods have been proposed [43]–[45].
Control based methods require formulating accurate models
for the robot and the environment [46], [47], which can be a
rather daunting task.

B. RANDOMIZATION AND SAMPLING IN ROBOT
PLANNING
Sampling based planning (SBP) is unique in the fact that plan-
ning occurs by sampling the configuration space (C-space).
In a sense SBP attempt to capture the connectivity of the
C-space by sampling it. This randomized approach has its
advantages in terms of providing fast solutions for difficult
problems. The downside is that the solutions are widely
regarded as suboptimal. Sampling based planners are not
guaranteed to find a solution if one exists, a property that is
referred to as completeness. They ensure a weaker notion of
completeness that is probabilistic completeness. A solution
will be provided, if one exists, given sufficient runtime of the
algorithm (in some cases infinite runtime).

Sampling based planning is by no means a novel concept in
robotics [48]. It was proposed to overcome the complexity of
deterministic robot planning algorithms for a robot with six
degrees of freedom. The use of random computations to solve
otherwise rather difficult problems, have been immensely
successful [49], [50]. Both sampling based planners and the
success of random computations inspired the development
of the Randomized Potential Planner (RPP) [51]. RPP used
random walks to escape local minima of the potential field
planner. Later on, a planner based entirely on random walks,
with adaptive parameters, was proposed [52].

The work of Barraquand and Latombe [51] paved the way
for a new generation of motion planning algorithms that
employ randomization. Some of these planners are listed
in Table 1. Perhaps the most commonly used algorithms
are Probabilistic Roadmap Method (PRM) [53]–[55] and
Rapidly-exploring Random Trees (RRT) [56]. Several other
algorithms were developed at the same time that outper-
formed RPP. The intuitive implementation of both RRT and
PRM, and the quality of the solutions, lead to their widespread
adoption in robotics and many other fields.

PRM implements two main procedures to generate a prob-
abilistic roadmap. A learning phase occurs first, where the
C-space is sampled for a certain amount of time. The samples,
or configurations in the free space, are maintained while
those in the obstacle space are discarded. This is followed
by a query phase where the start and goal configurations
are defined and connected to the roadmap. Roadmaps are

sometimes referred to as forests, as an analogy to trees in
RRT. As a result of maintaining the roadmap and specifying
start and goal configurations in a subsequent stage, PRM is
able to solve different instances of the problem in the same
environment. It is referred to as a multi-query planner. Plan-
ning time is invested in sampling and generating a roadmap
so that queries are solved quickly. Initially developed for
articulated robots [53]–[55]. PRM has been extended for non-
holonomic car-like robots [57]. It was shown that PRM is
probabilistically complete [58], [59].
RRT represents another category of sampling based plan-

ners, which are single-query planners. A tree is incrementally
grown from the start configuration to the goal configuration,
or vice versa. A configuration is randomly selected in the
configuration space. If it lies in the free space, a connection
is attempted to the nearest vertex in the tree. For single query
problems, RRT is faster compared to PRM. It does not need
to sample the configuration space and construct a roadmap
i.e. learning phase. RRT was shown to be probabilistically
complete [60].
Expansiveness was proposed as a measure of the number

of neighboring nodes to any nodes [61]. It is used as an
indication whether a node will be useful in expanding the
search tree. Expansive space trees (EST) were developed
based on that proposed measure. Unlike RRTwhere sampling
is uniform [56], EST employs a function that sets the proba-
bility of node selection based on neighboring nodes.
Ariadne’s clew is planner that builds a search tree [62],

similar to EST and RRT, to explore the configuration space.
The difference in this algorithm is the connection of the
randomly selected node. It attempts to connect a node that
is furthest from existing nodes. This heuristic is employed
to increase the exploration rate of the algorithm. Unlike
RRT where the implementation is intuitive by connecting the
closest node, a genetic algorithm is used to select the node for
expansion [62].
Sampling based planners have been successfully

implemented in a variety of fields aside from robotic appli-
cations. This is a testament to the generality of the pro-
posed algorithms and their ability to solve difficult and
constrained problems. Interestingly, the two fields in which
sampling based planning is used are digital animation and
computational biology [16]. In digital animation, agents are
constructed out of triangular meshes and paths are planned
using sampling based planners such as RRT [63] or PRM [64].
A Gaussian-process based Spline-RRT was used to guide a
UAV to explore an unknown environment [65]. In computa-
tional biology, molecules and proteins are modeled as articu-
lated bodies and sampling based planners are used to simulate
protein folding and protein-ligand interactions [66], [67].
EST was used in architectural design to evaluate accessibility
of constrained and narrow areas [68]. Medical needles [69]
and, deformable objects [70] sampling based motion plan-
ning frameworks, have been developed. Several researchers
investigated the use of RRT in non-linear control applications
such as pendulum control [71]. Apart from simulation based
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planning, the first real life applications were reported in
multi-robot competitive dynamic environments [72]. Ever
since, welding multi-degree of freedom (DOF) robots [73],
industrial robots [74], domestic robots [75], [76] and
urban self-driving vehicles have used sampling based plan-
ning [77], [78].

TABLE 1. Main SBP algorithms.

C. CONTRIBUTION
It must be stated that sampling based planning reviews exist
in literature. Both surveys [66], [67] focus on RRT and
PRM for computational biology and physics-based simula-
tion and modeling. The review papers [16], [79] and the
survey by Tsianos, et al. [80] are considered outdated.
A significant body of work exists after their publication.
Researchers have since evaluated some of the claims and open
research questions. Recommendation for planners implemen-
tation are proposed [81] and a benchmarking software is
presented [82] but they do not survey recent research in
the area and present only a handful of planners. Recently,
LaValle [83], [84] published outstanding tutorials, which, by
no means, can be considered reviews.

In this study we present a survey on state of the art sam-
pling based planners and their applications. The planners are
decomposed into different primitives and then differences
and similarities between planner’s primitives are exposed.We
review some of the parameters for selected sampling based
planners and, optimal planners, and provide recommenda-
tions for implementation. This highlights the importance of
parameters and heuristics in sampling based planners and
evaluates some of the claims made by researchers. A particu-
lar emphasis of this research are recent direction in planning
such as optimal planning, real time kinodynamic planning and
planning (replanning) in dynamic environments and under
uncertainty.

We have introduced the paradigm of robotic planning and
highlighted some of the important classical, sensor-based,
control based and sampling based planners in section I. The
remainder of this paper is arranged as follows, section II an
overview of sampling based planners and a formal description
of the planning problem are provided. Methods to improve

solutions and performances of sampling based planners
are presented and some are evaluated using simulations in
segment III.We present the problem of kinodynamic planning
in segment IV. Optimal planning algorithms are presented
and evaluated in segment V. The problem of planning under
uncertainty in dynamic environments is then presented in
segment VI. The study is finally concluded in segment VII.

II. SAMPLING BASED PLANNING OVERVIEW
SBP is treated as a black box that returns a feasible, collision
free path once information about the start and goal config-
urations is provided, as shown in Fig. 1. In a hierarchical
overview of motion planning for autonomous robots, SBP lies
between a high-level behavioral planner that specifies global
goals and a low-level controller that plans the execution of
path.

FIGURE 1. A general sampling based planner.

A. PROBLEM DEFINITION
In order to define themotion planning problem some concepts
must be introduced. SBP operate, mostly, in the configuration
space (C-space). It is the space of all possible transformations
that could be applied to a robot. Lozano-Perez [85] introduced
the concept of C-space planning to simplify complex planning
scenarios in the workspace of the robot. Free space,Cfree, and
obstacle space, Cobs, are the two regions within the C-space,
C . This prevents the need to explicitly define obstacles. The
robot can be only represented by a configuration, q, at any
instance. The configuration, q, has equal dimensions as the
C-space. Common terminology to describe configurations,
such as nodes, samples, or landmarks, will be used inter-
changeably in this study. A sequence of consecutively con-
nected configurations represents a path, P.

Start, qstart , and goal, qgoal , configurations are the inputs
to the motion planner. The problem is to find a collision free
path, Pfree,which connects qstart to qgoal A path is considered
free if its entire configurations lie inCfree and their connecting
paths do not intersect Cobs.

B. PRIMITIVES
It is essential to introduce the constitutions of any SBP
algorithm prior to introducing the different planners. Even
though these primitives are found in most planners, their
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implementation differentiates the planner. Variants of each of
these primitives will be thoroughly discussed in section III
along with their effect on the performance of the planner.

1) Sampling: This procedure is used to select a configura-
tion, randomly, or quasi-randomly, and add it to the tree
or roadmap. As mentioned earlier, the samples can be
either in the free, or obstacle configuration space. It can
be considered as the core of the planner and the main
advantage of SBP over other techniques.

2) Metric: Given two configurations qa and qb, this pro-
cedure returns a value, or cost, that signifies the effort
required to reach qb from qa. It is important that it is
truly representative of the effort, or time-to-go between
both configurations. Otherwise highly suboptimal solu-
tions will be returned.

3) Nearest Neighbor (NN): It is a search algorithm that
returns that closest node(s) to the new sample. The
value is based on the predefined metric function. Some
papers refer to it as proximity search or near vertices.

4) Select Parent: This procedure selects an existing node
to connect to newly sampled node. That existing node
is considered parent. RRT selects the nearest node as
the parent. PRM connects the sample to several nodes
within its neighborhood. On the other hand, EST selects
a parent node to randomly extend based on its neigh-
boring nodes. Ariadne’s clew selects a parent node for
extension using a genetic algorithm.

5) Local planning: Given two configurations qa and
qb, this procedure attempts to establish a connection
between them. It is intuitive to employ straight-line
paths. For most robotic systems this is not a feasible
plan due to kinematic or dynamic constraints.

6) Collision checking (CC): It is mostly a Boolean func-
tion that returns success, or failure, when connecting
two configurations. A connection is successful, if it
does not intersect Cobs.

C. ALGORITHMS
Algorithms for PRM and RRT are presented here as intro-
duced in [55] and [56]. They are the main algorithms used
in SBP. It must be noted that configurations may be referred
to, using common SBP literature terminology, as nodes or
milestones, throughout this study.

1) RRT
• The search is initialized from qstart.
• A node, qrand, is selected from the C-space using the
sample procedure, as shown in Fig. 2(a).

• qrand is discarded, if it is in Cobs.
• Using Nearest Neighbor search qnear is returned accord-
ing to the metric, as shown in Fig. 2(b).

• The local planner is used to connect qrand and qnear. The
planner may return qnew· qrand may not be reachable, as
shown in Fig. 2(c). If qrand is not reached, it is discarded.

• Collision checking is performed to ensure the path
between qnear and qnew is collision free. If path is col-

lision free qnew is added to the tree as shown in, as show
in Fig. 2(d).

• The search terminates when qnew = qgoal, a number
of iterations is exceeded or a specified time period are
exceeded.

FIGURE 2. The procedure of extending RRT.

FIGURE 3. RRT exploring free space (right) and environment with one
obstacle (left) after 500 iterations. The root of the trees in both cases is
shown as green bold green circle, in top right corner (left) and center
(right).

The ability of RRT to explore free space in presence and
absence of obstacles is illustrated in Fig. 3. This property is
often referred to as the Voronoi bias of RRT. As a result of
uniform sampling, the planner is more likely to select samples
in larger Voronoi regions and the tree is incrementally and
rapidly grown towards that free space.

2) PRM
Firstly, a roadmap is built in the learning phase,
• A node, qrand, is selected from the C-space using sample
procedure.

• qrand is discarded, if it is in Cobs.
• Otherwise, qrand is added to the roadmap.
• Find all nodes within a specific range to qrand
• Attempt to connect all neighboring nodes using local
planner to qrand.

• Check for collision and disconnect colliding paths
• This process is repeated until a certain number of nodes
have been sampled.

A typical roadmap, built in the learning phase, is shown in
Fig. 4. In the query phase the start and goal configurations are
connected to the roadmap. A graph search algorithm is then
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used to find the shortest path through the roadmap between
start and goal configurations.

FIGURE 4. Roadmap built in the PRM learning phase.

III. PARAMETERS AND HEURISTICS
Sampling based planners consist of a number of primitives
with varying parameters. A significant portion of research in
SBP is dedicated to designing algorithms with smart heuris-
tics and parameters.

The aim of these improvements is generally twofold, reduc-
ing algorithm run time and cost of solutions. In this section
SBP variants are categorized and surveyed. SBP are rather
sensitive to their implementation and some emphasis must
be placed to selecting the correct parameters [86]. Sucan
and Kavraki [81] highlight the importance of parameters and
argue that the implementation details are often not men-
tioned when SBP are presented. Motivated by the reliance
of RRT on heuristics, Randomized Statistical Path Planning
(RSPP) applies machine learning to actively adjust the plan-
ners parameters while the algorithm is running [87]. In this
section, a number of implementations and parameters are
tested using simulations in various scenarios.

A. SAMPLING STRATEGIES
Sampling is the core of the SBP. It is the process through
which the planner is able to extend and explore the C-space.
Initially, PRM and RRT were proposed with uniform sam-
pling schemes [55]–[57]. This can be considered as a draw-
back because the planner has a high probability of sampling a
node from a wide region unlike a narrow free region. This is a
result of all configurations have uniform probability of being
sampled and narrow regions have less free configurations.
Another drawback of uniform sampling is not capturing the
true connectivity of the environment. The following sampling
strategies have been suggested as means to overcome those
shortcomings,
• Medial axis: Sampling probability is increased around
the medial axis (Voronoi graph) to guide the genera-

tion of a roadmap that fully captures the shape of the
C-space [88]–[90].

• Boundary: Forcing sampling towards the boundary of
obstacles, as opposed to free space, was proposed
in [54].

• Gaussian: Similar to boundary sampling, this strategy
increases the probability of sampling around obstacles.
Nodes are expanded using an adaptive probability based
on obstacle and collision data [91].

• Bridge-test: This overcomes the weakness of SBP in
narrow regions. The strategy uses a short segment with
two configurations and their midpoint [92]. If the two
ends are in Cobs and their midpoint is in Cfree then a
narrow region has been identified.

• Hybrid: Combining two sampling strategies, narrow pas-
sage (bridge-test), and uniform sampling. This lead to an
increase density in narrow regions and still maintaining
randomization which is advantageous in solving difficult
problems [93]. Medial axis and narrow sampling are
combined to better capture the environment connectiv-
ity [94].

• Visibility PRM [95]: A non-uniform sampling method.
Sampling is performed in visibility regions. It decreases
the number of nodes maintained in the roadmap while
maintaining the same coverage.

• Goal Biasing: It may not be considered as a sampling
strategy however biasing is mentioned here as it is used
to replace sampling strategy for an interval at some
planning stage. Biasing attempt to greedily connect the
goal configuration to the current tree [96]. Biasing is
recommended, between 1-10 every 100th iteration, to
maintain randomization in sampling [13], [84].

The effect of sampling on the performance of SBP is still
an open research question. The experimental results presented
by Lindemann and LaValle [79], Geraerts and Overmars [86],
[97] show that sampling has no effect on the performance
of planners. It also shows that there is no single sampling
strategy that outperforms the others in every scenario.

B. GUIDING THE EXPLORATION
The motivation behind the attempts to guide the search is that
RRT expansion is more prone to fail if the node is near and
obstacle (boundary node). A simple approach is to attempt
to limit the sampling domain to the visibility region, which
is difficult to compute. Dynamic-Domain RRT (DD-RRT)
limits the sampling domain of boundary nodes to a small ball
of a predetermined radius as an alternative to the visibility
region [98]. Adaptive Dynamic Domain RRT (ADD-RRT)
limits the domain to a ball, whose radius changes according
to the extension success rate of each boundary node [99].
Unlike ADD-RRT and DD-RRT, Utility-RRT influences

the direction and length of extension, not the sampling
domain. A utility function evaluates the direction of expan-
sion and the selected node [100]. Utility functions are com-
puted based on the success rate of the node and previous
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direction of expansion. Obstacle Based RRT (OB-RRT) gath-
ers data from obstacles and selects predetermined growth
directions [101]. Utility-RRT outperforms both ADD-RRT
and RRT [100], OB-RRT has only been benchmarked against
RRT. OB-RRT relies on obstacles models consisting of trian-
gles. No discussion is provided whether this method would
extend to other representations.

A novel categorization divides motion planners into
exploring and exploiting planners [102]. SBP presented
here perform guided exploration. On the other hand,
artificial potential field algorithms and wave front decom-
position [103] exhibit purely exploitive behavior. Explor-
ing/exploiting tree (EET) balances both behaviors based on
successful expansion of the tree [102]. It attempts to use
purely exploitive behavior to provide fast solutions for sub-
problems and leverages exploring behavior of SBP when the
planner fails.

Several adaptive sampling strategies have been proposed.
Significant reduction in planning time for a non-holonomic
UAV is achieved by increasing the density of sampling around
the goal region once the tree approaches it [104]. A high
level planner modifies the sampling domain to influence the
behavior of a self-driving car by manipulating the Closed
Loop RRT (CL-RRT) growth [77]. An estimation model pre-
dicts the probability of a sample, to optimize the solution and
adapts the sampling strategy accordingly, to direct the search
towards lower cost regions [105]. Collision information is
used to adapt sampling when building a roadmap in real
time [106].

C. METRICS
Metrics are used to indicate the cost or time to go between
two configurations. PRM and RRT are reliant on metrics
for extending their search. Choosing an accurate metric is
arguably as difficult as the motion problem itself [13]. It is of
the utmost importance that metrics provide a good estimation,
not necessarily exact, of the cost between two configurations.
Metrics can be called multiple times during the planning pro-
cedure so it must be easily computed. A theoretical analysis
of path quality measures in a plane is presented in [107].

EST and Guided Expansive Space Trees (GEST) [108]
select nodes for expansion based on their neighboring
nodes. Path Directed Subdivision Trees (PDST) [109] and
KPIECE1 [110] select nodes for expansion based on their
coverage, to ensure that expansion is not wasted on already
explored areas. These planners reduce their dependency on
metrics.

Amato, et al. [111] experimentally studied the effect of dif-
ferent metrics on PRM and reported that the best performance
was obtained by using a weighed Euclidian metric. This
metric accounted for rotation as well as linear Euclidian dis-
tance. Similarly, accounting for rotation using Euler angles, or
Quaternions, proved to be advantageous when planning with
RRT in 3D [112].

1Kinodynamic Planning by Interior Exterior Cell Exploration (KPIECE)

Non-holonomic vehicles such as car-like ground robots
or UAV with upper-bounded curvature are common robotic
platforms. Euclidian metric is a poor choice for those vehi-
cles since two configurations that are physically close may
require complex maneuvering to reach (see subsection III-G
for discussion on local planning). Calculating the true cost
involves expensive computations which is infeasible given
the frequency of the metric function usage during planning.
SRRT uses a Euclidian distance to calculate the closest
k-neighbors, where k is a positive integer, and then connect to
the onewith the smaller real distance [104]. Another approach
overestimates the distance when the Euclidian distance is less
than the minimum turning radius, indicating that a complex
maneuver might be needed [113]. Manipulability was pro-
posed as a metric for articulated robots to signify the ease by
which the robot can reach a certain configurations, especially
that articulated have redundant configurations [114].
As a substitute for purely relying on a distance metric

to select the suitable node for expansion, the failure rate of
previous node expansions is factored in the selection metric,
an approach, that is often referred to as Resolution Complete
RRT (RC-RRT) [115], [116] and was adopted in [117]. This
prevents wasting planning time on nodes that are bound to
fail simply because of their low metric value. RRT-Blossom
choses an expansion node similarly [118]. However it pro-
ceeds to expand the node in all directions and removes nodes
that are close to nodes already in the tree. This approach has
a drawback of discretizing the control space, which is one of
the strengths of RRT, as it operates in a continuous space.
Discretizing the control space has been shown to improve
planning for some nonlinear systems [119], [120]. It is yet to
be evaluated for differentially constrained robotic planning.
The costs that arise between two configurations simply

account for the effort needed to drive the robot from one to
the other. All the previously mentioned approaches assume a
uniform cost C-spaces, aside from heuristic method presented
in [121]. Non-uniform costs are used to signify non-uniform
rough terrain [122], estimated uncertainty [123], or can be
user defined to bias the plan towards preferred regions [124].
Transition-RRT (T-RRT) [125] were proposed to handle non-
uniform cost C-space, referred to as cost maps. It provides
an adaptive criterion, referred to as transition test, which
prevents transitioning into costly regions based on the cost
differences between parent and child nodes.

D. COLLISION CHECKING
One of the main properties of SBP is that obstacles in
the environment are not explicitly defined. Planning gen-
erally takes place in the C-space, which is separated into
Cfree and Cobs. This approach requires a module, which
provides information on whether a path collides with any
obstacle. Since the goal of SBP is to create collision free
paths in the C-space, it stands to reason that collision
checking (CC) will be called several times during plan-
ning. Some experiments show that more than 90% of plan-
ning time is spent processing CC queries [93]. It can be
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noticed by from any SBL that most connections are collision
free.

Several planners use CC as a feedback mechanism to guide
the search [72], [98], [99], [108], [115] adapt the sampling
strategy [105], [106], or improve the connectivity of the envi-
ronment [92], [93], [126]. Proximity Query Package (PQP) is
commonly using for CC [127]. An experimental comparative
analysis shows that other packages outperform PQP [128].

Lazy planning algorithms have been proposed to delay
collision checking until it’s needed [129]–[131]. These algo-
rithms will check the collision only once a path is found.
Once collision is detected the colliding segment is removed
and planning is continued. Another approach is to decrease
the reliance of expensive CC. The distances between free
configuration and Cobs are maintained and similarly obstacle
configurations and Cfree. These distances are used to infer
whether a new configuration or, new path segment is colliding
and decrease the reliance on CC [132].

Single-query Bidirectional Lazy (SBL) is a planner that not
only delays planning but it also performs CC in regions that
are more likely to collide [133]. The CC algorithm in SBL is
based on four observations:

1) A small fraction of all samples is in the final path
(around 0.1%),

2) Incrementally checking the path is computationally
expensive, especially when no collision is detected, as
the entire path must be checked,

3) Short connections are more likely to be collision free
between two configurations in Cfree, as shown in
Fig. 5(b),

4) Collision is more likely to be in the midpoint between
two configurations, as shown in Fig. 5.

FIGURE 5. Illustration of the observations made by Sánchez and Latombe
[133]. (a) The midpoint of a colliding path between two free
configurations is more likely to be in Cobs (b) It is difficult to have a
colliding path between two free configurations that are separated by a
short distance. The collision is still more likely to be towards the midpoint
of the short line.

A collision checking algorithm is employed by SBL based
on the observations made in [133]. Naive CC is performing
incremental checking at some interval from one end to the
other along a path, shown in Fig. 6(a). SBL checks the mid-
point between two configurations dividing the path into two

parts, shown in Fig. 6(b). If the midpoint is free, the midpoints
of the two parts are checked. This process is continued until
a certain resolution is reached.

FIGURE 6. Red arrows connote a CC query between two configurations
that are connected by the black solid line (a) Naive incremental collision
checking (b) SBL midpoint collision checking.

E. HEURISTICS
In this section we introduce some methods that have been
shown to refine the solution cost or planning time of SBP.
It must be noted that there are no theoretical guarantees
to those claims. However, these planners have been shown
to work well in various situations. We will provide some
discussions about the strengths and shortcoming of those
tactics.
RRT-Connect [96] and SBL [133] use two trees to perform

bidirectional search. One tree is rooted at the start, whereas
the other is at the goal. The search is complete when the
two trees are connected. This approach provides significant
improvements in the search efficiency, which is illustrated
in Fig. 7. Triple RRT [134] generates two trees from start
and goal configurations and one tree from a narrow region
which is identified using the bridge test. Similarly, Multiple
RRT are generated from all narrow regions, in the free space
that are identified using the bridge test [135]. A problem
arises when attempting to connect two trees for differentially
constrained systems where the local planning is not a simple
straight line, resulting in what is known as a boundary valued
problem [136]. Methods to overcome this problem will be
discussed in section IV.

FIGURE 7. Unidirectional search coverage area (left) and bidirectional
search (right). The search is started from the diamond shaped
configuration and the final configuration is circle-shaped. Employing two
search trees is more effective since less area is searched to find the
solution.

It can be seen that using NN search to connect the sampled
node to the nearest node does not necessarily improve the path
cost. A k-near RRT employs NN search to find the nearest
k nodes, where k is a positive integer [121]. The path is
evaluated for all the k-nearest nodes and the node with the
best solution is connected to improve the overall solution. The
drawback of this approach is computational overhead as, NN
search is called, and metrics are evaluated more frequently.
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An alternative to relying on NN search is evaluating the path
towards a candidate node with all nodes in the tree [137].

Anytime RRT deals with lack of computational time for
path improvement by generating an initial suboptimal solu-
tion [138]. The tree is then stored and the rest of the time is
used to attempt to improve every solution by a predetermined
bound (generally 5-10%). This is achieved by applying a node
selection strategy. If the underestimated, lower-bound, path
cost through the candidate node is less than the current path
cost it is deemed ‘‘promising’’ and added to the tree. Way-
point caches were originally proposed for real-time planning
are also used to guide replanning with anytime RRT [139].
It is explicitly remarked that Anytime RRTs improve the path
within the given planning time, however they provide no guar-
antees on reaching an optimal solution under certain criteria
and time constraints. This property is known as asymptotic
optimality and will be discussed in section V.

F. POST PROCESSING
Amajor drawback of SBP is their widely regarded suboptimal
paths. This is as a result of the arbitrary approach used in
sampling and heuristics that are employed to speed up the
search. Whereas some methods attempt to guide to improve
the path quality during the search process [121], [138], the
algorithms in this section proceed to smooth and modify the
path after planning is complete. Post processing is illustrated
in Fig. 8. The original path is shown as a thin line, the dotted
line is the trimmed path, and finally the bold line shows the
smooth curved path.

Simply inspecting subsequent nodes and removing redun-
dant nodes achieve path shortcutting, or tree pruning. An effi-
cient algorithm removes redundant nodes in one dimension
at a time and provides some clearance by moving the path
towards the medial axis [140].

Smoothing techniques rely on using a curve to interpo-
late or fit the given waypoints. These methods are not lim-
ited to SBP but have been used in various scenarios and
with planners. Methods such as cubic polynomials [141],
quintic polynomials [142], [143], Bezier curves [144]–[147],
B-splines [20] and Clothoids [148] have been all applied for
path smoothing. An study shows that Bezier and B-splines are
well suited for robotic planning and B-splines were shown to
be more effective in replanning situations in dynamic envi-
ronments [149].

Hybridization graphs (H-graphs) are constructed by coa-
lescing multiple RRTs and attempting to optimize the solu-
tion [150]. This work is based on the observation that RRTs
are globally suboptimal, conversely some local optimality
exists. It is hoped that the locally optimal components of
different trees can be combined to achieve global optimality.
Hybridization is used with trees generated using the same
planner. No studies have been performed on the effect of
using trees generated with different parameters. The effect of
having a portion of trees rooted at the start, others at the goal
and utilizing bidirectional trees are prospects, which are yet
to be investigated within the hybridization framework.

FIGURE 8. An illustration of post processing. The original path is highly
suboptimal (grey thin line). Redundant nodes are removed and the rest
are connected to provide a shortcut path (red dotted line). Smoothing
techniques are then employed to fit a curve through the short path (black
thick line).

Post processing, as is the case with any SBP stage, is
limited by an amount of time. Alternating between hybridiza-
tion and smoothing within the given time-frame have been
shown to be effective and computationally efficient [151].
Path Deformation Roadmap (PDR) extends on the notion
of Visibility PRM by removing redundant paths that can
be deformed into other existing paths [152]. Maintaining a
compact deformable roadmap facilitates post processing as
various paths between two roadmaps can be easily obtained.
Regardless of the effectiveness of these approaches, post

processing does not regulate the impractical attempts to
expand nodes towards suboptimal regions. It only proceeds to
optimize the path at a later stage. Planning time is wasted in
both the search and the optimization stages. A more efficient
strategy would be to explicitly consider path quality during
planning.

G. LOCAL PLANNING
Steering functions are employed to connect configurations,
or landmarks, in SBP. Intuitively, a straight line joining both
configurations may be proposed. In the case of differentially
constrained robots, or non-holonomic robots this may not
be feasible. A viable approach is to model the robot system
and sample the control space for a certain period of time.
However, it must be noted that a tradeoff exists between
computational efficiency and accuracy when using numerical
integration. Kinematic model for a car-like vehicle is often
represented using the bicycle model as follows in Eqn. (1),
where x and y are the vehicle coordinates, θ is it’s orientation,
∅ is the steering angle, v is the linear velocity and L is the
distance between the front and back wheels, as illustrated
in Fig. 9. Non-holonomic planning is a thriving area of
research [153], which can be combined with SBP to provide
effective planning techniques.
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ẏ
θ̇

∅̇

 =


cos θ
sin θ
tan θ

/
L

0

 v+


0
0
0
1

 ∅̇ (1)

VOLUME 2, 2014 63



M. Elbanhawi and M. Simic: Sampling-Based Robot Motion Planning

Dubin’s path [154] and Reeds and Shepp’s [155] are com-
monly used for non-holonomic vehicles that are bound by a
minimum turning radius [57]. They combine circular arcs and
straight lines to generate optimal paths, however the curvature
of the path may not be continuous. Curvature continuous
paths were proposed using Clothoids [148], [156]. Clothoids
have no closed form representation and thus provide com-
putational challenges to synthesize in real time [157]–[161].
Bezier curves were proposed for smoothing [144], [145]
and then they were used for local planning in SRRT [65],
[104]. B-splines were proposed for planning and replanning
in dynamic and unknown environments [149].

FIGURE 9. Illustration of bicycle model of car-like vehicle rotating, the
instantaneous center of rotation (ICR) is shown as circular node.

In order to improve the connectivity of PRM roadmap
Delaunay triangulation have been used for local plan-
ning [162]. Toggle PRM initially implements a straight line
connection. If connections fails, it attempts to establish a
connection from the same node in different directions [126].
PRM is combined with RRT or EST as local planners to
take advantage of both planners’ strengths in solving com-
plex queries [163]. PRM samples milestones and maintains
roadmap while single-query motion planner attempts to con-
nect milestones. The planner, formalized as Sampling-Based
Roadmap of Trees (SRT), was shown to bemore efficient than
using a standalone PRM, RRT or EST [164].

H. SIMPLIFYING THE PLANNING PROBLEM
It is often useful to limit the search space dimensions as a
means to facilitate the planning process. Motion primitives
are often used for highly redundant robots. These robots
can solve a single query, i.e. reach a pose, in a various
configurations [165], [166]. Certain planning dimensions
are disregarded by constraining the motion of the robot to
a specific manifold or moving the planning problem into
a lower dimensional space that is more relevant the
task [76], [167]–[169].

Maneuver based planning was proposed, in which sta-
ble trim-trajectories are known a priori and used to con-
nect nodes [137]. The concept of maneuver based planning
have been extended into Maneuver Automata, as alternative
to optimal control methods [170]. They consist of a finite
set of interconnected motion primitives; the connections are

governed by some rules to ensure dynamic feasibility. Atlas
RRT [171] projects the highly constrained C-space manifold
into overlapping charts which are contained within an atlas to
overcome the complexity of C-space introduced by kinematic
constraints.

I. IMPLEMENTATION ENHANCEMENTS
It can be argued that most of the research on SBP is focused on
theoretical aspects and implementation details are often left
out of the discussion [81]. SBP parameters have been shown
to have a significant effect on their results [86]. Statistical
learning has been used to adaptively adjust parameters [87].
An open-source library has been developed as a common

benchmarking tool that limits the effect of implementation
parameters [82]. Kd-trees have been used to improve the
efficiency of NN-search [172]. Taking advantage of powerful
CPUs by parallel processing and running multiple searches
have been shown to be effective [164], [173], [174].

J. EXPERIMENTS
In order to illustrate the significance of SBP parameters on
the results obtained several experiments are presented here.

1) EXPERIMENTAL SETUP
RRTs are used to solve single queries two-dimensional envi-
ronments. We highlight the effect of several implementation
parameters such as step size used for extending the RRT, the
percentage of biasing, k values in k-RRT, bidirectional search.
We also test some of the observations used for lazy CC in
SBL.
RRT rely on random sampling. As a result, running the

same algorithm with the same parameters will produce dif-
ferent solutions. Some solutions can be near optimal, lucky,
while others may be grossly suboptimal, pathological cases.
Both cases are shown in Fig. 10. There are three obstacles
in the environment shown as grey boxes. The goal region is
highlighted as the green box, the path is shown in red and the
RRT is shown as black lines.

FIGURE 10. Lucky (left) and pathological (right) solutions obtained by
running the same algorithm without changing any parameter. This
environment is referred to as ‘‘narrow’’ in this study.

Several measures have been put in place to ensure that
the presented results are truly reflective of parameter effects.
Firstly, any experiment is looped for 54 runs, the best and
worst two results are then omitted, and the remaining 50 are
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FIGURE 11. Trap environment is shown on the left and cluttered is shown
on the right.

FIGURE 12. Effect of changing the step size of RRT extend on the path
cost, a minor implementation detail that has a large effect on the
performance.

averaged. All experiments are run on three environments,
each with its own challenges. Environment dimensions are
100x100 in all cases, obstacles are grey objects, goal region
is a green box, RRT is shown in black, and the final path
is highlighted in red. The environments are referred to as
narrow, trap and clutter in this study, shown in Fig. 10, Fig. 11
left and Fig. 11 right respectively. All the experiments are
implemented in Python.

2) RESULTS AND DISCUSSION
The goal of the experiments in this segment is to highlight the
effect of implementation parameters on RRT. It must be noted
that the number of explored nodes is used as an indication of
the algorithm run time and the cost is the Euclidian distance.

The result of changing the step size of the RRT extension
on the path cost is presented in Fig. 12. The step size is tested
with 5, 10 and then it is unrestricted. Restricting the step
in which the RRT is incrementally grown, maybe counter-
intuitive but it generates far better solutions. The planning
time saved by unrestricting the step size will be lost in post-
processing to improve the solution.

An RRT planner is tested with no biasing, 5% and 10%.
This percentage indicates the percentage of planning in which
the planner attempts to greedily connect to the goal configura-
tion. The results of biasing are given in Fig. 13. It is expected
that biasing will pull the tree towards the goal, leading to
decreasing the number of nodes explored. In both, the narrow
and cluttered environments, this is true. It is not the case in
the trap environment where the tree must first move away
from the goal then return to it. Increasing the biasing leads
to increased computation.

Biasing is then compared with bidirectional search by gen-
erating two RRTs. Results are given in Fig. 14. Bi-RRT pro-

FIGURE 13. Effect of goal biasing on the path cost of the number of
nodes explored before a solution is found, which is an indication of the
algorithm run time.

vides more consistent improvements across all environments.
As previously mentioned, the main drawback of bidirectional
RRT is the subsequent BVP, for differentially constrained
systems, when attempting to connect two trees.

FIGURE 14. Comparison between RRT, Biased RRT and Bidirectional RRT
explored nodes before finding a solution.

FIGURE 15. The range of the results (path cost) of k-RRT (blue lines)
compared to results returned by RRT (red lines). The small variation in the
solution returned by k-RRT indicates more consistent performance and
reliability.

FIGURE 16. Comparing between RRT, k-RRT and Bidirectional RRT in
terms of path cost (top) and number of explored nodes (bottom).

Performances of bidirectional RRT and k-RRT, for k = 5
and 10, are compared. Path cost and the number of nodes
are show in Fig. 16 and the range of the results of using
k-near (k = 5) is shown in Fig. 15. It can be seen that both
cases of k-RRT produce, better solutions than Bidirectional
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RRT. However, the computational time needed by k-RRT far
exceeds that of Bidirectional RRT and in the case of k = 10
the planner fails to find a solution in the trap environment in
the specified planning time. Another advantage of k-RRT is
the consistency in its results despite its reliance on sampling.
This is illustrated by the range of path cost solutions provided
by k-RRT (k = 5) in comparison to RRT, shown in Fig. 15.

TABLE 2. Path failure rate using lazy collision checking.

The motivation behind approaches that employ lazy CC
is that a small fraction of most connection collides with
obstacles. This observation is consistent with the experiments
conducted here. Once a solution is found, CC is performed. If
a resulting path collides with obstacles, the planner will either
discard the colliding segment or the entire path.

The percentage of infeasible solutions due to collision is
often not consideredwhen employing lazy collision checking.
If a large number of paths are colliding, it may be more effec-
tive to employ an efficient CC algorithm for all connections.
The percentage of colliding paths in different environments
and under different step size is shown Table 2. As expected
as the step size decrease so does the failure rate. However, the
path failure rate remains high. It is a question of implemen-
tation, whether it is more efficient to employ lazy CC and
re-plan the path almost 30%-50% of the time, or constantly
employ efficient CC.

K. SUMMARY
Table 3 is a summary the body of work reviewed in this
section.

IV. KINODYNAMIC PLANNING
Kinodynamic planning deals with the kinematic, non-
holonomic and, or, dynamic constraints imposed on the
robotic system or vehicle. The previously presented planners
were purely geometric, considering only the feasibility of the
path. The term ‘‘Kinodynamic’’ has been coined as a syn-
ergy between kinematics and dynamics [175]. Deterministic
planners were proposed, however, they suffered from high
computational costs [175], [176].

In some cases path planning and kinodynamic constraints
are decoupled. Traditionally, Planners generate a path that
relaxes all kinodynamic constraints. Trajectory modifica-
tion can be employed to gradually modify the trajectory
to obey the constraints. Trajectory modification uses small
forces to incrementally alter the course. It has been pro-
posed for non-holonomic [177], [178] and kinodynamic con-
straints [179]. Trajectory modification has been successfully
applied for humanoids [169], car-tests [180] and multi-DOF
non-holonomic planning [181]. Discarding kinodynamic
constraints during planning may lead to highly subopti-

TABLE 3. Summary of SBP parameters and heuristics.

mal solutions that involve difficult maneuvers. Worse, the
robot may not be able to execute the plan, resulting in
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unrecoverable situations that lead to collision. Considering
system dynamics is favorable. For some systems attempting
to accurately model all the effects will overcomplicate the
model and increase the planning space dimensions and the
search complexity.

SBP conducts a search in the C-space by sampling config-
urations, q, and attempting to extend the search towards those
configurations. Kinodynamic SBP operates in the state space,
χ , which contains a set of all possible states, x. State space
can be considered as C-space augmented with velocities.
Subsequently, state space has more dimensions. A state is
generally defined as Eqn. (2).

x = f (q, q̇) (2)

There are several issues confronting kinodynamic planning.
It is inherently a high dimensional problem, since consider-
ing the first derivatives, for the robot configurations, effec-
tively doubles the dimensions of the search space. The state
equation of the robotic system must be known, as shown
in Eqn. (3). The control space, U , is then discretized. The
control, u, that drives the robot as close as possible to the
desired state, x, is selected [60]. Similarly, Frazzoli, et al.
[137] attempt connections from all nodes in the tree using
an optimal controller until the desired state is reached Hsu,
et al. [182] select a random state, x, and apply a random
control, u, for a fixed time. Eqn. (3) must be integrated, for
the time period that control u is applied, in order to determine
the local trajectory that joins two states. KPIECE employs a
physics simulator to generate the motion trajectory between
states [110]. There is a trade-off between the accuracy of
the trajectory generation process and its computational effi-
ciency.

ẋ = f (x, u) (3)

Planning in a C-space that has narrow corridors, similar
to Fig. 10, is one of the challenges in SBP. Kinodynamic
constraints limit the motion of the robot, essentially cre-
ating narrow passages in the state space. The state space
is, traditionally, defined into free and obstacle state space.
Another subdivision exist in the free state space, referred
to as Inevitable Collision States (ICS), in which the robot
will collide with obstacles regardless of the control input
applied [183]. This contributes to the complexity of the plan-
ning dilemma, as the free state space is narrower. High dimen-
sional planning combined with narrow passages in the free
state space leads to slowing down SBP planners. Synergistic
combination of layers of planning (SyCloP) is a framework
that handles these issues by combining two layers of planners,
a discrete and a continuous tree planner [184]. The deter-
ministic layer defines where the SBP planner should start
planning and changes the search area if the SBP is deemed
stuck.

Defining a metric that evaluates the true cost between
two states is another challenging problem in kinodynamic
planning. Poor metric selection leads to ineffective planning.

Euclidian for instance will identify a state as suitable candi-
date for extension. However, extension from this state maybe
redundant, as it does not expand the search, or may constantly
lead to collision. Often a trajectory is generated in such a way
to optimize a cost function [60]. Similar selection strategies
to the ones proposed in path planning to decrease reliance on
metrics have been used in motion planning, such as expan-
siveness [182], state space coverage [110], [163], [184] and
accounting for previous success of expansion [115]. The sen-
sitivity of RRT tometrics is more problematic in differentially
constrained kinodynamic planning, as extending procedures
are computationally extensive. For some systems it is possible
to formulate a pseudo-metric estimate for the true cost by
linearization of the system dynamics and quadratization of
the cost [185].

FIGURE 17. Illustrating the RG-RRT extension procedure (a) Select a
random node and find the nearest node in the tree (b) Compute the
reachability of the nearest node, shown as a grey shaded arc (c) Find the
nearest reachable node to the random node, shown as a red node.
Compare the distance between the nearest node and the nearest
reachable node (red) (d) Extension will only be executed if the reachable
node is closer, it is then added to the tree.

Extending the tree requires integrating the equations of
motions to obtain the desired trajectory. The reliance on
metrics means that several extensions are wasted, as they
will not contribute to find a solution. Reachability Guided
RRT (RG-RRT) evaluates a reachable set for any node in
the tree [186], as shown in Fig. 17(a) and (b). RG-RRT
is based on the observation that expansion of the tree is
more expensive that sampling for differentially constrained
systems. A node is added to the tree, if it’s closer to the nearest
reachable node than to the nearest node in the tree, as shown
in as shown in Fig. 17(c) and (d). Environmentally Guided
RRT (EG-RRT) [123] combines two efficient strategies of
RG-RRT [186], of adding reachable nodes, andRC-RRT [115],
of considering failure and success rate of a node prior to
selecting it.
Kinodynamic planning has been limited to simulation

based planning applications. Planning time can reach several
minutes in some simulation scenarios [60]. Real time kino-
dynamic planning in state space require exponential planning
time [137], [187]. Initial attempts to apply kinodynamic plan-
ning in real life situations produced inaccurate results and
resorted to a decoupled planning hierarchy where dynam-
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ics are handled by another module in a step that followed
path planning [75]. Bruce and Veloso [188] reported that
decoupling path planning, using execution extended RRT
(ERRT) [72], and motion control, produced more accurate
and reliable results, especially when fast computations are
needed. Recently, successful implementations of kinody-
namic SBP have been achieved by limiting the planning
dimensions and planning in the task-space [76], [189] and
using visual information for localization [190]. Similarly,
RG-RRT implemented in task space with the use of motion
primitives, fulfilled the task of real-time kinodynamic motion
planning [191].

A promising approach is adopted by S-RRT. It encodes
the constraints of an underactuated vehicle in the charac-
teristics of a Bezier curve used for local planning [104].
Kinodynamic trajectory generation using B-spline [149] and
Bezier curves [192] is widely studied and can be utilized by
SBP to generate effective kinodynamic planners. The local
modification support was exploited by generating a feasible
path and then subsequent local adjustments are performed
to ensure dynamic feasibility [193]. The main advantage, of
using splines, is that kinodynamic planning is limited to a
lower dimensional space, a notion similar to maneuver-based
planning proposed by [137], thus planning can be executed in
real time scenarios. Subsequently, B-spline interpolation was
used to generate smooth trajectories for an RRT planner in a
dynamic driving scenario [194].

V. OPTIMAL SBP
The ability of SBP to provide valid solutions for constrained
high dimensional problems within a reasonable timeframe is
advantageous. Despite the fact that the hit-or-miss sampling
approach is the core of the planner’s effective strategy, it
leads to the inclusion of many redundant maneuvers in the
final path. SBP generate highly suboptimal solutions and they
are highly sensitive to their implementation details, as shown
experimentally in section (III-J).

LaValle and Kuffner [60] proposed modification of the
termination condition in a way such that the SBP keeps
running to iteratively converge the path cost. The solution
convergence remained an unanswered problem, until it was
proven that given infinite runtime RRT will not find an
optimal solution [195]. Numerous variants, such as k-RRT,
Anytime RRT, and post processing methods have been pro-
posed to remedy the poor solutions returned by RRT. Despite
their effectiveness they provide no theoretical guarantees for
reaching an optimal solution.

A. RRT*
A recent development in SBP was set forth by Karaman and
Frazzoli [196]. A family of optimal sampling based planners,
RRT*2, PRM* and RRG*, were presented which guaranteed
asymptotic optimality. These algorithms operate analogously
to any common SBP except in two procedures. Performing

2pronounced RRT star

nearest neighbor search and adding a node to the existing
graph or tree. The two different procedures are named ‘‘Near
vertices’’ and ‘‘Rewire’’. Near vertices returns a number of
nearest nodes similar to k-RRT [121]. In the case of RRT*,
the nodes are returned, if they are within a ball of radius, k .
This ball radius is a function of the number of nodes in the
tree, n, and is defined by Eqn. (4), where γ is a parameter
based on the environment characteristics and d is the C-space
dimension [196].

k = γ

(
log (n)
(n)

)1/d
(4)

The nearest vertices are returned within a ball of radius
k and stored in a set Qnear , as shown in Fig. 19(b). The
selected node, qnew, is connected to the node, qparent , which
provides a shorter router to the start configuration, as shown
in Fig. 19(c). All remaining nodes in Qnear are rewired to
qnew as their parent, if it provides a shorter route to the start
configuration, as shown in Fig. 19(d). Hence every new node,
qnew, will endeavor to improve all local connections within a
predefined radius. An RRT* tree is shown in Fig. 18 after
6,000 iterations.

FIGURE 18. RRT* tree after 6,000 iterations and 4,700 explored nodes.

B. REQUIREMENTS FOR RRT* TO GENERATE OPTIMAL
SOLUTIONS
The realization of an optimal solution dictates some criteria
that must be met. Primarily, optimality is defined with respect
to a specific metric and the planner is constantly attempting
to enhance the value of that metric. As previously discussed
SBP, defining a true metric that signifies the cost between two
configurations has proved to be a non-trivial task.
In addition to defining a metric, a steering function must be

defined in the planner. RRT* [196] relies on the existence of
a steering function that drives the robot through an optimal
trajectory between two specified states or configurations.
A likewise assumed guidance loop is the core of the work
by Frazzoli, et al. [137]. Such steering function does not
exist for several robotic systems. Optimal control is still a
subject pursued by researchers even for simple path plan-
ning purposes [197]. An alternative to defining a steering
function is storing optimal trajectories and picking a suitable
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trajectory when connecting two configurations, a particularly
useful strategy for redundant articulated manipulators [74], or
differentially constrained dynamic systems [170].

Even so for a holonomic system, whose optimal path is the
straight line joining two configurations, the planner still guar-
antees only asymptotic optimality. This property indicates
that the planner will always reach an optimal solution when
the runtime approaches infinite. The initial solutions will be
suboptimal, similar to RRT, and it will continue to converge
towards optimality as the planner is running.

FIGURE 19. Illustrating the operation of RRT* (a) A new random node,
qnew , is selected, shown as orange node (b) Near vertices procedure
returns a set, Qnear , of all nodes, shown as red nodes, within a certain
distance of the new node (circular area shaded in grey) (c) qnew is
connected to the node, qparent , that has the shortest route to the start
(shown as orange path) (d) The remaining nodes in Qnear are rewired
through qnew , if it provides a shorter path towards the start.

C. CONVERGENCE TOWARDS AN OPTIMAL SOLUTION
RRT* is guaranteed to asymptotically converge towards an
optimal solution under certain assumptions. The convergence
rate, however, has been shown to be rather slow. In fact,
certain post processing approaches outperform RRT* [151].
The desirable properties of RRT* in real-time applications
are overshadowed by the planning time wasted to reach an
optimal solution.

There are a number of methods that endeavor to speed
up the convergence of RRT*. A bidirectional RRT* that
only joins promising nodes have been shown to improve
the performance in high dimensional spaces [198]. The node
selection strategy is similar to the one employed by Anytime
RRT [138].

RRT*-smart removes redundant nodes every planning
iteration and biases the sampling towards the remaining
nodes [199]. A naive algorithm is implemented to trim the
tree as it checks subsequent nodes. A possible improvement
is the use path refinement algorithm presented in [140].
RRT*-smart resembles the anytimemeta-algorithm presented
in [151], as it alternates between post processing and expand-
ing the tree.

A potential field function is coupled with the RRT* algo-
rithm to guide the algorithm towards the optimal solu-
tion [200]. It attempts to strike a balance between exploitation
and exploration as suggested by [102]. However, the pre-
sented approach does not adaptively change the behavior and
the parameters are predetermined prior to planning.

NN search is identified as a bottleneck in SBP. RRT*
proceeds to compute a set of near vertices, in each iteration,
that lie within a ball of known radius. The convergence rate
is accelerated by approximating costs between nodes, when
computing nearest vertices for a certain node [201].
It can be observed that a large fraction of the RRT* plan-

ning time is spent extending the tree into areas that are not
necessarily promising, adding and rewiring redundant nodes.
This is illustrated in Fig. 18. All areas are heavily sampled
even though most of those nodes will not contribute to the
path optimality.
To overcome the slow convergence rate an Anytime

framework for RRT* was implemented on an autonomous
forklift [202]. Anytime RRT* finds a suboptimal path and
converges towards optimality within the given planning time.
This anytime implementation is suitable for real-time applica-
tions, as the planner must return a path whenever it is called
i.e. existence of a path in real applications is far more vital
than the path optimality.
Node selection criteria were impose to limit the addition of

nodes whose shortest path is large than a certain bound [198],
[203]. Modifying the rewiring procedure to include the near-
est nodes in the shortest path increases the convergence
rate [203]. A predictivemodel is used to estimate the probabil-
ity of a node being on the optimal path and is used to guide the
path towards optimal regions [105]. RRT#3 replaces the local
rewiring procedure by globally replanning the path [204].
Efficiently updating all the node costs, and categorizing nodes
such that only promising nodes will be expanded, is the basis
for this planner. In this context, promising nodes are those,
which can constitute an optimal path. It is shown that RRT#

converges faster towards an optimal solution as it guarantees
an optimal solution is returned, given all the present node
costs.

D. OPTIMAL KINODYNAMIC PLANNING
The development of optimal planning and RRT* algorithm
has renewed interest in SBP. As an example, RRT* has
been extended for vector fields, not just uniform environ-
ments [205]. It also led to the emergence of research in
optimal kinodynamic planning Karaman and Frazzoli [196]
argued that RRT* is analogous to RRT, thus is a generalized
planner that can be applied in any planning context. Concep-
tually this statement is accurate, however, in a practical sense
it is a perplexing task to apply optimal SBP in kinodynamic,
real-time or, dynamic scenarios.
At this point, there are a handful of optimal kinodynamic

planning planners. They are limited to systems with linear
dynamics [206], [207], whose cost functions are well known
and can be computed between any two states.
Optimal kinodynamic SBP for differentially constrained,

high dimensional systems was achieved [208] by limited the
planning to the task space [189] and using reachability guided
trees [186]. Planning with task space is a general approach

3pronounced RRT sharp
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that can be adapted to planning relative to the end-effector
of a manipulator or a center of mass of a robot. A more
challenging problem, non-holonomic kinodynamic SBP, was
resolved similarly [209]. Nonetheless, these planners are still
restricted to simulation-based applications due to their high
computational requirements.

E. EXPERIMENTS AND RESULTS
A preliminary version of this analysis was presented in [203].
The aim of these experiments is twofold,

• Highlight the observation that RRT*, much like RRT, is
sensitive to its implementation parameters which must
be carefully chosen,

• Demonstrate the benefits of applying node selection cri-
teria on RRT*.

1) PARAMETER SENSITIVITY
As expected, the implementation of RRT* is of grave impor-
tance to its performance. The results of modifying the step
size can be seen in Fig. 20. Similar to RRT, decreasing the step
size of the planner extension improve the overall path cost. To
eliminate redundant nodes that will not contribute to the path
convergence, a minimum step size has been specified.

FIGURE 20. Effect of step size on the path cost and convergence rate.

Goal biasing is employed to speed up the performance of
RRT and guide it towards finding a solution. It has success-
fully done so for RRT* as well, as can be seen in Fig. 21.
The planner was unable to find a solution before 1,500 itera-
tions. However with biasing it was successful before reaching
500 iterations. Additionally, biasing improves the cost of the
initial solution found by RRT* and it decreases its conver-
gence. Biasing is recommended prior to find a quick solution
and then it has to be terminated due to its negative effect on
the convergence rate. Biasing the RRT* can be an alternative
to the recommended use of a traditional RRT to find an initial
solution in [208] and [209].

2) NODE SELECTION
The node selection strategy, exploited by Anytime RRT
to bound sampling merely to promising nodes has been
proposed as a performance enhancement for RRT*. The
lower bound is defined by, ε, where the lower bound equals
(1- ε) times the current path cost. It is generally taken between

FIGURE 21. Effect of goal biasing on path cost and convergence rate.

5%-10% and indicates the improvement in the path cost. This
leads to generating sparse trees, as shown in Table 4. The
effect of node selection is illustrated by comparing Fig. 22
and Fig. 18. The planner generates the almost identical solu-
tions with far less nodes explored. Aside from merely adding
promising nodes that will lead to better solutions, the work
by [186] argued for the effectiveness of maintaining sparse
trees especially for non-holonomic kinodynamic planning.

TABLE 4. Average number of nodes in the tree after 10,000 iterations.

FIGURE 22. A sparse RRT* tree generated, after 6,000 iterations. Node
selection has been employed with ε = 5%.

VI. DYNAMIC AND UNCERTAIN ENVIRONMENTS
A common assumption in planning algorithms is that the
environment is well defined such that the robot’s location
relative to obstacles and goal positioned are all known. This
statement holds true in static environments where industrial
manipulators are used or in CAD applications in which the
environment is user-defined.
Autonomous vehicles and robots operate in dynamic

changing environments with other uncontrollable, in some
cases lethargic, agents that cannot be modeled or estimated.
In general, the assumption of a well-defined static environ-
ment does not hold. There is an uncertainty that arises as
a result of sensing errors and noise and the imprecision of
actuators and other uncontrollable factors such as wheel slip.
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Consequently, the exact location of the robot (localization)
and the description of the environment (mapping) is not a
trivial task. In this section we present planners that tackle
one of the two current issues in robotic motion planning,
replanning in dynamic and/or uncertain environments. Early
on, it was assumed that, since SBP were able to generate
relatively rapid solutions, it would suffice to discard current
solutions and replan when deviations were identified in the
environment.

Regenerating a single-query search tree may be a valid
approach, given the appropriate parameters and heuristics in
certain instances. In the case for multi-query planners, such
as PRM, that invest most of their resources in connecting the
environment, regenerating the entire roadmap is not feasible.

An outline for using PRM in dynamic environments
involved generating a roadmap while assuming an obstacle
free space [210]. The data structure of PRM was made more
efficient in order to accommodate changes in the environ-
ment and consequently in the roadmap. A similar approach
attempts to use single query planner to connect PRM nodes
in dynamic environments and encodes obstacle positions in
local connections [211]. van den Berg, et al. [212] proposed
a generalized PRM method in surroundings where obstacle
movements are restricted to local sectors. PDR maintains a
roadmap whose paths can be deformed, thus numerous paths
can be obtained between two configurations [152]. PDR has
been proposed for dynamic path planning by the authors, but
is yet to be evaluated in those scenarios.

RRF (Reconfigurable Random Forests) provided a frame-
work to managing either roadmap, or tree planners, under
changing settings [213]. Once changes in the environment are
detected, nodes inCobs and colliding paths are discarded. This
leads to the emergence of separated roadmaps, or forests. The
planner then prunes the forests and attempts reconnects paths.
Lazy reconfiguration forest (LRF) used the same framework
but proceeded to perform collision checking only for the paths
involved for planning [214].

ERRT is often mentioned as the first algorithm to be
implemented in a real-time dynamic situation [72], [188].
ERRT maintains a single tree. If that tree is collides with
the obstacle space it is discarded and another one is rebuilt.
ERRT maintains the location of the discarded configurations,
waypoint cache, and biasing the search slightly towards those
node locations. It is motivated by the assumption that, if the
algorithm is updated at a high frequency, a small percentage
of the original tree needs to be modified.

Dynamic RRT (DRRT) builds on the idea that it is more
efficient to repair the existing tree, than to, rebuild an entirely
new one [215]. Unlike ERRT, only the colliding configu-
rations and their child nodes are discarded in an efficient
manner. DRRT borrows the concept of slightly biasing the
search towards invalidated areas from ERRT. Nonetheless, it
outperforms ERRT by repairing the tree. AD* was coupled
with PRM to provide an efficient framework for replan-
ning [216]. In this approach the motion of other agents
was extrapolated, the planner failed to generate solutions

when worst-case scenario of a growing disc is considered.
Growing discs assumption creates a narrow free regions in the
C-space. A scenario in which SBP perform poorly. Different
types of dynamic obstacles are shown in Fig. 23 and worst-
case growing discs are shown on the far right. Flexible-PRM
(F-PRM) similarly used backward A*, from the static goal
towards the moving robot, in dynamic environments [124].
Multipartite RRT (MP-RRT) [217] combines the strat-

egy of biasing the search towards discarded configurations,
similar to ERRT. It also rebuilds the tree, like DRRT, and
maintains separate detached forests, like RRF. MP-RRT dis-
tinguishes itself from RRF by only maintaining forests for
a limited time so as not to waste computational time in
unpromising areas.
In the course of navigating a dynamic environment, it

is possible that a plan is deemed unsafe, such that it will
collide with a moving obstacle. The selected planning frame-
work must generate an alternate feasible route. The concept
τ -safety ensures that at any stage during path execution there
is enough time, τ , for the planner to compute an alternate path
while following the unsafe path [137]. Greedy, Incremental,
Path-Directed (GRIP) [180] is a safe, replanning framework
that guarantees safety by considering Inevitable collisions
states (ICS) during replanning and only considering safety-
guarantees to reduce planning time. GRIP employs a similar
rebuilding strategy to ERRT and DRRT, node selection is
based on coverage, as employed by PDST, and an efficient
safe framework based on τ -safety.

FIGURE 23. Dynamic obstacles different trajectory assumptions with
respect to time.

Considering stochastic sensing and dynamic conditions is a
relatively novel topic in motion planning. Particle RRT [218]
and RRT-SLAM [219] model uncertainty using particle fil-
ters, which is then considered in the planning. Similar
uncertainty considerations are added to RRT* framework
by Rapidly-exploring Random Belief Trees (RRBT) [220],
[221]. To guarantee the accuracy of planned path, uncertainty
is encoded in path costs to guide the robot to useful areas and
thus ensuring the robot will not be lost without information.
Gaussian processes were also used to predict the motion of
other vehicles in the environment [222]. The planner esti-
mates the probability of collision and returns a path that is
probabilistically collision free. This approach may serve as
an alternative to worst-case growing discs model, however,
the objects in the environment must be analyzed prior to
planning. EG-RRT [123] evaluates the collision probability
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of each state in RRT tree based on the modeled uncertainty of
dynamics and sensing and creates a cost map of the environ-
ment.

TABLE 5. Summary of replanning strategies.

Generalized RRT and PRM have been proposed in which
the robot dynamics and sensors are stochastically modeled
and the local planner estimates the probability of transition
success and will not proceed if the probability exceeds a
threshold [223]. Unlike traditional planners, generalized plan-
ners terminate only when a solution with a high probability
of success is found. Feedback-based Information Roadmap
(FIRM) also relies on feedback from local planners to
reduce the uncertainty propagation between states [224]. The
question of path planning amongst moving uncontrollable
obstacles, under stochastic dynamic and sensing conditions
represents a next step in robotic research. The amalgamation
of uncertainty, kinodynamic, and optimal planning in active
environments is bound to push robots into new frontiers. Plan-
ning strategies in this section are categorized into dynamic,
uncertain and safe in Table 5.

VII. CONCLUSION
Sampling-based planning has established its success in solv-
ing the intricate problem of robot motion planning. Numerous
methods have been proposed to improve the efficiency of
planning and the quality of plans. They have provided sig-
nificant advantages in a wide field of real-life and simulation
based scenarios. Subsequently, there exists an immense body
of work on the topic of SBP.

This brings into the light the gap that existed in classical
motion planning algorithms to illustrate the significance of
SBP and the motivation behind their inception. We then
continue by listing the main algorithms that all state of the
art algorithms are built upon. The growing body of work

is surveyed in this paper. Several experiments are executed
to shed a light on some of the current issues, investigated
by researchers, and highlight the implementation details that
are often not discussed when planners and algorithms are
proposed.
An emphasis is placed on the contemporary research prob-

lems.Motion planning hasmoved away from path planning in
static environments for simple robots into more challenging
arenas. Methods that address real-time kinodynamic plan-
ning, optimal planning, planning under uncertainty and in
dynamic environments are given particular attention. The
continued expansion of robot motion planning boundaries
promises more realistic methods that can be utilized in real-
life scenarios.
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