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ABSTRACT Generating synthetic data traffic, which statistically resembles its recorded counterpart is one
of the main goals of network trafficmodeling. Equivalently, one or several random processes shall be created,
exhibiting multiple prescribed statistical measures. In this paper, we present a framework enabling the joint
representation of distributions, autocorrelations and cross-correlations ofmultiple processes. This is achieved
by so called transformed Gaussian autoregressive moving-average models. They constitute an analytically
tractable framework, which allows for the separation of the fitting problems into subproblems for individual
measures. Accordingly, known fitting techniques and algorithms can be deployed for the respective solution.
The proposed framework exhibits promising properties: 1) relevant statistical properties such as heavy
tails and long-range dependences are manageable; 2) the resulting models are parsimonious; 3) the fitting
procedure is fully automatic; and 4) the complexity of generating synthetic traffic is very low. We evaluate
the framework with traced traffic, i.e., aggregated traffic, online gaming, and video streaming. The queueing
responses of synthetic and recorded traffic exhibit identical statistics. This paper provides guidance for high-
quality modeling of network traffic. It proposes a unifying framework, validates several fitting algorithms,
and suggests combinations of algorithms suited best for specific traffic types.

INDEX TERMS Traffic modeling, transformed Gaussian, ARMA model, parsimoniousness.

I. INTRODUCTION
Emulation of data traffic facilitates the verification and test-
ing of network equipment. For this purpose real traffic is
recorded, respective properties are abstracted and modeled.
The represented characteristic (physical quantity) varies with
the field of application: (i) Classic queuing theory deals with
arrivals of packets [1], [2]. (ii) In multimedia streaming the
traffic is commonly characterized by the size of the video
frames [3], [4]. (iii) For online-gaming traffic both, the Inter-
net Protocol (IP) Packet Size (PS) as well as the Inter Packet-
Arrival Time (IAT), are jointly considered [5]. Stationary
stochastic process(es) are the foundation for most modeling
approaches within the field [6], [7]. A unified framework
for describing data traffic is therefore feasible; a respective
construction is the scope of this work.

The targeted generality complicates the definition of design
goals; namely, it is not obvious how the quality of a
unified framework can be assessed. Therefore, we list our
priorities in the following. A traffic modeling framework
should:

• enable to capture numerous statistics of the original
processes, the more the better,

• be flexible enough to be applied for a variety of different
traffic types (e.g., video, web, background),

• inherit simple (i.e., automated) fitting procedures,
• yield parsimonious models (in terms of model parame-
ters) and

• facilitate the generation of synthetic traffic with low
complexity.

In literature several properties of stochastic processes have
been evidenced to cause relevant effects to traffic modeling
[8]–[14]. In this work we focus on the most basic properties,
namely:
• marginal Cumulative Distribution Function (CDF),
• Auto-correlation Function (ACF) and
• Cross-correlation Function (XCF).

The last point implies that multiple processes might be
considered jointly, in order to achieve satisfactory modeling
accuracy (e.g., PS and IAT).
The vast majority of publication considers one or several of

the threementioned statistics; fewworks investigate on higher
order properties, such as bi-spectra [15] or joint distribution
functions [16]. Such higher order properties are not within the
scope of this work.
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A. MOTIVATING EXAMPLE
We demonstrate the fact that the three basic statistics are
utmost important for data traffic modeling on a simple
example. A common problem statement in network per-
formance testing is to assess the queueing response for
given input traffic. Accordingly, we investigate the queueing
response of synthetic data traffic, where CDF, ACF and XCF
are incrementally introduced.

A queue with a single server and constant service time
per byte is simulated (e.g., a communication link shows such
a behavior). The input process consists of a packet stream,
of which the statistical properties of the PS and the IAT
are varied for different simulation runs by using the method
presented within this work. The Complementary Cumula-
tive Distribution Functions (CCDFs) of the queue length are
depicted in Fig. 1. The different curves show the following
scenarios: (i) constant IAT and gamma distributed PS, e.g.,
encountered for video traffic [17], [18], causing the shortest
buffers – leftmost curve, (ii) additionally, the constant packet
IAT is changed to an exponentially distributed IAT, (iii) auto-
correlations are introduced to the PS process by an AR(1)
filter, (iv) furthermore, the same auto-correlation structure
is introduced to the IAT and (v) finally, strong negative
cross-correlation between PS and IAT is imposed to the
processes (i.e., big PSs coincide with small IATs), which is
causing the longest buffers – rightmost curve. It is clearly
visible in Fig. 1 that CDFs as well as ACFs and the XCF
have an impact on the queue length, for which variations over
more than two decades are observed. Conversely, for exam-
ple, if the rightmost curve (v) would correspond to original
measured traffic and one would model it by fitting only its
CDFs (i.e., neglecting ACFs and XCF, corresponding to a
renewal process), the queueing response of the model would
correspond to the second curve from the left (ii); hence, the
actual queueing response would be underestimated by about
two magnitudes. Similar examples can further be constructed
for modeling only the ACFs and only the XCF.

FIGURE 1. Queueing response on data traffic with different statistical
properties of the respective packet size and packet inter-arrival time
processes (utilization: 80%).

B. CONTRIBUTIONS
In this article we propose a novel modeling framework, a
variant of so called Transformed Auto-Regressive Moving-
Average (TARMA) processes, which is able to jointly
characterize a broad range of CDFs, ACFs and XCFs for
multiple random processes, as they typically appear in the
context of network traffic modeling.
The proposed modeling framework consists of several

known building blocks. The novelty is the specific selec-
tion and arrangement of these blocks. The framework is
tailored to the characterization of network traffic and shows,
that Auto-Regressive Moving-Average (ARMA) models,
although rarely deployed in the community, are well suited
for this task.
The key advantage of the framework is the separabil-

ity of the model fitting problem into independent prob-
lems for CDFs, ACFs and XCFs. This feature enables
parsimoniousness in the number of model parameters, since
(i) parsimonious modeling procedures are known for each
sub-problem and (ii) the number of parameters deployed for
one sub-problem has no impact on the other sub-problems.
To the best of our knowledge, this work is the first achieving
this combination.
A summary and comparison of diverse fitting algorithms

is given. Specific sequences of algorithms are suggested for
individual traffic types. Fully automated fitting is feasible
and demonstrated for (i) backbone traffic, (ii) online gaming
and (iii) video streaming. Corresponding synthetic data traffic
exhibits queueing responses very similar to its real counter-
part.

C. ORGANIZATION OF THIS ARTICLE
In Sec. II we provide a general overview on traffic modeling
categories and frameworks. Sec. III introduces the proposed
modeling framework and explains how to generate synthetic
network traffic from given model parameters. In Sec. IV
we present and compare model fitting algorithms. We fur-
ther suggest sets of algorithms for specific traffic types.
Sec. V contains general remarks on the proposed framework.
An evaluationwith real data traffic is given in Sec. VI. Finally,
Sec. VII concludes the article.

II. RELATED WORK
Traffic modeling is an active research topic since roughly
three decades, [6], [7]. Most modeling approaches have in
common that they model traffic streams as one or more
stochastic processes. One simple approach is to assume one
renewal process to be sufficient for representing all rele-
vant properties of the traffic. In this case only the distribu-
tion of the process can be modeled. The respective meth-
ods for parameter estimation and synthetic traffic generation
are well established in literature [19]–[21] and implemented
in simulation tools. The distributions exhibit characteristics
which impact on the network and queueing response of the
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random processes; hence, respective modeling is justified.
Such characteristics may be, for example, heavy-tails
[22]–[24] or, more general, skewness [4], [17], [25], [18].

The assumption of independent identically distributed
(i.i.d.) random processes (renewal processes) is, however,
often violated for network traffic [8], [26]– [28]. This
is especially the case if long-range dependencies and
self-similarities occur [23], [29], [30]. Besides non-stationary
modeling approaches (which are beyond the scope of this
work), there are two standard classes of models for such
temporal dependencies; namely, regression models (e.g.,
ARMA) and Markov models. ARMA models rely on lin-
ear filter theory and benefit from a long history with com-
prehensive literature [21] and [31]. However, they are only
able to handle a limited class of distributions (e.g., normal
distributions). Markov models, on the other hand, are a very
general tool, able to model various discrete distributions and
auto-correlations. For obtaining continuous distributions, as
mostly required for traffic modeling, Markov models have
to be extended to Markovian models (e.g., hidden Markov
models, Markov modulated processes).

A further property of interest for traffic modeling is
to capture cross-correlations in network traffic. This idea
is natural when migrating from one to multiple random
processes (i.e., physical quantities). Examples are (i) packet
networking, where size (PS) and arrival time (IAT) have to
be considered jointly, (ii) video streaming, where different
video frame types (e.g., I,P and B in MPEG4) can be treated
as individual random processes, and (iii) multiplayer online
gaming, where one server issues multiple correlated packet
streams to the individual players. Literature provides few
examples for traffic models where cross-correlations were
considered.

Summarizing, standard models are not able to represent
broad ranges of CDFs, ACFs and XCFs jointly. This results
in a variety of data traffic models, each of which designed
for either a specific application or a specific network type.
On the other hand, there are only few modeling approaches
which are capable of jointly representing the abovementioned
statistics. Those can be summarized in three categories:
(i) Markovian models, (ii) TES models and (iii) transformed
Gaussian ARMA models; they are summarized below and a
respective comparison is given in Table 1, see [32]. Note, that
all three modeling frameworks are highly sophisticated and
have been extended by various authors. It is therefore difficult
to provide a fair comparison which is generally valid, espe-
cially regarding the fitting accuracy and parsimoniousness.
The modeling framework presented in this article belongs
to the last category: Transformed Auto-Regressive Moving-
Average (TARMA) models.

A. MARKOVIAN MODELS
This type of models is most often encountered in literature
[33] and [34] within various different contexts, such as speech
[35], video [17] and online gaming [36]. It comes in various
flavors, for example, Markov Modulated Poisson Process

TABLE 1. Comparison of generic traffic models.

(MMPP) or Markovian Arrival Process (MAP). They base on
a hidden Markov chain generating state dependent arrivals,
which are summarized to a common random process. This
yields a highly flexible structure, which is able to characterize
arbitrary CDFs and ACFs jointly. Furthermore, the result-
ing processes are fully analytically tractable. The drawback
of this approach appears when the model is fitted to data;
namely, the CDF and ACF have to be fitted jointly. This
implies that the fitting process has to iterate between CDF
and ACF, which is computationally intensive. Further, the
number of parameters to be fitted for both CDF and ACF
is coupled, which is not optimal from a parsimoniousness
point of view. Recent work in the field tackles this problem
and achieves good fitting performance with a low amount of
model parameters [34]. Further, MAPs have been extended
to capture the XCF of multiple processes in [33], where the
authors accurately fit their model to various traffic types.

B. TES MODELS
The acronym TES stands for Transform Expand Sample, an
approach based on uniform random processes [37], [38].
The ACF and CDF are introduced to the process in two
steps which are decoupled. This is due to the fact that auto-
correlations can be introduced to a uniform random process
without changing its distribution. The model benefits from
the vast amount of available transformations from uniform
distributions to any other type of distribution, which is the
basis of all random numbers in computers [20]. Nevertheless,
the method faces problems with the smoothness of the sample
paths and with fitting auto-correlations at large lags, which
requires interaction of the user during the fitting procedure.

C. TRANSFORMED GAUSSIAN ARMA MODELS
This category encompasses the framework presented below.
It comprises various works from different fields of study
[18], [39]– [42]. It bases on correlated Gaussian random
processes which are warped by a memoryless non-linear
transformation. The ACF and CDF are introduced in two
decoupled steps, first the ACF, depolying regression mod-
els (e.g., ARMA models), then the CDF by a non-linearity.
As both other approaches, transformedGaussianmodels in its
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general form are able to reproduce any desired CDF. Further,
also a vast range of ACFs are captured, which can be fitted
parsimoniously due to the evolved methods of linear system
theory [19], [21], [31]. The ACF of the output process is fur-
ther analytically tractable, which is in general computation-
ally expensive. In order to overcome this problem, Hermitian
polynomials are proposed as non-linearity [39], for which
closed form solutions can be found for ACF and XCF after
transformation (see [40, pp. 419–426], [43, pp. 132ff.], and
[44, pp. 143ff.] and Annex I-A, Annex I-B). This approach is
very flexible.

In the context of Internet trafficmodeling, Auto-Regressive
To Anything (ARTA) models have to be mentioned [41].
The authors show that the approach is suited for traffic
modeling and provide a general analytical framework, by
leaving the non-linearity unspecified. Recent work in the field
of ARTA modeling extends this method to a combination
of ARMA models with Markov models [45]. The authors
show that ARMA processes are suitable for introducing
correlations into phase-type distributions. Similar approaches
appeared in video traffic modeling [4], [18], where the focus
is mainly on the generation of correlated chi-squared and
gamma processes. The method is referred to as Gaussian
Auto-Regressive and Chi-Squared (GACS) models and is
fully analytically tractable.

The generation of Gaussian random processes with
cross-correlation is preferable over other methods because
of the numerously available literature (see [21, p. 551ff.] and
[31, p. 401ff.]) and the possibility of decoupling the fitting
problem of ACFs and XCF. A theoretical framework for the
generation of multiple random processes based on ARTA
models is given in [46]. In the field of video modeling, the
modeling of correlation coefficients (i.e., XCFs at lag 0) is
treated in [47] and [48]; the results show an improvement
over models which neglect cross-correlations. A recently
presented method [16] additionally allows to fit multidi-
mensional joint distribution functions of multiple random
processes.

III. GENERATING TRAFFIC FROM TRANSFORMED ARMA
MODELS
In this section, we explain the functional principle of
the TARMA modeling approach. Further, the genera-
tion/emulation of data traffic from given model parameters
is described, which may act as input for network simulations.
For the rest of this section the physical quantities of the output
processes Zi[n] are not specified; however, common examples
are PS and IAT.

The proposedmodeling approach allows for the joint repre-
sentation of arbitrary CDFs, ACFs andXCFs. This is achieved
by three sequential transformations of normal i.i.d. random
processes, each of which being responsible for handling one
of the above statistical measures. A corresponding block dia-
gram for the generation of I output processes Zi[n] is depicted
in Fig. 2. The four different types of blocks have the following
functionalities:

FIGURE 2. Block diagram of the proposed modeling approach for the
generation of network source traffic, I inter-dependent random processes.

1 Gaussian i.i.d. random process. These blocks
generate J independent normal random processes
with zero mean and unit variance.

2 Weighting matrix. Matrix G[m] introduces
cross-correlation to the I output processes Xi[n].

3 LTI filter (ARMA). The Linear Time Invariant
(LTI) filters hi[m] introduce auto-correlations to the
processes Yi[n].

4 Polynomial transformation. The memoryless
polynomials pY ,i(y) shape the distributions of Zi[n].

Between the four blocks, the intermediate random processes
Wj[n], Xi[n] and Yi[n] are observed; they can be interpreted as
the passing of one random sample per time index n from one
block to its successor. For ensuring that the mentioned blocks
fulfill their task properly, the following restrictions have to be
satisfied for the respective input processes:

1) The CDF of the process is normal (Gaussian) with zero
mean and unit variance,

2) The ACF of the process is zero for all lags m 6= 0,
3) The XCF between the processes is zero.

For the processWj[n] all three conditionsmust apply, forXi[n]
the first two conditions are necessary, leading to Eq. (13) and
Eq. (14), and for Yi[n] only the first condition is required,
leading to Eq. (6). Sticking to those requirements also guar-
antees that the fitting problems for CDF, ACF and XCF are
separable, one of the key features of the proposed model.

In the following each functional block is described in
detail. For convenience, a summary of the rest of this section
is anticipated:

1) Samples of Zi[n] are generated by the consecutive
accomplishment of Eq. (11), Eq. (5) and Eq. (1) on
normal i.i.d. samples.

2) The Probability Density Function (PDF) of Zi[n] can be
calculated, see Sec. III-A.

3) ACFs can be calculated by Eq. (8) and Eq. (3).
4) XCFs can be assessed by Eq. (12), Eq. (10) and Eq. (4).

This framework allows for the complete analytical tractabil-
ity of the processes Zi[n]. The description of the functional
blocks of Fig. 2 is given in the following in reverse order.
If used in a unique manner, index i of the random processes
will be dropped.

VOLUME 2, 2014 43



M. Laner et al.: Parsimonious Network Traffic Modeling

A. MEMORYLESS POLYNOMIAL TRANSFORMATION
The last block of the chain, block 4 , performs a polynomial
transformation pY (y) of the random process Y [n], according
to

Z [n] = pY (Y [n]) =
P∑
p=0

αp · (Y [n])p, (1)

where P is the order of the polynomial pY (y) and αp are the
coefficients of the polynomial for the power p. The goal of
this transformation is to resemble a quantile transformation
procedure. It enables the generation of a random variable Z [n]
with arbitrary distribution, from any other distribution of Y [n]
by mapping the corresponding percentiles to each other [19,
p. 139]. This is according to

Z [n] = F−1Z (FY (Y [n])), (2)

where FY (·) denotes the CDF of the random process Y [n] and
F−1Z (·) the inverse of the desired CDF of the therewith created
random process Z [n].

In the present case FY (·) is a Gaussian CDF (i.e., comple-
mentary Q-function), since Y [n] is normal distributed with
zero mean and unit variance, which is guaranteed by the
restrictions imposed on Y [n] mentioned above. The poly-
nomial pY (y) shall resemble this percentile transformation
procedure, pY (y)≈F

−1
Z ,target(FY (y)), thus, define the targeted

distribution for the output process Z [n]. Proximity of the
targeted CDF FZ ,target(·) and the actually realized CDF FZ (·)
is achieved by an ordinary polynomial curve fitting, for
example, with the least-squares method [49]. Furthermore,
Sec. V shows that for various types of distributionsFZ ,target(·),
a low-order polynomial approximation pY (y) is satisfactory.
The exact PDF fZ (z) of the output process Z [n] can be com-
puted by deploying the fundamental theorem on transforma-
tion of random variables, see [19, p. 130].

The input process Y [n] exhibits non-trivial auto-
correlations and cross-correlations, introduced by the
preceding blocks (i.e., 2 , 3 ). Those are influenced by
the polynomial transformation. The auto-correlation function
ρZZ [m] of the output process Z [n] is a transformed version of
the ACF ρYY [m],

ρZZ [m] = pρ(ρYY [m]), (3)

see Annex I-A, where pρ(ρ) is a polynomial, depending on
the coefficients αp of the polynomial pY (y). Similarly, the
cross-correlation function ρZiZl [m] between the processes
Zi[n] and Zl[n] is a transformed version of the XCF ρYiYl [m]
between the processes Yi[n] and Yl[n],

ρZiZl [m] = pρ,il(ρYiYl [m]), (4)

see Annex I-B, where pρ,il(ρ) is a polynomial, depending on
the coefficients αp,i of the polynomial pY ,i(y) and αp,l of the
polynomial pY ,l(y).

B. LINEAR TIME INVARIANT FILTER
The process X [n] is passed through an LTI filter with real-
valued impulse response h[m], block 3 . This filter fulfills

the task of introducing auto-correlation to X [n], resulting in
the process

Y [n] =
∞∑

m=−∞

X [m] · h[n−m] = X [n] ∗ h[n], (5)

where ∗ denotes the convolution operation. The reason for
the combination of a Gaussian process with an LTI filter is
the closure property of the set of all Gaussian processes on
the addition operation and, especially, on linear combinations.
It implies that any Gaussian random process X [n] which is
transformed by a linear filter h[m] results again in a Gaussian
process Y [n]. Thereby, the mean and variance of the output
process are changed to [19, p. 398], µY=

∑
∞

m=−∞ h[m] · µX
and σ 2

Y=
∑
∞

m=−∞(h[m])
2
·σ 2
X , whereµ denotes the mean and

σ 2 the variance. If the Gaussian input sequence X [n] has zero
mean and unit variance (which is one of the requirements
mentioned above) and the sum of all squared filter coeffi-
cients h[m] equals one, it is guaranteed that the distribution
of the output sequence Y [n] is also Gaussian with zero mean
and unit variance and fulfills the restrictions on Y [n]. Hence,
the closure property allows to introduce an ACF to the ran-
dom process X [n] by an arbitrary linear filter h[m] without
changing its distribution, provided it satisfies

σ 2
h =

∞∑
m=−∞

(h[m])2 != 1. (6)

The ACF for a (wide-sense) stationary and ergodic identi-
cally distributed random process Y [n] is thereby defined as

ρYY [m]
.
=
γYY [m]− µ2

Y

σ 2
Y

(7)

=
E{(Y [n]− µY )(Y [n+m]− µY )}

σ 2
Y

,

with the expectation operation E{·}, the mean µY , the vari-
ance σ 2

Y and the unnormalized ACF γYY [m]. The XCF is
defined similar, by exchanging the random process Y [n] with
two distinct processes Yi[n] and Yl[n], yielding ρYi,Yl[m]. The
ACF introduced by the LTI filter h[m] to the process Y [n]
calculates to (see [19, p. 401])

ρYY [m] =
γYY [m]

σ 2
Y

=
γhh[m] ∗ γXX [m]

σ 2
h · σ

2
X

=
γhh[m] ∗ δ[m]

σ 2
h · 1

=
σ 2
h · ρhh[m]

σ 2
h

= ρhh[m] = h[m] ∗ h[−m]. (8)

with the unit impulse sequence δ[m]. The condition in Eq. (6)
does not effect the auto-correlation function ρYY [m], since it
is normalized by the variance of the output process σ 2

h , as
observed in the above equation. Therefore, any scaled version
of the applied LTI filter results in the same autocorrelation
function. Conversely, this means that Eq. (6) can always be
satisfied by scaling any arbitrary h[m] with a constant. This
fact decouples the problems of fitting CDF and ACF to data,
being responsible for a parsimonious and efficient treatment

44 VOLUME 2, 2014



M. Laner et al.: Parsimonious Network Traffic Modeling

of the overall fitting problem (the main reason for the choice
of this model).

The linear filter comprises of two components, an
Auto-Regressive (AR) component φ(B) and a Moving-
Average (MA) component θ (B), which together constitute the
ARMA model. The AR branch feeds a linear combination
of the past output values Y [n−m] back to the actual output
value, theMAunit feeds a linear combination of the past input
values X [n−m] to the actual output Y [n]. By introducing the
backshift operator B (i.e., B X [n]=X [n−1]), φ(B) and θ (B)
can be interpreted as polynomials in B, where the power of B
indicates how often a backshift is performed. The linear filter
satisfies the difference equation (see [21, p. 8ff.])

φ(B) · Y [n] = θ (B) · X [n]. (9)

Assessing the system behavior relies on the calculation
of the impulse response h[m] from the ARMA parameters
φ(B) and θ (B). This can be achieved recursively by assum-
ing X [n]=δ[n] and h[n]=Y [n], starting from index n=0 and
approaching n→∞. Besides, solving the difference equation
for Y [n], results in the polynomial ψ(B)=φ−1(B)θ (B) =∑
∞

m=0 ψmB
m, which directly leads to the impulse response

by assigning h[m]=̇ψm, ∀ 0≤m≤∞.
The linear filters hi[m] affect the cross-correlation function

ρYiYl [m] between Yi[n] and Yl[n]. In analogy to Eq. (8), we
obtain

ρYiYl [m] = ρXiXl [m] ∗ ρhihl [m]

= ρXiXl [m] ∗ hi[m] ∗ hl[−m]. (10)

This equation allows for the analytical calculation of the
transformation of the XCF induced by the introduction of
ACFs to the random processes. Hence, alike Eq. (3) and
Eq. (4), this equation is the key feature for the separation of
the fitting problems of ACFs and XCFs.

C. WEIGHTING MATRIX
ThematrixG[m], block 2 , serves the purpose of introducing
cross-correlations into the processes Xi[n]. It combines the
processesWj[n] by weighted addition. However, the elements
gij[m] of matrix G[m] are sequences of weights in the timing
lagm, in the most general case. This allows for the interpreta-
tion of each gij[m] as the impulse response of a linear filter or,
equivalently, as polynomial gij(B) in the backshift operator B.
Thus, matrixG[m] is equivalent to a matrix polynomialG(B)
in B (see [21, p. 551ff.] and [31, p. 401ff.]). The input-output
relation can be conveniently written in matrix notation as

X[n] = G(B) ·W[n], (11a)

where X[n] and W[n] are vector valued random processes
composed by all Xi[n] and Wj[n]. On the other hand, the
element-wise output relation can be written as

Xi[n] =
J∑
j=1

gij[n] ∗Wj[n], (11b)

in which each element gij[m] denotes a linear filter in m.

The cross-correlations introduced by matrix G[m] can be
calculated by deploying the backshift notationG(B), namely,

0X (B) = G(B) ·GT (B−1), (12a)

where (·)T denotes the transposed of the matrix. The corre-
sponding matrix in the time lag domain is denoted by 0X [m],
with each element γXiXl [m] being the specific XCF between
the respective random processes Xi[n] and Xl[n]. These
elements calculate to

ρXiXl [m] = γXiXl [m] =
J∑
j=1

gij[m] ∗ glj[−m], (12b)

where γXiXl [m]=ρXiXl [m] due to the normalization postulated
by Eq. (13).
As already mentioned, G[m] is restricted to the set of

matrices which fulfill the following conditions for the output
processes: (i) all Xi[n] must be Gaussian distributed with zero
mean and unit variance and (ii) all Xi[n] must have zero auto-
correlation for lags m6=0.
The first condition requires that the squared sum of all row

elements gij[m] of G[m] equals one for all rows i,

J∑
j=1

∞∑
m=−∞

(gij[m])2
!
= 1. (13)

Due to the closure property of the Gaussian distribution on
linear combinations, Gaussianity as well as the zero mean are
preserved for Xi[n]. A squared sum equal to one, see Eq. (13),
ensures that the variance of Xi[n] equals one; hence, the first
condition is fulfilled.

The second condition (i.e., zero ACF for all lags unequal to
zero) is equivalent to forcing all diagonal elements of 0X [m]
to

ρXiXi [m]
!
= 1 · B0 = 1. (14)

It must be ensured by the respective fitting procedure (see
Sec. IV-C). The condition guarantees that the ACFs of the
output processes are independent of the matrix G[m]. This
seems to be an overhead, since G[m] could also introduce an
ACF to the processes and, thereby, incorporate the linear filter
h[m]. The reason of the separation of the two blocks is the
possibility of different targeted fitting accuracies for ACF and
XCF. Specific types of data traffic may, for example, require
that the ACF is modeled accurately up to a lag of 104, whereas
it is considered as sufficient to model the XCF only at lag 0.
This task is simplified by splitting both fitting problems into
two independent sub-problems. Further, fitted models tend to
have less parameters in this case.

An important class of matrices which satisfies this condi-
tion is the set of real valued matricesG without any backshift
operation. Such matrices only define the cross-correlation
coefficients ρXiXl [0] between the processes Xi[n] and Xl[n]
and do not introduce cross-correlations at any other lag. This
is sufficient for many practical applications (see Sec. V);
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the input-output relation Eq. (11) reduces to an ordinary
matrix multiplication X[n]=GW[n].

D. NORMAL I.I.D. PROCESSES
The proposed traffic generation method requires J i.i.d.
Gaussian random processes Wj[n] with zero mean and unit
variance, block 1 . This is convenient for simulation pur-
poses, since most modern computer systems provide prede-
fined, computationally efficient routines for the generation
of high-quality normal distributed random variables [20].
Furthermore, all J processes must be independent, hence, can
be interpreted as a J -dimensional i.i.d. random process. The
generation of such processes is feasible up to high dimension-
ality [50]. Thus, all three requirements for the intermediate
process Wj[n] imposed at the beginning of this section are
fulfilled. The number of processes J is determined by the
number of output processes I and the desired structure of
interdependencies (i.e., XCFs). The exact number is deter-
mined during the fitting process, see Sec. IV.

IV. BUILDING TARMA MODELS FROM RECORDED
TRAFFIC
Procedures for fitting TARMA models to measurement data
are illustrated in the following. Thereby, well established
methods for fitting ARMA processes and polynomial regres-
sion are partly reused. Scripts performing the fitting process
fully automatic can be downloaded from [51]. The fitting pro-
cess has to be performed beginning with the polynomial and
proceeding in reverse order, from block 4 to 2 , see Fig. 2.
By doing so the fitting problems for each block are decoupled.
Nevertheless, the fitting procedure for each component has
to account for the influences of the consecutive components
on the respective statistical measure. For example, the ACF
which is introduced by the linear filter h[m] is altered by the
polynomial pY (y). The influences can be assessed analytically
by the functions presented in Sec. III, e.g., Eq. (3), Eq. (4) and
Eq. (10). This is one of the big advantages of the proposed
model. In the following we describe the fitting processes for
each block separately. Thereby the targeted quantities of the
resulting model are denoted by the subscript (·)target; those
are, for example, obtained from traced data traffic or from
analytical models.

A. POLYNOMIAL TRANSFORMATION
The first block to be considered is the polynomial transfor-
mation pY (·), block 4 . It shall introduce an arbitrary CDF to
Z [n]. As already stated in Sec. III-A, pY (·) shall approximate
a quantile-transformation procedure, confer Eq. (2). This can
be achieved by solving a least-squares fitting problem [49].
Thereby the sample points to be fit by polynomial regres-
sion are pairs of ωk -quantiles (�Z , �Y )k from the Gaussian
CDF FY (·) of Y [n] and the targeted CDF FZ ,target(·) of Z [n],
namely,

(�Z , �Y )k =
(
F−1Z ,target(ωk ),F

−1
Y (ωk )

)
0 < ωk < 1.

The sample points (�Z , �Y )k can be arranged in a Q-Q-plot.
An illustration of the determination of sample points is given
in Fig. 3, wherein the process Z [n] has uniform distribution.
The number of quantile values ωk for the polynomial regres-
sion, as well as their position and spacing is an open point for
optimization; hence, depending on the designers needs. For
the rest of this work equidistant spacing from zero to one is
assumed, 0 < ωk < 1, excluding both limiting values, since
they would yield (�Z , �Y )=(�Z ,±∞) and are not suited for
a polynomial regression. It is irrelevant if the quantile values
either stem from measurements or a certain type of analytical
distribution.

FIGURE 3. Q-Q-plot for obtaining the sample points (�Z , �Y )k to which
the polynomial pY (y ) must be fitted.

The order P of the polynomial plays an important role
for the quality of the fit. If the order is high enough, it is
possible to fit any number of points with arbitrary accuracy;
however, polynomial fitting has poor interpolation properties,
i.e., the fit tends to oscillate between points (over-fitting).
We recommend to use low-order polynomials. Furthermore,
the computational complexity for the generation of random
samples is strongly reduced for small P. A comparison of the
quality of fit for different polynomial orders is given in Sec. V.

B. LINEAR FILTERING
Block 3 , the linear filter h[m], shall introduce an ACF
to Z [n] by introducing a corresponding ACF to Y [n].
In literature two approaches for ARMA modeling are
prevalent: (i) ACF based approaches (e.g., Yule-Walker equa-
tions, Power Spectral Density (PSD) based approaches),
which require ρYY ,target[m] as input and (ii) direct methods
based on the data itself (e.g., Maximum Likelihood (ML)
modeling), requiring Ytarget[n] as input. It has to be taken into
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FIGURE 4. Possible approaches to fit a linear filter (ARMA model) to traced data.

account that the polynomial transformation pY (y), block 4 ,
influences the ACF of the output process Z [n] according to
Eq. (3). According to which fitting method shall be applied,
the respective input quantity has to be pre-distorted such that
the influence of the polynomial transformation is taken into
account. A respective graphical representation is given in
Fig. 4. Thus, either

• the input data for fitting has to bemanipulated, according
to Ytarget[n]=p

−1
Y (Ztarget[n]) (see Fig. 4: Step 1A) or

• the input ACF for fitting has to be manipulated,
according to ρYY ,target[m]=p−1ρ (ρZZ ,target[m]) (see Fig. 4:
Step 2B).

Both of these pre-distortion methods require the inversion
of a polynomial, or, equivalently, finding the respective roots,
which is analytically not feasible for any P>4. However, this
frequent problem can efficiently be solved numerically with
high accuracy. The polynomial p−1ρ (·) is usually smoother
than the polynomial p−1Y (·) and allows for a unique solution
of the inversion problem. Therefore, the fitting procedure
involving the transformation of the ACF (see Fig. 4: Step 2A–
2B–2C) yields most probably better results than the direct
fitting approach involving the transformation of the data
(see Fig. 4: Step 1A–1B or 1A–3B–2C). A counterexample is
modeling of video sequences, see Sec. VI-C.

Having obtained either ρYY ,target[m] or Ytarget[n] as input
for the respective fitting procedure for the linear filter, any
arbitrary ARMA modeling approach can be applied for com-
puting the ARMA parameters φ(B) and θ (B). Those are
numerous in literature [21] and [31], including various soft-
ware solutions.

A typical property of ACFs of network traffic is Long
Range Dependence (LRD). It is encountered for time series
of various quantities of data traffic, such as packet-sizes,
flow durations, packet counts and IATs [53]. LRDs have
an impact on the queueing performance and are therefore
important to be captured. However, several ARMA mod-
eling procedures have problems to capture these effects.
In [52] a method is presented which overcomes these
problems: a variant of ACF-based fitting. It yields a parsi-
monious ARMA model with finite length and is thus only
an approximation to an LRD process. Nevertheless, the fit-
ting accuracy is high for any finite lag of the ACF and
the generation of samples exhibits very low complexity.

Prominent alternatives are the well-known Auto-Regressive
Fractionally Integrated Moving-Average (ARFIMA) models
[21, p. 428ff.], [54], yielding long-range dependent processes
by fractional integration (summation). This can be translated
to an equivalent ARMA model of (formally) infinite length,
for which the traffic synthesis is computationallymore expen-
sive than for ordinary ARMA processes. In [42] circulant
embedding is proposed. This method models the spectral
properties of the targeted time series. Accordingly, synthetic
traffic is generated in the spectral domain and mapped to the
time domain by a Fourier transform; yielding higher complex-
ity than ordinaryARMAprocesses. ACF andXCF are thereby
captured simultaneously, the resulting model is however not
parsimonious. A comparison of the feasible fitting methods
is presented in Table 2.

TABLE 2. Comparison of fitting strategies for h[m].

Finally, in order to suffice the restriction on Y [n]
(i.e., normally distributed with zero mean and unit variance),
it has to be guaranteed that Eq. (6) is satisfied. This can be
achieved by scaling θ (B) with a constant.

C. WEIGHTING MATRIX
The last block to be considered for the fitting procedure is
block 2 , the weighting matrix G[m]. This block shall intro-
duce XCFs between the I different output processes Zi[n], by
introducing respective XCFs to Xi[n]. Again the influences
from block 3 and 4 on the XCFs between the output
processes have to be considered first; confer Eq. (10) and
Eq. (4). In analogy to the fitting problem for the linear filter
it is possible to either (i) fit G[m] to the random processes
Xi,target[n] or (ii) fitG[m] to all the XCFs ρXiXl ,target[m]. How
to obtain one of the above quantities is outlined in Fig. 5.
The first procedure is accomplished by (see Fig. 5:

1A–1B–1C):
• inverting the polynomial transformation (1A),
Yi,target[n]=p

−1
Y (Zi,target),
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FIGURE 5. Possible approaches to fit a polynomial matrix G[m] to traced data.

• whitening the obtained sequence by applying
Xi,target[n]=Yi,target[n]∗h

−1
i [n] (1B) and

• applying a ML fitting approach (1C).
The second procedure comes in several flavors (see Fig. 5).

For example, option 2A–2B–2C–2D can be performed as
follows:
• calculate the XCFs of Z [n] (2A),
• apply the inverse polynomial from Eq. (4) to it (2B),
ρYiYl ,target[m]=p

−1
ρ,il(ρZiZl ,target[m]),

• whiten the XCFs of Y [n] (2C) by the inverse fil-
ters h−1i [m] of Eq. (10), ρXiXl ,target[m]=ρYiYl ,target[m] ∗
h−1i [m]∗h−1l [−m] and

• calculateG[m] from Eq. (12) using the Cholesky decom-
position (2D).

TABLE 3. Comparison of fitting strategies for G[m].

As already mentioned in the context of ACF modeling,
step 1A for inversion of the polynomials p−1Yi (·) is problematic
and shall be avoided. Fitting sequences which include it (e.g.,
1A–1B–1C, see Fig. 5) are therefore unfavorable and yield
alternative sequences (e.g., 2A–2B–2C–2D or 2A–2B–3C,
see Fig. 5) more convenient for practical use.

Consequently, the central fitting step corresponds to
either Step 2D or Step 3C. Two methods are available for
this purpose: (i) the Cholesky-factorization or (ii) the direct
method (only applicable to the case of two output processes).
Unfortunately, both methods are not parsimonious (in con-
trast to the modeling approaches for PDFs and ACFs). They
yield roughly one model parameter per lag for each XCF;
consequently, the number of parameters becomes easily pro-
hibitively large. Therefore we suggest to model only up to
a few lags of the XCF (e.g., only lag 0), especially if more

than two output processes shall be characterized. The fitting
algorithms are described inAnnex II. A comparison of the dif-
ferent fitting strategies is provided in Table 3. An evaluation
of the impact of the number of considered lags on the model
accuracy is given in Sec. V.

V. EVALUATION: CONCEPTUAL REMARKS
We evaluate the proposed modeling approach and analyze
its capability of handling real network traffic with accept-
able model complexity. Up to now we focused on the two
most important properties of the proposed method: sepa-
rability of the fitting problems and closed form analytical
tractability. In the following further aspects are commented
on, being of general interest in the context of source traffic
modeling.

A. GENERAL REMARKS
1) PARSIMONIOUSNESS
A low number ofmodel parameters is mostly desired formod-
els, since it facilitates the reproducibility of fits and makes
them less error-prone. TARMA models achieve this due to:
(i) the presented fitting methods allow for parsimonious fit-
ting of each of the three statistical measures individually
(i.e., CDF, ACF and XCF) and (ii) the separability of the
fitting problem guarantees independence between the number
of parameters used for each measure. For example, if a high
number of parameters is required for fitting the CDF with
satisfactory accuracy, this has no influence on the number of
parameters required for fitting theACF.Modeling approaches
for which the fitting problem is not separable suffer from
the coupling of the number of parameters (e.g., variants of
Markovian models).

2) EFFICIENT SAMPLE GENERATION
The computationally efficient generation of samples is guar-
anteed for TARMAprocesses. The reasons are (i) normal i.i.d.
samples are efficiently generated by various known methods
[20], [50], (ii) the weighting matrix requires J multiplications
and additions per sample, (iii) the ARMA(P,Q) filter requires
P+Q multiplications and additions and (iv) the polynomial
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transformation of order P requires 2P multiplications and
P+1 additions. Summing up, each sample requires some
tens of multiplications and additions, which allows for the
generation of millions of samples per second on commodity
hardware. An implementation in Matlab can be downloaded
at [51].

3) HIGHER ORDER STATISTICS
Recent literature on traffic modeling addresses higher order
statistics [16], which is not the focus of the present work. In
[42] the authors discuss on possibilities how to fit respective
quantities with TARMA models. Accordingly, this can be
achieved by permuting the quantiles during the CDF model-
ing procedure (see Sec. IV-A). However, it remains unclear
to which extend the uniqueness of the invertibility of the
polynomials pY ,i(·) and pρ,il(·) is influenced by the permuta-
tion procedure. Furthermore, the impact of various statistical
measures on the modeling quality is unclear. Such measures
are, for example, bi-spectra or joint distribution functions
(i.e., only partially marginalized). Future work has to clar-
ify on this issue, possibly by providing a ranking of the
most important statistical measures in the context of traffic
modeling.

B. REMARKS ON THE DISTRIBUTION
The distribution of the output processes Zi[n] is gener-
ated by the polynomial pY (y), hence, it is a non-parametric
distribution. The question arises of how accurately standard
distributions can be represented. Of course the Gaussian dis-
tribution, as well as some other distributions (e.g., chi-squared
distribution) can be perfectly resembled by a non-parametric
system, since they are a polynomial transformations of
Gaussian random processes. An evaluation of other stan-
dard distributions is shown in Fig. 6 (a), where the maximum
CDF distance over the polynomial order P is depicted. The
log-normal, uniform, exponential, Weibull and gamma dis-
tributions are presented. As expected, a higher polynomial
order leads to better fitting accuracy. Remarkably low errors
are achievable for polynomials with moderate order, say
P=10, which is the key feature for a parsimonious repre-
sentation. The uniform and exponential distributions tend
to slightly worse accuracies than other distributions, due to
the point(s) of discontinuity of the respective PDFs. Further,
the error-floor at roughly 10−5 results from the choice of
percentile points (�Z , �Y )i to which the polynomials have
been fitted. In the present case the first and last points
correspond to the 10−5 and (1−10−5) percentiles, hence,
beyond those values the congruence of both CDFs is not
guaranteed.

Whenever rare events are simulated (e.g., packet loss, bit
errors), it is crucial that the tail of the distribution is accurately
modeled, since such events are often caused by respective
random samples. Hence, a maximum CDF distance of 10−5

may not be tolerable in the respective region. For example, by
assessing connection time-outs it is important to accurately
model the rare events with IATs of up to some seconds,

FIGURE 6. (a): Fitting quality of transformed Gaussian distributions over
the polynomial order P of pY (y ) for log-normal, uniform, exponential,
Weibull and gamma distributions; parameters adhere to the Matlab
syntax. (b): Survival function of a Pareto P(1, 1) distributed variable and
the respective fit of a transformed Gaussian.

whereas the body of the distribution with IATs in the order
of milliseconds is of minor interest. In such cases, it is
recommended to emphasize the region of interest by a higher
density of quantile points (�Z , �Y )i and to sacrifice some
accuracy in other regions. An example is given in Fig. 6 (b),
where the survival function of a Pareto distribution, P(1, 1),
is compared to the respective model fit. Due to the increased
number of quantile points in the tail deployed for fitting, an
acceptable fitting accuracy is obtained even for quantiles of
up to (1−10−8). Consequently, truncated heavy-tailed distri-
butions can be reproduced well by our model.
Another very common property associated with network

traffic is one-sided positive distributions. Gaussian random
processes, however, have a domain of [−∞,∞]. Thus,
the polynomial transformation should guarantee that the
probability of negative values of Z [n] equals zero. Due to the
poor extrapolation properties of polynomials this is hardly
achievable in practice. This means that in the remote case
of a Gaussian sample of Y [n] being close to −∞ negative
values of Z [n] may occur. In order to absolutely prevent such
cases, the values of the samples Z [n] shall be limited to a
minimum of zero. Theoretically, this is another non-linear
transform introduced to Y [n] which changes the ACFs and
XCFs of Zi[n]; nevertheless, due to the very low probability
of occurrence of negative samples, these changes may be
neglected.

Finally, network traffic may exhibit mixed continuous and
discrete distributions. For example, the PS may be mod-
eled well by a continuous distribution but exhibits a discrete
number of peaks at certain common packet sizes. Such peaks
are caused by routines in protocols (e.g., TCP acknowledg-
ments). The presented modeling approach is not suited for
representing single peaks, but interpolates between peaks.
This behavior can be observed in Fig. 8 (a) and Fig. 9(a).
The advantage is that peaks resulting from a small sample
size are smoothed [see Fig. 9(a)] but, on the other hand, also
peaks with a concrete physical interpretation are attenuated
[see Fig. 8 (a)]. For applications which rely on the accurate
representation of a limited number of peaks, it is therefore
recommended to use a different modeling approach, such as
Markovian models.
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C. REMARKS ON THE AUTO-CORRELATION FUNCTION
The ACF of the process Z [n] is, according to Eq. (3), a
transformed version of the auto-correlation function of Y [n].
Thereby, the absolute value of the transformed ACF is always
smaller or equal to the absolute value of the original ACF,
see [43, p. 133, Lemma 7.1]. Since all ACFs are defined on
the interval A=] − 1, 1], both domain and codomain of the
function pρ(·) equal A, pρ : A→A. However, if the image
of pρ(·) in its codomain is a subset of A, certain values of the
desired ACFmay not be realizable with any kind of LTI filter.
Since both 1 and 0 are by definition contained by the image
of pρ(·), all positive values are realizable for the ACF of Z [n].
Negative values on the other hand are not, whereas empirical
trials suggest an increase of skewness of the CDF of Z [n] to
narrow the image of pρ(·) in its codomain (see [42]).
Long range dependencies are another typical property of

network traffic [8], [29], [55]. Our modeling approach is the-
oretically not able to reproduce long-range dependence, since
this property is equivalent to

∑
∞

m=1 |ρZZ [m]|=∞ [56], which
is a contradiction to the requirement in Eq. (6). Nevertheless,
it is possible to introduce dependencies which are arbitrary
long (but less than∞) by using ARMA(1,0) model or higher.
An example is given in Fig. 8 (c), where dependencies up to
lagm=104 are modeled according to [52] with high accuracy.
Furthermore, also other authors successfully approximated
long-range dependencies by deploying short memorymodels,
for example, Markovian models [34] and TES models [37].

FIGURE 7. Fitting the XCF of PS and IAT of the Bellcore Aug89 data set,
(a): only for lag M=0, without whitening, (b): up to lag M=100, Cholesky
decomposition.

D. REMARKS ON THE CROSS-CORRELATION FUNCTIONS
The parsimoniousness of the matrix G(B) strongly depends
on the amount of output processes I and the maximum lagM
up to which the XCFs shall be modeled. This requires to keep
the valueM small. The modeling accuracy, on the other hand,
suffers from small values of M . This effect can be observed
in Fig. 7, where the XCF between PS and IAT of the Bellcore
Aug89 trace [57] is modeled. The Fig. 7 (b) compares the real
trace and its synthetic counterpart, where a maximum lag of
M=100 is considered. In this case the modeling accuracy is
very high, however a total of J=202 input processes Wj[n]
are required, withG(B) having more than 20 000 parameters.
Considering only small values of M yields inaccuracies in
general, which is due to the linear filters hi[m]. They spread
the model error of G(B) made for lags |m|>M (concerning

Xi[n]) over the whole range of m (concerning Yi[n]). Fitting
only lag zero (i.e., M=0) without performing the whitening
operation (i.e., using ρYi,Yl ,target[m] instead of ρXi,Xl ,target[m]
as input for fitting) constitutes a remedy to this problem.
In this case the target XCF can perfectly be reached at lag
zero, whereas errors at all other lags have to be accepted,
see Fig. 7 (a). This approach is preferable compared to small
values ofM (butM 6=0), where whitening is required. Future
work has to target the problem of expressing G(B) in a
parsimonious way for large lags M .

TABLE 4. Performance evaluation, maximum distances.

VI. DEPLOYMENT EXAMPLE: MODELING RECORDED
NETWORK TRAFFIC
To demonstrate the real-world performance of the proposed
approach, TARMA models are presented for traced source
traffic. Thereby, three different traces are fitted, in order to
demonstrate the generality of this approach. They cover (i)
the popular Bellcore Aug89 data set [8]. [57], (ii) traced traffic
from the online game openarena [58] and (iii) the online
available MPEG-4 trace of the movie Lord of the Rings I
[59]. Beside of evaluating the quality-of-fit by assessing the
congruence of the three statistical measures (i.e., CDF, ACF,
XCF), see Table 4, a benchmark is provided by feeding the
traced traffic as well as respective emulated traffic to a G/G/1
queue.

A. AGGREGATED DATA TRAFFIC
The Bellcore Aug89 data set [8], [57] is not typical source
traffic but rather aggregated traffic, however, often used
as reference for traffic modeling approaches [34], [45].
A fitted TARMA processes is presented in Fig. 8, where
PS and IAT have been modeled.The two leftmost figures
present the ECDFs of PS and IAT, respectively. Thereby the
polynomial order of the fitted transformation are both equal
to P=5. It is clearly visible that the discrete steps of the PS
are smoothed by the model, resulting in a relatively large
maximum distance, see Table 4. The ECDF of the IAT on
the other hand is modeled well over two decades. The fits of
the ACFs of the IAT and the respective ARMA(5,5) fits, are
presented in Fig. 8 (c); they exhibit good accuracy over four
decades. The XCF between PS and IAT has been modeled
for several maximum lags M ; shown in Sec. V, Fig. 7. The
respective value for m=0 is negative, which is intuitively
explainable by the fact that big PSs are likely to be followed
by short IATs due to packet fragmentation. Fig. 8 (d) shows
the survival function of the queuing response of the recorded
and modeled traffic for different utilizations (i.e., 20%, 50%
and 80%), yielding congruency for all three cases.
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FIGURE 8. Fitting the Bellcore Aug89 data set, (a): ECDFs of the PS, note that the discrete steps are smoothed by the modeling approach, (b): survival
function of the IAT, (c): ACF of the IAT, (d): queueing response of the traffic for various utilizations.

FIGURE 9. Fitting the openarena data set, (a): normalized histogram of the PS, (b): ACF of the PS, (c): XCF between PS processes of multiple players,
(d): queueing response for different utilizations.

FIGURE 10. Fitting the Lord of the Rings I data set, (a): normalized histogram of the frame size, interleaved I,P and B-frames, (b): ACF of the frame size of
interleaved process, (c): time series of the frame size, (d): queueing response.

B. ONLINE GAMING TRAFFIC
For obtaining the openarena [58] data set, we sniffed IP
packets in the downlink direction at a dedicated game server,
which was serving two players. We observed four sessions
of 10min each, with a total of roughly 50 000 packets per
player. Since the packet IAT was constant with 40ms, only
the PS is modeled, however, jointly for both players.The
PDF fit is evaluated in Fig. 9(a), where the polynomial order
equals P=5. The fitted ACF is shown in Fig. 9(a), where an
ARMA(5,5) model is deployed. The XCF is modeled only for
the lag m=0, as described in Sec. IV, yielding a strong posi-
tive cross-correlation, see Fig. 9(c). Note that the XCFs is not
only congruent at lagm=0, but also at all other lags up to 250.

The reason is that the XCF is altered by the linear filter
according to Eq. (10); thus, fitting the ACF already ensures
that also themodeled XCF is close to its recorded counterpart.
The evaluation of the queueing performance in Fig. 9(d)
shows, that model and real data perform very similar, except
for medium utilization U=50%. This is possibly caused by
the brevity of the data set, provoking inaccuracies in the
estimation of the ACF at high lags and the queue length itself.

C. VIDEO STREAMING TRAFFIC
The third traffic type is MPEG-4 video traffic, whereas the
online available trace of the movie Lord of the Rings I [59]
was considered. MPEG-4 videos consist of Group of Pictures

VOLUME 2, 2014 51



M. Laner et al.: Parsimonious Network Traffic Modeling

(GOPs), each of which composed of a combination of three
different frame types (i.e., I, P and B-frames). In the present
case the GOP exhibits a size of 12 frames according to the
following structure: IBBPBBPBBPBB. For capturing this
structure we modeled each frame-type as separate stream and
introduced strong cross-correlation between them. The output
stream was composed by interleaving the respective single
streams according to the above mentioned GOP structure.

Thereby, all ACFs have been equal and the cross-
correlation coefficients were one (ρIP[0]=ρPB[0]=ρBI [0]=1),
only the distributions were changed from frame-type to
frame-type. This approach is common in literature [3]; in the
present context it can be interpreted as seasonal ARMAmodel
[21, p. 353ff.]. It overcomes the problem of missing observa-
tions in the streams for single frame-types during the fitting
procedure. For example, samples of I-frames can only be
observed once in an entire GOP (e.g., eleven frames missing,
one frame present). By assuming all correlation coefficients
to one, it is legitimate to construct one background stream
from the three streams of frame-types by pre-distortion, see
Fig. 4, Step 1A. This stream has no missing observations and
is Gaussian with zero mean and unit variance; it can directly
be deployed for the derivation of h[m]. Therefore, the fitting
procedure for the ACF shall rather follow 1A–1B or 1A–3B–
2C than 2A–2B–2C, see Fig. 4.

An evaluation of the interleaved output stream is shown in
Fig. 10 and Tab. 4. The leftmost plot, Fig. 10 (a), shows the
PDF which is a superposition of the PDFs of the individual
frame-types. The ACF, shown in Fig. 10 (b), is very peaky
due to the interleaving described above. A visual compar-
ison of the recorded and synthetic data streams is given
in Fig. 10 (c). The queueing performances are compared in
Fig. 10 (d). All plots exhibit a convincing quality-of-fit, see
Table 4.

VII. CONCLUSION
We address the problem of designing a generative model for
arbitrary network source traffic, with focus on multivariate
stationary random processes. They emulate certain physical
quantities of the measured traffic, for example, IP packet-size
or packet inter-arrival time. For each random process three
statistical measures are considered, namely, the distribution,
the auto-correlation function and the cross-correlation func-
tion with other processes. All of them are known for their
strong influence on the network behavior.

We propose a modeling approach based on Transformed
Auto-RegressiveMoving-Average (TARMA) processes. This
approach allows for decoupling the overall modeling prob-
lem into three independent sub-problems, one for each
statistical measure. Thereby, each problem is solvable by
standard techniques. The decoupling is enabled by the struc-
ture of the model, consisting of four entities: (i) a ran-
dom number generator which produces normal i.i.d. random
processes, (ii) a polynomial weighting matrix, introducing
cross-correlations to the processes, (iii) LTI filters which
introduce arbitrary auto-correlations and (iv) memoryless

polynomial non-linearities which transform the Gaussian ran-
dom samples to arbitrary distributions. The analytical deriva-
tions for all relevant statistical measures is feasible (see
Annex I), which is crucial for efficient model fitting.
Advantages of this method are its complete analytical

tractability, parsimoniousness in the number of model param-
eters, the fitting procedure deploys only efficient standard
techniques and the generation of samples exhibits low com-
plexity.
Exemplary models for different traffic types are provided,

which expose the generality of this approach. Online-gaming
traffic is modeled, where packet size and packet inter-arrival
times are emulated, as well as cross-correlations between
multiple players. Further, a model for video traffic is shown,
where the frame-size processes are emulated and combined
to a single video streaming process. Besides the applicability
of the approach to network source traffic, we also indicate
its usefulness for aggregated network traffic by modeling
the well known Bellcore Aug89 trace. Thereby, the packet-
size and packet inter-arrival time are considered as cross-
correlated random processes. In order to evaluate the pro-
posed method by an unrelated statistical measure, the traffic
traces as well as synthetic traffic were fed to a single-server
queue (G/G/1 queue). The resulting queue responses show
excellent congruency in all evaluated cases.
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APPENDIX I. TRANSFORMATION FORMULAS
A. ACF TRANSFORMATION
Let Y [n] denote a Gaussian random process with zero mean,
unit variance and auto–correlation function ρYY [m] and Z [n]
the random process obtained by the transformation of Y [n]
by a polynomial pY (·) according to Z [n] = pY (Y [n]) =∑P

p=0 αp · (Y [n])
p. Then the auto–correlation function of the

random process Z [n] equals

ρZZ [m] = pρ(ρYY [m]) =
P∑
k=1

ξk ·
(
ρYY [m]

)k
,

where pρ(·) denotes a polynomial with coefficients ξk , which,
for k = 1, · · · ,P are calculated to

ξk =
1

σ 2
Z

k!
( P∑
p=0

αp ·

(
p
k

)
· (p− k − 1)!! · 1e(p− k)

)2

,

where σ 2
Z denotes the variance of Z [n], determined by

σ 2
Z =

P∑
k=1

k!
( P∑
p=0

(
p
k

)
αp (p− k − 1)!! 1e(p− k)

)2

. (15)

Thereby,
( l
k

)
is the binomial coefficient extended to all integer

numbers (i.e., zero for k<0 and k>l), (k)!! the double facto-
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rial operator extend to negative values (i.e., one for k≤0) and
1e(k) the indicator function for parity.

B. XCF TRANSFORMATION
Let Y1[n] and Y2[n] denote two stationary Gaussian random
processes with zero mean and unit variance, and ρY1Y2 [m] the
cross-correlation function between them. Both processes are
transformed by polynomials into the random processes Z1[n]
and Z2[n], according to Z1[n] = pY ,1(Y1[n]) =

∑P
p=0 αp ·

(Y1[n])p and Z2[n] = pY ,2(Y2[n]) =
∑Q

q=0 βq · (Y2[n])
q, then

the cross-correlation function of the processes Z1[n] and Z2[n]
equals

ρZ1Z2 [m] = pρ,12(ρY1Y2 [m]) =
min(P,Q)∑
k=1

χk ·
(
ρY1Y2 [m]

)k
,

where pρ,12(·) denotes a polynomial with coefficients χk
which, for k = 1, · · · ,min(P,Q) are calculated to

χk =
1
σZ1

( P∑
p=0

αp ·

(
p
k

)
· (p− k − 1)!! · 1e(p− k)

)
·

1
σZ2

( Q∑
q=0

βq ·

(
q
k

)
· (q− k − 1)!! · 1e(q− k)

)
· k!.

Here σZ1 and σZ2 denote the standard deviation of Z1[n] and
Z2[n], respectively, see Eq. (15).

APPENDIX II. XCF FITTING
A. CHOLESKY-FACTORIZATION
For fitting G(B) by a Cholesky decomposition, an auxiliary
process of random vectors X′[n] has to be constructed. It has
(2M+1)I dimensions, where M denotes the maximum lag
to be modeled and I the number of output processes I .
It consists of 2M+1 shifted versions of each output pro-
cessXi[n−m], withm=−M , . . . ,M and i=1, . . . , I , arranged
according to

X′[n] =


(X1[n−M ], . . . ,X1[n+M ])T

(X2[n−M ], . . . ,X2[n+M ])T

...

(XI [n+M ], . . . ,XI [n+M ])T

 . (16)

The correlation matrix 0′X of X′[n] has to be constructed,
whereof the single elements are all coefficients of the auto
and cross-correlation functions of Xi[n]. Notice, that Eq. (14)
must be satisfied; hence, 0′X is a block matrix with identity
matrices on the diagonal.

Performing the Cholesky decomposition of 0′X yields a
lower triangular matrix, which has to be normalized by

1
√
2M+1

in order to satisfy Eq. (13). Each column of thismatrix
can be divided into I blocks of length 2M+1; thereby, each
block is translated to one element gij[m] of G[m], whereas
each element within a block is equivalent to a coefficient of
gij[m] at a specific lag m with m=−M , . . . ,M .
Consequently, the number J of required input processes

Wj[n] amounts to J=(2M+1)I ; the number of model

parameters (i.e., sum of all non-zero coefficients gij[m]) cal-
culates to 1

2 J (J−1).

B. DIRECT FITTING
If the number of output processes is I=2, then it is possible to
pursue a direct fitting approach. It is usually more economic
than the Cholesky decomposition, both in the number of input
processes Wj[n] (amounting to J=2M+2) and the model
parameters (i.e., 2J ).
It is based on the observation that Eq. (14) (i.e., zero ACF

for all lags unequal to zero) can be satisfied by forcing each
of the polynomials gij(B), to monomials in the backshift
operator B

gij(B)
!
= gij,l · Bl (17)

where gij,l denotes the only non-zero element of gij[l] located
at lag m=l. The monomial order l may vary from element to
element. Thus, each element gij[m] is a moving-average filter
with only one timing lag. This ensures that each sample of
each process Wj[n] appears only once within all the samples
of the process Xi[n] and, consequently, does not cause any
auto-correlations in Xi[n].
Accordingly, the polynomial matrix G(B) shall be con-

structed as

c =
M∑

m=−M

|ρX1X2 [m]| (18)

g1,j(B) = sign(ρX1X2 [j−M−1])
√
c |ρX1X2 [j−M−1]| · B

0

g2,j(B) =
√

1
c |ρX1X2 [j−M−1]| · B

j−M−1

G(B) =
(
g1,1(B) · · · g1,2M+1(B)

√
1− c2 B0

g2,1(B) · · · g2,2M+1(B) 0

)
,

whereas sign(·) denotes the sign operator. In this case the
targeted XCF ρX1X2 [m] is induced to the processes, without
causing any auto-correlations.

C. CONSIDERING ONLY LAG ZERO
Both methods, the Cholesky-decomposition and the direct
fitting, converge if the maximum lag M=0 and I=2 output
processesXi[n] with ρX1X2 [0]=g21. Then the single parameter
g21 is enough to specify the matrix G(B) by

G =

(
g21

√
1−g221

1 0

)
, yielding 0 =

(
1 g21
g21 1

)
. (19)

The restrictions on Xi[n] are inherently satisfied by this fitting
approach: (i) Eq. (17) is satisfied since only gil[0] is consid-
ered for any two processes Xi[n] and Xl[n]. (ii) Moreover,
Eq. (13) is satisfied forG, since the cross-correlationmatrix0
has unit diagonal elements.

In order to determine the value of g21, it is not required to
perform the whitening procedure (see Fig. 5: Step 2C), since
the correlations introduced by hi[m] equal one at lag zero.
Instead, the cross-correlation coefficient ρYiYl ,target[0] can be
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directly equated with g21 (see Fig. 5: Step 3C),

g21 = ρYiYl ,target[0]. (20)

This yields usually better results than including the whitening
procedure, since inaccuracies introduced by the model of the
ACFs, are suppressed. Considering only lag zero is a parsi-
monious way of resembling XCFs and, thus, recommended
for traffic modeling purposes.
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