
Received October 10, 2013, accepted November 26, 2013, date of publication December 20, 2013,
date of current version January 7, 2014.

Digital Object Identifier 10.1109/ACCESS.2013.2295764

A Contract-Based Methodology
for Aircraft Electric Power System Design
PIERLUIGI NUZZO1, HUAN XU2, NECMIYE OZAY3, JOHN B. FINN1,
ALBERTO L. SANGIOVANNI-VINCENTELLI1, RICHARD M. MURRAY4, ALEXANDRE DONZÉ1,
AND SANJIT A. SESHIA1
1Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA
2Institute for Systems Research and Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
3Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
4Engineering and Applied Science Department, California Institute of Technology, Pasadena, CA 91125, USA

Corresponding author: P. Nuzzo (nuzzo@eecs.berkeley.edu)

This work was supported in part by IBM and United Technologies Corporation (UTC) via the iCyPhy consortium, and in part by the
TerraSwarm Research Center, one of six centers supported by the STARnet phase of the Focus Center Research Program, a Semiconductor
Research Corporation Program sponsored by MARCO and DARPA.

ABSTRACT In an aircraft electric power system, one or more supervisory control units actuate a set of
electromechanical switches to dynamically distribute power from generators to loads, while satisfying safety,
reliability, and real-time performance requirements. To reduce expensive redesign steps, this control problem
is generally addressed by minor incremental changes on top of consolidated solutions. A more systematic
approach is hindered by a lack of rigorous design methodologies that allow estimating the impact of earlier
design decisions on the final implementation. To achieve an optimal implementation that satisfies a set of
requirements, we propose a platform-based methodology for electric power system design, which enables
independent implementation of system topology (i.e., interconnection among elements) and control protocol
by using a compositional approach. In our flow, design space exploration is carried out as a sequence
of refinement steps from the initial specification toward a final implementation by mapping higher level
behavioral and performance models into a set of either existing or virtual library components at the lower
level of abstraction. Specifications are first expressed using the formalisms of linear temporal logic, signal
temporal logic, and arithmetic constraints on Boolean variables. To reason about different requirements,
we use specialized analysis and synthesis frameworks and formulate assume guarantee contracts at the
articulation points in the design flow. We show the effectiveness of our approach on a proof-of-concept
electric power system design.

INDEX TERMS Design methodology, design automation, aircraft, power systems, control system synthesis,
contract-based design, platform-based design, cyber-physical systems.

I. INTRODUCTION
The advent of high capability, reliable power electronics
together with powerful embedded processors has enabled
an increasing amount of ‘‘electrification’’ of vehicles such
as cars and aircraft in recent years [1], [2]. Hydraulic,
pneumatic and mechanical systems are being replaced by
cyber-electrical components that increase the overall system
efficiency [3]. However, the increased use of electrically-
powered elements poses significant challenges to the aircraft
electric power system in terms of the reliability of electri-
cal power generation and distribution while satisfying safety
requirements.

A severe limitation in common design practice is the
lack of formalized specifications. System requirements are

predominantly written in text-based languages that are not
suitable for mathematical analysis and verification. Assess-
ing system correctness is then left for simulations and
prototype tests later in the design process, when mod-
ifications are significantly more expensive. Additionally,
the inability to rigorously model the interactions among
heterogeneous components and between the physical and
the cyber sides of the system poses a serious obsta-
cle. Thus, the traditional heuristic design process based
on text-based requirement capture and designers’ expe-
rience leads to implementations that are inefficient and
sometimes do not even satisfy the requirements, yield-
ing long re-design cycles, cost overruns and unacceptable
delays.

VOLUME 2, 2014

2169-3536
 2013 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 1

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

We propose instead to carry out a rigorous design process
that includes allocation of the requirements to the components
and early validation of design constraints. By following the
platform-based design paradigm [4], we proceed by subse-
quent refinement of design requirements using a library of
available components. To perform this task, we define conve-
nient abstractions for system exploration and compositional
synthesis of system topology (interconnection among the
various components) and control. In particular, we build a
rich, multi-view set of component models that can be used by
different, domain-specific analysis, synthesis and verification
frameworks. We first synthesize an electric power system
topology from system requirements formalized as arithmetic
constraints on Boolean variables. For the given topology,
we translate the requirements into temporal logic formulas,
by which we synthesize and verify control protocols. To
reason about different requirements in a compositional way,
we use the concept of contracts [5] that formalize the notion
of interfaces between models and tools in the design flow.
A few theoretical results (Theorem 3.1, Propositions 6.1
and 6.2) show how contracts can offer a natural framework
to reason about distributed control architectures as well as
the heterogeneous interface between the controller and its
plant.

Our design methodology builds on a number of results
that have opened the way for a more structured approach
to the design of aircraft electric power systems. The adop-
tion of model-based development and simulation for the
analysis of aircraft performance and power optimization has
already been advocated in [6], [7]. In the context of the
More Open Electrical Technologies (MOET) project [2], a set
of model libraries have been developed using the Modelica
language [8] to support ‘‘more-electric’’ aircraft simulation,
design and validation. Simulation is used for electric power
system performance verification (e.g., stability and power
quality) at the network level, by leveraging models with
different levels of complexity to analyze different system
properties, and validated with real equipment measurements.
However, design space exploration, optimization and analysis
of faulty behaviors in these models can still become compu-
tationally unaffordable unless proper levels of abstraction are
devised, based on the goals at each design step.

A library-based approach to instantiate, analyze and verify
a system design was also adopted in [9], [10], within the
META research program, with the aim to compress the prod-
uct development and deployment timeline of defense systems.
A simulation framework based on Modelica was developed
to enable exploration of architectural design decisions, while
a language based on SysML [11] was proposed to enable
semantically robust integration of models, analytical methods
and results provided by other domain specific languages and
tools [12]. Such integration language incorporates assume-
guarantee contracts to formalize system requirements and
enable the generation of monitors. In this paper, we further
extend the use of assume-guarantee contracts as a design aid
in combination with platform-based design to yield system

synthesis and optimization in addition to system simulation
and verification.
An optimization-oriented power system design method-

ology following the platform-based paradigm was proposed
in [13] where initial specifications are refined and mapped
to the final implementation in four steps. At each step, a
binary optimization problem is formulated to derive a class
of candidate implementations for the next exploration step.
The methodology deals with how to select the power gener-
ators and synthesize the electric power system topology. In
this paper, we extend the flow in [13] to enable synthesis
of electric power system topology and control, subject to
heterogeneous sets of system requirements that are not always
approximated by binary or mixed integer-linear constraints.
To perform automatic synthesis of control protocols, we
build on recent works on formal synthesis of aircraft vehicle
management systems [14], distributed control synthesis [15],
and reactive synthesis for electric power systems [16]. In
particular, we express system specifications in linear temporal
logic (LTL) [17], [18] and leverage a combination of tools
from the computer science and formal methods domains.
The remainder of the paper is organized as follows. After

a brief description of a typical electric power system and
its design challenges in Section II, we provide some back-
ground on contract-based design and control synthesis in
Section III. Section IV summarizes our electric power system
design methodology while Section V and Section VI provide
details on topology and control design. Section VII reports
results from the application of ourmethodology to a prototype
electric power system design, and is followed by concluding
remarks in Section VIII.

II. THE AIRCRAFT ELECTRIC POWER SYSTEM
Fig. 1 illustrates a sample architecture for power generation
and distribution in a passenger aircraft in the form of a single-
line diagram (SLD) [1], a simplified notation for three-phase
power systems. Typically, aircraft electric power systems con-
sist of generation, primary distribution and secondary distri-
bution sub-systems. In this paper, we focus on the primary
power distribution system, which includes the majority of the
supervisory control logic.

A. COMPONENTS
The main components of an electric power system are gen-
erators, contactors, buses, and loads. Primary generators are
connected to the aircraft engine and can operate at high or low
voltages. Auxiliary generators are mounted atop an auxiliary
power unit (APU). The APU is normally used on ground
(when no engines are available) to provide hydraulic and
electric power, but can also be used in flight when one of the
primary generators fails. With a small abuse of notation, we
hereafter refer to auxiliary generators themselves as APUs.
Batteries are primarily used at start-up and in case of emer-
gency. AC and DC buses (both high and low-voltage) deliver
power to a number of loads. Buses can be essential or non-
essential. Essential buses supply loads that should always be

2 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

powered, while non-essential ones supply loads that may be
shed in the case of a fault or limited power capacity.
Contactors are electromechanical switches that connect

components, and therefore determine the power flow from
sources to loads. They are configured to be open or closed
by one or multiple controllers (not shown in Fig. 1), denoted
as Bus Power Control Units (BPCU).

FIGURE 1. Single-line diagram of an aircraft electric power system
adapted from a Honeywell, Inc. patent [19].

Loads include subsystems such as lighting, heating, avion-
ics and navigation. Bus loads also include power conversion
devices: Rectifier units convert AC power to DC power, while
AC transformers (ACTs) step down a high-voltage to a lower
one, Transformer Rectifier Units (TRUs) both decrease the
voltage level and convert it from AC to DC.

B. SYSTEM DESCRIPTION
The main AC power sources at the top of Fig. 1 include two
low-voltage generators, two high-voltage generators, and two
APU-mounted auxiliary generators. Each engine connects to
a high-voltage AC (HVAC) generator (L1 and R1) and a low-
voltage AC (LVAC) generator (L2 and R2). Panels, denoted
as dashed square boxes, represent groups of components that
are physically separated on the aircraft. The three panels
below the generators include the HVAC buses, which can be
selectively connected to the HVAC generators, to the auxil-
iary generators, and to each other via contactors, denoted by
double bars.

Four rectifier units are selectively connected to buses
as HVAC loads. The two panels below the high-voltage
DC (HVDC) buses include the LVAC subsystem. A set of
AC transformers (ACTs) convert HVAC power to LVAC
power and are connected to four LVAC buses. LVAC ESS
Bus 3 and LVAC ESS Bus 4 are essential and are selec-
tively connected to the two low-voltage generators. The LVAC
essential buses are also connected to rectifier units, and thus

to low-voltage DC (LVDC) power. The LVDC subsystem
also contains two batteries. Power can be selectively routed
directly from the HVAC bus to the LVDC buses 3 and 4 using
TRUs.
One or more bus power control units use sensors (which are

not depicted in Fig. 1) to measure physical quantities, such as
voltages and currents, and control the state (open or closed) of
the contactors, to dynamically reconfigure the system based
on the status and availability of the power sources. For the
rest of the paper, we denote this centralized or distributed
supervisory control unit as BPCU.

C. SYSTEM REQUIREMENTS
Given a set of loads, together with their power and reliability
requirements, the goal is to determine the system’s architec-
ture and control such that the demand of the loads is satisfied
for all flight conditions and a set of predetermined faults. To
better formalize this design objective, we begin with a qualita-
tive analysis of themain system requirements, by categorizing
them in terms of safety and reliability requirements. For each
of these categories, we provide a few examples that serve as
a reference for the rest of the paper.
Safety specifications constrain the way each bus must be

powered to avoid loss of essential features, and the maximum
time interval allowed for power shortages. For instance, to
avoid generator damage, we proscribe AC sources to be paral-
leled, i.e. no AC bus can be powered by multiple generators at
the same time. Moreover, we refine the definition of essential
loads and buses (such as flight-critical actuators) provided
above by requiring that they be never unpowered for more
than a specified time tmax .
Reliability specifications describe the bounds on the failure

probabilities that can be tolerated for different portions of
the system. Based on its failure modes, every component is
characterized by a failure rate. A failure rate of λ indicates
that a failure occurs, on average, every 1/λ hours. For a
given mission profile, failure rates can be translated into
failure probabilities so that system reliability specifications
are also expressed in terms of the failure probabilities of the
components. Based on the component failure rates, a typical
specification would require that the failure probability for an
essential load (i.e., the probability of being unpowered for
longer than tmax) be smaller than 10−9 per flight hour. The
actual probability value depends on the load criticality [1]. In
our example, both the electric power system topology and the
controller should be designed to accommodate any possible
combination of faults potentially causing the failure of an
essential component, and having a joint probability larger
than 10−9 per flight hour.

III. CONTRACT-BASED DESIGN OF CYBER-PHYSICAL
SYSTEMS
Inspired by recent results on assume-guarantee composi-
tional reasoning and interface theories in the context of
hybrid systems and software verification, our methodology
is based on the use of assume-guarantee contracts for cyber-

VOLUME 2, 2014 3

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

physical systems [5]. Informally, contracts mimic the thought
process of a designer, who aims at guaranteeing certain
performance figures for the design under specific assump-
tions on its environment. The essence of contracts is, there-
fore, a compositional approach, where design and verification
complexity is reduced by decomposing system-level tasks
into more manageable subproblems at the component level,
under a set of assumptions. System properties can then be
inferred or proved based on component properties. In this
respect, contract-based design can be a rigorous and effective
paradigm while dealing with the complexity of modern sys-
tem design, and has been successfully applied to other embed-
ded system domains, such as automotive applications [20] and
mixed-signal integrated circuits [21].

A. COMPONENTS
We summarize the main concepts behind contract-based
design starting with the notion of components. A summary
of the notation used in this Section and in the rest of the paper
is given in Table 1.

A component M can be seen as an abstraction, a hierarchi-
cal entity representing an element of a design, characterized
by the following component attributes:
• a set of input variables U ∈ U , output variables Y ∈ Y ,
and internal variables (including state variables) X ∈ X ;
a set of configuration parameters κ ∈ K, and a set
of input, output and bidirectional ports λ ∈ Λ for
connections with other components;

• a set of behaviors, which can be implicitly represented
by a dynamic behavioral model F(U ,Y ,X , κ) = 0,
uniquely determining the value of the output and internal
variables given the one of the input variables and con-
figuration parameters. We assume that components can
respond to every possible sequence of input variables,
i.e., they are receptive to their input variables. Behav-
iors are generic, and could be continuous functions that
result from solving differential equations, or sequences
of values or events recognized by an automata model;

• a set of non-functional models, i.e. maps that allow
computing non-functional properties of a component
corresponding to particular valuations of its input vari-
ables and configuration parameters. Examples of non-
functional maps include the performance model P, com-
puting a set of performance figures by solving the behav-
ioral model, or the reliability model R, providing the
failure probability of a component.

Components can be connected together by sharing certain
ports under constraints on the values of certain variables. In
what follows, we use variables to denote both component
variables and ports. Moreover, components can be hierarchi-
cally organized to represent a system at different levels of
abstraction. Given a set of components at level l, a system can
then be composed by parallel composition and represented as
a new component at level l + 1. At each level of abstraction,
components are also capable of exposing multiple, comple-
mentary views, associated to different concerns (e.g. safety,

TABLE 1. Notation.

performance, and reliability), which can be expressed via
different formalisms and analyzed by different tools.
A component may be associated to both implementations

and contracts. An implementation M is an instantiation of a
component M for a given set of configuration parameters.
In what follows, we also denote with M the set of all its
behaviors.

B. CONTRACTS
A contract C for a componentM is a pair of assertions (A,G),
called the assumptions and the guarantees. An assertion
H represents a specific set of behaviors over variables that
satisfies H . Therefore, operations on assertions and contracts
are set operations. An implementationM satisfies an assertion
H whenever M and H are defined over the same set of vari-
ables and all the behaviors ofM satisfy the assertion, i.e. when

4 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

M ⊆ H . The set of all the legal environments for C collects
all implementations E such that E ⊆ A. An implementation
of a component satisfies a contract whenever it satisfies its
guarantee, subject to the assumption. Formally, M ∩ A ⊆ G,
where M and C have the same variables. We denote such a
satisfaction relation by writingM |H C. Similarly, we relate a
legal environmentE to a contract C by the satisfaction relation
E |HE C.

Any implementation M of a component such that M ⊆
G ∪ ¬A, where ¬A is the complement of A, is also an imple-
mentation for C. In general, MC = G ∪ ¬A is the maximal
implementation for C. Two contracts C and C′ with identical
variables, identical assumptions, and such that G′ ∪ ¬A =
G ∪¬A, possess identical sets of implementations. Such two
contracts are then equivalent. Therefore, any contract C =
(A,G) is equivalent to a contract in saturated form (A,G′),
which also satisfiesG′ ⊇ ¬A, or, equivalently,G′∪A = True,
the true assertion. To obtain the saturated form of a contract,
it is enough to take G′ = G ∪ ¬A.

Contracts associated with different components can be
combined according to different rules. Similar to parallel
composition of components, parallel composition of con-
tracts can be used to construct composite contracts out of
simpler ones. Let C1 = (A1,G1) and C2 = (A2,G2) be
contracts in saturated form, then the assumptions and the
guarantees of the composite C1 ⊗ C2 can be computed as
follows [20]:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (1)

G = G1 ∩ G2. (2)

The composite contract must clearly satisfy the guarantees
of both. Moreover, since the environment should satisfy all
the assumptions, we should expect that the assumptions of
each contract would also combine by conjunction. In general,
however, part of the assumptions A1 will be already satisfied
by composing C1 with C2, which acts as a partial environment
for C1. Therefore, G2 can relax the assumptions A1, and vice-
versa, which motivates equation (1). To use equation (1) and
equation (2), the behaviors related to the original contracts
need to be extended to a common set of variables. Such an
extension, which is also called alphabet equalization, can be
achieved by an operation of inverse projection [20].
Even if they need to be satisfied simultaneously, multiple

views of the same component do not generally compose
by parallel composition. Therefore, the conjunction (∧) of
contracts can also be defined so that if M |H C1 ∧ C2, then
M |H C1 andM |H C2. Contract conjunction can be computed
by defining a preorder on contracts, which formalizes a notion
of refinement. We say that C refines C′, written C � C′ (with
C and C′ both in saturated form), if A ⊇ A′ and G ⊆ G′.
Refinement amounts to relaxing assumptions and reinforcing
guarantees, therefore strengthening the contract. Clearly, if
M |H C and C � C′, then M |H C′. On the other hand, if
E |HE C′, then E |HE C. With the given ordering, we can
compute the conjunction of contracts by taking the greatest

lower bound of C1 and C2. For contracts in saturated form,
we have

C1 ∧ C2 = (A1 ∪ A2,G1 ∩ G2), (3)

i.e. conjunction of contracts amounts to taking the intersec-
tion of the guarantees and the union of the assumptions.
Conjunction can be used to compute the overall contract for
a component starting from the contracts related to multiple
views (concerns, requirements) in a design.
In addition to satisfaction and refinement, consistency and

compatibility are also relations involving contracts. Techni-
cally, these two notions refer to individual contracts. A con-
tract is consistent when the set of implementations satisfying
it is not empty, i.e. it is feasible to develop implementations
for it. For contracts in saturated form, this amounts to ver-
ifying that G 6= ∅. C is compatible if there exists a legal
environment E for C, i.e. if and only if A 6= ∅. The intent is
that a component satisfying contract C can only be used in the
context of a compatible environment. In practice, however,
violations of consistency and compatibility occur as a result of
a parallel composition, so that we can refer to the collection of
components forming a composite contract as being consistent
or compatible.

C. PLATFORM-BASED DESIGN AND CONTRACTS
We use contracts in the context of platform-based design [4],
a paradigm that allows reasoning about design in a structured
way. In platform-based design, design progresses in precisely
defined abstraction levels; at each level, functionality (what
the system is supposed to do) is strictly separated from archi-
tecture (how the functionality can be implemented). Differ-
ently than model-based development, platform-based design
consists of a meet-in-the-middle approach where succes-
sive top-down refinements of high-level specifications across
design layers are mapped onto bottom-up abstractions and
characterizations of potential implementations. Each layer is
defined by a design platform, which is a library (collection)
of components, models, representing functionality and perfor-
mance of the components (as detailed in Section III-A), and
composition rules.
In this context, contracts can play a fundamental role in:

(i) determining valid compositions so that when the design
space is explored, only legal (i.e. satisfying the composition
rules) compositions that are compatible (i.e. satisfying the
contracts) are taken into consideration; (ii) guaranteeing that
a component at a higher level of abstraction is an accurate
representation of a lower level component (or aggregation of
components); (iii) checking that an architecture platform is
indeed a correct refinement of a specification platform, and
(iv) formalizing top-level system requirements.

Since compatibility is assessed among components at the
same abstraction layer, the first category of contracts is
denoted as horizontal contracts. If an environment violates a
horizontal contract, it cannot host any of its implementations.

However, checking horizontal contracts is not sufficient,
in general, to guarantee correct implementations. When

VOLUME 2, 2014 5

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

analyzing the behavior of complex cyber-physical systems,
simplified macro-models can be used to capture the rele-
vant behavior of the components at higher levels of abstrac-
tion. Therefore, guarantees should also be provided on the
accuracy of the macro-models with respect to models at
lower levels of abstraction. These guarantees are captured
via bottom-up vertical contracts. On the other hand, vertical
contracts can also be used to encode top-down requirements
that system architects introduce to craft the behavior of a
chosen architecture according to the desired functionality.
The above set of constraints can be expressed using top-
down vertical contracts. They are used to ensure that an
implementation is correct, by checking that the architecture
platform is a refinement of the specification platform.

To partition system specifications, we identify which entity
is responsible for a set of requirements, and which ones
are just indirectly affected. By assigning information about
requirements to components, we make it explicit what each
component guarantees and what it assumes about its environ-
ment. Both of these aspects determine the top-down vertical
contract for the component. If the assumptions are satisfied,
then the component specification can be developed indepen-
dently of other subsystems. In section IV, we exploit this
concept to independently develop the electric power system
topology and its control protocol.

To formulate system and component requirements as con-
tracts, we adopt different formalisms based on the computa-
tional models used to represent the components and the tools
used to analyze and synthesize them. Example of formalisms
include automata or temporal logic constructs (e.g. used
for safety requirements), probabilistic constraints (e.g. used
for reliability requirements), linear arithmetic constraints on
Boolean variables (e.g. used for connectivity requirements),
integro-differential equations, and linear or nonlinear con-
straints on real numbers (e.g. used for real-time require-
ments). In what follows, we review the formalisms adopted
in Section VI for the analysis and synthesis of reactive con-
trollers in a contract-based framework.

D. REQUIREMENT FORMALIZATION
We use two formal specification languages, namely, linear
temporal logic (LTL) and signal temporal logic (STL), partic-
ularly suitable for capturing system and component require-
ments and reasoning about the correctness of their behaviors.
As such, these languages will be used for defining contracts
for control design.

1) LINEAR TEMPORAL LOGIC
Temporal logic is a branch of logic that incorporates temporal
aspects in order to reason about propositions in time, and
was first used as a specification language by Pnueli [22]. In
this section, we consider a version of temporal logic called
linear temporal logic (LTL), whose formal semantics can be
found in [23]. While in contract-based design the component
is regarded as the fundamental element of a design, and
systems are denoted as interconnections of components, as

we describe the basics of LTL, we prefer to adhere to the
classical terminology, which is historically consolidated [23],
and define design abstractions in terms of systems.
Definition 1: A system consists of a set S of variables.

The domain of S, denoted by dom(S), is the set of valuations
of S.
Definition 2: An atomic proposition is a statement on sys-

tem variables that has a unique truth value (True or False)
for a given value s. Let s ∈ dom(S) be a state of the system
(i.e., a specific valuation of its variables) and p be an atomic
proposition. Then s |H p if p is True at the state s. Otherwise,
s 6|H p.
LTL also includes Boolean connectors such as nega-

tion (¬), disjunction (∨), conjunction (∧), material impli-
cation (→), and two basic temporal modalities, next (©)
and until (U). By combining these operators, it is possible
to specify a wide range of requirements. Given a set AP of
atomic propositions, LTL formulas are formed according to
the following grammar:

ϕ := True | p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ| ϕ1 U ϕ2
where p ∈ AP. Formulas involving other operators, including
eventually (♦) and always (�), can be derived from these
basic ones.

LTL formulas over AP are interpreted over infinite
sequences of states. In the LTL abstraction, we denote such a
sequence as a behavior of the system. Let σ = s0s1s2 . . . be
a behavior and ϕ be an LTL formula. We say that ϕ holds at
position i ≥ 0 of σ , written si |H ϕ, if and only if ϕ holds for
the remainder of the sequence starting at position i. Then, a
sequence σ satisfies ϕ, denoted by σ |H ϕ, if s0 |H ϕ. Let 6
be the collection of all sequences σ such that σ ∈ 6. Then, a
system composed of the variables S is said to satisfy ϕ, written
6 |H ϕ, if all sequences satisfy ϕ.

2) SIGNAL TEMPORAL LOGIC
LTL allows formal reasoning about temporal behaviors of
systems with Boolean, discrete-time signals (variables) or
sequences of events. To deal with dense-time real signals
and hybrid dynamical model that mix the discrete dynam-
ics of the controller with the continuous dynamics of the
plant, several logics have been introduced over the years,
such as Timed Propositional Temporal Logic [24], andMetric
Temporal Logic [25]. Signal Temporal Logic (STL) [26] has
been proposed more recently as a specification language for
constraints on real-valued signals in the context of analog and
mixed-signal circuits. In this paper, we refine LTL system
requirements into constraints on physical variables (e.g. volt-
ages and currents) expressed using STL constructs. Then, we
monitor and process simulation traces to verify constraint
satisfaction, while optimizing a set of design parameters.

For a hybrid dynamical model, we define a signal as a
function mapping the time domain T = R≥0 to the reals R.
A multi-dimensional signal q is then a function from T to Rn

such that ∀t ∈ T, q(t) = (q1(t), . . . , qn(t)), where qi(t) is
the i-th component of vector q(t). It is convenient to repre-

6 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

sent the behavior of the system’s variables over time using
multi-dimensional signals. Therefore, we assume that a
hybrid system behavioral model F (e.g. implemented in a
simulator) takes as input a signal u(t) and computes an
output signal y(t) and an internal signal x(t) such that
F(u(t), y(t), x(t), κ)=0, where κ is a given vector of system
configuration parameters. A collection of signals resulting
from a simulation of the system is a trace, which can also
be viewed as a multi-dimensional signal. A trace s(t) that
includes all the system input, output and internal signals can
also denote a system behavior.
In STL, constraints on real-valued signals, or predicates,

can be reduced to the form µ = g(q) ∼ π , where g is a
scalar-valued function over the signal q,∼∈ {<,≤,≥, >,=,
6=}, and π is a real number. As in LTL, temporal formulas
are formed using temporal operators, always, eventually and
until. However, each temporal operator is indexed by intervals
of the form (a, b), (a, b], [a, b), [a, b], (a,∞) or [a,∞), where
each of a, b is a non-negative real-valued constant. If I is an
interval, then an STL formula is written using the following
grammar:

ϕ := True | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2
The always and eventually operators are defined as spe-
cial cases of the until operator as follows: �I ϕ , ¬♦I¬ϕ,
♦Iϕ , TrueUI ϕ. When the interval I is omitted, we use the
default interval of [0,+∞).
The semantics of STL formulas are defined informally as

follows. The signal q satisfies µ = g(q) < 2 at time t (where
t ≥ 0), written (q, t) |H µ, if g(q(t)) < 2. It satisfies ϕ =
�[0,2) (q > −1), written (q, t) |H ϕ, if for all time 0≤ t<2,
q(t) > −1. The signal q1 satisfies ϕ = ♦[1,2)q1 > 0.4 iff there
exists time t such that 1 ≤ t < 2 and q1(t) > 0.4. The
two-dimensional signal q = (q1, q2) satisfies the formula ϕ
= (q1 > 10) U[2.3,4.5] (q2 < 1) iff there is some time t0 where
2.3 ≤ t0 ≤ 4.5 and q2(t0) < 1, and for all time t in [2.3, t0),
q1(t) is greater than 10. We write q |H ϕ as a shorthand of
(q, 0) |H ϕ. Formal semantics can be found in [26].
Parametric Signal Temporal Logic (PSTL) is an exten-

sion of STL introduced in [27] to define template formulas
containing unknown parameters. Syntactically speaking, a
PSTL formula is an STL formula where numeric constants,
either in the constraints given by the predicates µ or in the
time intervals of the temporal operators, can be replaced by
symbolic parameters. These parameters are divided into two
types:
• A scale parameter π is a parameter appearing in predi-
cates of the form µ = g(q) ∼ π ,

• A time parameter τ is a parameter appearing in an inter-
val of a temporal operator.

An STL formula is obtained by pairing a PSTL formula
with a valuation function that assigns a value to each sym-
bolic parameter. For example, consider the PSTL formula
ϕ(π, τ) = �[0,τ] q > π , with symbolic parameters π (scale)
and τ (time). The STL formula�[0,10] q > 1.2 is an instance
of ϕ obtained with the valuation w = {τ 7→ 10, π 7→ 1.2}.

E. REACTIVE CONTROL SYNTHESIS
Reactive systems are systems that maintain an ongoing rela-
tion with their environment by appropriately reacting to it.
The controllers that regulate the behavior of such systems are
called reactive controllers.
A control system is a composition of a physical plant,

including sensors and actuators (e.g., an electric power sys-
tem topology with fault sensors and contactors), and an
embedded controller that runs a control protocol (control
logic) to restrict the behaviors of the plant so that all the
remaining behaviors satisfy a set of system specifications.
System specifications can be expressed as a contract C =
(A,G), where, roughly speaking, assumptions A encode the
allowable behaviors of the environment the control system
operates in, and guarantees G encode the system require-
ments.
The synthesis of reactive controls can then be interpreted

in terms of assume-guarantee contracts. Given the system
contract C, control synthesis finds a control logic that, when
implemented, ensures that the system satisfies C; or declares
that no such logic exists. It is possible to extend this idea
to distributed control architectures. In distributed synthesis,
different control subsystems can be composed if their con-
tracts are compatible. Hence, the goal of distributed synthesis
is to simultaneously refine a system contract into compatible
horizontal contracts for the components (i.e., subsystems),
and to find the control logics that realize those contracts.

1) REACTIVE SYNTHESIS FROM LTL SPECIFICATIONS
Let E andD be sets of environment and controlled variables,
respectively. Let s = (e, d) ∈ dom(E) × dom(D) be a state
of the system. Consider an LTL specification ϕ of assume-
guarantee form

ϕ = (ϕe→ ϕs), (4)

where ϕe characterizes the assumptions on the environment
and ϕs characterizes the system requirements. The synthesis
problem is concerned with constructing a control protocol
(a partial function f : (s0s1 . . . st−1, et) 7→ dt) which
chooses the move of the controlled variables based on the
state sequence so far and the behavior of the environment
so that the system satisfies ϕs as long as the environment
satisfies ϕe. If such a protocol exists, the specification ϕ is
said to be realizable. Reactive synthesis can then be viewed
as a two-player game between an environment that attempts
to falsify the specification in equation (4) and a controlled
plant that tries to satisfy it.
For general LTL, the synthesis problem has a doubly

exponential complexity [28]. However, a subset of LTL,
namely generalized reactivity (1) (GR(1)), generates prob-
lems that can be solved in polynomial time (i.e., polynomial in
|dom(E)×dom(D)|, the number of valuations of the variables
in E and D) [29]. GR(1) specifications restrict ϕe and ϕs to
take the following form, for α ∈ {e, s},

ϕα := ϕ
α
init ∧

∧
i∈Iα1

�ϕα1,i ∧
∧
i∈Iα2

�♦ϕα2,i,

VOLUME 2, 2014 7

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

where ϕαinit is a propositional formula characterizing the ini-
tial conditions; ϕα1,i are transition relations characterizing
safe, allowable moves and propositional formulas character-
izing invariants; ϕα2,i are propositional formulas characteriz-
ing states that should be attained infinitely often; Iα1 and Iα2 are
index sets enumerating formulas ϕα1,i and ϕ

α
2,i, respectively.

Given a GR(1) specification, there are game solvers and
digital design synthesis tools that generate a finite-state
automaton that represents the control protocol for the sys-
tem [30], [31].

2) DISTRIBUTED SYNTHESIS
To provide an inherent level of redundancy for system relia-
bility, distributed control architectures are increasingly being
adopted in modern aircraft electric power systems, thus moti-
vating the extension of reactive synthesis techniques to the
design of distributed controllers. Given a global specification
and a system composed of subsystems, distributed synthesis
proceeds by first finding local specifications for each sub-
system, and then synthesizing local controllers for these sub-
systems separately. If the local specifications satisfy certain
conditions, it can be shown that the local controllers realizing
these local specifications can be implemented together and
the overall system is guaranteed to satisfy the global spec-
ification, as detailed in [15]. We describe below a special
case of distributed architecture, i.e. a serial interconnection of
controllers, which is used in the design in Section VII-B.2 to
synthesize controllers for AC and DC subsystems separately.
The following theorem is based on a result that was first
reported in [15]. We introduce here a new proof that shows
how contracts can offer a rigorous and effective framework
to reason about distributed control architectures in a compo-
sitional manner.
Theorem 3.1: Given

• a system characterized by a set S = D ∪ E of variables,
where D and E are disjoint sets of controllable and
environment variables,

• its two subsystems with variables S1 = D1 ∪ E1 and
S2 = D2 ∪ E2, where for each i ∈ {1, 2}, Di and Ei are
disjoint sets of controllable and environment variables
for the ith subsystem, D1 and D2 are disjoint, and D =

D1 ∪D2,
• a set I of pairs of variables representing the intercon-
nection structure, that is, for a serial interconnection,
I = {(o1, i2)|o1 ∈ O1 ⊆ (D1 ∪ E1), i2 ∈ I2 ⊆ E2},
where for all (o, i) ∈ I, o = i,

• a global specification ϕ : ϕe → ϕs, and two local
specifications ϕ1 :ϕe1 → ϕs1 and ϕ2: ϕe2 → ϕs2 , where
ϕe, ϕe1 , ϕe2 , ϕs, ϕs1 , and ϕs2 are LTL formulas containing
variables only from their respective sets of environment
variables E, E1, E2 and system variables S, S1, S2;

if the following conditions hold:

1) any behavior that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2),
2) any behavior that satisfies (ϕs1 ∧ ϕs2) also satisfies ϕs,
3) there exist two controllers that make the local

specifications (ϕe1 → ϕs1) and (ϕe2 → ϕs2) true under
the interconnection structure I;

then, implementing the two controller together leads to a
controller that satisfies the global specification ϕe→ ϕs.

Proof: The conditions onD,D1,D2 ensure that the two
controllers are composable, i.e. they do not try to control the
same output (controllable) variables. We first derive contracts
from global and local specifications, by defining the follow-
ing sets of behaviors in terms of assumptions and guarantees:

A = {σ : σ |H ϕe}; Ai = {σ : σ |H ϕei};

G = {σ : σ |H (ϕe→ ϕs)}; Gi = {σ : σ |H (ϕei → ϕsi)};

A′ = {σ : σ |H (ϕe1 ∧ ϕe2)};

G′ = {σ : σ |H
(
(ϕe1 ∧ ϕe2)→ (ϕs1 ∧ ϕs2)

)
}.

We immediately observe that A′ = A1 ∩ A2 while G′ ⊇
(G1∩G2). Now, let C = (A,G) be the global contract and C1 =
(A1,G1), C2 = (A2,G2) the local contracts, all in saturated
form. Clearly, for any implementationMi,Mi |H Ci if and only
if its set of behaviors σMi ⊆ Gi, i.e. σMi |H ϕi, after alpha-
bet equalization. Moreover, because any implementations
M1 and M2 of C1 and C2 are composable, contract compo-
sition using equations (1) and (2) is well defined and the
composition M1 × M2 (under the interconnection I) is an
implementation of C1 ⊗ C2 (under the interconnection I).
We now prove that

C1 ⊗ C2 � C,

i.e., C1 ⊗ C2 = (A12,G12) refines C. By the definition of
refinement, this amounts to showing that G12 ⊆ G and
A12 ⊇ A. We obtain

G12 = (G1 ∩ G2) ⊆ G′ ⊆ G (5)

by conditions 1 and 2 in the theorem statement, and

A12 = (A1 ∩ A2 ∪ ¬G12) ⊇ (A1 ∩ A2) = A′ ⊇ A, (6)

by condition 1. Moreover, if C is compatible (i.e. A is not
empty), C1 ⊗ C2 will also be compatible (i.e. A12 is not
empty) by (6). Equations (5) and (6) allow us to conclude
that C1 ⊗ C2 is well defined and refines C, hence for any
implementationsM1 andM2 of C1 and C2,M1 ×M2 satisfies
the global specification.
There are two sources of conservatism in distributed syn-

thesis. The first one is due to the fact that local controllers
have only local information. Therefore, even if there exists
a centralized controller that realizes a global specification,
there may not exist local controllers that do so. This is an
inherent problem and can only be addressed by modifying the
control architecture (e.g., by changing the mapping of con-
trolled variables to controllers, by introducing new sensors, or
bymodifying the information flow between local controllers).
The second source of conservatism is computational. Even
when local controllers that realize the global specification
exist, it might be difficult to find them (e.g., see [28] for some
undecidability results). We note that the conditions provided

8 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

in Theorem 3.1 are only sufficient conditions. The choices
of ϕej and ϕsj for j ∈ {1, 2} plays a role in the level of
conservatism. In principle, ϕej and ϕsj should be chosen such
that A′ is as ‘‘small’’ as possible, and G′ is as ‘‘large’’ as
possible in the sense of set inclusion. Hence, when conditions
1 and 2 are satisfied but condition 3 is not satisfied, one can
gradually refine the local specifications. See [15] for further
details and an example of such a refinement.

F. DESIGN SPACE EXPLORATION AND PERFORMANCE
OPTIMIZATION
Several real-time performance requirements (e.g. timing con-
straints), mostly relating to the dynamic behaviors of the
physical plant and the hardware implementation of the control
algorithm, are better assessed on hybrid dynamical models.
For this purpose, we refine a subset of LTL requirements into
STL constructs on physical (e.g. electrical, mechanical) quan-
tities and leverage off-line or on-line monitoring techniques
while optimizing the system.

A Boolean verdict on whether a property is satisfied may
not be sufficient for design space exploration and system
optimization. In fact, we are also interested in capturing the
robustness of satisfaction of a formula ϕ by a signal q, i.e.,
the amount of margin by which a property is satisfied. To
do so, we refer to the quantitative semantics of STL. The
quantitative semantics of STL are defined using a real-valued
function ρ of a trace q, a formula ϕ, and time t satisfying the
following property:

ρ(ϕ, q, t) ≥ 0 iff (q, t) |H ϕ. (7)

The underlying idea is that, whenever the absolute value of
ρ(ϕ, q, t) is large, a change in q is less likely to affect the
Boolean satisfaction (or violation) of ϕ by q, i.e. the margin
by which a design satisfies ϕ is larger.
Without loss of generality, an STL predicate µ can be

identified to an inequality of the form g(q) ≥ 0 (the use
of strict or non strict inequalities is a matter of choice and
other inequalities can be trivially transformed into this form).
From this form, a straightforward quantitative semantics for
predicate µ is defined as

ρ(µ, q, t) = g(q(t)). (8)

Then ρ can be inductively defined for every STL formula
using the following rules:

ρ(¬ϕ, q, t) = −ρ(ϕ, q, t) (9)

ρ(ϕ1 ∧ ϕ2, q, t) = min(ρ(ϕ1, q, t), ρ(ϕ2, q, t)) (10)

ρ(ϕ1UIϕ2, q, t) = sup
t ′∈t+I

[
min

(
ρ(ϕ2, q, t ′),

inf
t ′′∈[t,t ′)

ρ(ϕ1, q, t ′′)
)]
. (11)

Additionally, by combining equation (11), and�I ϕ , ¬♦I¬ϕ,
we get

ρ(�I ϕ, q, t) = inf
t ′∈t+I

ρ(ϕ, q, t ′) (12)

Finally, for ♦, we get a similar expression using sup instead
of inf. It can be shown that ρ, as defined above, satisfies
equation (7) and thus defines a quantitative semantics for
STL [32].

By leveraging such quantitative semantics, a design space
exploration problem on a hybrid system model defined as
in Section III-D.2 can be formulated as follows. Let CSTL =
(ϕe, ϕs) be an STL contract encoding a set of system require-
ments, with ϕe and ϕs PSTL formulas. Let C be an array
of costs, and κ ∈ K a vector of platform configuration
parameters, i.e., a vector of variables in the hybrid system
model that are selected as a result of the design process. Our
goal is to find a set of parameter vectors κ∗ that are Pareto
optimal with respect to the objectives in C, while guarantee-
ing that the system satisfies ϕs for all possible system traces
s ∈ S satisfying the environment assumptions ϕe. Examples
of design parameters could be the controller clock or a tunable
delay in a component.

To formalize the above multi-objective optimization prob-
lem, we partition ϕs as

ϕs(τ ,π) = ϕsc(τ ,π) ∧
m∧
i=1

ϕsr,i(τ ,π), (13)

where a set of time parameters τ ∈ T and scale parameters
π ∈ Π can be used to capture degrees of freedom that
are available in the system specifications, and whose final
value can also be determined as a result of the optimization
process. The formula ϕsc in (13) encodes the requirements
that will be considered as ‘‘hard’’ optimization constraints
for Boolean satisfaction, while ϕsr,i are formulas that will
also be considered for robust satisfaction, i.e., given a system
trace s′ and a parameter set (τ ′,π ′), the robust satisfaction
ρi(ϕsr,i(τ ′,π ′), s′, 0) will also be computed. Similarly, the
array of costs C can be partitioned as follows

C(κ, τ ,π)

=

(
Cc(κ, τ ,π),Ci(ρi(ϕs,ri(τ ,π), s(κ), 0))

∣∣∣
1≤i≤m

)
, (14)

where Cc(κ, τ ,π) is a vector of costs that depend only on the
parameters of the model and the formulas; it can be used to
capture, for instance, some performance figures (e.g., band-
width, energy) as a function of the system design parameters,
or the duration of a requirement violation. Each component
Ci(ρi(ϕsr,i, s, 0)) in (14) is instead a scalar function of the
quantitative satisfaction of each formula ϕsr,i; it can be used to
capture and maximize the margin by which ϕsr,i is satisfied.
By putting it all together, the design exploration problem

can be expressed as a multi-objective robust optimization
problem

min
κ∈K,τ∈T,π∈Π

C(κ, τ ,π) (15)

s.t.

F(s, κ) = 0

s |H ϕs(τ ,π) ∀s s.t. s |H ϕe

VOLUME 2, 2014 9

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

FIGURE 2. Pictorial representation of the main steps in the electric power
system design flow in Fig. 3.

where we aim to minimize a set of costs over all possible
system and formula parameter valuations, for all the system
behaviors satisfying the behavioral model and the contract
CSTL . For a given parameter valuation κ′, s′ = (u′, y′, x′) is
the trace of input, output and internal signals that are obtained
by simulating F(.). A multi-objective optimization algorithm
with simulation in the loop can then be used to find the Pareto
optimal solutions κ∗. While this may be expensive in general,
it becomes affordable in many practical cases, as will be
shown in Section VI and Section VII.

IV. PLATFORM-BASED FLOW FOR ELECTRIC POWER
SYSTEM DESIGN USING CONTRACTS
Our design flow, pictorially represented in Fig. 2, consists of
two main steps, namely, topology design and control design.
The topology design step instantiates electric power system
components and connections among them to generate an opti-
mal topology while guaranteeing the desired reliability level.
Given this topology, the BPCU state machine can then be
synthesized in the control design phase to actuate contactors
while guaranteeing that loads are correctly powered. The
above two steps are, however, connected. The correctness of
the controller needs to be enforced in conjunction with its
boundary conditions, i.e., the assumptions on the entities that
are not controlled, yet interact with it. An example of such
an assumption is the number of paths from generators to a
load made available by the electric power system architecture
to the controller. Similarly, the reliability of an architecture
must be assessed under the assumptions that the controller
adequately configures the contactors to leverage the available
paths. Therefore, to achieve independent implementation of
architecture and controller, we address the synthesis problem
in a compositional way, by using contracts to incorporate the
information on the environment conditions under which each
entity is expected to operate.

Our design process includes a top-down and a bottom-up
phase. In the top-down phase, we associate the requirements
to the different entities in the system and formulate top-
down vertical contracts for them. In the bottom-up phase, we
populate the library of architecture components including, for
instance, generators, buses, power converters and contactors.
Each component is characterized by its attributes, including
multiple models or views, such as behavioral or reliability
views, and finite state machine or continuous-time models,
as detailed in Section III-A. Horizontal contracts specify legal
compositions between components. Bottom-up vertical con-
tracts define under which conditions a model is a faithful
representation of a physical element in the system. In what
follows, we provide details on the electric power system
design space exploration.

A. DESIGN SPACE EXPLORATION
There is currently no automated procedure for optimal syn-
thesis of control protocols simultaneously subject to reliabil-
ity, safety and real-time performance constraints. Therefore,
we reason about these three aspects of the design by using
specialized analysis and synthesis frameworks that operate
with different formalisms. Contracts specifying the interface
between components and views help transfer requirements
between different frameworks and verify correctness with
respect to the full set of requirements. As also shown in Fig. 3,
our design space exploration is organized as follows:

FIGURE 3. Electric power system architecture and control design flow and
tool chain.

a) From system requirements, we generate a set of
requirements for the electric power system architecture
(denoted as a contract CT in Fig. 3). Safety, connectivity
and power flow requirements are expressed as arithmetic
constraints on Boolean variables (mixed integer-linear
inequalities); reliability constraints are inequalities on
real numbers involving component failure probabilities.
The trade-off between redundancy and cost can then
be explored and an electric power system topology is
synthesized to minimize the total component cost while

10 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

satisfying the constraints above. The synthesized topol-
ogy serves as a specification (assumption) for the subse-
quent control design step.

b) A subset of the original high-level system specifications
are translated into LTL formulas for the topology gener-
ated in a) (contract CC,LTL in Fig. 3). Using the results
in Section III-E, a reactive control protocol is then syn-
thesized from LTL constructs and made available as one
(or more) state machines, satisfying safety and reliability
specifications by construction. However, several archi-
tectural and real-time constraints (e.g. timing) related
to the physical plant and the hardware implementa-
tion of the control algorithm are not available at this
level of abstraction. Approaches to incorporate timing
within reactive control synthesis, by using timed speci-
fication languages (e.g., timed computation tree logic)
and related synthesis tools (e.g., UPPAAL-Tiga [33]),
are currently under investigation. In this work, timing
constraints are handled at a lower abstraction level, as
detailed below.

c) The architecture in a) and the controller in b) are exe-
cuted using continuous-time or hybrid behavioral mod-
els to assess satisfaction of (some of) the requirements
at a lower abstraction level (contract CC,STL in Fig. 3).
The LTL requirements from b) are also refined into STL
formulas (contract C′C,LTL in Fig. 3). Simulation traces
are monitored to verify and optimize the controller using
the approach detailed in Section III-F. As an example, an
optimal reaction period can be selected in the presence
of delays in the switches and under the assumption of
a synchronous controller implementation. The resulting
architecture and controller pair is then returned as the
final design.

We provide details on both topology and control synthesis
in Section V and Section VI, including sufficient conditions
for their co-design, while guaranteeing that top-level require-
ments for the controlled system are satisfied.

V. ELECTRIC POWER SYSTEM TOPOLOGY DESIGN
We cast the topology design problem as amixed integer-linear
optimization problem. Our goal is to derive an electric power
system architecture that satisfies a set of connectivity, power
flow and reliability requirements, while minimizing cost and
complexity (i.e. number of components) of the overall net-
work.

The electric power system architecture is modelled as a
directed graph G = (V ,E), where each node vi ∈ V rep-
resents a component (with the exception of contactors, which
are associated with edges) and each edge eij ∈ E represents
the interconnection between vi and vj (i, j ∈ {1, . . . , n}).
Therefore, the set of Boolean variables {eij}, each denoting
the presence or absence of an interconnection, are the decision
variables for our optimization problem. While connectivity
and power flow requirements generate constraints that are
linear in the decision variables, or can be straightforwardly
linearized, the situation is different for reliability constraints.

Algorithm 1 Topology Design

A reliability constraint prescribes that the failure probability
of a critical load, i.e. the probability that a load stays unpow-
ered longer than specified because of failures, should be less
than a desired threshold. As further discussed in Section V-B,
evaluating such a failure probability produces high-order
polynomial inequalities in terms of the decision variables.
Such constraints would either call for a nonlinear solver or for
several symbolic manipulations and linearization techniques,
possibly involving large sets of auxiliary variables. There-
fore, instead of formulating a single, ‘‘flat’’ optimization
problem, we propose an iterative algorithm inspired by the
mixed integer-linear programming modulo theory approach
[34], [35], summarized in Algorithm 1.
The topology design algorithm receives as inputs: (part

of) the electric power system platform library L, including
generator power ratings g, component costs w and failure
probabilities P; a topology template T with the maximum
number of allowed components for each category and their
composition rules; the set of requirements, including con-
nectivity constraints, load power and reliability requirements.
Reliability requirements are generally specified at critical
loads or essential buses; to simplify, in Algorithm 1, we
assume that an overall system reliability requirement r∗ is
provided, as defined in Section V-B.

A mixed integer-linear program (MILP) generates mini-
mum cost topologies for the given set of connectivity and
power flow constraints. The MILP is solved in a loop with
a reliability analysis algorithm, which receives as input a
candidate topology, evaluates the failure probability of critical
loads and implements strategies to improve the reliability,
by providing additional constraints for the MILP, until all
requirements are satisfied.

The contract for the topology design step can then be
expressed as a pair CT = (AT ,GT), where AT represents
the set of topology graphs that conform to the template T
and are labelled with the generator power ratings g, the
component costs w and failure probabilities P. GT represents
the topology graphs that satisfy the load reliability require-
ments and power requirements (in nominal conditions). Both
AT and GT can be concretely expressed using mixed integer-
linear or nonlinear constraints (originated from probability
computations) in the decision variables and the graph
model parameters. In what follows, we detail the two key

VOLUME 2, 2014 11

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

components of our synthesis flow, namely theMILP formula-
tion function FORMMILP and the reliability analysis function
RELANALYSIS.

A. MIXED INTEGER-LINEAR PROGRAM FORMULATION
FORMMILP formulates the optimization problem by assuming
an initial graph template T for the electric power system
topology, comprising a maximal number of virtual nodes and
edges together with their composition rules. Some nodes and
edges are activated during an optimization run to generate
a candidate topology. The others remain inactive or can be
used in subsequent optimization runs to provide redundant
paths, by increasing or reconfiguring the electric power sys-
tem interconnections until all the reliability requirements are
satisfied. The candidate topology resulting from an optimiza-
tion step is a minimal topology, in which unnecessary nodes
and edges are pruned away to minimize the overall network
cost, while satisfying a set of connectivity and power flow
constraints.

To simplify our notation, we partition the adjacency matrix
ofG into smaller blocks to represent interconnections between
subsets of components, as summarized in Table 2. For
instance, the interconnections between ngen generators and
nacb AC buses can be represented by a ngen × nacb connec-
tivity sub-matrix denoted asMgb. We further assume that any
interconnection (edge) between two components is associated
to a contactor. Relaxing this assumption entails minor modi-
fications in our formulation to handle contactors as separate
nodes in G.

TABLE 2. Connectivity sub-matrices.

The cost function is the sum of the costs of all components
(associated with the nodes) and contactors (associated with
the edges) used in the electric power system architecture, i.e.

|V |∑
i=1

δiwi +
|V |∑
i=1

|V |∑
j=1

eijw̃ij (16)

where |V | is the number of nodes, wi is the cost of compo-
nent i, w̃ij is the cost of contactor on edge eij and δi is a binary
variable equal to one if the component is instantiated in a
topology and zero otherwise.

All components and paths in the electric power system
need to obey the composition rules in our library. In particu-
lar, connectivity constraints enforce legal connections among
components and are formalized as arithmetic constraints on
the Boolean decision variables. As an example, we prescribe
that any DC load must be directly connected to only one

DC bus as follows:
ndcb∑
i=1

Mdl
i,j = 1 ∀ j ∈ N, j ∈ [1, nload].

Moreover, all DC buses that are connected to the network
(e.g. to a load or another DC bus) must be connected to
at least one TRU to receive power from an AC bus i.e.
∀ j ∈ N, j ∈ [1, ndcb]

nrec∑
i=1

M rd
i,j ≥

nload∑
i=1

Mdl
j,i ,

nrec∑
i=1

M rd
i,j ≥

ndcb∑
i=1

Mdd
j,i .

All TRUs that are connected to a DC bus must be connected
to at least one AC bus, i.e. ∀ j ∈ N, j ∈ [1, nrec]

nacb∑
i=1

Mbr
i,j ≥

ndcb∑
i=1

M rd
j,i .

Similarly, all AC buses that are connected to a TRU or another
AC bus must be connected to one generator, i.e. ∀ j ∈ N, j ∈
[1, nacb]

ngen∑
i=1

Mgb
i,j ≥

nrec∑
i=1

Mbr
j,i ,

ngen∑
i=1

Mgb
i,j ≥

nacb∑
i=1

Mbb
j,i ,

while a rectifier cannot be directly connected tomore than one
DCbus and tomore than oneACbus, i.e. ∀ j ∈ N, j ∈ [1, nrec]

ndcb∑
i=1

M rd
j,i ≤ 1,

nacb∑
i=1

Mbr
i,j ≤ 1.

Power-flow constraints are used to enforce that the total
power provided by the generators in each operating condition
is greater than or equal to the total power required by the con-
nected loads. For instance, in normal operating conditions, the
power generated on each side should be greater than or equal
to the total power required by the loads on that side. On the
other hand, when only the APU is active, then it should be
capable of powering at least the non-sheddable loads on both
sides of the system.

B. RELIABILITY ANALYSIS
As discussed in Section III-A, every library component is
characterized by a reliability model estimating the failure
probability during its operation. Experimental data on the
failure rates of the physical components (e.g. contactors,
generators, buses) have been collected over the years and
made available in the literature. Failure rates can be related
to probabilities as follows. We assume that the time at which
a component can fail is a random variable with an exponential
distribution, whose parameter λ is the failure rate [36]. There-
fore, the probability that a failure is observed in a time interval
T can be computed as Pfail = 1− e−λT . The objective of the
reliability analysis function RELANALYSIS is then to compute
the probability of composite events of failure in the system,
starting from the failure probabilities of its components. We
denote as overall system failure F an event in which there is no
possibility for any of the available generators to deliver power

12 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

to a critical load or an essential bus. Therefore, the overall
system failure probability r , also denoted as reliability level,
is defined as

r = P(F) = P

(
m⋃
k=1

Fk

)
, (17)

where Fk is a failure event at the critical load (or essential
bus) j, and m is the total number of critical loads (or essential
buses).We assume that when a component fails, it is no longer
possible to deliver power from and through that component,
i.e. the component becomes an open circuit in the schematic
and cannot be recovered. Moreover, failures in different com-
ponents are considered as independent.

To compute the reliability at a critical load, we adopt an
extension of traditional fault tree analysis (FTA) that supports
hierarchical composition, similar to the approach in [37].
Besides handling decomposition with respect to the hierarchy
of failure influences, our formulation is able to compute
failure probabilities directly from the electric power system
topology. Our assumption is that the reliability level of an
electric power system can be statically determined by its
topological structure and the redundancy of the paths used
to power a critical load.

To compute the event Fi of a system failure at component i,
we first convert the original electric power system graph G =
(V ,E) into a directed graph G′. An edge is directed from vi to
vj if vi receives power by (or through) vj when traversing the
graph from a critical load to a generator. An example of such
a graph G′ is shown in Fig. 4. Let A be the adjacency matrix
for G′, Pi be the event that component i fails (self-induced
failure), and let pi = P(Pi). Then, the event Fi of a system
failure at component i can be recursively computed as follows

Fi = Pi ∪

 n⋂
j=1
Ai,j 6=0

Fj

 (18)

where Ai,j is ith-row, jth-column element ofA. In other words,
component i ceases to be powered when either a failure is
generated by itself, or when failures are induced in all its
neighbor nodes. We denote as neighbors only those nodes
through which i can actually receive power.

When G′ is a tree, computing the failure probability for a
critical load i is straightforward. The tree is traversed from
the critical load (the root of the tree) to the generators (the
leaves of the tree), and the probability of failure at node i can
be directly derived from equation (18) as

P(Fi) =
{
pi if Ai,j = 0 ∀j
pi + (1− pi)

∏n
j=1[P(Fj)]Ai,j otherwise.

(19)

If G′ includes cycles, failure probabilities of critical loads can
still be computed by traversing the graph using a similar pro-
cedure as above, as sketched by the recursive implementation
in Algorithm 2.

Algorithm 2 COMPRELIABILITY

To compute the failure probability at a critical load i,
COMPRELIABILITY stores in L all the neighbor nodes of i
that have not been visited yet (provided by the function
UNVNEIGH). Then, COMPRELIABILITY generates all possi-
ble combinations of failure events due to components in L
(provided by the function GENEVENT) and compute their
probability, by multiplying the contributions due to inde-
pendent components and summing up the contributions due
to disjoint events. Whenever one (or more) components are
healthy (EXISTSHEALTHY returns one), COMPRELIABILITY is
recursively called by using such healthy components as cur-
rent nodes. Recursion stops when either a healthy generator
is found or L is empty. In the first case, there exists a path
of healthy components from a generator to a critical load
and, therefore, its failure probability is zero. Otherwise, a
‘‘healthy’’ path is found which does not include a generator;
its contribution to the overall failure probability is then irrel-
evant and COMPRELIABILITY returns the neutral element 1.
At each iteration, if the optimal architecture satisfies the

reliability constraints, it is returned as the final solution.
Otherwise, RELANALYSIS. estimates the number of paths
needed to achieve the desired reliability and suggests a set
of strategies to implement the required paths by augmenting
the original optimization problem with a set of connectivity

VOLUME 2, 2014 13

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

FIGURE 4. Directed graph representation of an electric power system
architecture. Unconnected nodes represent virtual components.

constraints. Such strategies are subsequently deployed until
the target failure probability is reached. As a first strategy, the
number of available paths is increased by introducing addi-
tional interconnections (and contactors) between the right and
the left side buses of the system, where critical loads are
connected. Afterwards, redundancy in the DC and AC buses
on each side of the topology is increased. Finally, redundant
components may be added if available, whenever they are
compatible with other cost or weight constraints.

As an example of constraints generated to improve reliabil-
ity, we enforce that the number of connections between left-
side and right-side DC buses be incremented by adding

nLdcb∑
i=1

nRdcb∑
j=1

Md,LR,new
i,j ≥ 1+

nLdcb∑
i=1

nRdcb∑
j=1

Md,LR,old
i,j . (20)

However, if a right-side DC bus is connected to a left-side DC
bus then it should also be connected to a right-side DC bus or
load, i.e.,

Md,LR,new
i,j ≤ max{max

k
Mdl,R
j,k ,max

k
Mdd,R
j,k } (21)

∀ i ∈ N, i ∈ [1, nLdcb],∀ j ∈ N, j ∈ [1, nRdcb]. Moreover, if a
left-side DC bus is connected to a right-side DC bus, then it
should also be connected to a rectifier, i.e.,

Md,LR,new
i,j ≤ max

k
M rd,L
k,i (22)

∀ i ∈ N, i ∈ [1, nLdcb],∀ j ∈ N, j ∈ [1, nRdcb]. The super-
scripts R and L in equation (21) and equation (22) denote
left and right-side matrices, Md,LR is the left-right DC bus
connectivity matrix, nLdcb and n

R
dcb are the number of left and

right DC buses, respectively. Equations (20)-(22) are encoded
and added to the optimization constraints for the next iteration
every time the number of connections between left-side and
right-side DC buses must be incremented. Similar constraints
must also hold after replacing R with L, and vice-versa, in
equations (21) and (22).

VI. ELECTRIC POWER SYSTEM CONTROLLER DESIGN
Power requirements of different loads might differ in an
aircraft based on the mode of operation. Similarly, the avail-
ability of the generators and the health conditions of several
components might vary during the flight. The goal of the
BPCU (i.e., controller) is to reconfigure the electric power
system and reroute power by appropriately reacting to such
changes in system conditions to ensure that safety-critical
loads are always powered. In this section we first describe
how the control logic for the BPCU can be automatically
synthesizedwithin the proposed framework. Then, we present
a domain specific language for electric power system to facil-
itate requirement formalization for reactive synthesis based
on LTL. Finally, we discuss the use of STL and simulation-
based design space exploration to check or enforce real-time
constraints (e.g. timing) for controller implementation.

A. SYNTHESIS OF REACTIVE PROTOCOLS FOR ELECTRIC
POWER DISTRIBUTION
The control protocol synthesis problem for electric power
system can be stated as follows: given an electric power
system topology (generated as discussed in Section V) and
a formal specification describing assumptions on the compo-
nents and requirements for the system, build a controller that
reconfigures the system (via turning on and off the contactors)
by sensing and reacting to the faults and the changes in system
status so as to ensure that the specification is met. Next, we
discuss how to formalize the requirements to recast the above
problem as a reactive synthesis problem.

1) VARIABLES
Environment variables include the health statuses of com-
ponents that are uncontrolled. In our formulation, we
consider only generators, APUs, and rectifier units as envi-
ronment variables. They can each take values of healthy (1)
and unhealthy (0), and may change at any point in time.1

Controlled variables are contactors, and can each take val-
ues of open (0) or closed (1). A closed contactor allows
power to pass through, while an open one does not. Depen-
dent variables are buses that can be either powered (1) or
unpowered (0). Bus values will depend on the status of their
neighboring contactors, buses, as well as the health status of
connecting generators, APUs, or rectifier units.
Timing considerations play a key part in the specifications

for an electric power system. LTL, however, only addresses

1Generators can be taken offline by the pilot or may stop functioning
due to a fault. We do not differentiate between these cases and simply call
a generator unhealthy when it is unavailable or malfunctioning.

14 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

the notion of temporal ordering of events. To reconcile
this discrepancy, we handle timing annotations by introduc-
ing clock variables. Verification of actual timing constraints
related to the controller implementation is then performed at
a lower abstraction level, as detailed in Section III-F.

Based on the set of variables above, system specifications
are expressed as a contract CC = (AC ,GC), where assump-
tions AC encode the allowable behaviors of the environment
the control system operates in, and guarantees GC encode the
controller requirements. By defining AC = {σ |σ |H ϕe}

and GC = {σ |σ |H (ϕe → ϕs)}, with ϕe and ϕs as in
equation (4), a behavior σ |H ϕ if and only if σ is in the
guarantees of CC (already in saturated form). Therefore, solv-
ing the reactive synthesis problem is equivalent to generating
an implementation for CC . The following lists the temporal
logic formulas used to concretely express the contracts for
controller synthesis for the primary distribution problem in
an electric power system.

2) ENVIRONMENT ASSUMPTIONS
Let I be an index set enumerating the set of environment
variables described in Section VI-A.1. For each environment
variable ei, i ∈ I, let pi be its probability of failure in a
given time interval T as defined in Section V-B. Let rS be
the overall reliability level the system has to achieve, that is,
the probability of the overall system failure should be less
than or equal to rS . Assuming independence of component
failures, the overall reliability level determines the allow-
able environment assumptions by providing a bound on the
number of simultaneous component failures allowed. More
formally, denote a single configuration of the environment
(i.e., an environment state) by e. For a given subset I ′ ⊆ I
of the environment variables, we define eI ′ = (e1, . . . , e|I|),
where ei = 0 (unhealthy) if i ∈ I ′; and ei = 1 (healthy)
otherwise. Let h : [0, 1]→ 22

I
be the function that maps the

system reliability level to the possible environment config-
urations. We can then enumerate all allowable environment
configurations based on the required reliability level, as

ES =
{
eI ′ |I ′ ∈ h(rS)

}
. (23)

With this definitions, an environment assumption can be writ-
ten in LTL as � (e ∈ ES).
As the function h can be difficult to compute, alterna-

tively, one can reason about the probability rC of an environ-
ment configuration and map it back to the system reliability
level rS . To this effect, we enumerate all environment config-
urations that occur with probability more than a given level
rC . Then, if the control synthesis problem is realizable with
the assumption � (e ∈ EC), this implies that the system level
reliability is

rS =
∑
e/∈EC

∏
j:ej=0

pj
∏
j:ej=1

(1− pj).

The second environment assumption is also related to fail-
ure analysis. We assume that when a component fails during

the flight (the interval T), it will not come back online. This
can be expressed in LTL as

�
∧
i∈I
((ei = 0)→©(ei = 0)) . (24)

3) CONTROLLER GUARANTEES
We consider the following system requirements as LTL guar-
antees for the controller.
Power Status of Buses:An AC bus can only be powered if

there exists a live path (i.e., all contactors closed along a path)
that connects the bus to a healthy AC generator or a healthy
APU. Similarly, a DC bus can only be powered if there exists a
live path that connects it to a healthy rectifier unit, which itself
is connected to a poweredAC bus. Let p̃i,B denote the set of all
components (i.e., contactors and buses) along a path between
bus B and environment variable ei for i ∈ I, excluding B
and ei. Furthermore, let G ⊆ I and R ⊆ I represent the sets
of generators and rectifier units. AC bus B is powered if there
exists a live path between B and ei for i ∈ G, written as2

�

∨
i∈G

(ei = 1) ∧
∧

X∈p̃i,B

(x = 1)

→ (b = 1)

. (25)

If there exists no live path between B and a generator ei for
i ∈ G, then B will be unpowered

�

¬∨
i∈G

(ei = 1) ∧
∧

X∈p̃i,B

(x = 1)

→ (b = 0)

. (26)

A similar set of specifications for DC buses holds in which
environment variables ei span i ∈ R.
Balanced Power Flow in Nominal Conditions: Under

nominal conditions (i.e., when all generators and rectifier
units are healthy), the power drawn from each generator by
the buses connected to it should be less than the capacity
of that generator. Let P̃B be a constant that corresponds to
the maximum power required by the loads connected to the
bus B and P̃ei be a constant corresponding to the power
generator i can nominally provide. Using the live path con-
structs, we define the power variables li,B ∈ {0, P̃B} such that∧

X∈p̃i,B (x = 1) → (li,B = P̃B), and ¬
∧

X∈p̃i,B (x = 1) →
(li,B = 0). Then, the power flow requirement can be written
as

�

∧
i∈I

(ei = 1)→
∧
i∈G

(
P̃ei ≥

∑
B∈B

li,B

),
where B represents the set of buses.
No Paralleling of AC Sources: To avoid paralleling, we

explicitly enumerate and disallow all bad configurations. In
Fig. 1, paralleling can occur if there exists a live path that
connects two AC generators or APUs. Let p̃i,j represent the
set of components along a path between generators ei, ej, for
i, j ∈ G and i 6= j. We disallow configurations in which all

2Per abuse of notation, we denote components by uppercase letters (e.g.,
C, B) and component statuses by lowercase letters (e.g., c, b).

VOLUME 2, 2014 15

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

contactors C ∈ p̃i,j create a live path. These specifications
are written as

�
∧
i,j∈G

¬ ∧
C∈p̃i,j

(c = 1)

. (27)

Safety-Criticality of Buses: A safety-critical bus can be
unpowered for no longer than Ts time steps. This is imple-
mented through the use of an additional clock variable xB for
each bus B, where each ‘‘tick’’ of the clock represents δ time.
If the bus is unpowered, then at the next time step clock xB
increases by δ. If B is unpowered, then at the next time step
clock xB resets to zero. Then, we limit the number of steps
B can remain unpowered in order to ensure that xB never
becomes larger than Ts. Thus, for all safety-critical buses,

� {(b = 0)→ (©xB = xB + δ)}, (28a)

� {(b = 1)→ (©xB = 0)}, (28b)

� (xB ≤ Ts). (28c)

Unhealthy Sources: A bus connected to an unhealthy
source (generator or rectifier unit) will create a short-circuit
failure, leading to excessive electrical currents, overheating,
and possible fires. While generators have internal protections
to avoid such failures, we require that appropriate contactors
open when a generator or APU becomes unhealthy to isolate
the unhealthy source and prevent its use. Let N (ei) represent
the set of contactors directly connected, or neighboring, envi-
ronment variable ei for i ∈ I. We write the specifications to
disconnect all unhealthy sources as

�
∧
i∈I

(ei = 0)→
∧

C∈N (ei)

(c = 0)

. (29)

The above mentioned specifications can be put in assume-
guarantee form as in equation (4). Moreover, since they are
within the GR(1) fragment of LTL, digital synthesis tools,
such as the one implemented in JTLV [30], can be used to
automatically synthesize the control protocol. For the exam-
ples discussed in this paper, we used the Temporal Logic
Planning (TuLiP) Toolbox [31], a collection of Python-based
code for automatic synthesis of embedded control software,
which provides an interface to JTLV.

4) CAPTURING ACTUATION DELAYS
In the discussion above, we assumed ideal contactors that
can be instantaneously controlled. It is possible to capture
delays in contactor opening and closing times, as well as
the communication delays between the controller and the
contactors. To this effect, one can introduce a controlled vari-
able C̃ to represent the controller intent for contactor C and
treat the contactor as an environment variable. The uncertain
delay between the controller intent and contactor state can be
handled by the use of an additional clock variable xC for each
contactorC , where each ‘‘tick’’ of the clock represents δ time.
If the contactor intent is open and the contactor state is closed,
the contactor opens within [Tomin ,Tomax] units of time unless

a close command is issued before it opens. If the contactor
intent is closed and the contactor state is open, the contactor
closes within [Tcmin ,Tcmax] units of time unless an open com-
mand is issued before it closes. Once the contactor intent is
set, if the contactor state does not match the intent, at the next
step clock xC will increase by δ. If contactor state and intent
match, then at the next step clock xC resets to zero:

� {(©c = c̃)→ (©xC = 0)}.

When the control command is the same as the contactor state,
the contactor state remains the same, i.e.,

� {(c̃ = c)→ (©c = c)}.

Finally, the assumption capturing the contactor closing
behavior in relation to the controller input intent is given by

� {(c̃ = 1 ∧ c = 0 ∧ (xC < Tcmin))→

(©c = 0 ∧ ©xC = xC + δ)},

� {(c̃ = 1 ∧ c = 0 ∧ (xC ≥ Tcmin))→

(©c = 1 ∨ ©xC = xC + δ)},

� (xC ≤ Tcmax).

The contactor opening behavior can be formally captured in
a similar manner. The formulas mentioned in this section
enter to the control synthesis problem as new environment
assumptions when delays are taken into account. It should
also be noted that unhealthy sources can only be disconnected
with a delay in this case, therefore formula (29) should be
adjusted accordingly.

B. DOMAIN-SPECIFIC LANGUAGE
The lack of familiarity with formal methods among system
engineers provides a challenge to the actual adoption of
reactive synthesis techniques. Therefore, we also propose an
electric power system domain-specific language that enables
automatic generation of the LTL specifications described in
Sections VI-A.2 and VI-A.3 out of a set of pre-defined prim-
itives. Our language can smoothly interface with pre-existing
tools, such as visual programs for single-line diagrams, which
engineers are familiar with, as well as with the topology
design framework in Section V.
A graph data structure G = (V ,E) as the one used in

Section V can be generated from a visual representation of the
topology, provided by the user, or directly imported as a result
of the design procedure in Section V. The set of nodes V
represents the set of components, consisting of generators,
buses, and rectifier units; the set of edges E represents the
set of contactors as well as solid wire links between com-
ponents. The adjacency matrix A is a square matrix whose
diagonal entries are zeros, and whose non-diagonal entries
are ones or zeros depending on whether a connection (with or
without contactors) exists between vertices. The component
properties that are used to formulate the LTL specifications
are directly referenced from the component attributes in the
platform library, as described in Section III-A. Given the elec-
tric power system topology and the component attributes, the

16 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

LTL specifications in Section VI-A can be converted from a
set of primitives, a representative subset of which are provided
in the following.

Environment assumptions: In the environment primitive,
the first input is the system reliability level, followed by all
subsets of components that are uncontrolled and can fail.
As an example, when only generators and rectifier units are
assumed to fail, this can be written as env(rS ,Ge,Re), where
Ge ⊆ G andRe ⊆ R, G andR being the sets of all generators
and rectifier units, respectively.

No-paralleling of AC sources:A ‘‘non-paralleling’’ prim-
itive accepts as inputs any subset of G, and can be written as
noparallel(Gp), where Gp ⊆ G.

Essential (safety-critical) buses: Let the set of all buses
be B. An ‘‘essential bus’’ primitive can input any subset
of B such that the bus elements can be unpowered for no
longer than the maximum allowable time as specified in the
component library. This primitive is written as essbus(Be),
where Be ⊆ B.

Disconnect unhealthy sources:A ‘‘disconnect’’ primitive
can take as input the union of subsets of G and R. This
primitive is written as disconnect(Gd ,Rd), where Gd ⊆ G
and Rd ⊆ R.

C. CO-DESIGN OF TOPOLOGY AND CONTROL
As mentioned in Section IV, topology and control protocol
need to be coherently designed to satisfy the top-level require-
ments of an electric power system. In this section, we deal
with the co-design problem for both system topology and
control protocol to satisfy a system contract CS with an over-
all reliability requirement rS . We show that if system-level
requirements are partitioned according to the contracts CT and
CC , as defined, respectively, in Section V and Section VI-A,
then the electric power system can be designed in a composi-
tional way, i.e., the methodologies illustrated in in Section V
and Section VI-A can be independently deployed, while guar-
anteeing that the assembled system is correct and satisfies CS .
In particular, Propositions 6.1 and 6.2 below discuss con-

ditions for the controlled system to satisfy the system-level
contract CS if the selected topology and control protocol
satisfy their contracts CT and CC . First, in Proposition 6.1, we
assume that actuation delays are ignored in control synthesis.
We then remove this assumption in Proposition 6.2.
Proposition 6.1: Assume contactor delays are ignored in

control synthesis (i.e., Tomin = Tomax = Tcmin = Tcmax = 0,
therefore no contactor intent variable is introduced). If the
topology implements its contract CT with a reliability level rT ,
then a centralized control implementing its contract CC for
this topology is always realizable when a reliability level
rS ≥ rT is used while generating the environment assump-
tions as in (23). Moreover, the controlled system will satisfy
the system-level requirements with a reliability level rS .

Proof: As shown in Figs. 2 and 3, both the topology
synthesis and control synthesis steps are based on a con-
sistent set of models and share the same labelled topology
template T . In fact, the configurations conforming to T are

the assumptions for the topology contract CT , while the syn-
thesized topology is used to generate the LTL formulas for
the controller contract CC . We prove the realizability of the
controller by discussing the system-level requirements listed
in Section VI-A.3 and Section V as follows:
(a) Reliability Requirements. In both the topology and

control design steps, we assume that when a component fails
it will not come back online. Therefore, reliability require-
ments are treated as static requirements in failure condition.
If the topology guarantees a reliability level rT , then there
are enough components and paths from generators to critical
loads such that any combination of component faults causing
a system failure has a joint probability p < rT . Let ET be
set of all the environment configurations that correspond to
these combinations of component faults, and let ET be its
complement. Then any combination of faults associated with
a configuration in ET does not cause any loss in system func-
tionality because of the available redundancy. Since rS ≥ rT
is used in CC , ES ⊆ ET will also hold, hence accommodating
any combination of faults associated with an environment
configuration in ES will also be feasible. Therefore, a cen-
tralized controller assuming a reliability level rS in CC will
always realize this specification, thus guaranteeing an overall
reliability level r = rS for the controlled system.
(b) Balanced Power Flow in Nominal Conditions. Power

requirements are treated as static requirements in nominal
condition. Power flow constraints in the topology optimiza-
tion problem enforce that loads on each side of the topology
graph are selectively connected to one or more generators on
the same side, in such a way that the total power capability
of the generators is equal or larger than the required power
from the respective loads. It is, therefore, enough to use the
available paths in the synthesized topology for a centralized
controller to realize this specification.
(c) Unhealthy Sources. Connectivity constraints in the

topology optimization problem enforce that any edge (inter-
connection) originating from a source node (generator or
rectifier unit) is associated with a contactor. Therefore, it
is always possible for a centralized controller to open such
contactors to isolate unhealthy sources and realize this spec-
ification. Since contactors can be instantaneously operated,
full isolation of unhealthy sources is guaranteed within one
time step (δ time).
(d) No Paralleling of AC Sources. As discussed above, all

AC sources can be isolated by opening the related contactors.
Moreover, connectivity constraints prescribe that AC buses
be also connected via contactors. This makes it possible for
a centralized controller to always realize this specification by
isolating buses connected to different AC sources as well as
isolating unhealthy sources while inserting healthy ones.
(e) Safety-Criticality of Buses. Since all contactors are

assumed as ideal and instantaneously controllable, it is always
possible for a centralized controller to configure the topology
and realize this specification whenever Ts ≥ δ.
We then conclude that the conjunction of the LTL formu-

las used in CC to formalize requirements (b)-(e) under the

VOLUME 2, 2014 17

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

assumptions in (a) can always be realized by a centralized
controller if rT ≤ rS holds.

Based on Proposition 6.1, for the controlled system to
satisfy a contract CS with a reliability level rS , it is enough
to select a topology that implements its contract CT with a
reliability level rT ≤ rS , and then synthesize a centralized
controller for the selected topology by using a reliability
level rS to generate the environment assumptions. When con-
tactor delays are not ignored in control synthesis, a similar
proposition holds if an additional condition is assumed on
the maximum bus unpowered time Ts allowed in (28), as
discussed below.
Proposition 6.2: Assume delays in the contactors are

taken into account in control synthesis (i.e., Tomin > 0 and
Tcmin > 0). If the topology implements its contract CT with a
reliability level rT , then there exists a large enough time T ∗

such that a centralized control implementing its contract CC
for this topology is realizable when a reliability level rS ≥ rT
in equation (23) and a bus unpowered time Ts ≥ T ∗ in
equation (28) are used while generating CC . Moreover, the
controlled system will satisfy the system-level requirements
with a reliability level rS .

Proof: As in Proposition 6.1, both the topology and
control synthesis steps are based on a consistent set of models
and share the same template T . Moreover, we can prove the
realizability of the controller by discussing the requirements
in Section VI-A.3 and Section V one at a time. In particular,
the static specifications in (a) and (b) will be always realizable
by the same arguments used in Proposition 6.1. To show that
the dynamic requirements in (c), (d) and (e) will also be
realizable when actuation delays are taken into account, we
proceed as follows:

(c)-(d) Unhealthy Source Isolation and AC Sources Paral-
leling. By the same arguments used in Proposition 6.1 (c), all
sources (includingAC sources) can be isolated by opening the
related contactors. Moreover, the topology connectivity con-
straints prescribe that AC buses should also be connected via
contactors. Even if contactors can only be opened or closed
with a delay, it is still possible for a centralized controller
to realize this specification by disconnecting two AC buses
at least Tomax time before connecting them to different AC
sources or by isolating unhealthy sources at least Tomax time
before connecting the healthy ones.

(e) Safety-Criticality of Buses. To guarantee that safety-
critical buses are unpowered for no longer than the desired
time Ts, the controller needs to reconfigure the topology by
opening and closing sets of contactors to deactivate existing
components and paths and activate new ones. Because of
the actuation delay, topology reconfigurations cannot occur
instantaneously; some sets of contactors will need to be
actuated in sequence to guarantee isolation of unhealthy
sources and prevent paralleling of AC sources, as required in
(c) and (d). Since there is a finite number of topology config-
urations, there will also be a finite number of possible recon-
figurationsR. Consider the step i from an initial configuration
Ai to a final configuration Zi. Let nio and n

i
c be the minimum

number of contactor sets that must be, respectively, opened
and closed in sequence in order to provide power to a critical
bus during reconfiguration i. Then, theminimum (worst-case)
time during which at least one critical bus stays unpowered
will be

Ti = nio

⌈
Tomax
δ

⌉
δ + nic

⌈
Tcmax
δ

⌉
δ.

Let T ∗ = maxi∈R Ti; then, T ∗ is theminimumbus unpowered
time that can always be guaranteed across all possible topol-
ogy reconfigurations. Therefore, a centralized controller can
always be realizable when Ts ≥ T ∗ is chosen in CC .
As in Proposition 6.1, by combining the arguments above

with the ones used in (a) and (b), we can conclude that the
conjunction of the LTL formulas used in CC to formalize
requirements (b)-(e) under the assumptions in (a) can always
be realized by a centralized controller if rT ≤ rS and Ts ≥ T ∗

hold.

D. SIMULATION-BASED DESIGN SPACE EXPLORATION
As shown in Section VI-C, the design steps in Section V
and Section VI-A allow synthesizing electric power system
architectures and control protocols that jointly satisfy the top-
level system specifications, represented by contracts CT and
CC,LTL . To assess the satisfaction of real-time performance
constraints, we monitor STL formulas from the controller
contracts CC,STL and C′C,LTL on voltage and current wave-
forms over time, as discussed in Section III-F and Section IV.
As an example, we investigate here the maximum reaction
time allowed to the controller. For this purpose, we assume
a synchronous implementation of the controller, running at
a fixed period Tr . In our hybrid model, the BPCU is con-
nected in closed loop with the power system plant, while
failure events can be injected by setting the input signal u(t).
Moreover, we assume that all contactors respond with a fixed
delay Td to the open/close commands from the BPCU. We
then consider the requirement that a DC essential bus must
never be unpowered for more than tmax under any possible
failure scenario. In a continuous setting, such a requirement
is translated by stating that the DC bus voltage VDC should
never deviate from the desired value Vd by more than a
margin ε for more than tmax . The predicate specifying that
the current value of the voltage stays in the desired range is:
|VDC (t)− Vd | < ε. Then, the STL formula expressing this to
be false for at least tmax is:

χ =�[0,tmax] ¬(|VDC (t)− Vd | < ε). (30)

Since we need to enforce that VDC is never out of range only
after the initial start-up transient time τi, we require

φ(τi) = ¬(♦[τi,∞) χ) (31)

to be true.
To compute the maximum amount of time elapsed while

theDCbus voltage is out of range, i.e. for how long atmost the
voltage requirement on the DC bus is violated, we turn (30)
into a PSTL formula, by introducing the timing parameter

18 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

τe, after which an out-of-range voltage event is detected, as
follows:

ψ(τe) =�[0,τe] ¬(|VDC (t)− Vd | < ε). (32)

The initial start-up transient time τi is estimated from simula-
tion as a function of Tr and Td . Then, the maximum violation
period τ ∗e (Tr ,Td) can be computed as the

sup{τe ≥ 0 | φ (τi(Tr ,Td), τe) = False}, (33)

where
φ(τi, τe) = ¬(♦[τi,∞) ψ(τe)). (34)

The formula in (34) allows exploring the Tr -versus-Td
design space and finding the maximum allowed controller
reaction time T ∗r for a fixed T ∗d , in such away that the essential
DC bus is never out of range for more than tmax . To do so,
we cast an optimization problem following the formulation
in (15)

min
Tr>0

1/Tr (35)

s.t.


F(u,VDC ,Tr) = 0

VDC |H φ
(
τi(Tr ,T ∗d), τe

)
∀τe ≥ tmax

∀u s.t. u |H ϕ′e
where C = 1/Tr is the cost function, κ = Tr is the
design parameter, ϕs(τ) =

∧
τe≥tmax φ

(
τi(Tr ,T ∗d), τe

)
is the

conjunction of PSTL formulas that must be satisfied, each
parameterized by τ = Tr , and ϕ′e refines the environ-
ment assumption formula ϕe in Section VI-A. In this case,
the system behavior s is the trace s = (u,VDC), where
VDC is the output signal to be observed during simula-
tion, and u spans the set of all admissible failure injection
traces that are consistent with the environment assumptions
in Section VI-A.2.

The formulation in (35) includes an infinite set of formulas
that must be satisfied for all admissible failure traces and
values of τe ≥ tmax . However, such formulation can be further
simplified, by observing that (35) is equivalent to

max
Tr>0

Tr (36)

s.t.

F(u,VDC ,Tr) = 0

τ ∗e (Tr ,T
∗
d) ≤ tmax ∀u s.t. u |H ϕ′e

where τ ∗e is defined in (33). Moreover, as shown in
Section VII-C, it is enough to compute VDC (t) and τ ∗e under
the worst case failure scenario, rather than for all possible
failure traces, whenever the worst case assumptions on u(t)
can be determined a priori. Problem (36) can then be solved
by first solving the optimization problem in (33) to compute
τ ∗e as a function of Tr and T ∗d in the worst case input scenario,
and then by computing the value T ∗r of the controller reaction
time that makes τ ∗e equal to tmax . For the example discussed in
this paper, we used the Breach toolbox [38] to facilitate post-
processing of simulation traces and verify the satisfaction of
the STL formulas.

VII. DESIGN EXAMPLE AND RESULTS
We illustrate our methodology on the proof-of-concept design
of the primary power distribution of an electric power system,
involving the configuration of contactors to deliver power to
high-voltage AC and DC buses and loads.

A. TOPOLOGY SYNTHESIS
The topology synthesis algorithm has been implemented in
Matlab and leverages Cplex [39] to solve the MILP at each
iteration. We present the result obtained for an electric power
system topology template T consisting of two generators, two
AC buses, two rectifiers, two DC buses and two loads on each
side. Tables 3 and 4 report the load power requirements and
the generator power ratings in our example; Table 5 shows the
component costs, while the failure probabilities are reported
in Table 6.

TABLE 3. Load requirements.

TABLE 4. Generator power ratings.

TABLE 5. Component costs.

TABLE 6. Component failure probabilities.

Figs. 4 and 5 show the topologies obtained after running
the synthesis algorithm when a set of strategies are sequen-
tially implemented after every MILP iteration to increase
reliability and satisfy the specified level r∗ = 10−9. By
solving theMILP including only connectivity and power flow
constraints, we obtain the topology in Fig. 4, the simplest

VOLUME 2, 2014 19

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

FIGURE 5. Candidate topologies for an electric power system consisting of rows of (from top to bottom) generators, AC buses, rectifier
units, DC buses, and DC loads. (a) Topology 2. (b) Topology 3. (c) Topology 4.

TABLE 7. Load and system failure probabilities for the topologies in Fig. 4
and 5.

possible architecture, which only provides a single path from
a load to a generator (or APU) on each side. Such a topology
presents the highest load and system failure probabilities, as
shown in Table 7.

In Fig. 5(a) and (b) horizontal connections are added
between the DC buses and AC buses of the left and right
hand sides of the system. Because increasing the number of
components is expensive, the algorithm first tries to increase
reliability by adding connections among existing components
at the cost of additional contactors. Additional components
(e.g. buses and rectifiers) are finally used in Fig. 5(c) to
achieve the desired specification. In Table 7, we report the
achieved reliability level (failure probability) at load LL1
and the overall achieved system reliability level rT , as com-
puted for the topologies in Figs. 4 and 5. The total com-
putation time to generate the topologies in Figs. 4 and 5
was 19.7 s on an Intel Core i7 2.8-GHz Processor with
6-GB memory. In a typical run, the number of necessary
paths to achieve r∗ is estimated after the first MILP step and
convergence to the final topology occurs in no more than
two iterations, which reduces the overall computation time to
approximately 10 s.

B. CONTROL SYNTHESIS
To validate our approach, for each of the four topologies in
Section VII-A, we formalize a set of environment assump-
tions and system specifications to synthesize centralized and
distributed control protocols for an overall reliability level

rS = rT , as discussed in Section VI-C. For the purpose of
brevity, we present the variables and formal specifications,
written in LTL, for the topology depicted in Fig. 5(b) only.

1) CENTRALIZED SYNTHESIS
Environment Variables: Generators LG1,LG2,APU1 and
rectifier units LR2 and RR2 are uncontrolled variables that
can switch between healthy (1) and unhealthy (0).
Controlled Variables: Contactors Ci,j3 (depicted only as

wires in Fig. 5) are variables that are set to open (0) or
closed (1).
Dependent Variables: Buses are either powered (1) or

unpowered (0) depending on the status of environment and
controlled variables.
Environment Assumption: We allow environment config-

urations which are mapped back from the function h in
Section VI-A.2 to an overall system reliability level rS . Topol-
ogy 3 from Fig. 5(b) has a total of 32 environment configu-
rations. For a reliability level rS = 4 × 10−8, h(rS) maps to
a set of 21 allowable configurations. The specification can
be written as a conjunction of all configurations. More com-
pactly, the environment assumption disallows configurations
in which either both rectifiers fail or all generators fail. Thus,
we can equivalently write the environment assumption for
Topology 3 as:

� ¬((LG1 = 0) ∧ (APU1 = 0) ∧ (RG1 = 0))

∧ � ¬((LR2 = 0) ∧ (RR2 = 0)).

No Paralleling of AC Sources: No combination of contac-
tors can be closed so that a path exists between generators:

� ¬((CLG1,LB2 = 1) ∧ (CAPU1,LB2 = 1))

∧ � ¬((CAPU1,RB2 = 1) ∧ (CRG1,RB2 = 1)).

Power Status of Buses: A bus can only be powered
if there exists a path (in which a contactor is closed)

3i and j denote the name of the components contactor Ci,j connects.

20 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

between a bus and a generator. In Fig. 5(b), bus LB2
is powered if either generator LG1 or APU1 is pow-
ered, and the contactor between generator and bus is
closed:

� ((LG1 = 1) ∧ (CLG1,LB2 = 1)→ (LB2 = 1)),

� ((APU1 = 1) ∧ (CAPU1,LB2 = 1)→ (LB2 = 1)).

If neither of these two cases is true, then LB2 will be unpow-
ered. These specifications are written as

� (¬(((LG1 = 1) ∧ (CLG1,LB2 = 1)

∨((APU1 = 1) ∧ (CAPU1,LB2 = 1)))→ (LB2 = 0)).

Similar specifications may be written for buses RB2,LD2,
and RD1.
Safety-Criticality of Buses: We consider all buses to

be safety-critical; at the abstraction level of LTL, this
is equivalent to require that at no time can any bus be
unpowered

� ((LB2 = 1) ∧ (RB2 = 1) ∧ (LD2 = 1) ∧ (RD1 = 1)).

The resulting controller has 32 states with a computation
time of 1.6 s on a 2.2-GHz Intel Core Processor with 4-GB
memory.

2) DISTRIBUTED SYNTHESIS
For the topology in Fig. 5(b), the distributed control syn-
thesis problem can be solved by splitting the topology into
two subsystems S1 and S2. The sets ES1 , SS1 , and ES2 , SS2
contain all environment and system variables for subsystems
S1 and S2, respectively. ES1 is composed of generators LG1,
APU1 and RG1. SS1 contains AC buses LB2,RB2, and
contactors CLG1,LB2,CAPU1,LB2,CRG1,RB2, CLB2,RB2. ES2 is
composed of rectifiers LR2,RR2 and AC buses LB2,RB2,
while SS2 contains DC buses LD2,RD1 and contactors
CLR2,LD2,CRR2,RD1, CLD2,RD1. We assume the link between
AC buses and rectifier units is a solid wire.

The environment assumption ϕeS1
for subsystem S1

enforces that at least one generator will always remain
healthy. Environment assumption ϕeS2 enforces that at least
one rectifier unit will always remain healthy. In addition, it
also assumes that both AC buses will always be powered.
This is an additional guarantee S1 must provide to S2 for
the distributed synthesis problem to become realizable. All
other specifications remain the same as the centralized control
problem.

The synthesized controllers for S1 and S2 contains 4 and 8
states, respectively. Each controller has a computation time of
approximately 0.5 s on a 2.2-GHz Intel Core Processor with
4-GB memory.

C. DESIGN SPACE EXPLORATION FOR REAL-TIME
PERFORMANCE
Continuous-time models of the plant are implemented in
Simulink, by exploiting the SimPowerSystems extension.
As an example, the continuous-time model of a generator

consists of a mechanical engine (turbine), a three-phase syn-
chronous machine, in addition to the generator control unit,
driving the field voltage of the generator. In addition to tim-
ing properties, our power network model allows measuring
current and voltage levels at the different circuit loads. It can
be discretized to speed up simulations and can seamlessly
interface also with Matlab functions or StateFlow models
implementing the controller.
In what follows, we focus on the centralized controller for

topology 3 in Fig. 5(b), and provide results for the design
exploration problem in Section VI-D. In particular, we are
interested in finding themaximum controller reaction time T ∗r
as a function of Td , so that the essential DC bus LD2 is never
out of range for more than tmax = 70 ms. Based on the envi-
ronment assumptions discussed in Section VII-B, the worst
case failure scenario for the left DC bus LD2 occurs when
cascaded failures in two generators (e.g. LG1 and APU1)
and one rectifier (LR2) correlate so as to maximize the time
the bus voltage is out of the specified range. The controller
reacts to a generator fault by routing power from another
generator and connects the two DC buses LD2 and RD1 when
one of the rectifiers fails. Therefore, the worst case failure
scenario occurs when the rectifier fault happens at the end,
and any fault after the first one happens right before LD2
fully recovers from the previous fault, while trying to reach
the desired voltage level.

Fig. 6 shows the simulated voltage VLD2 of bus LD2 as a
function of time, in the worst case scenario, for Tr = 20 ms
and Td = 20 ms, both defined as in Section VI-D. The
waveforms at the top and bottom of the figure are the voltage
signals at the LB2 (AC) and LD2 (DC) buses, respectively.
The signal in the middle represents the health status of LR2.
Both the AC and DC voltages decay to zero because of the
generators’ faults. When a fault is also injected into LR2,
an additional drop in the DC voltage is observed. The red
signal at the bottom of the figure is interpreted as a Boolean
signal, which is high (one) when χ in equation (30) holds
(i.e. the requirement is violated) and low (zero) otherwise. To

FIGURE 6. Real-time requirement violation at the DC bus LD2 due to two
generator faults followed by a rectifier fault.

VOLUME 2, 2014 21

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

FIGURE 7. Maximum duration of the violation of the DC bus voltage
requirement.

evaluate the formula (30), we used Vd = 28 V, ε = 2 V and
tmax = 70 ms. The requirement on the DC bus is violated for
24.4 ms. Therefore, (Tr = 20 ms, Td = 20 ms) is an unsafe
parameter set.

FIGURE 8. BPCU reaction times and contactor delays in the blue region
satisfy the DC bus requirement.

The Tr versus Td design space is explored in Figs. 7
and 8 by following the optimization procedure in
Section VI-D. We sampled the parameter space in approx-
imately 4 hours to obtain a 15 × 15 point grid. The first
plot represents the maximum amount of elapsed time τ ∗e ,
while the DC bus voltage is out of range, i.e. for how long
the requirement on the DC bus is violated, as computed in
equation (33). Such a violation period is then compared with
the ‘‘hard’’ threshold tmax = 70 ms in Fig. 8, thus providing
the designer with the ‘‘safe’’ region (marked in blue in Fig. 8)
for the controller reaction time as a function of the contactor
delay. As an example, for a specific value of Td = 20 ms the
maximum BPCU reaction time T ∗r allowed for safe operation
is 6.5 ms.

VIII. CONCLUSION
We presented a rigorous platform-based methodology for
the design of an aircraft electric power system. Our flow
consists of three main phases: topology synthesis, control
synthesis, and simulation-based design space exploration and
verification. To express system requirements, we adopt dif-
ferent formalisms supported by specialized synthesis and
analysis frameworks. To generate the system topology, we
formulate a mixed integer-linear program that minimizes the
overall cost while satisfying a set of connectivity, power
flow and reliability requirements, expressed in terms of linear
arithmetic constraints on Boolean variables and probabilistic
constraints. To synthesize a controller for a given topology,
we leverage results from reactive synthesis of control logic
from linear temporal logic specifications. We then refine
these LTL specifications into signal-temporal logic constructs
to assess the real-time system performance and explore the
design space at a lower abstraction level, based on high
fidelity behavioral models. Our compositional approach uses
contracts to guarantee independent implementation of system
topology and control, since both topology synthesis and con-
trol synthesis rely on a consistent set of models and design
constraints.
We plan to extend our control synthesis algorithms to

support richer formal languages (e.g., timed logic, branch-
ing logic), continuous-time specifications and continuous
dynamics (e.g., transients, network and communication
delays). Moreover, we plan to investigate techniques for
automatic generation of local contracts for the synthesis of
distributed and hierarchical control architectures.

ACKNOWLEDGMENT
The authors wish to acknowledge Rich Poisson and Eelco
Scholte from United Technologies Corporation (UTC),
MohammadMozumdar, Antonio Iannopollo and Ufuk Topcu
for helpful discussions. This work was supported in part
by IBM and UTC via the iCyPhy consortium and by the
TerraSwarm Research Center, one of six centers supported
by the STARnet phase of the Focus Center Research Pro-
gram (FCRP) a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.

REFERENCES
[1] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical

and Avionics Subsystems Integration, 3rd ed. Chichester, U.K.: Wiley,
2008.

[2] T. Jomier, ‘‘Final MOET technical report,’’ AIRBUS OPERATIONS
S.A.S., Toulouse, France, Tech. Rep. D0.02.3, Dec. 2009.

[3] K. Sampigethaya and R. Poovendran, ‘‘Aviation cyber–physical systems:
Foundations for future aircraft and air transport,’’ Proc. IEEE, vol. 101,
no. 8, pp. 1834–1855, Aug. 2013.

[4] A. Sangiovanni-Vincentelli, ‘‘Quo vadis, SLD? Reasoning about the trends
and challenges of system level design,’’ Proc. IEEE, vol. 95, no. 3,
pp. 467–506, Mar. 2007.

[5] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, ‘‘Taming Dr.
Frankenstein: Contract–based design for cyber–physical systems,’’ inProc.
Conf. Decision Control, Dec. 2011, pp. 1–19.

[6] P. Krus and J. Nyman, ‘‘Complete aircraft system simulation for aircraft
design—Paradigms for modelling of complex systems,’’ in Proc. ICAS,
2000, pp. 1–9.

22 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

[7] J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert, ‘‘Virtual iron bird—A mul-
tidisciplinary modelling and simulation platform for new aircraft system
architectures,’’ in Proc. German Aerosp. Conf., 2005, pp. 1–9.

[8] (2013, Oct. 9). Modelica Language [Online]. Available:
http://www.modelica.org

[9] T. Kurtoglu, P. Bunus, and J. de Kleer, ‘‘Simulation-based design of air-
craft electrical power systems,’’ in Proc. Int. Modelica Conf., Mar. 2011,
pp. 92–106.

[10] S. Uckun, ‘‘META II: Formal Co-verification of correctness of large-
scale cyber-physical systems during design,’’ Palo Alto Research Center
(PARC), Palo Alto, CA, USA, Tech. Rep., Sep. 2011.

[11] (2013, Oct. 9). OMG Systems Modeling Language [Online]. Available:
http://www.sysml.org/

[12] M. Masin, A. Sangiovanni-Vincentelli, A. Ferrari, L. Mangeruca,
H. Broodney, L. Greenberg, et al., ‘‘META II: Lingua franca design and
integration language,’’ IBM Research, Haifa Research Laboratory, Haifa,
Isreal, Tech. Rep., Aug. 2011.

[13] A. Pinto, S. Becz, and H. M. Reeve, ‘‘Correct-by-construction design of
aircraft electric power systems,’’ in Proc. 10th AIAA Aviation Technol.,
Integr., Operations Conf., Sep. 2010, pp. 1–11.

[14] T. Wongpiromsarn, U. Topcu, and R. M. Murray, ‘‘Formal synthesis of
embedded control software for vehicle management systems,’’ in Proc.
AIAA Infotech. Aerosp. Conf., Mar. 2011, pp. 1–17.

[15] N. Ozay, U. Topcu, and R. M. Murray, ‘‘Distributed power allocation
for vehicle management systems,’’ in Proc. 50th CDC-ECC, Dec. 2011,
pp. 4841–4848.

[16] H. Xu, U. Topcu, and R. M. Murray, ‘‘A case study on reactive protocols
for aircraft electric power distribution,’’ in Proc. Int. CDC, 2012, pp. 1–8.

[17] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems: Specification, vol. 1. NewYork, NY,USA: Springer-Verlag, 1992.

[18] E. A. Emerson, ‘‘Temporal and modal logic,’’Handbook Theoretical Com-
put. Sci., vol. 2, pp. 995–1072, Mar. 1990.

[19] R. G. Michalko, ‘‘Electrical starting, generation, conversion and distribu-
tion system architecture for a more electric vehicle,’’ U.S. Patent 7 439 634,
Oct. 21, 2008.

[20] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, et al., ‘‘Contracts for system design,’’ INRIA, Rennes,
France, Tech. Rep. RR-8147, Nov. 2012.

[21] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli, ‘‘Method-
ology for the design of analog integrated interfaces using contracts,’’ IEEE
Sensors J., vol. 12, no. 12, pp. 3329–3345, Dec. 2012.

[22] A. Pnueli, ‘‘The temporal logic of programs,’’ in Proc. 18th Annu. Symp.
Found. Comput. Sci., Nov. 1977, pp. 46–57.

[23] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[24] R. Alur and T. A. Henzinger, ‘‘A really temporal logic,’’ in Proc. Symp.
Found. Comput. Sci., Jul. 1989, pp. 164–169.

[25] R. Koymans, ‘‘Specifying real-time properties withmetric temporal logic,’’
Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[26] O. Maler and D. Nickovic, ‘‘Monitoring temporal properties of continuous
signals,’’ in Formal Modelling and Analysis of Timed Systems. New York,
NY, USA: Springer-Verlag, 2004, pp. 152–166.

[27] E. Asarin, A. Donzé, O.Maler, and D. Nickovic, ‘‘Parametric identification
of temporal properties,’’ in Runtime Verification. New York, NY, USA:
Springer-Verlag, 2011, pp. 147–160.

[28] A. Pnueli and R. Rosner, ‘‘Distributed reactive systems are hard to synthe-
size,’’ in Proc. 31st Annu. Symp. Found. Comput. Sci., vol. 2. Oct. 1990,
pp. 746–757.

[29] N. Piterman and A. Pnueli, ‘‘Synthesis of reactive (1) designs,’’ in Verifica-
tion, Model Checking, and Abstract Interpretation. New York, NY, USA:
Springer-Verlag, 2006, pp. 364–380.

[30] A. Pnueli, Y. Saar, and L. D. Zuck, ‘‘JTLV: A framework for developing
verification algorithms,’’ in Computer Aided Verification (Lecture Notes
in Computer Science), T. Touili, B. Cook, and P. Jackson, Eds. Berlin,
Germany: Springer-Verlag, 2010, pp. 171–174.

[31] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, ‘‘TuLiP:
A software toolbox for receding horizon temporal logic planning,’’ in Proc.
Int. Conf. HSCC, Apr. 2011, pp. 313–314.

[32] A. Donzé and O. Maler, ‘‘Robust satisfaction of temporal logic over real-
valued signals,’’ in Formal Modeling and Analysis of Timed Systems. New
York, NY, USA: Springer-Verlag, 2010, pp. 92–106.

[33] (2013, Oct. 9). Uppaal-Tiga, A Synthesis Tool For Timed Games [Online].
Available: http://people.cs.aau.dk/~adavid/tiga/

[34] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, ‘‘Satisfiabil-
ity modulo theories,’’ in Handbook of Satisfiability, vol. 4, A. Biere,
H. vanMaaren, and T.Walsh, Eds. Amsterdam, The Netherlands: Ios Press,
2009, ch. 8.

[35] C. Hang, P. Manolios, and V. Papavasileiou, ‘‘Synthesizing cyber-physical
architectural models with real-time constraints,’’ in Proc. 23rd Int. Conf.
CAV, Jul. 2011, pp. 441–456.

[36] M. R. Lyu, Handbook of Software Reliability Engineering, vol. 3. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1996.

[37] B. Kaiser, P. Liggesmeyer, and O. Mäckel, ‘‘A new component concept
for fault trees,’’ in Proc. 8th Austral. Workshop Safety Critical Syst. Softw.,
2003, pp. 37–46.

[38] A. Donzé, ‘‘Breach, a toolbox for verification and parameter synthesis of
hybrid systems,’’ in Proc. 22nd Int. Conf. CAV, Jul. 2010, pp. 167–170.

[39] (2012, Feb.) IBM ILOG CPLEX Optimizer [Online]. Available:
http://www.ibm.com/software/integration/optimization/cplex-optimizer/

PIERLUIGI NUZZO received the Laurea degree
(summa cum laude) in electrical engineering
from the University of Pisa, Italy, in 2003, and
the Diploma degree in engineering (summa cum
laude) from the Sant’Anna School of Advanced
Studies, Pisa, in 2004. He is currently with the
University of California at Berkeley, where he is
pursuing the Ph.D. degree in electrical engineering
and computer sciences.

During 2002, he was with the Fermi National
Accelerator Laboratory, Batavia, IL, USA, working on ASIC testing. From
2004 to 2006, he was with the Department of Information Engineering,
University of Pisa, and with IMEC, Leuven, Belgium, as a Visiting Scholar,
working on low power A/D converter design for wide-band communica-
tions and design methodologies for mixed-signal integrated circuits. From
2006 to 2008, he was a Researcher at IMEC, working on the design of
energy-efficient A/D converters and frequency synthesizers for reconfig-
urable radio. His research interests include cyber-physical system andmixed-
signal system design methodologies and tools, energy-efficient analog and
mixed-signal circuit design in CMOS technology, optimization and formal
verification methods for nonlinear hybrid systems.

Mr. Nuzzo received First Place in the operational category and Best Over-
all Submission in the 2006 DAC/ISSCC Design Competition, a Marie Curie
Fellowship from the European Union in 2006, the University of California at
Berkeley EECS departmental fellowship in 2008, the IBM Ph.D. Fellowship
in 2012, and the U.C. Berkeley Outstanding Graduate Student Instructor
Award in 2013.

HUAN XU is a Research Assistant Professor
with the Institute for Systems Research with a
joint appointment in aerospace engineering. She
received the S.B. degree inmechanical engineering
and material science from Harvard University in
2007, and the M.S. and Ph.D. degrees in mechan-
ical engineering from the California Institute of
Technology in 2008 and 2013, respectively. Her
research interests are in control and dynamical
systems, including the use of formal methods and

timed specification languages in the design and analysis of large-scale,
complex, and distributed control systems.

VOLUME 2, 2014 23

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

NECMIYE OZAY received the B.S. degree from
Bogazici University, Istanbul, in 2004, the M.S.
degree from Pennsylvania State University, Uni-
versity Park, in 2006, and the Ph.D. degree from
Northeastern University, Boston, in 2010, all in
electrical engineering. She was a Post-Doctoral
Scholar with the California Institute of Technol-
ogy, Pasadena, between 2010 and 2013. She is
currently an Assistant Professor of electrical engi-
neering and computer science with the University

of Michigan, Ann Arbor. Her research interests lie at the interface of dynam-
ical systems, control, optimization and formal methods with applications
in cyber-physical systems, system identification, verification and validation,
autonomy, and vision.

JOHN B. FINN is a Ph.D. student at the Uni-
versity of California, Berkeley, advised by Pro-
fessor Alberto Sangiovanni-Vincentelli. In 2010,
he received the bachelor’s degree with highest
distinction in electrical engineering from Purdue
University, West Lafayette, IN, USA. His research
interests include the design, optimization and ver-
ification of cyber-physical systems as well as sys-
tem modeling and analysis. He has accumulated
three years of work experience with internships

at United Technologies Aerospace Systems in Rockford, IL, USA, BAE
Systems in Nashua, NH, USA, United Technologies Research Center, East
Hartford, CT, USA, and The Advanced Laboratory on Embedded Systems,
Rome, Italy.

ALBERTO L. SANGIOVANNI-VINCENTELLI
received the Laurea degree (summa cum laude) in
electrical engineering and computer sciences from
Politecnico di Milano, Milan, Italy, in 1971.

He currently holds the Edgar L. and Harold
H. Buttner Chair of electrical engineering and
computer sciences at the University of California
at Berkeley. He was a co-founder of Cadence
and Synopsys, the two leading companies in the
area of electronic design automation. He is the

Chief Technology Adviser of Cadence. He is a member of the Board of
Directors of Cadence and the Chair of its Technology Committee, Sonics,
and Accent, a ST Microelectronics-Cadence joint venture he helped found.
He was a member of the HP Strategic Technology Advisory Board, and
is a member of the Science and Technology Advisory Board of General
Motors. He consulted for many companies, including Bell Labs, IBM,
Intel, United Technologies Corporation, COMAU, Magneti Marelli, Pirelli,
BMW, Daimler-Chrysler, Fujitsu, Kawasaki Steel, Sony, ST, and Hitachi.
He was the Founder and Scientific Director of the Project on Advanced
Research on Architectures and Design of Electronic Systems, a European
Group of Economic Interest supported by Cadence, Magneti-Marelli and ST
Microelectronics. He is a member of the High-Level Group, of the Steering
Committee, of the Governing Board and of the Public Authorities Board of
the EU Artemis Joint Technology Initiative. He is a member of the Scientific
Council of the Italian National Science Foundation. Since 2010, he has been
a member of the Executive Committee of the Italian Institute of Technology.
He is the author of over 880 papers, 15 books and three patents in the area
of design tools and methodologies, large-scale systems, embedded systems,
hybrid systems, and innovation.

Dr. Sangiovanni-Vincentelli has been a member of the National Academy
of Engineering since 1998. In 1981, he received the Distinguished Teaching
Award of the University of California. He received the worldwide 1995
Graduate Teaching Award of the IEEE for inspirational teaching of graduate
students. In 2002, he was a recipient of the Aristotle Award of the Semi-
conductor Research Corporation. He received numerous research awards,
including the Guillemin-Cauer Award from 1982 to 1983, the Darlington
Award from 1987 to 1988 of the IEEE for the best paper bridging theory
and applications, two awards for the best paper published in the IEEE
Transactions on Circuits and Systems and Computer-Aided Design, five best
paper awards and one best presentation award at the Design Automation
Conference. In 2001, he was given the Kaufman Award of the Electronic
Design Automation Council for pioneering contributions to EDA. In 2008,
he was awarded the IEEE/RSE Wolfson James Clerk Maxwell Medal for
pioneering innovation and leadership in electronic design automation that
have enabled the design of modern electronics systems and their industrial
implementation. In 2009, he was awarded an honorary Doctorate by the
University of Aalborg in Denmark and he received the first ACM/IEEE A.
Richard Newton Technical Impact Award in Electronic Design Automation
to honor persons for an outstanding technical contribution within the scope
of electronic design automation.

RICHARD M. MURRAY received the B.S. degree
in electrical engineering from the California Insti-
tute of Technology in 1985 and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ences from the University of California, Berkeley,
in 1988 and 1991, respectively. He joined the fac-
ulty at Caltech in 1991 in mechanical engineering
and helped found the Control and Dynamical Sys-
tems program in 1993. From 1998 to 1999, Profes-
sor Murray took a sabbatical leave and served as

the Director of Mechatronic Systems at the United Technologies Research
Center, Hartford, CT, USA. Upon returning to Caltech, Murray served as the
Division Chair (dean) of Engineering and Applied Science at Caltech from
2000 to 2005, the Director for Information Science and Technology from
2006 to 2009, and interim Division Chair from 2008 to 2009. He is currently
the Thomas E. and Doris Everhart Professor of control and dynamical sys-
tems and bioengineering at Caltech. Murray’s research is in the application
of feedback and control to networked systems, with applications in biology
and autonomy. Current projects include analysis and design of biomolecular
feedback circuits; specification, design and synthesis of networked control
systems; and novel architectures for control using slow computing.

ALEXANDRE DONZÉ is an Assistant Project Sci-
entist with the University of California, Berkeley,
Department of Electrical Engineering and Com-
puter Science, working in the group of Prof. Sanjit
Seshia. He received the Ph.D. degree in mathemat-
ics and computer science from the University of
Joseph Fourier at Grenoble in 2007. His main line
of research is concerned with simulation-based
design and verification techniques using formal
methods. In 2008, together with Edmund Clarke

and Axel Legay at Carnegie Mellon University where he was a post-doctoral,
he contributed to the popularization of Statistical Model Checking. From
2009 to 2012, he worked at Verimag, Grenoble, on Signal Temporal Logic
(STL) and its applications, focusing on complex models in particular in sys-
tems biology and in the cyber-physical domain. In this context, he developed
Breach, a toolbox enabling systematic simulation of various types of dynam-
ical systems along with monitoring of STL properties and various higher
level model-based design features. He also contributed to the development
of Spaceex, the current leading model-checking tool for hybrid systems.

24 VOLUME 2, 2014

Nuzzo et al.: Contract-Based Methodology for Aircraft Electric Power System Design

SANJIT A. SESHIA is an Associate Professor
wtih the Department of Electrical Engineering
and Computer Sciences, University of California,
Berkeley. He received the M.S. and Ph.D. degrees
in computer science from Carnegie Mellon Uni-
versity, and the B.Tech. de in computer science
and engineering from IIT, Bombay. His research
interests are in dependable computing and com-
putational logic, with a current focus on applying
automated formal methods to problems in

embedded systems, and electronic design automation, computer security,

program analysis. His Ph.D. thesis work on the UCLID verifier and decision
procedure helped pioneer the area of satisfiability modulo theories (SMT)
and SMT-based verification.

Dr. Seshia is the co-author of a widely-used textbook on embed-
ded systems and serves as an Associate Editor of the IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems. His awards and honors include the Presidential Early Career
Award for Scientists and Engineers from the White House, the
Alfred P. Sloan Research Fellowship, and the School of Com-
puter Science Distinguished Dissertation Award at Carnegie Mellon
University.

VOLUME 2, 2014 25

