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ABSTRACT In a multi-robot system consisting of numerous agents, it may be impractical to individually
identify each agent. Consequently, issuing specific commands to each agent might not be feasible. We
therefore, introduce the concept of a Statistical multi-robot system (SMRS). Such systems comprises a very
large number of agents that cannot be identified or located individually. Moreover, Since it is impractical to
track and communicate the complete configuration of an SMRS, we resort to statistical physics methods,
specifically gas kinetic knowledge, to extract their distribution. But unlike in Thermodynamics, we employ
the fact robotic agents can sense their environment, communicate their microscopic state, and change their
local behavior to enable control.
The concept of an SMRS suggests that the comprising agents should be as simple as possible, for practical
reasons. In this study, we demonstrate how an SMRS comprised of single-degree-of-freedom agents can be
controlled by a global controller . Using the same rationale, we define a successful mission of an SMRS as
one in which a sufficient portion of the agents accomplish the mission. To demonstrate the efficacy of our
approach, we provide a motion planner and exemplify our formalism in both simulations and real-world
experiments.

One-Sentence Summary: To control huge multi robotic systems we resort to the theory of statistical-
physics and utilize its macroscopic properties.

INDEX TERMS Robotic Swarm, Multi Robot System , Statistical physics.

I. INTRODUCTION

IN the field of robotics, one distinguishes between
multi-robot systems, robotic swarms and active-

matter. Multi-robot systems are generally character-
ized by their structured communication and coordina-
tion, often involving direct or centralized information
exchange among more complex robots to execute spe-
cific tasks collaboratively. Conversely, robotic swarms
typically embody decentralized, local communication
strategies. In these systems, simpler robots interact

based on basic signals and local cues, leading to emer-
gent, collective behavior that emphasizes scalability
and resilience to individual failures (see [1], [2]). Ac-
tive matter differs significantly, involving self-driven
entities that consume energy to create motion and
forces.

A. RELATED WORK

active matter

Specifically, the field of active matter [3] focuses
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on the relationship between the swarm’s macroscopic
"thermodynamic" properties and certain motion traits
that the agents exhibit. In the realm of active matter
research, for example, the impact of Brownian motion
on particles is commonly investigated through the de-
velopment of stochastic differential equations [4], [5].
Active matter researchers typically investigate a theo-
retical framework wherein a collection of particles can
actively move by acquiring kinetic energy from their
surroundings. This closely mimics swarming, school-
ing, and other forms of collective behavior observed
in various organisms, such as bacteria and animals
[6], [7]. Numerous models have been developed for
this aim, including those that implement an escape-
and-pursuit strategy for individual agents [8], those
that employ velocity alignment forces between two
agents to achieve an average velocity [4], heuristic
models, like the minimal Vicsek model [9] and the
time-dependent propulsion model [10], which produce
non-linear structure formation behavior (see also [11]
for real-life implementation of these ideas demonstrat-
ing rudimentary control for confined superstructures).
Note that in these studies, no mutual communication or
global controller is presented. In our research, we shall
use some communication abilities in order to expand
the control abilities of such multi-agent systems.

robotic swarms

Robotic swarms - a more engineering-oriented topic
has garnered increasing attention from the research
community, as evidenced by recent studies [12]. The
field of research related to robotic swarms primarily
encompasses two main areas, the first of which per-
tains to goal-oriented tasks. These research domains
focus on investigating the potential benefits of utilizing
multiple agents, and employ various approaches and
techniques [13]–[15]. However, despite the significant
advances in swarm robotics research in this area, most
methods require the controller to identify individual
agents, which is impractical for very large swarms.
An alternative methodology aims to examine the re-
lationship between the micro-behavior of individual
agents and the macro-behavior of the entire swarm, by
exploring the rules followed by each agent and their
resulting collective behavior. For instance, to maintain
the swarm in a single batch, one may design the
swarm in a way that enables the uninterrupted trans-
mission of information [16], [17]. Such an approach
has demonstrated effectiveness, as in accomplishing

self-assembly tasks [18].
A similar framework aims for minimal use of global

information and relying mostly on local sensor data
is introduced in [19] which treats agents as physical
particles and includes features like discrete-time ap-
proximation for continuous behavior, frictional force
for self-stabilization, and parameters like maximum
force and velocity for each particle. Nevertheless, this
approach does not address the option in which the
particles have sensing capabilities, nor does it address
the challenges related to motion planning.

It is important to note that the complexity of the
agents involved and their communication capabilities
inherently constrain the size of a swarm (as further
clarified in the formal definition provided in Section
II). Currently, examples of swarms comprising a large
number of agents - referred to here as "hundreds or
thousands" (or statistical multi robot systems) - are still
sparse.

Rubenstein et al. [18] presented a swarm with thou-
sands of agents that traverse via vibrations and are
governed by virtual potential fields, limited to com-
munication with nearby members. A parallel line of
reasoning is provided in [20] where a set of micro-
robots controlled by a biaxial oscillating uniform mag-
netic field exhibit diverse behaviors with remarkable
transitioning stability. Another example is provided
by Xie et al. [21], which consists of a vast number
of hematite colloidal particles controlled using alter-
nating magnetic fields that form a virtual potential
field. Their research demonstrates various collective
behaviors, including liquid, chain, vortex, and ribbon-
like movements. Miskin et al. [22] constructed a swarm
with thousands of 70-micron-long agents using an
electro-chemical actuator device that responds to ultra-
low electric currents activated by laser beams.

The work by Li et al. [16], demonstrated a robotic
swarm that meets the basic rational mentioned above.
In this swarm, agents are only capable of uniform
volumetric oscillation, lack individual identity or an
addressable position, and are governed by a global
signal. The agents in this swarm move via dilation
alone while clinging to each other in a similar way to
the push-me-pull-you mechanism in [23].

A similar approach was taken in [24], where a
mechanical design rule enables the agents to act col-
lectively in a collision-dominated environment.

It should be stated that the concept of local kinetic
models had previously been explored primarily as a
method for investigating and simulating the actions of
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robotic swarms[25],[26]. But applying these near field
models for actual state estimation was never consid-
ered and so is an holistic statistical-mechanics view
point for huge multi robot systems.

Multi-robot-systems
Multi-Robot Systems differ from swarm robotics in
several key aspects. They typically exhibit higher lev-
els of robot complexity and individual capabilities,
concentrating on collaborative efforts to accomplish
intricate tasks. In contrast to swarm robotics, where a
large number of relatively simple robots execute tasks
through emergent behavior, Multi-Robot Systems uti-
lize the distinct strengths and capabilities of individual
robots. These robots, possibly with unique roles, work
in concert to achieve coordinated action [27].

A central challenge in Multi-Robot Systems is
ensuring effective coordination among the robots.
A prevalent approach to address this is the imple-
mentation of distributed algorithms. These algorithms
enable robots to adapt to dynamic conditions and
maintain coordination autonomously, without relying
on centralized control [28],[29]. In the context of
cooperative object transportation within Multi-Robot
Systems, strategies like the leader-follower method
are commonly employed [30]–[34]. Although a dis-
tributed approach minimizes computational and com-
munication demands, it can constrain the flexibility
of follower robots compared to methods where all
agents play equivalent roles [35]. Innovative motion
planning strategies that forego predefined trajectories
have been explored, necessitating individual agent
modeling [36], [37]. Additionally, decentralized con-
trol methods, including sliding mode controllers [38],
and adaptive control techniques [39], are subjects of
ongoing research. A fuzzy logic-based approach offers
a simpler alternative, though its effectiveness has only
been validated in scenarios with simplified kinematics
and dynamics [40].

We posit that a unified framework is essential for
bridging the research domains of active matter and
robotics to produce truly efficient statistical multi robot
system control. Section II will delve into the details of
this connecting building block. This work deals with
a broad problem of multi robot system control (spread
and motion planning) but its main ideas can serve as a
benchmark for more complex applicable scenarios.

II. CORE CONCEPTS

Our objective is to expand the active matter approach
by "closing the loop" on the system’s macroscopic
state, see Figure 1. We are motivated by the challenge
inherent in identifying individual agents within a very
large-scale multi-robot system (SMRS), where a mul-
titude of identical robots operate. In such systems, it
is impractical to track each robot’s location through
continuous communication, as this would be overly
demanding in terms of communication resources. A
vivid example of this can be seen in natural phenomena
like murmurations of (identical) starlings or schools of
(identical) fish.

Moreover, the economic feasibility of SMRS dic-
tates that they be composed of inexpensive, simple
robots, further limiting the use of sophisticated individ-
ual control mechanisms that are common in traditional
multi-robot systems. This approach is particularly rel-
evant in fields such as military operations and micro-
agriculture, where the deployment of large numbers
of low-cost, autonomous robots can offer significant
strategic and operational advantages.

A. KEY CONTRIBUTION
Our approach distinguishes itself from current research
directions in the following:

1) We identify the relevant gas kinetic equation that
best describes the system’s behavior and show
how using it can be used to estimate the agents’
spatial distribution. Intuitively, agents situated in
dense areas are more likely to experience higher
collision rates. To capitalize on this observation,
we utilize a particle filter that does not require
any knowledge of the agents’ locations. This
deviates from the conventional solutions like
equipping each agent with a distance or bearing
sensors (in cases where employing multiple dis-
tant sensor/camera views is not possible). Here,
a collision/proximity sensor will suffice.

2) We restrict ourselves to issuing only global com-
mands to all the agents at once. We show how
this is sufficient for controlling such systems
when a mission success is defined by means of
distribution-moments. We demonstrate this with
the extreme case of a system comprised of agents
having only a single DOF.

It should be noted that the algorithms that we shall
introduce lean heavily on the statistical-physics notion
of a "statistical ensemble" where the control algorithm
is designed according to a large set of states of the
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Traditional
swarm robotics Active Matter Statistical Robotics

Agents/Particles
interactions

Controlled over
each agent Predetermined May be controlled via

global commands
Interactions

rate Measurable Measurable Measurable
statistically

Measured
quantities

individual agent state
& swarm properties

Swarm properties
& statistics of
agents states

SMRS properties
& statistics of
agents states

Controllable
quantities Individual agents The local behaviour

Manipulating
random batches

of agents

Goal
Controlling the

agents to accomplish
a mission

Global properties
as functions of

local ones

Controlling the SMRS
distribution & position

to accomplish a mission

TABLE 1: The main ideas of the available theoretical frameworks (naturally, entries may not cover all research
work).

system.

B. STATISTICAL MULTI ROBOTIC SYSTEMS
(SMRS)
This approach deviates from the standard decentralized
control characteristic of a swarm, as it involves issuing
global commands to the entire system, which is made
up of simple agents—a feature usually associated with
swarms. However, for clarity and accuracy, it’s more
appropriate to refer to this as a ’multi-robot system’
rather than a ’robotic swarm’, given the central com-
mand structure being employed.

Having in mind a multi robot system that includes
hundreds or thousands of agents we formally define a
statistical multi robot system as:
Definition 1: A multi robot system is called a "Sta-
tistical Multi Robotic System" (SMRS) if it has a
large number of simple and indistinguishable agents
for which, control relies only on statistical quantities
and broadcast communication.

1) simplicity of agents
By ’simplicity’, we are referring to the sensorial, com-
munication, and mechanical capabilities of the agents,
and ’control’ refers to the SMRS’s position and dis-
tribution. Considering this definition, it is natural to
wonder what level of simplicity is sufficient for agents
to enable SMRS control? It is important to highlight
that our objective is to achieve full controlability over

the SMRS, which includes the capabilities to steer it
left or right and to alter its formation. This level of
control is significantly more complex compared to the
goal of synchronized motion seen in Reynolds’ boids
for example, where the agents are relatively simple due
to the less demanding nature of their task.

Surprisingly, it turns out that the agents can possess
an extremely rudimentary level of capabilities enabling
distribution control.

In the design of multi robot systems, a critical
challenge is defining the algorithms and capabilities
that enable individual agents to enhance the overall
system’s performance. While statistical methods have
scarcely been used in swarm algorithms [16], [42] they
hold greater relevance in scenarios where the "law of
large numbers" applies, such as in the case of SMRS’s
comprising a vast number of agents. We, therefore,
propose the term Statistical Robotics to describe a
distinct mathematical approach focused on measuring,
estimating, predicting, and controlling the collective
behavior and performance of an SMRS, based on lim-
ited measurements of its agents (see Figure 7).

2) Communcation and control

Given the previously stated rationale, it is logical to
assume that, in many cases, a central controller would
not be able to identify or communicate with each
individual agent. Additionally, due to limitations in
communication bandwidth, it is not feasible for all
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FIGURE 1: The fundamental reasoning that underpins the statistical approach to robotics: (A) Evaluating SMRS
mission success through statistical analysis: setting a reasonable completion threshold for assigned task, rather than
requiring every single agent to complete it; (B) Due to the vast number of agents involved, the agent mechanical,
communication, and sensorial capabilities must be kept as simple as possible [41]. Agents keep distance from
fellow agents and anonymously report their headings whenever they sense nearby agents; (C) The kinetic theory
of gasses establishes a useful link between the swarm distribution and the expected collision rate which the agent
experience. Any distribution can be estimated (see Figure 2); (D) The swarm is remotely controlled via global
commands transmitted to all agents. The entire SMRS is viewed as a single entity with a probability distribution
that represents the entity’s "uncertain location".

agents to continuously transmit long sensor readings,
as discussed in [43]. This is primarily due to the
significant overhead traffic required to maintain real-
time routing status for large-scale networks, along with
limited communication bandwidth. Moreover, because
individual agents in an SMRS cannot be uniquely iden-
tified, it is not possible to provide control signals for

each agent. Instead, the transmission of control signals
to all agents at once necessitates the use of a limited
number of signals that are broadcasted to all agents (of
which just a portion follow, as will be clarified below).

While it is possible to attain self-organizing behav-
ior to a certain extent by equipping each agent’s local
controller with simple laws (such as leader-following
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in [44]), there are situations where relying exclusively
on local controllers is inadequate and a central con-
troller is required. For example in some cases, using
local controllers alone to achieve aggregation it is not
sufficient to guarantee a unified cluster of the entire
SMRS due to sensory constraints, leading to the for-
mation of various distinct agent clusters [8], [45]–[47].
To address this issue, one can refer to Section III-B
below, where we demonstrate control over the spread
of the entire system. In other words, applying the
ideas introduced here for a global controller enables
the avoidance of the MSRS separating into several
clusters.

3) Mission Success

For an SMRS, the criteria for a successful solution
that meets the goals of the mission should be reestab-
lished so as to be measurable by statistical quantities.
For example, some of the agents may occasionally
encounter an obstacle without considerably affecting
the entire system, and we therefore release the need of
completing the task with all agents, which here is the
motion planning task.

4) State estimation

In addition, when dealing with systems consisting of
a large number of agents, computational limitations
become a challenge. It is impractical to establish the
complete state of the system at each time point using
a bottom-up approach. Instead, the field of statistical-
physics provides a framework for relating macroscopic
observations, such as the bulk properties of materials,
to the microscopic properties of individual atoms and
molecules. Similarly, for SMRSs, partial knowledge
of the state space is satisfactory, both in the sense
of the fullness of information and in the sense of its
accuracy. Throughout the paper we shall consider these
underlying ideas.

statistical-physics, active matter, and swarm
robotics are distinct fields of study with their own
unique characteristics and research questions. While
statistical-physics is concerned with the behavior of
large numbers of particles, to make predictions about
their collective properties, active matter, focuses on the
study of self-propelled particles, and swarm robotics is
concerned with developing algorithms and technolo-
gies to enable groups of robots to work together in a
coordinated manner. The apparent differences between
these disciplines and that of Statistical Robotics field

which we suggest here, are summarized in table 1

III. RESULTS
A. APPLYING THE KINETIC THEORY OF GASES
TO SMRS
To ensure successful completion of most missions, a
swarm may operate as a cohesive unit, as a singular
entity or in several distinct batches while maneuver-
ing through the free space. Achieving this requires a
crucial step of "closing the loop" through continuous
estimation of the swarm’s density distribution (and
mean position). This estimation process assumes that
individual agents within the swarm cannot be identified
or individually-communicated with. It’s important to
note that the procedure detailed below can also be
utilized to estimate other bulk properties of the swarm,
such as the flow rate of agents through a cluttered
workspace and the artificial pressure exerted by the
swarm. However, this paper’s section will only focus
on recovering the density distribution of the SMRS.
A simple solution may involve a set if distant cam-
eras and a cross-correlation procedure similar to that
used in a Photogrammetry technique. Nevertheless, for
cases where such a setup is out of hand we offer using
a particle-filter coupled with the thermodynamic traits
of a gas according to the following scheme:

1) At each time-step, the agents report a central
controller their orientations and the collision rate
fcoll each experiences as depicted in Figure 2.B
(for many cases, a predefined proximity may be
considered as a collision);

2) the density field ρ = ρ(x) is then extracted by
applying a particle filter and using a suitable
kinetic theory fcoll(x) = F (ρ(x)) that formulate
the connection between the density and the col-
lision rate, where x is the position vector.

Remark: The following are noteworthy: (I) None of
the agents are aware of their locations; and (II) as
our experiments show, there is no need for all agents
to report every collision; (III) Furthermore, as will
be clarified below, we apply a particle filter for this
purpose, the algorithm begins with an initial guess and
refines it over time, meaning we do not assume any
initial conditions.

The Statistical-Physics literature offers several such
models F (ρ) for the collision rate.

This analogy assists in comprehending how robotic
agents interact within various environmental contexts.

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3406599

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Lax et al.: IEEEtran.cls for IEEE Journals

By drawing upon the kinetic theory of gases for dilute
gases [48], akin to environments with sparse robotic
agents, we can determine the collision rate. This is
achieved by considering all agents, except one, as sta-
tionary and counting the number of collisions within a
specific time frame. As an agent moves through space,
it swips out a collisional cylinder with a volume of
πd2u. The collisional rate for a single agent is then
the product of this volume and the density per unit
time, given by πd2uρ(x). Here, we assume an ideal gas
behaviour and that the agents behave like hard spheres
upon collision.

Similarly, consider an agent traversing an unknown
path in a plane, with other agents in its vicinity moving
at an average velocity u. The collision rate, calculated
in the same manner, is expected to be:

fcoll(x) = 2duρ(x) (1)

where d represents the diameter of the agent or its
proximity threshold.

Note that Equation 1 holds only for the ideal gas and
hard sphere model. For example for dense solutions,
the rate becomes independent of the particle size [49].

As an example, we introduce a simple algorithm
to recover the density field of a planar SMRS. We
construct the workspace as a grid of cells xn,m ⊂ R2

of equal size (this can naturally be extended to any
dimension). We then initialize a set of p samples
(particles) {ζj}pj=1 for each agent. These represent the
associated agent’s location probability density function
(the PDF) in the plane. That is, for each agent and
each particle j, there are some n and m for which
ζj ∈ xn,m. We further assume that a certain preset
portion of the agents share the collisions rate they
experience with a centralized computer together with
their odometry measurements, which we use in the
density propagation stage as follows:

1) Comparing the reported collision rates fcoll of
the reporting agents provides a way to compute
the particle filter’s importance weights {ωj}pj=1

as the likelihood ωj =
∏

i e
− 1

2 (f(x̂i)−f̂j(x̂i)))
2

,
where the summation of each agent’s weights
sums up to one and where x̂i is the estimated
location of the ith agent.

2) Equation 1 provides a way to estimate the den-
sity map ρ̂(x): The estimated local density at the
estimated location x̂i of the ith agent is given by
ρ̂j(x̂i) =

fi
2du where fi is the reported collision

rate of the ith agent.

Accordingly, we conducted a simulation to recover a
continuous density field on a 50× 50 grid, of a swarm
with N = 500 agents. The agents’ initial positions
and velocities were generated along a uniform random
distribution with their velocities bounded to a unit (see
Figure 2.A). Each agent moved linearly and adjusted
their movement direction upon approaching another
agent within a quarter grid cell length. We set the
maximum step size to half a unit length and simulated
the agents’ orientation measurements using the random
vector ∆x = v∆t + ν, where ν ∼ N (⃗0, Q), is a
zero-mean normally distributed noise with diagonal
covariance matrix Q taken as 10% of the step size.
Figure 2.C shows a snapshot of the simulation and the
adjusted estimated density map.

The algorithm performs well, as evidenced by the
convergence of the final mean estimation error to the
cell’s length after a mere 150 time steps (see Figure 3.

For comparison, we assess the efficacy of our pro-
posed approach against the widely used Extended
Kalman Filter (EKF) and Particle Filter (PF), typically
employed in localization tasks (see for example [50]).
Both approaches involve agents moving consistently.
The EKF and the PF utilize agents’ odometry data and
range measurements to three landmarks positioned at
distinct corners of the playground. To ensure a fair
evaluation, we fix the range resolution at 5 length
units, corresponding to the dimensions of the grid cells,
and the PF uses the same number of particles as the
proposed algorithm. The performance of the PF and
EKF estimations are illustrated in Figure 5 (depicted
by the red solid and dashed blue lines), representing
the average error of all agents over time. A thorough
comparison reveals that our approach performs compa-
rably to the PF and EKF, requiring less infrastructure
for range measurement implementation. While the tra-
ditional filters’ convergence is faster.

Since our focus is not on micromanaging individual
agents, the proposed approach becomes particularly
valuable when the emphasis shifts toward assessing
the density of SMRS locations. The results in Figure
4 illustrate the efficiency of estimating swarm density
where only part of the agents communicate with the
central controller.
The estimated density is derived by summing the col-
lisions encountered by participant agents within a grid
cell and dividing it by the total number of collisions.
This computation yields an output matrix ρ̂, which
is then contrasted against the actual density matrix
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FIGURE 2: (A) A snapshot of an SMRS configuration with 500 agents; (B) At each time step, each agent reports
the rate it senses other agents (i.e. with regards to a distance threshold) and its orientation; (C) The estimated swarm
distribution. Dark cells correspond to low density and vice versa;

ρ. we conducted a series of experiments using 500
agents, with varying percentages of agents communi-
cating their collision rates, ranging from 10% to 100%.
Agents’ motion and other considerations are left as in
the previous demonstration (note that this is less than a
proximity sensor)
Notably, the results revealed that the algorithm’s per-
formance was minimally affected even with a signifi-
cant reduction in the number of communicating agents
as 50%. Such a method can serve as a powerful tool for
statistical control schemes as demonstrated in Sections
III-B and III-C

B. CONTROLLING AN SMRS UNDER MINIMAL
AGENT CAPABILITIES

A key task of the SMRS having N ≫ 1 agents is to
traverse a given path with an additional requirement
that the swarm’s spread should be bounded at every
instant. This amounts to attaining a desired distribu-
tion ρd(x), starting from an initial distribution ρ0(x).
Although we shall assume normal distributions for
simplicity, our discussion is not restricted to Gaussians.
Recall that the agents are indistinguishable from one
another, as stated in Definition 1, and assume that only
global control commands are allowed. Surprisingly,
under these assumptions, dual-direction single degree-
of-freedom agents will do for the planar case (see the
lower right illustration in Figure 6).
Remark: It is noteworthy to note that: (I) There is
no degree of freedom for rotation available; (II) Since
the agents possess limited sensorial and mechanical

capabilities, their motion should be expected to be
characterized by non-negligible random motion fluctu-
ations. In other words the agents rotate as a side effect
of the non-negligible error in their wheel alignment;
Considering this, (III) an acceptable control scheme is
limited to be of a binary nature, that is, the controller
command is limited to ’move forward’ or ’move back-
ward’ commands.

So, to translate the swarm to a desired position, one
can toggle the agents movement (i.e., forward or back-
wards) in accordance with the resulting swarm move-
ment. Explicitly, the central controller first commands
all the agents to ’move forward’ a small distance of
ϵ units, it then estimates the resulting mean position
movement. It is important to note that issuing such
a command will result in different movement vectors
due to the agents’ random directions. If as a result
the swarm translates away from the desired direction
the controller’s following command would be to move
in the opposite direction, that is, a ’move backward’
command. However, this naive control scheme for the
SMRS translation ∆µ which is based on fluctuations
in the agents’ headings will fail for N → ∞, since the
their headings will approach a uniform distribution.
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FIGURE 3: Density map estimations: The middle fig-
ure depicts the real agent distribution; the left map
is the estimated density map when only 10% of the
agents report their collisions’ rate and their odometry;
the right map is the estimated density map when all the
agents report their collisions’ rate and their odometry.
Density maps are calculated according to Eq. 1.

FIGURE 4: density estimation errors: the deviation
of the estimated density maps and the actual density
map across different proportions of communicating
agents is provided. For this end we calculated the MSE
between the real density map and the estimated one di-
vided by the number of non-zero cells. This assessment
is based on the average results from 10 Monte Carlo
simulations for every communicating percentage. Each
simulation ran for 150 steps. The red line presents the
mean value while the gray region presents the STD.

To mitigate the symmetry that arises for large num-
bers, one can resort to activating only a subset of
n ≤ N agents randomly, chosen at each time-step1

(illustrated in Figure 6 as point D).

1In terms of thermodynamics standpoint we supposedly aim to
reduce the Entropy of a ’gas’ by means of uniform force (e.g.,
magnetic) which violates the second law of thermodynamics, much
like Maxwell’s demon setup [51]. In what follows we shall use Lan-
dauer’s Principle to resolve this seeming contradiction, i.e., harness
information bits for this end.

FIGURE 5: The fan plot below demonstrates the distri-
bution of position estimations and its mean (solid black
line), derived from collision rate data and a kinetic gas
model. The solid red line represents the Root Mean
Square error for all agents’ position estimation errors
using a partial filter. In contrast, the dashed blue line
indicates the RMS error when employing an Extended
Kalman Filter (EKF), with both methods utilizing data
from three landmarks.

One possible approach to achieve this is by instruct-
ing each agent to generate a random number within the
range of 1 to N at each time step. Subsequently, if the
generated number is less than n, the agent should fol-
low the instructions provided by the global controller.
The number n can be broadcasted or predefined.

Formally, if the fluctuations in the agents’ headings
are the sole basis for control (i.e., non of the agent carry
a compass) then the resulting mean translation of the
entire SMRS towards a given direction at each time-
step is:

∆µblind ∼ 2ϵ
√
n

πN
(2)

where ϵ is the small distance the agents travel upon
receiving a ’move forward’ command. The proof is
rooted in the concept of a random walk, which is
known to result in a mean displacement proportional
to the square root of the number of steps taken [52]. To
realize this one considers a sum of n planar random
(step) vectors with arbitrary directions θj uniformly
distributed in the interval [0, 2π). The random walk
end point is given by their sum z =

∑n
j=1 e

iθj whose
absolute square can be easily reduced to:

|z|2= zz∗ = n+

n∑
j,k=1
k ̸=j

ei(θj−θk).

The expectation value of the absolute square is ther-
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fore:

⟨|z|2⟩ = n+

〈
n∑

j,k=1
k ̸=j

ei(θj−θk)

〉
.

Since each step has an equally likely chance of be-
ing in any direction, the average of the distribution,
considering the equally likely positive and negative
values, and thus the second term cancels out living
⟨|z|2⟩ = n. Thus the resulting root-mean-square dis-
tance is |z|rms=

√
n as indicated.

A rigorous proof for Equation 2 is provided in the
Methods Section V-A.

Note that for large swarms, the resulting mean
translation ∆µblind is very small. This is due to the
fact that the individual agents lack information about
their headings, and thus the global controller must rely
solely on the overall resultant translation to ’close the
loop’, as illustrated in Figure 6 as point D.

Conversely, if the agents are able to sense their
headings, such as by using a compass, each agent can
move forward or backward individually to align with
the desired trajectory (i.e., to toggle its direction of
movement so that it will have a positive component
towards the desired direction). In this scenario, as
the headings are uniformly distributed, the expected
value of the cosine component is 2/π. Using the same
rationale as in the previous proof (also provided in the
Methods Section V-B), yields:

∆µcompass ∼
2ϵn

πN
(3)

In this case, the resulting mean translation attains its
maximum value when controlling the entire SMRS at
each time-step (n = N ) see point A in Figure 6.

However, it’s worth noting that the SMRS is sus-
ceptible to dispersal as it moves, which needs to be
addressed. Specifically, the variances σ2 of the SMRS
distribution increments in the ’blind’ and ’with com-
pass’ scenarios as follows:

∆(σ2)blind ∈ N
(
−nϵ2

N2
+

nϵ2

N
, σ

2ϵ
√
n

N

)
(4)

∆(σ2)compass ∈ N
(
−4ϵ2n2

π2N2
+

nϵ2

N
, σ

2ϵ
√
n

N

)
(5)

These expressions (points C and B respectively in
Figure 6) are obtained following the mere definition of
the standard deviation, together with the observation
that the translation of n agents which is the average of

the sum of their steps, can be viewed as a random-walk
divided by n (proof is given in the Methods Section).
Obviously, attempting to correct this by applying the
same algorithm will not do. To resolve this, we resort
to the ’blind’ algorithm choosing a suitable n ⪇ N ,
as in point C in Figure 6. Of course, this results in an
undesired translation occurring simultaneously (point
D in Figure 6). Nevertheless, this effect is negligible.
So the approximated overall translation in every time-
step is that which is given in Equation 3 (point A
in Figure 6) which means that for efficient motion
control, it is preferable to incorporate a compass on
each agent, and so we shall assume.

It should be noted that this algorithm can be further
optimized by dynamically changing the step size, but
this is out of this paper’s scope. Furthermore, note
that the proposed spread control scheme is bounded
by the step size, but since one do not wish to set σ to
zero this is not of concern to us and one may do with
investigating only the incremental efficiency.

To demonstrate this rationale we conducted a set
of experiments with a small sized swarm specially
designed agents (see Figure 7). The robots were me-
chanically designed with the principles of a SMRS
in mind, prioritizing simplicity and global command
control. The agents, therefore, were limited to perform-
ing only a noisy forward and backward moves while
a uniform command (F or B) was broadcasted to the
entire swarm. Furthermore, the small number of agents
indicate that the "law of large numbers" do not apply.
So, to control such a swarm one may to follow the
’forward/backward’ strategy without considering the
subset scheme described in this section, but to speed
up the algorithm this was applied as well. A video clip
of such a typical experiment is provided in the paper’s
supplementary material. Applying the same rationale,
one may also control the swarm’s distribution axes,
their direction, and length, to direct the swarm through
narrow passages and so we shall do in the next Section.

C. MOTION PLANNING FOR AN SMRS

The classical motion planning mission for a planar
swarm is the task of moving to a desired position xd,
avoiding a set of obstacles O while maintaining in a
desired formation.
But recall that the agents of the SMRS can not be
controlled individually, so a more natural aim for a
motion planner, which follows a statistical-robotics
point of view (see table in Section II), is to reduce
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FIGURE 6: (I) Lower-right: Controlling scheme for minimal agent capabilities. At each time step a subset of,
or all, the agents are controlled (marked brown). Their headings are not directly controlled, instead, forward or
backward movements of each are determined individually with accordance to a compass reading and the resulting
SMRS position. The resulting change in the SMRS spread is addressed applying a ‘blind’ manoeuvre to a random
subset of the swarm.
(II) Upper-right: The overall scheme rationale is given on the upper-right off-scale illustration where the x-axis is
the controlled subset size n ≤ N and the y-axis represents the change in the position and spread (the variance) of
the SMRS in a single time-step.
(III) The set of four fan charts illustrate the typical spread change and position change observed in a simulated
experiment, with and without a compass. In each chart, the theoretical values are depicted as a dashed blue line.
These were conducted with σ = 300 [m] and N = 20, 000 agents where in each time step, agents translate ϵ = 5
[units]. The simulation ran 2, 000 cases for each n. The translation control and spread control are correspondingly
provided in the upper and lower charts. The controlling scheme which relies on heading sensors on each agent and
the scheme which assumes no such sensor is available, are provided on left and on the right chats correspondingly.
At their maximum values ∆µblind << ∆µcompass. So, while traversing, it is better to use ’with compass’ algorithm
which results in the maximum of ∆µcompass (point A). This results in an undesired spread ∆σcompass (point B).
Implementing the ’blind’ algorithm (point C) to reduce the spread, would result in a minor undesirable translation
(point D).

the number of agents-obstacle collisions rather than
preventing them altogether, setting a predetermined
upper bound for the portion of failed agents (see Figure
7.A). Moreover, we think of the entire swarm distri-
bution as a probability distribution of a single entity

(the swarm), rather than as an aggregation of individual
robots. Accordingly, the probability of the entity being
in a unit of area is equivalent to the agents density
located within that particular area.

Keeping this in mind it is natural to generate failure-
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FIGURE 7: Controlling a real-life robot small-sized swarm via global commands relying solely on the swarm’s
statistics µ and Σ. Each robot can only move forward or backward, with an inherent directional error (middle). The
swarm converges to the designated target with a desired spread (A-H).

probability topographic map M. To do so, instead of
employing the classical procedure of Minkowski sum
between the robot’s geometry and the obstacles binary
function O(x), we convolve the normalized swarm dis-
tribution with the obstacles M(x) = ρ(x−µ) ∗O(x).
This yields the percentage of expected agent loss as
outlined in [53]. This is provided as contour lines in
Figure 8.

This underlying concept can be applied to a variety
of motion planning algorithms. For illustration pur-
poses, we utilize a road map approach for solving the
motion planning problem, where the waypoints were
generated by medial axis transform [54] applied on the
obstacle space. We then construct a weighted graph,
where the weights are the maximal value of M along
the path connecting a pair of points. The resulting path
is calculated and is depicted as dashed blue line in
Figure 8. As discussed in Section III-A, and Section
III-B we assume that both the locations of the obstacles
and the swarm’s density distribution are known. We

further assume that each agent is equipped with a
compass. Consequently, to establish the SMRS motion
with accordance to the path we apply a combination of
two compliment controllers:

A local controller on all agents. It bases its
decisions on an onboard sensor which aims to
keep the agents in a given range from one another
(in a somewhat similar manner as Lennard-Jones
potential which governs the interactions between
atoms).
A central controller: which considers the
(macroscopic) distribution of the entire SMRS
it capable of sending global commands to all
agents at once. It employs the ideas established
in Section III-A and Section III-B. Specifically:

The SMRS distribution and location are
extracted by receiving the collision rates and
headings, and comparing them to the appro-
priate gas Equation 1.
Shape control is obtained by first sending
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FIGURE 8: Controlling an SMRS by broadcasting a Forward/Backward command to all agents: One considers
a "unified entity" probability distribution to represent the SMRS position distribution ρ(x). The contour lines
generated by convolving ρ(x) with the obstacle space, represent the expected portion of failed agents at every
swarm position; Subfigures A(t1), A(t2), and A(t3) show a sequence of screenshots that illustrate how the SMRS
adapts to the narrow passage ahead, by deforming from a circular shape to an oval. This deformation is necessary
to prevent the number of failed agents from exceeding a predefined acceptable limit; The lower figure series
B(t4), B(t5) and B(t6) depicts a sequence of snapshots where the SMRS is rotated for the same end.

a blind ’forward’ command to all agents. A
fraction n < N of them comply. The central
controller, then, compares the desired shape
it aims to achieve with the resulting distribu-
tion, and reverses its command accordingly.
To comply with the requirement for a pre-
determined portion limit of failed agents,
the controller reshapes, rotates and moves the

SMRS to avoid contour lines that indicate
over-fail. If a large portion of the SMRS is
expected to collide with an obstacle while
reshaping, the controller translates the SMRS
forward along the path while reshaping it.
Moreover, if a certain portion of the roadmap
is narrow, the controller reshapes it to a thin
Gaussian shape before moving it.
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Communication between:
The central controller and the agents oc-
curs through broadcasting binary commands
(forward/backward) to all agents, which
some agents follow.
The agents and the central controller in-
volves a subset of the agents reporting colli-
sions anonymously, without transmitting any
additional information (specifically, not their
locations).
Agent-to-agent communication does not
take place.

The sensors available to the agents include a
collision sensor and a compass ("less than" a
proximity sensor).

To demonstrate our scheme we set an SMRS of 300
disc shaped agents of radius 0.8 [meters] length, each.
The agents’ speed limit was set to 5 [meters] per time-
step. The arena is a peninsula 400 × 160 [meters], in
Boston city. The simulated agents were assumed to
be equipped with a collision sensor that measures the
distance to other agents ahead within line-of-sight up
to a distance of 5 [meters]. Figure 8 depicts a typical
simulation run.

IV. DISCUSSION
The control of huge robotic swarms presents a signifi-
cant challenge in the field of swarm robotics. Existing
approaches for achieving goal-oriented tasks often rely
on the identification of individual agents, which be-
comes impractical and resource-intensive for swarms
comprising a large number of agents. Employing an
alternative methodology of active matter will not suit
these needs as it focuses on exploring the relationship
between the micro-behavior of individual agents and
the resulting macro-behavior of the entire swarm. We
propose a novel approach (Figure 9) that leverages
statistical-physics to sense the swarm’s state and con-
trol its macroscopic characteristics.

As with any robotic system, in order to effectively
control an SMRS and enable it to function as a unified
entity it is required to "close the loop". That is, con-
tinuously estimating the swarm’s density distribution
and mean position under the assumption that individual
agents cannot be identified and under the assumption
that external sensing is beyond reach.
To this end, we utilize the expression for the collision
rate of gas particles, which is a fundamental quantity in
classical statistical-physics that was first introduced in

[55]. Collision rate establishes the connection between
the gas temperature T , the rate at which the gas
particles collide with each other, and and their density.
Maxwell–Boltzmann distribution indicates that

√
T is

proportional to the particles’ average velocity. There-
fore, since the velocities of the agents are known (in
this case, all velocities are set to a predefined value,
apart from the momentarily fixed ones), the collision
rate can be reduced to the relationship between the
local density and local collision rate, as indicated
by Equation 1. By utilizing the fact that an agent
can report its headings and frequency of approaches
by other agents, Equation 1 can be employed as an
estimator for the density map.
We devised an experimental simulation that aimed to
present a substantial challenge for the aforementioned
estimator. Specifically, our experiment simulated a
scenario in which the agents, confined within a closed
area, demonstrated non-cohesive behavior reminiscent
of Brownian random motion, rather than exhibiting a
cohesive and predictable robotic-swarm dynamics. Our
estimator successfully and continuously estimated the
density function of the swarm, despite their seemingly
disorderly and erratic movements. The algorithm con-
verged within a reasonable time period, dynamically
adjusting to the swarm’s density map dynamics over
time.
Furthermore, since the SMRS comprises thousands
of agents by nature, the communication bandwidth
is expected to be limited. Therefore, assuming that
all the agents report their collisions at every instance
is non-feasible. To examine the estimator under this
limitation, we repeated the same experiment with only
a fraction of the agents reporting their collisions. Our
results show that even with a reduction in the number
of communicating agents from 100% to as low as 10%,
the algorithm’s performance remained unaffected. This
implies that our paradigm suits well for SMRS which
expected to behave in a much more orderly manner.

From the same perspective, considering that indi-
vidual communication with each agent in the SMRS
is not feasible, the only viable approach for providing
control signals to the swarm is to rely exclusively
on broadcast communication. Our proposed approach
involves employing an "advance towards" command,
where all agents move in the desired direction based on
possessing a compass. However, it is evident that this
approach leads to agents spreading out while translat-
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FIGURE 9: Control Scheme Overview: The dashed block encompase agent-side local decision-making and actions.
The solid blocks illustrate the central controller’s decision-making process, coordinating and overseeing the overall
system operation. The scheme distribution-statistic goal function may be the spread of the swarm, its orientation
or any other desired goal function which can be measured statistically.

ing to the target. As a naive solution, we considered
communicating with the entire swarm using a global
toggle command (forward/backwards), implementing
a gradient descent scheme to reduce the spread of the
swarm. However, the law of large numbers suggests
that this approach is insufficient, given that the agents
directions are uniformly distributed. Consequently, to
maintain the swarm’s spread, we investigated an alter-
native strategy involving communication with only a
fraction of the agents at any given instance.

To showcase this, we performed a series of experi-
ments using a small-sized real robot swarm. The objec-
tive assigned to the swarm was to achieve translation
while maintaining a reasonable spread. Each individ-
ual agent was assumed to be equipped with a com-
pass (in the real-world implementation, the heading
was extracted using a top-view camera). The swarm
successfully accomplished all the assigned tasks, as
demonstrated in Figure 7 and the supplementary ma-
terial, which includes a video showcasing the swarm’s
performance. Additionally, the convergence rate of the
swarm met the expected rate, as depicted in Figure 6
and formulated in detail in subsection III-B and in the
Methods Section.

In this particular experiment, each agent was only
able to follow a forward and backward command,

translating according to its current heading. The aver-
age direction uncertainty of 35◦ played a crucial role
in enabling control over the swarm, which would oth-
erwise be limited to endless back-and-forth movement.

This represents the epitome of being a "simple
agent" possessing only one degree of freedom and
being equipped with a compass sensor alone. As an-
ticipated, this approach proved to be time-consuming.
Therefore, we relaxed the simplicity requirement and
assumed that each agent possesses two planar degrees
of freedom, a compass, and the ability to measure
the distance to neighboring agents in its vicinity. We
conducted a second set of experiments via simula-
tions involving SMRS with hundreds of such agents.
The assigned tasks for the SMRS required navigat-
ing through narrow passages while moving towards a
target following a calculated path (further discussed
below). Throughout the simulations, the controller
demonstrated the ability to maintain its spread, execute
rotations and reshaping maneuvers (see Figure 8 and
the supplementary material, which includes a video
showcasing the swarm’s performance). During the sec-
ond set of experiments, we conceptualized the swarm
as a unified entity, akin to a ’cloud,’ rather than as a
mere aggregation of individual agents. This perspec-
tive is crucial to adhere to the statistical approach in
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motion planning, which aims to minimize the number
of failed agents while advancing the swarm towards
a target. Specifically, we consider this entity to have
an uncertain location, represented by a probability dis-
tribution that corresponds to the normalized estimated
density map, similar to the approach discussed in [56].
This framework allows us to construct a path and shape
for the swarm that align with the predefined threshold
for failed agents.

The outcomes of these experiments demonstrate
the effectiveness of this approach and underscore the
essential role of compass-based direction sensing in
SMRS control. The procedure outlined for SMRS
sensing can be applied to estimate other collective
properties of the swarm, such as the flow rate of
agents in a cluttered workspace, as well as the artificial
pressure exerted by the swarm. This can be achieved
by utilizing a particle filter coupled with the thermody-
namic characteristics of a gas.

V. METHODS
To prove Equations 2 and 3 assume all agents are not
equipped with a compasses unless stated otherwise. At
each time step, the controller computes the expected
destination function value for a forward and for a
backward signals, and chooses the one that minimizes
the objective function.

A. TRANSLATION CONTROL
Let us consider, for now, the distance to the target point
∥µ−µd∥ as the objective function. So, at each time step
τ , the mean position incremental translation ∆µn(τ)
of the complying subset (n < N ), calculated as the
root mean square

√
⟨•2⟩ with respect to infinite trials

is:

∆µn (τ) =
ϵ

n

n∑
i=1

vi(τ)

where vi(τ) are the direction vectors taken by each
agent at time tau. It turns out that such a strategy will
do for controlling the SMRS’s spread but will fail for
the translation mission. To acknowledge this, note that
having the agents randomly chosen, the calculation
of this subset-mean travel distance is equivalent to
solving the Pearson random walk problem [52]. In
other words, if the agents do not sense their heading
direction (i.e., are not equipped with a compass) the
norm of the translation at each time step |∆µn (τ)| can
be calculated as the random walk of n steps divided by
n. The asymptotic probability distribution of a random

walk is known to be a Rayleigh type with a root-
mean-square-distance ϵ

√
n. Accordingly, the center of

mass of the entire SMRS translates
√
nϵ/N at every

time step. In every time step, the activated subset may
translate in any given direction as long as it has a
negative component towards the designated target. But
since these directions are uniformly distributed with
respect to the time-steps, the expected value of the
cosine component is 2/π which together constitute the
expected translation ∆µN of the entire SMRS, given
below.

∆µN ∼ 2ϵ
√
n

πN

For the case where a compass is incorporated on
each agent, the step-wise translation is a result of the
expected value of the cosine component is 2/π and
therefore will simply amount to 2nϵ/Nπ.

B. SPREAD CONTROL

To prove Equation 5 Set X and Y disjoint random
vector-variables that |X|= N, |Y |= n and define Y ′ =
Y ±∆µY , were ∆µY is the incremental translation of
the mean of Y . The standard deviation of the combined
(pooled) distribution of X and Y ′ is:

σX∪Y ′ =

√∑
X(xi − µX∪Y ′)2 +

∑
Y (y

′
i − µX∪Y ′)2

N

but since

µX∪Y ′ = µX∪Y +
n

N
∆µY = µX∪Y ± α ∆µY

we can write

(6)σ
X∪Y ′

=

√√√√∑
X (xi − (µX∪Y ± α ∆µY ))2 +

∑
Y ((yi ± ∆i) − (µX∪Y ± α ∆µY ))2

N

Squaring and recalling that
∑

X(xi − µX∪Y ) +∑
Y (yi − µX∪Y ) = 0, one gets

σ2
X∪Y ′ = σ2

X∪Y +
1

N

(∑
X

α2∆µ2
Y

+
∑
Y

[(∆i − α∆µY )
2 ± 2∆⊤

i (yi − µX∪Y )

)
(7)

Expanding this:
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σ2
X∪Y ′ = σ2

X∪Y +
1

N

(∑
X

α2∆µ2
Y +

∑
Y

[∆2
i + α2∆µ2

Y

− 2α∆⊤
i ∆µY ± 2∆⊤

i (yi − µX∪Y )]

)
(8)

Collecting

(9)
σ2
X∪Y ′ = σ2

X∪Y + α2∆µ2
Y − 2α2∆µ2

Y

+

∑
Y [∆2

i ± 2∆⊤
i (yi − µX∪Y )]

N

and

(10)
σ2
X∪Y ′ = σ2

X∪Y − α2∆µ2
Y ∓ 2α∆µ⊤

Y µX∪Y

+

∑
Y ∆2

i ± 2∆⊤
i yi

N

plugging ∥∆i∥2= ϵ yields:

(11)
σ2
X∪Y ′ = σ2

X∪Y − α2∆µ2
Y ∓ 2α∆µ⊤

Y µX∪Y

+ αϵ2 ± 2

∑
Y ∆⊤

i yi
N

Note that:
(1) For the ’blind’ algorithm ∆µY is simply the two

dimensional simple random n-walk divided by n so√
⟨∆µ2

Y ⟩blind
=

ϵ√
n

For the ’with compass’ algorithm where all agents
traverse in the half-plane the term is:√

⟨∆µ2
Y ⟩compass

=
2ϵ

π

(2) Whether we use the ’blind’ algorithm or the
’with compass’ algorithm, the resulting inner products
∆⊤

i yi are random variables taken from a one dimen-
sional Gaussian distribution N (0, σX∪Y ). So the vari-
ance of the nominator in the last term is simply the
one dimensional Gaussian random walk provided as
σX∪Y ϵ

√
n;

(3) One may set µX∪Y = 0.
Which yields:

∆(σ2
X∪Y ) ∈ N

(
−α2∆µ2

Y + αϵ2, 2ϵ
σX∪Y

√
n

N

)
(12)

This defines a difference equation in which its
solution is the Lambert function with an additional
constraint that ∆(σ2

X∪Y ) is taken positive under our
control law.

VI. CONCLUSIONS
The controllable and the observable parameters in the
statistical-physics community and in the robotics com-
munity differ: Physicists study the relationships be-
tween macroscopic and microscopic parameters, given
macroscopic observations. Extracting information ex-
perienced by individual particles is often out of reach.
In the field of robotic swarms, agents may be equipped
with sensors that enable one to estimate the swarm’s
macroscopic characters, which are often not observ-
able for huge swarms. The framework developed in
this study may enable physicists in the statistical-
mechanics community to introduce new way of think-
ing and provide the robotics community with access
to the mathematical formalism provided by statistical-
physics (such as Peculation theory, the notion of Pres-
sure etc.).
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