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ABSTRACT Super-resolution (SR) of the degraded and real low-resolution (LR) video remains a
challenging problem despite the development of deep learning-based SR models. Most existing state-of-
the-art networks focus on getting high-resolution (HR) videos from the corresponding down-sampled LR
video but fail in scenarios with noisy or degraded low-resolution video. In this article, a novel real-world
“zero-shot” video spatio-temporal SR model, i.e., 3D-Deep Convolutional Auto-Encoder (3D-CAE) guided
attention-based deep spatio-temporal back-projection network has been proposed. 3D-CAE is utilized
for extracting noise-free features from real low-resolution video and used in the attention-based deep
spatio-temporal back-projection network for clean, high-resolution video reconstruction. In the proposed
framework, the denoising loss of low-resolution video with high-resolution video reconstruction loss is
jointly used in an end-to-end manner with a zero-shot setting. Further, Meta-learning is used to initialize the
weights of the proposed model to take advantage of learning on the external dataset with internal learning in
a zero-shot environment. To maintain the temporal coherency, we have used the Motion Compensation
Transformer (MCT) for motion estimation and the Sub-Pixel Motion Compensation (SPMC) layer for
motion compensation. We have evaluated the performance of our proposed model on REDS and Vid4
Dataset. The PSNR value of our model is 25.13 dB for the Real VSR dataset, which is 0.72 dB more than the
next-best performing model, EAVSR+. For MVSR4x, our model provides 24.61 db PSNR, 0.67 dB more
than the EAVSR+ model. Experimental results demonstrate the effectiveness of the proposed framework on
degraded and noisy real low-resolution video compared to the existing methods. Furthermore, an ablation
study has been conducted to highlight the contribution of 3D-CAE and attention layer to the overall network
performance.

INDEX TERMS Zero-shot, Super-Resolution, and Convolutional Auto-encoder.

l. INTRODUCTION The high-resolution cameras in these cases are expensive, and
transmitting such media requires enormous bandwidth.

Videos are the most common and comprehensive source of

information in today’s day-to-day life. With the advent of
high-tech imaging technologies, videos can be captured in
HD and UHD quality, thereby enhancing one’s perceptual ex-
perience. However, with such technologies, there are certain
situations (remote sensing [1]-[3], UAV surveillance, etc.)
where capturing HD videos is complex or involves more cost.
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Video super-resolution (VSR) is a computational tech-
nique that intends to address these challenges by generating
a high-resolution (HR) sequence of video frames from cor-
responding low-resolution (LR) video frames. The VSR [4]
has numerous applications in the fields of remote sensing,
UAV surveillance, Panorama video super-resolution, secu-
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rity, High Definition(HD) and Ultra HD (UHD) Televisions,
etc.

Though various techniques have evolved for single image
super-resolution (SISR) [5]-[8], the VSR is still a demanding
and ill-posed problem. Contrary to SISR, where a single im-
age is super-resolved, VSR intends to encapsulate the inter-
frame alignments while performing frame-to-frame super-
resolution.

The VSR method has two domains: spatial and temporal
SR. The spatial SR intends to increase the size of the frames
while preserving-cum-adding additional information. In con-
trast, temporal SR [9] intends to reduce the quantization
loss of information between two frames. Temporal SR is the
retrieval of those dynamic events that occur faster than the
provided frame rate by predicting mid-frame information.
These pieces of inter-frame information are critical in VSR to
maintain consistency in the motion of the video. Space-time
video SR is more challenging as spatial and temporal SR are
both ill-posed problems [10]. This problem is more interest-
ing and valuable in many computer vision and biomedical
tasks for pre-processing of videos. The problem is further
complicated when there is degradation in the video frames.

Recently, Deep learning based VSR models have provided
state-of-the-art (SOTA) performance but have limitations
such as high computational complexity, dataset-specific per-
formance [11], and adaptation to synthetic LR degradations
(such as bicubic, etc.) exclusively [12]. These frameworks
were not generalized and were trained over synthetically
generated LR sequences. Hence, they performed well over
the dataset with synthetic LR video sequences. Still, their
performance deteriorated significantly when the video frame
sequences from other datasets having real degradation were
evaluated [13]. The real noises are heterogeneous, with dif-
ferent degradations having no verifiable mathematical mod-
els. The generation of HR video frame sequences from
the dataset having such noises is extremely difficult. To
address the issues of real-world noise scenarios in SISR-
based models, the ZSSR [14], a self-supervised method, used
a zero-shot setting to learn the internal information (non-
local structures) of the image on a simple CNN model. The
model outperformed different blur kernels compared to other
SISR SOTA models with minimal computational complexity.
However, it could not exploit the patterns of large external
datasets, resulting in a non-generalized and less adaptive
model. It took thousands of iterations to learn the information
in the sample before it could produce good results. This prob-
lem was overcome using meta-learning in MZSR [15]. In
MZSR [15], they first trained the model on an external large
dataset, a transfer learning step, and then they meta-trained
the model over different blur kernels to incorporate kernel-
agnostic characteristics in the model. With these weights,
they used zero-shot training over the LR image to produce
the SR Image. The model was able to exploit the information
of the large external dataset and internal non-local structures
of the images to produce exceptionally good and generalized
results with faster learning. The model was able to adapt to
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new samples with different blur kernels in a few gradient
descent steps as compared to ZSSR [14].

Inspired by the success of these results on SISR prob-
lems, in this article, a novel zero-shot and meta-learning-
based real-world video space-time SR method (3D-deep
Convolutional Auto-encoder guided attention-based deep
Spatio- Temporal back-projection Network (CASTNet)) is
introduced for super-resolution of real LR videos. The 3D
Convluational auto-encoder (3D-CAE) learns the noise-free
features from noisy LR videos, and the Attention-based Deep
Spatio-Temporal back-projection Network generates the HR
video from these noise-free features. The last three layers
of the 3D-CAE are concatenated, and these concatenated
features are fed to the deep spatio-temporal network. The
spatio-temporal SR network upscaled the features in the
spatial and temporal domain and reconstructed the HR video
using these up-scaled features. The denoising and SR loss
gradients were used to update the denoising model weights
and SR weights were updated by the gradient of SR loss
to get the improved resultant HR video. Both models were
jointly trained in the end-to-end fashion. As given in Figure
1, the model was initially trained on a large dataset, where
various blur kernels were used to create different tasks, and
these tasks were learned in a meta-learning fashion to update
the weights of the model and reduce its kernel dependency.
After the learning on the external dataset, for the Meta-
test phase, the model was updated using a zero-shot setting
for a sample of video frame sequence to generate video-
specific SR. Detailed experimental results demonstrate the
effectiveness of the proposed meta-learning and zero-shot-
based video SR framework on degraded and noisy real low-
resolution video compared to the existing methods. Further-
more, an ablation study has been conducted to highlight the
contribution of each component of the proposed network.
The enhancement module is referred to as ADST-BPN in this
article.

Il. RELATED WORK
A. IMAGE SUPER-RESOLUTION

Recent advancements in image super-resolution (SR)
have been driven by deep learning techniques like
[51, [71, [8], [16]-[21]. While effective, these methods rely
on knowing the exact degradation kernel, posing limitations
in real-world applications. To overcome this, blind image
super-resolution has emerged, focusing on self-supervised
estimation of unknown degradation kernels. This approach
categorizes methods into non-blind SR and blind SR, offering
solutions for scenarios where precise kernel information is
unavailable.

Non-blind SR methods use the known degradation ker-
nel to generate high-quality, high-resolution (HR) images.
Examples include SRM [22], which uses the low-resolution
(LR) image and its corresponding degradation kernel as in-
puts, and ZSSR [14], which trains an image-specific network
on the pseudo-LR-HR image-pairs obtained using the same
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FIGURE 1: The proposed methodology. In the first stage, the external dataset is used for large-scale training. From the initial
point, the §y model is trained to obtain 67 using large-scale dataset REDS. Then during meta-transfer learning 65, is obtained
for various blur kernels and real-world degradations. During the meta-test phase, a test input is downsampled and the model is

trained using a self-supervised internal training mechanism

kernel which used to generate LR image from the test image
itself.

In contrast to supervised methods, blind super-resolution
(SR) techniques aim to infer unknown kernels through self-
supervision and subsequently apply these estimated kernels
to non-blind SR models. Various strategies have been devel-
oped for kernel estimation, leveraging self-similarity or em-
ploying iterative self-correction mechanisms. The pioneering
work by Michaeli and Irani [23] introduced a method to esti-
mate downscaling kernels by exploiting the patch-recurrence
characteristic within a single image. Building upon this, Ker-
nelGAN [24] enhanced kernel estimation by incorporating
Internal-GAN. Additionally, IKC [25] proposed an iterative
correction approach, demonstrating its efficacy in producing
high-fidelity SR images.

Also, the feedback mechanism is exploited by Li, Zhen,
et al. [26] to refine the output of the network. Another
mechanism is proposed in FENet by Behjati et al. [27]
using a frequency-based enhancement network. Luo et al.

[28] proposed a novel adversarial neural degradation (AND)
model for blind image SR to generate a wide range of
complex degradation effects that are highly non-linear.

In the context of blind image super-resolution (SR), self-
supervised methodologies have been put forth [29], [30].
Dong et al. [29] introduced a self-supervised technique that
estimates the blur kernel and intermediary high-resolution
(HR) image from a single low-resolution (LR) input image.
This approach employs a variational model, grounded in
the image formation of SR, to enhance the quality of the
intermediary HR images. A separate self-supervised method
[30] has integrated contrastive learning into blind remote
sensing image SR, directing the reconstruction process by
promoting positive representations and penalizing negatives.
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Recently, diffusion-based techniques have attracted signifi-
cant attention in the field of image SR. One such method,
SinSR [31], accomplishes single-step SR generation through
the derivation of a deterministic sampling process from the
most recent state-of-the-art (SOTA) method, thereby expedit-
ing diffusion-based SR. Another diffusion-based SR method,
EDiffSR [32], utilizes a diffusion probabilistic model, incor-
porating an Efficient Activation Network (EANet) for en-
hanced noise prediction performance and a Conditional Prior
Enhancement Module (CPEM) for precise super-resolution.
Guo et al. [33] have proposed a face video SR method that
addresses video compression artifacts by capitalizing on the
correlation among video, audio, and the emotional state of
the face.

B. VIDEO SUPER-RESOLUTION

Video super-resolution (VSR) methods are commonly clas-
sified into traditional and deep learning-based approaches.
Schultz and Stevenson [34] introduced a conventional
method employing affine models for motion estimation,
while 3D steering kernel regression was applied in [35]. Ma
et al. [36]utilized the expectation-maximization technique to
reconstruct high-resolution frames by estimating the blur
kernel. Furthermore, a method in [37] concurrently estimates
the blur kernel, motion, and noise level through a Bayesian
approach for reconstructing high-resolution frames in VSR.

In recent times, deep learning-based strategies have
emerged to address the image super-resolution (SR) chal-
lenge. Given that a video comprises a sequence of moving
images over time, image SR methodologies can be adapted
for VSR by incorporating necessary modifications. Notable
deep learning-based image SR models include SRCNN [5],
SRGAN [20], FSRCNN [18], ESPCN [6], and ZSSR [14].
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VSRnet [21], a model derived from SRCNN, is proposed for
video super-resolution.

Deep-learning-based VSR methodologies are commonly
categorized into two distinct categories: those incorporat-
ing frame alignment and those operating without it. The
former class leverages motion estimation and compensa-
tion techniques as initial processing steps to extract precise
inter-frame motion details [38]-[41] and facilitate frame
alignment [10], [42]-[45]. This approach, demonstrated in
studies such as [46]-[49], proves particularly effective in
scenarios involving significant motion dynamics. The op-
tical flow method that uses variations and correlations in
the temporal domain to compute the motion between two
nearby frames is popularly used in most motion estimation
techniques [50], [51]. The motion compensation methods can
also be applied using either the traditional methods [52], [45]
or using deep learning-based approaches [51], [50], [53].
Deformable Convolution Methods for video SR were first
proposed by [54], [55], [56] [57], [58], [59]. BasicVSR [60]
used a simple RNN architecture with propagation, alignment,
and upsampling modules to make VSR suitable for real-
time applications. Later, for better handling of misalignment,
enhanced propagation along with flow-guided deformable
alignment is introduced in BasicVSR [60] to the proposed
BasicVSR++ [61].

Deformable attention mechanisms have gained promi-
nence in the area of blind video super-resolution (VSR) due
to their ability to handle complex spatial transformations and
focus on relevant features. One notable work in this domain
is the Deep Blind Super-Resolution for Satellite Video [62].
The proposed BSVSR algorithm in [62] is an empirical
approach for blind SVSR that emphasizes sharper cues by
considering pixel-wise blur levels using the approach called
coarse-to-fine manner. It utilizes multi-scale deformable con-
volution for aggregating the temporal redundancy across
adjacent frames through window-slid progressive fusion, fol-
lowed by deformable attention for meticulous integration of
adjacent features into mid-feature.

Another significant contribution is the Bidirectional Multi-
scale Deformable Attention for Video Super-Resolution [63].
This method uses a Deformable Alignment Module (DAM)
which contains two types of modules: Multi-scale De-
formable Convolution Module (MDCM) used to improve the
robustness of the adjacent frame alignment process by using
the offset information in the different scales and aligning the
frames at the feature level. The second module is the Multi-
scale Attention Module (MAM), used to extract the local as
well as global features of the aligned features.

Moreover, for lightweight VSR [64], the Deformable
Spatial-Temporal Attention aggregates the spatial-temporal
information obtained from the multiple reference frames into
the current frame to improve the reconstruction effect.

These works demonstrate the effectiveness of deformable
attention mechanisms in handling the challenges of align-
ment and fusion in blind VSR tasks. They provide a ro-
bust and effective way to enhance the resolution of video
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sequences while maintaining temporal consistency.

In methods without alignment techniques, alignment is
not performed by aligning neighbouring frames; instead, the
Spatio-temporal or spatial information is used for executing
feature extraction. This technique can further be classified
into four types i.e. 2D convolution methods (2D Conv) [65]
, non-local network-based methods [59], [66], [67], 3D con-
volution methods (3D Conv) [68], and Recurrent CNN (R-
CNN) based methods [69]. The 2D convolution methods (2D
Conv) fall under the umbrella of spatial methods whereas the
remaining three methods belong to the Spatio-temporal cate-
gory and utilize both the temporal as well as spatial informa-
tion obtained from the input videos [4]. In the 2D convolution
method [65], [70], a 2D convolutional network absorbs the
correlation information existing within the frames by itself.
The three important stages, feature extraction, fusion and SR
are performed spatially on the frames passed as input to the
model instead of performing actions like motion estimation
and motion compensation [4] whereas 3D Convolution Meth-
ods [68], [71], [72] utilizes spatial as well as the temporal
information to super-resolve the video and Recurrent CNNs
[69], [73], [74], [75] can accurately represent the temporal
dependency in sequential data and has been used for video
SR. The use of direct 3D convolution is introduced by Li et
al. [76] to generate video sequences. This eliminates the need
for RNNs and allows for efficient processing. To avoid the
use of explicit motion compensation, Jo et al. [71] proposed
an architecture that learns the dynamic upsampling filters for
each pixel based on its local spatio-temporal neighbourhood.
CycMu-Net [77] used the cycle-projected mutual learning
between spatial and temporal super-resolution tasks to pro-
duce optimal results in terms of both detail and consistency.
In this method, spatial features refine temporal predictions,
while temporal information helps extract finer spatial details.
Addressing the issue of blind VSR, DynaVSR [78]utilizes a
dynamic encoder-decoder architecture that adapts to different
degradation types at runtime. Apart from CNN architecture,
transformer architecture is also exploited for VSR. Liang et
al. [79] proposed a Recurrent Video Restoration Transformer
(RVRT) with guided deformable attention to handle the com-
plex temporal dependencies and object deformations. In re-
cent years, the video inbetweening technique is also utilized
aiming to enhance the temporal resolution of video sequences
by creating new frames between known keyframes. Initial
methods for video inbetweening include optical flow-based
interpolation [80], [81] and pixel motion transformation [82],
[83]. To perform long-term video interpolation, block-based
motion estimation/compensation methods or LSTM models
[84] were used.

C. ZERO-SHOT SUPER-RESOLUTION WITH
META-LEARNING

The SOTA SISR methods fail, and their performance de-
teriorates in the case of real LR input (LR image with
compression, sensor, and random noises) as they have trained
on datasets where LR counterpart is generated synthetically
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FIGURE 2: Block diagram for the proposed framework. Here H and W are the height and width of the image frame respectively

whereas n and m are the number of frames where m < n.

by bicubic down-sampling of corresponding HR Image.
These SOTA SR methods are very deep and computationally
complex, too. To overcome these challenges, Shocher et al.
[14] have proposed zero-shot learning for SISR. The model
proposed was very light and did not need any training on
the external dataset. The proposed method performs image-
specific training at test time and outperforms SOTA in the
case of real LR images like old photos and degraded images.
However, due to its limitation of fast adaptation to datasets
having statistically distant noises and kernels, Soh et al.
have presented meta-transfer learning along with ZSSR [85]
to initialize the weights of the model to take advantage of
learning from the external dataset with internal learning in the
zero-shot setting. Here, meta-transfer learning helps in fast
convergence during training in a zero-shot setting at test time.
Mohammad Emad has presented dual-path zero-shot learning
[86], which attempts to train cycle GAN-based architecture in
the zero-shot setting to improve performance for real-world
LR images further. [87] also employs a similar approach to
meta-transfer learning.

Performing Spatio-temporal SR, i.e., creating intermittent
frames along with SR, is more challenging and intimidating.
Spatio-temporal VSR methods [9], [88], [89], [90], primarily
work on bicubic and tricubic methods to form LR images,
they require large datasets to generalize, they fail to adapt
to blurriness created from different kernels and were com-
putationally complex. This limits their use in practical appli-
cations such as HD television [91], UAV surveillance [92],
[93], security [94], [95], etc. Due to the heterogeneous nature
of noise in real LR, these models do not produce effective
motion-consistent HR videos.

D. MOTION ESTIMATION AND COMPENSATION

In video super-resolution, simply applying image super-
resolution methods to each frame independently may not
produce satisfactory results, because there may be inter-
frame motion that causes temporal distortion and blur. Inter-
frame motion is the movement of objects or cameras be-
tween consecutive frames, which can create misalignment
and inconsistency between the frames. Therefore, motion
estimation and compensation are needed to handle the inter-
frame motion and align the frames before applying super-
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resolution.

To solve the motion estimation problem several deep
learning-based networks were used. For stereo matching,
Zbontar and LeCun [96] and Lou et al. [97] used to learn
patch distance measures by employing a CNN whereas Fis-
cher et al. [98] and Mayer et al [99] proposed the use
of end-to-end architectures to predict the optical flow and
it’s stereo disparity. For the motion compensation problem,
earlier VSR methods [100]-[104] achieved the inter-frame
motion compensation by either estimating optical flow or by
applying block-matching. In deep-learning-based VSR meth-
ods use backward warping by aligning all other frames to the
reference frame to achieve inter-frame motion compensation.

The existing work on zero-shot super-resolution with
meta-learning was limited to images. This motivated us
to design an architecture for meta-learning-based zero-shot
video space-time SR. Our model incorporates all benefits
obtained by the zero-shot and meta-learning-based training.
Along with this, our model solves denoising and super-
resolution simultaneously with a dedicated architecture for
joint optimization of denoising and super-resolution.

lll. METHODOLOGY

A. PROPOSED ARCHITECTURE AND OPTIMISATION
The block diagram for the proposed methodology is depicted
in Figure 2. The Motion estimation and compensation mod-
ules are employed to maintain the temporal coherency in
the output video sequence. After the frame alignment, the
enhancement module which consists of two parts, i.e., the
denoising module and the spatio-temporal super-resolution
module, is employed to get spatio-temporal super-resolution.
The details of each module are as follows:

1) Motion Estimation

Motion estimation (ME) is the process of estimating the
motion vectors between successive frames in a given video
sequence. Motion vectors are the displacement of the pixels
from one frame to the other, which indicate the direction
as well as the magnitude of motion. The ME module takes
two LR frames as input and generates an LR motion field as
output, and it can be defined as

Fy ;= Netyp(IF, IF:00Eg) )]

(R A
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where Fi_,; = (ui—j,_,;) is the motion field calculted
from frame I iL, I jL, and 0, is the set of motion estimation
parameters. The use of neural networks for motion estimation
is a well-established concept, and several existing works
[98]-[100], [105] have demonstrated significant achieve-
ments in this area. In our study, we tested FlowNet-S [98]
and the motion compensation transformer (MCT) module
from VESPCN [100] and opted for MCT due to its lower
parameter count and, consequently, reduced computational
cost. The MCT uses self-attention along with cross-attention
mechanisms to capture the long-range dependencies and tem-
poral alignment between the frames. The self-attention mech-
anism computes the similarity between each pixel and all
other pixels within the same frame and generates a weighted
sum of the pixel features. The cross-attention mechanism
calculates the similarity between each pixel in the reference
frame and all other pixels in the neighbouring frames and
generates a weighted sum of the pixel features. The output
of the MCT is a set of motion vectors for each pixel in the
reference frame.

2) Motion Compensation

Motion compensation is the process of aligning the frames
according to the motion vectors to reduce temporal distor-
tion and blur. Motion compensation can help to improve
the temporal consistency and details of the video. We used
the motion compensation layer proposed by Tao et al. [43]
that leverages sub-pixel information from motion to achieve
simultaneous sub-pixel motion compensation (SPMC) The
SPMC performs sub-pixel shifting and interpolation to gen-
erate aligned frames. The sub-pixel shifting operation shifts
each pixel in the neighboring frames according to its corre-
sponding motion vector, and produces a set of shifted frames.
The interpolation operation combines the shifted frames us-
ing a convolutional filter and produces an aligned frame. The
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output of the SPMC is a set of aligned frames that match the
reference frame. It can be defined as

JER = Lepymc(IFE, Fi ) 2)

3

where IF% is the LR image and JX% is the output image,
F' denotes the optical flow utilized for transposed warping,
and « represents the scaling factor. As illustrated in Figure
2, transformed coordinates are first calculated using the esti-
mated motion flow F' = (u, v) and can be expressed as:

) ()r(i1z) o
(y;) Fia yp (6% yp +’Up ( )

here, p indexes pixels in the LR image space, where x,, and
yprepresent the two coordinates of p. Additionally, u,, and v,
denote the flow vectors estimated from the previous stage.
We use the operator Wg., to denote the transformation of
coordinates, which depends on the flow field F' and the scale
factorae. Subsequently, z; and y, refer to the transformed
coordinates in output image space. Finally, the resulting
image J, f can be constructed in the output image space using

T =Y JEM () — ) My — yg) o)
p=1

where q indexes output image pixels, x4, and y, are the
coordinates for pixel ¢ in the output image grid. M(-) is the
sampling kernel.

3) The Enhancement Module

The detailed architecture for the enhancement module is
shown in Figure 3, which is used to improve the spatial and
temporal resolution of real LR video. Since the input video is
of low resolution and has noise and degradation, improving
the resolution of the given input real LR video along with
removing the noise embedded in it is the main objective of
the proposed enhancement module.

VOLUME 4, 2016



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3406476

IEEE Access

TABLE 1: Performance comparison of various video SR algorithms on Vid4 [44] dataset with different densities of noise.
Here Rn denotes random noise. The top 2 results are shown in bold

Methods Vid4 Vid4 + Gaussian (0.01) | Vid4 + Gaussian (0.1) | Vid4 + Gaussian + Rn
(PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM)

TechnoGAN [106] 25.89/- 21.68/0.6482 20.73/0.6341 17.49/0.5934
MMCNN [107] 26.28/0.7844 24.19/0.7194 23.37/0.7059 20.78/0.6493
MEMC-Net [108] 24.37/0.8380 21.72/0.7938 20.18/0.7614 18.94/0.7214
MuCAN [109] 30.88/0.8750 27.04/0.8137 25.17/0.8046 21.31/0.7419
DUF [71] 27.38/0.8329 23.28/0.6400 22.76/0.6233 18.88/0.5030
FSTRN [90] 29.95/0.8700 22.98/0.6132 19.72/0.5673 16.39/0.4478
EDVR [110] 27.85/0.8503 24.11/0.6897 23.02/0.6338 19.87/0.5348
TDAN [111] 26.58/0.8010 23.78/0.6429 21.49/0.6176 19.46/0.5937
BasicVSR [60] 27.24/0.8251 26.41/0.8137 23.57/0.7785 21.81/0.7400
BasicVSR++ [61] 27.79/0.8400 26.53/0.8157 24.16/0.7800 22.56/0.7417
RVRT [79] 27.99/0.8462 26.84/0.8162 24.57/0.7846 22.94/0.7468
Ada-VSR [87] 26.98/0.8400 24.83/0.8251 23.18/0.8143 21.48/0.7804
Proposed 30.07/0.8643 27.89/0.8017 25.88/0.7916 23.16/0.7649

Hea 2xHR map

FIGURE 4: Internal Architecture of 3D Spatio-Temporal Up
and Down Projection Blocks

The enhancement module consists of two sub-modules;
one is for denoising, and another is for spatio-temporal
super-resolution. The denoising module is used to remove
the unwanted noise and degradation in real LR video. It is
a 3D-deep convolutional auto-encoder (3D-CAE) that con-
sists of three 3D-convolution layers followed by three 3D-
convolutional transpose layers. The output of this 3D-CAE
will be noise-free LR video with the same level of spatial and
temporal resolution as in the input.

The features from 3D-deconvolution layers are concate-
nated as feed to the Spatio-temporal super-resolution mod-
ule, which is an ADST-BPN. In the spatio-temporal super-
resolution module, a 3D-attention layer is present at the
beginning, followed by one 3D-convolution layer. After
that, there are a series of spatio-temporal up-projection and
down-projection blocks arranged in a cascade manner. These
spatio-temporal blocks, as shown in Figure 4, are discussed in
detail in the next section. This spatio-temporal up projection
and down projection is the 3D version of the up and down
projection block given by [112]. All the features from Spatio-
temporal up-projection blocks are concatenated at last, and
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these concatenated features are then passed through one
more 3D-convolutional layer. The output of this final 3D-
convolutional layer is our desired HR output video. In the
enhancement module, one 3D-self-attention layer is also used
to learn the relation of prominent features that contribute
mostly to feature enhancement.

4) Spatial-temporal up and back projection

As given in figure 4, the spatio-temporal up-projection unit
takes LR video features coming from previous calculations
and maps it to intermediate HR features H; (spatio-temporal
upscaled) using a 3D-convolution and 3D deconvolutional
layer employed in series. First, the low-resolution feature
at time t is upscaled using a 3D-deconvolution layer to
get the high-resolution feature H;. Mathematically this up-
projection can be defined as:

H; = (Lt *pt) Ts 5)

where s is the scale factor of upsampling and downsam-
pling and p, is the 3D-deconvolution layer. we have selected
s = 2 for our proposed framework. Then one more 3D-
convolutional g, layer maps H; to intermediate LR feature
L. This LR feature can be written as:

Lt+1 = (Ht * gt) ds (6)

Then we calculate the residual e; between this LR feature
map L4 and first calculated LR map L; coming from the
first 3D-convolutional layer, defined as:

Ty = Lip1 — Ly @)

This residue is again passed through a 3D-deconvolutional
layer g¢41 to get one more intermediate HR map H; ;.

Hip = (Tt * Qt+1) Ts (®)
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The final Spatio-temporal upscaled HR feature map is
achieved by adding outputs of two 3D-deconvolutional lay-
ers.

HRmap = Ht+1 + Hy )

The spatio-temporal down-projection unit, as shown in figure
4, works similarly to the spatio-temporal up-projection layer.
It takes previously computed spatio-temporal up-scaled HR
features as input and produces the final LR using a 3D-
convolution layer M, feature map defined as:

L, = (H; * M) L (10)

Then, L, is upsampled using 3D-deconvolution layer NV, and
it can be written as:

Ht+1 = (Lt * Nt) Ts (11)

Now, similar to the Up-projection block, residue r,, is calcu-
lated by subtracting the HR feature Ht + 1 with intermediate
HR feature H;,

v = Hir — H, (12)

Next, we downscale this calculated residual feature using a
3D-convolution layer R, to get the LR feature defined as:

Lit = (Tn * Rt+1) s (13)

Final LR features are obtained by adding the intermediate LR
features maps L; and L; .

LRmap - Lt + Lt+1 (14)

B. LEARNING ON EXTERNAL DATASET

Assume the high-quality dataset Dpypr having n number
of pairs of HR video and corresponding LR video (Vi g,
Vi Rr), Here Vi R is synthetically generated by bicubic down-
sampling of HR Video frames and dropping of mid frames.
Then noise is added to the LR video frames to generate noisy
or degraded LR video V1 r. Now our proposed model (ZS-
RW-ZSSR) given in Figure 3, is learning the robust spatio-
temporal SR mapping fy, where 6 is the parameter of the
model, between noisy-LR and HR Video pairs (Vyrr, ViRr)
and also learning the LR video denoising mapping fgc ar by
3D-CAE from noisy-LR and LR video pairs (VN r, VLRr) by
minimizing the loss

n

1 1
LP(0) = wlﬁz 3 | Viari — fo(VnrLri) |2 +

1=

L 11 (15)
ws Z 5 | Viri — focae(VNLri) |2

i=1

here, n is the total number of pairs of LR-HR videos in the
external dataset. minimization of weighted linear combina-
tion of denoising 108s 1055 4enoising and super-resolution loss
losssr wilosssr + W2l0SSgenoising 1S performed to update
the weights of model. here, to optimise the weights of ADST-
BPN w; = 1 and w2 = 0 and to optimize the weights of 3D-
CAE, wi; = 0.3 and wo = 0.7. w; and w- have been decided
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by trial and error. 3D-CAE and ADST-BPN are end-to-end
optimized.

C. META TRANSFER LEARNING FOR VIDEO SR
After learning model parameters (f) on an external dataset,
the model is adapted to different settings (different down-
scaling kernels + random/Gaussian noise/blur). One another
synthetic dataset has been generated for meta-transfer learn-
ing, denoted as D setq- D pretqa consist of pairs (Vi g, VLRk),
here k represents different down-scaling kernel and degrada-
tion settings.

The Meta dataset is further divided into task-level training
and testing datasets (Dy¢rqining and Diesting)-

For each new task 7T, parameters are updated using one or
more gradient decent updates. The new parameter 6; is then

0, =0—avoL; """ (0) (16)

here, « is a task level learning rate, 6 is old parameter.

The model parameters are further optimized by minimiz-
ing the loss,

Oar = argming Y L™ (9 — aV, Liening (9)) (17
T’L
The model parameters 0y, are generated by the above opti-
mization equation

D. ADAPTION TO TEST IMAGE: META TEST

Then 6); (pre-trained weight) is used as initial weights to
train our proposed enhancement module as given in Figure 3
in a zero-shot manner [14], [85] as shown in Figure 1.

This step is one test video-specific training at test time.
Given a test LR video sequence Vi g, first, we will down-
sample each frame spatially and drop the even frames to
generate its spatio-temporal son Vj,,. We performed some
epoch of gradient update with V,,, as input and Vi as a
ground truth. After a few epoch updates, we feed the given
test sequence Vg as input to the updated learned model to
spatio-temporally super-resolve the test video sequence.

IV. EXPERIMENTAL RESULTS

In this section, we exhibit the implementation details of
our proposed method. Also, the outcomes of our proposed
network and its comparison with existing SOTA methods for
video SR. The comparative analysis of our experiment in
terms of evaluation metrics, as well as the visual comparison,
is also presented. This section also discusses the ablation
study and information about computational complexity.

A. IMPLEMENTATION DETAILS

Dataset: We used two popular video super-resolution
datasets for training and evaluation of our proposed model:
Vid4 [44], and REDS [113]. The Vid4 dataset is a commonly
used benchmark for video super-resolution algorithms. It
consists of four video sequences: “walk,” “city,” “foliage,”
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TABLE 2: Performance comparison of various video SR algorithms on REDS4 [113] dataset with different densities of noise.
Here Rn denotes random noise. The top 2 results are shown in bold

Methods REDS4 REDS4 + Gaussian (0.01) | REDS4 + Gaussian 0.1 | REDS4 + Gaussian + Rn
(PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM)

TechnoGAN [106] 28.49/0.7816 26.16/0.7613 25.31/0.7543 21.09/0.7201
MMCNN [107] 29.17/0.7904 27.44/0.7643 26.07/0.7540 22.51/0.7289
MEMC-Net [108] 28.49/0.8507 27.01/0.8312 26.18/0.8176 23.76/0.7819
MuCAN [109] 31.46/0.8934 28.41/0.8629 27.84/0.8537 24.12/0.8196
DUF [71] 28.63/0.8056 25.63/0.8881 23.43/0.6939 20.05/0.6008
FSTRN [90] 27.90/8634 25.52/0.7658 23.19/0.6431 18.35/0.5876
EDVR [110] 28.88/0.8361 26.34/0.8300 24.37/0.7466 21.00/0.6134
TDAN [111] 29.71/0.8214 27.09/0.7943 26.17/0.7649 22.96/0.7319
BasicVSR [60] 31.42/0.8909 29.83/0.8713 8.53/0.8571 24.83/0.8017
BasicVSR++ [61] 32.39/0.9069 30.18/0.8776 28.73/0.8618 25.12/0.8134
RVRT [79] 32.75/0.9113 31.43/0.8819 29.87/0.8632 26.43/0.8193
Proposed 31.05/0.8846 29.87/0.8716 29.18/0.8619 26.49/0.8278

TABLE 3: Performance comparison of our proposed CAST-
Net with existing methods on RealVSR and MVSR4x
dataset.

Real VSR [114] MVSR4x [115]

Methods SNR/SSIM/LPIPS | PSNR/SSIM/LPIPS
TDAN 2371/0.7737/0.229 | 23.07/0.7492/0 282
EDVR 33.96/0.7781/0.216 | 23.51/0.7611/0.268
BasicVSR 34.00/0.7801/0.200 | 23.38/0.757594/0 270
BasicVSRAT 34.2470.7933/0.216 | 23.70/0.7713/0.263
EAVSR+ 34.41/0.7953/0.212 | 23.94/0.7726/0.259
CASTNet (Ours) | 25.13/0.8061/0.207 | 24.61/0.7926/0.247

TABLE 4: Estimated FLOPS for each component of our
proposed model.

Component Estimated FLOPSc(G)

CNN Blocks 103.12
PReLLU 2.9
Addition 2.6
Subtraction 2.6
Concatenation 2.2
Attention 2.2

Total 115.6

and “calendar.” The video’s length ranges from 26 to 47
frames, and the resolution of videos ranges from 704x576
to 740x480. The REDS (Realistic and Dynamic Scenes)
dataset is a large-scale video super-resolution dataset. It is
designed for video deblurring and video SR tasks. It utilises
120 fps videos to create blurry frames through the merging
of consecutive frames.

These datasets provide a diverse range of video sequences,
which are essential for training robust and generalizable
video super-resolution models. The high-quality ground truth
frames in these datasets allow for precise evaluation of the
super-resolution performance.
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Degraded Video Sequence Generation: To add realistic
degradation in images for video super-resolution, we used
the degradation model that simulates real-world degradation.
Several models [24], [25], [116], [117] have been proposed
that can be used for this purpose. By using these models,
we generated degraded LR images that resemble real-world
degradation and used them to train the proposed VSR model.

The proposed model was initially trained on a large-
scale dataset for 200 epochs, utilizing the Adam optimizer
having a learning rate of 0.0001. Meta-learning Config-
uration: Our meta-learning configuration is based on the
MAML (Model-Agnostic Meta-Learning) framework. For
meta-transfer learning, we used the Model-Agnostic Meta-
Learning (MAML) algorithm with an inner learning rate of
0.01 and an outer learning rate of 0.001. The meta-training
was performed for 50 epochs. For Motion Compensation
Transformer (MCT), a pretrained MCT model is used that is
trained on a large-scale video dataset for motion estimation.
The MCT module underwent the fine-tuning process during
the training of the entire model to adapt the specific charac-
teristics of the degraded and noisy real low-resolution videos.

TABLE 5: Ablation study to show the importance of
Meta-Learning, denoising module and attention layer in
Proposed Video 4X Real VSR architecture on Vid4 [44]+G
0.01 and REDS4 [113]+G 0.1

. REDS4+G 0.1 | Vid4+G 0.01
Algorithms\Datasets PSNR/SSIM PSNR/SSIM
Proposed 25.89/0.7889 24.34/0.7123
Proposed without | 4 35/ 7008 | 21.39/0.6882
Meta Learning
Proposed without
Meta Learning and 23.76/0.6823 21.11/0.6543

Denoising module

Proposed without
Meta learning,
Denoising and
attention module

23.65/0.6519

21.04/0.6329
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RVRT (27.95/0.8465)

i Ada-VSR [27.15/0.8342)

CASTNet (30.11/0.8658)

FIGURE 5: Qualitative Comparison of Spatial SR on Vid4 Dataset.

B. RESULT ANALYSIS

The research work is evaluated in two ways: first, quantitative
evaluation, and second, qualitative evaluation. In quantitative
evaluation, we compare the achieved result using PSNR and
SSIM metrics with other SOTA methods for video super-
resolution. Gaussian noise is added with different densities
in test images for evaluation also in one case Random noise
is added in the test images as it is evident from Table 1 and
2, PSNR/SSIM values are closer to MuCAN [109] when no
noise is present, but PSNR/SSIM increases compared to other
methods as we include the noise. This is because the pro-
posed model is specifically trained on real-world noisy video
frames. The proposed method surpasses the other methods
for all varieties of noise densities and on both datasets.

In qualitative evaluation, the visual results of the proposed
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methods are presented and compared to the visual results
of other SOTA methods. In Figure 5, a comparison of the
proposed CASTNet with SOTA methods is shown, whereas
in Figure 6 and 7, a comparison of spatial super-resolution
on REDS dataset is shown. In all these figures, it can be
observed that the proposed method can reconstruct much
finer details and texture. Also, in the temporal domain, mid-
frames between two successive frames of the given input
video sequence are being constructed. The proposed model
is also able to reconstruct the mid-frames with less amount of
flicker. This is due to the better reconstruction of sharpness
and smooth edges in mid-frames. In Figure 8, visual results
of temporal super-resolution are shown for two types of video
sequences. For both video sequences, row (a) is the original
video frame sequence, and row (b) is the reconstructed video
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FIGURE 6: Qualitative Comparison of Spatial SR on REDS Dataset.

frames, which show the better transition from one frame to
the next frame.

We conducted an additional experiment where we quanti-
tatively measured the flicker by calculating the temporal in-
tensity variation between consecutive frames. This provides
an objective measure of the flicker. This quantitative analysis,
provided in Table 7, indicates that our proposed methods
generated mid-frames almost similar to the ground truth.

In Figure 9, a comparison of the temporal super-resolution
performance of the proposed model is shown with the tradi-
tional interpolation approach. In any video sequence, when
the temporal frequency of a moving object is greater than
the camera frame rate, then the aliasing problem occurs. This
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aliasing problem is known as Motion aliasing or Temporal
aliasing. In this aliasing problem, the object seems to move to
a false trajectory, or its motion could be distorted. This prob-
lem can be solved by reconstruction of mid-frames between
successive frames. In figure 9, the real movement direction is
clockwise, but on the left side, the fan seems to be rotating
in another direction. On the right side, this aliasing effect is
reduced by using the reconstructed mid-frames.

C. COMPUTATIONAL COMPLEXITY

This study presents an extensive investigation into the com-
putational complexity of our proposed model, focusing pri-
marily on the number of Floating Point Operations Per
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FIGURE 7: Qualitative Comparison of Spatial Video on Real VSR [114] Dataset.

FIGURE 8: Visual Results of Temporal SR on Vid4 Dataset. (a) and (c) Original Frames (b) and (d) Predicted Frames. Even
numbered frames are reconstructed frames between two successive odd-numbered frames.

TABLE 6: Comparison of model efficiency of our proposed
method with existing methods on the basis of Model size,
runtime, and memory for LR input of 320 x 180

Method #Params (M) | Runtime (ms) | Memory (M)
BasicVSR++ | 7.3 77 223

EDVR 20.6 378 3535

VSRT 32.6 328 27487

VRT 10.8 183 1056

DUF 5.8 974 -

Proposed 1.69 56 6.48

Second (FLOPs). Our model demonstrates exceptional per-
formance in various applications, achieving state-of-the-art
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results while maintaining a balance between computational
efficiency and performance. Our model consists of six main
components: 3D Convolutional Neural Network (3D-CNN)
blocks, PReLU, addition, subtraction, concatenation, and
attention. Each component contributes to the total computa-
tional load of the model, making it imperative to analyze each
part individually. Table 4 summarizes the FLOPs breakdown
for all major components of our model.

Additionally, We demonstrate the comparison of our pro-
posed model with existing models in terms of model size,
runtime, and memory in Table 6. Our proposed model stands
out with only 1.69 million parameters, demonstrating effi-
cient parameter utilization. It boasts a fast runtime of 56 ms
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FIGURE 9: Comparison of Temporal Super-Resolution (3x):
Bicubic Interpolation Method (Left) vs. Our Method (Right)

TABLE 7: Quantitative analysis of temporal intensity varia-
tion for Vid4 dataset.

Category City Walk Foliage | Calender
Groun Truth | 97.53 | 113.50 | 125.29 | 153.13
Generated 96.82 | 112.67 | 124.47 152.91

and minimal memory consumption at 6.48 MB, showcas-
ing superior computational efficiency without compromising
performance. Our proposed model excels in performance
metrics by demonstrating efficient parameter utilization, fast
runtime, and minimal memory consumption compared to
existing models.

D. ABLATION STUDY

In Table 5, it can be seen that, with meta-learning, we see
a 1.5 dB improvement in PSNR as it harnesses the benefits
of pre-trained weights. It also helped in obtaining kernel-
agnostic properties for the model. We can also see, that
without the denoising module, the PSNR decreases signif-
icantly. The denoising module improved the quality of the
LR image, which is fed to our enhancement (ADST-BPN)
module, which significantly improved the quality of the SR
Video sequence. The attention module helped in localizing
the optical flow in the video which significantly helped in re-
covering and improving the temporal and motion coherence
in the video.

V. LIMITATIONS AND FUTURE WORK

Limitations: The proposed framework may not be as ef-
fective in scenarios with extremely low-resolution videos or
highly noisy environments. The proposed framework may
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not be as effective in scenarios with complex motion patterns
or large motion displacements. The proposed framework may
not be as effective in scenarios with limited training data or
when the training data does not accurately represent the target
domain. The proposed framework may not be as effective in
scenarios with limited computational resources or when real-
time performance is required.

Future points: Extending the proposed framework to
handle more complex scenarios, such as extremely low-
resolution videos, multi-modal data, and real-time applica-
tions. Investigating the potential of the proposed framework
for other computer vision tasks, such as video denoising,
video deblurring, and video inpainting. Investigating the
application of the suggested framework in different areas,
including medical imaging, remote sensing, and security
surveillance. To further validate the effectiveness of the pro-
posed framework, it is important to assess its performance on
more extensive and varied datasets. Additionally, employing
alternative evaluation metrics like the Perceptual Index (PI)
could offer deeper insights.

VI. CONCLUSION

This paper presents a zero-shot learning and meta-learning-
based video space-time Super-Resolution (SR) algorithm. A
novel noise-robust video space-time SR architecture, namely,
3D-Deep Convolutional Auto-Encoder guided attention-
based deep spatio-temporal back-projection network (CAST-
Net), is introduced. This proposed method can effectively
handle real degradation and noises while super-resolving
Low-Resolution (LR) video by jointly optimizing two dif-
ferent SR and denoising losses. The proposed solution con-
verges faster and is robust against realistic degradation. Sev-
eral comparative studies are conducted and shown in the
experiment section, to validate the efficacy of the proposed
framework. A detailed ablation study is also conducted to
highlight the significance of each component in the method-
ology. We also proposed some limitations and future points
of our proposed work. One possible limitation is that our
proposed framework may not be as effective in scenarios
with extremely low-resolution videos, highly noisy videos,
complex motion pattern scenarios, or scenarios with large
motion displacements. Looking forward, we plan to address
these limitations in our future work. We aim to extend our
framework for other computer vision tasks, for example,
video denoising and video inpainting. We also plan to explore
the possibility of using our framework for other domains,
such as remote sensing and medical imaging. We also plan
to test our model on a wider variety of videos to ensure its
robustness and generalizability. We believe that our work
provides a solid foundation for future research in video
space-time SR and opens up new avenues for exploration.
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