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ABSTRACT Chemotherapy, a vital cancer treatment, operates by delivering drugs to target and eliminate
cancer cells in the patient body. Mathematical models like the log-kill, Norton-Simon, and Emax hypotheses
describe the growth/shrinking of the cancerous tumor due to the interaction and administration of the drugs
with the tumor. This paper proposes a robust control approach based on artificial time-delayed theory to
track the desired rate of change in tumor volume under model uncertainties and disturbances. The proposed
algorithm relaxes the assumption on a priori knowledge of disturbance bound and its derivative. Unlike
traditional methods, the control structure is simple, and the total disturbance is estimated by analyzing
the previous input and output of the feedback state and control variables. Thus, robustness is ensured
without relying on high-frequency switching or high gain. The stability analysis of the proposed scheme
is investigated based on the Lyapunov theory. Moreover, extensive simulation results with comparative
analysis affirm the efficacy of the proposed approach.

INDEX TERMS Cancer Chemotherapy, Cell-kill hypotheses, Robust Control, Trajectory tracking, Time-
delayed Control.

I. INTRODUCTION

The severe disease of cancer, which is one of the most
potent killers of humans worldwide, is characterized by
imbalances in the processes of cellular growth (prolifera-
tion) and programmed cell death, also known as apoptosis
[1]. This imbalance, if untreated, leads to the development
of cancerous malignancies, such as out-of-control tumors,
blood-borne illness, and organ failure, among others. This
may result in the ultimate demise of the human due to these
anomalies. Thus, effective treatment options for cancer are
a widely explored area in literature and practice for their
potential to save countless human lives [2]–[6]. Although
the size of a malignant mass is frequently described with

reference to the number of cells, nonetheless, cancer cells
generally multiply exponentially. The size of the cancerous
mass is assessed empirically as a volume, and numerous
methods of treating cancer patients have developed over time.
Surgery, chemotherapy, radiation, and immunotherapy are
all used to tackle and manage cancer in humans. These can
be used separately or in conjunction with one another [7].
However, clinical chemotherapy is one of the most popu-
lar and effective cancer treatment options that has grown
in popularity and significance over the past several years.
Chemotherapy for cancer seeks to minimize the presence of
malignant cells after a specific amount of time or perhaps
completely eliminate them. A predefined amount of drugs is
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injected into the patient’s body during chemotherapy, either
intravenously or orally. The goal of chemotherapy is to either
totally eliminate cancer cells or lower their number to a safe
minimum.

Chemotherapy is a powerful treatment that can have side
effects. The chemotherapy medications have an immediate
adverse effect of raising the body’s toxicity levels, which
damages healthy, normal cells. Therefore, choosing the right
medication dose is essential for the chemotherapy procedure
to destroy cancer cells effectively, and save as many healthy
and normal cells as possible. The use of control strategies to
develop effective approaches for cancer treatment has gained
traction in the last decade, as can be seen from [7]–[9].
Model-based control techniques are crucial for manipulating
drug consumption, which in turn, directly affects the volume
of the tumor in cancer treatment. In such approaches, design-
ing an efficient feedback controller is impossible without a
thorough comprehension of the process dynamics that has
to be regulated. Developing a mathematical model that can
accurately represent the physical process is crucial. How-
ever, comprehending the complicated biochemical interplay
between chemotherapy medications, immune cells, healthy
cells, and dangerous tumor cells is difficult. The literature
uses a variety of mathematical models to illustrate these
intricate biological connections. Several models have been
created for the chemotherapy process’s destruction of malig-
nant tumor cells. Among these, widely used cell-kill models
include the nonlinear mathematical models of log kill [10],
Norton-Simon [11], and Emax [12], which are discussed in
this work. Each approach (Log-kill, Norton-Simon, Emax)
has unique strengths suited to different scenarios. The best
choice depends on the specific question and the patient’s
situation. For instance, the log-kill model might be the most
fitting for estimating initial tumor reduction. The Norton-
Simon model could be ideal when predicting treatment re-
sponse based on tumor size and dosage. To optimize drug
dosing while minimizing toxicity, the Emax model offers a
more realistic perspective.

Open loop unconstrained and constrained control have
been devised in [13], [14], and based on these selected
theories, viable treatment plans vary in these study papers.
As a constrained medication delivery control for nonlinear
models, the bang-bang control approach has been applied in
[13], and it has also been demonstrated how to apply a closed-
loop scheme with a quadratic performance objective. In [14],
[15], the optimal control issue is reconstructed as a straight-
forward numerical problem where the control variable is
approximated by a constant value over a predetermined time.
Such open-loop control strategies are employed during the
chemotherapy procedure. Numerous studies investigating the
chemotherapy treatment process use optimal control method-
ologies, as seen from [16], [17]. However, it is of utmost
importance that analysis and control design must take into
account the uncertainties impacting cancer models in order
to ascertain the most effective medication administration
therapy. Process parameters, parasitic/unmodeled dynamics,

and unknown external perturbations are the sources of these
uncertainties. Thus, it is highly possible that some of the
described control strategies won’t work effectively under a
range of operating situations and in the face of uncertainty.
Optimal and robust control strategies are explored for cancer
treatment in [18], [19] using model predictive and LMI-based
control, respectively. However, these methods are model-
based control. In [20], the effects of three cancer chemother-
apeutic strategies: optimal linear regulation, optimal control
based on the variation of extremals, and H∞ robust control
have been reported. Based on a linearized cell kill model,
these controllers were proposed, and therefore, only within
a small radius of the operating point where the nonlinear
cell kill models are linearized can the performance of these
controllers be assured.

Various robust control techniques are also investigated for
cancer treatment procedures, namely, adaptive control [21],
sliding mode control (SMC) [22], fractional order control
[23], fuzzy control [24], extended Kalman filter [25], etc. In
[26], an adaptive and robust control technique is developed
that can effectively modify drug delivery schedules, with the
potential to reduce tumor growth. Further, a model refer-
ence adaptive control (MRAC) strategy for personalized drug
delivery protocols in cancer treatment is proposed in [27].
Through state-dependent Riccati equations (SDRE) within
the MRAC framework, optimal drug delivery strategies are
determined for a particular patient with unknown parameters.
In [28], an adaptive control strategy is developed to reduce
the volume of cancerous cells and identify tumor parameters
online during the chemotherapy process. A fuzzy logic-
based finite time backstepping control for delivering can-
cer immunotherapy drugs is proposed in [29]. This scheme
uses fuzzy logic to handle patient response uncertainties
and achieves faster tumor reduction. In [21], an enhanced
Kalman filter observer with an adaptive control technique is
reported. The controller modifies the medication dosages in
chemotherapy procedures and regulates the state of tumor,
immune, and normal cells. In the proposed study, three
kinds of cell-kill hypotheses are investigated. The control
scheme aims to follow a predetermined reference value of
tumor volume following chemotherapy administration for a
set amount of time. Further, the controller needs to tackle
exogenous disturbances and model uncertainties.

Utilizing the traditional control methodologies to design
an effective approach for tackling the problem of tumor
growth management under the effect of uncertainties and
having a highly nonlinear structure is difficult. The use of
nonlinear controllers in the biomedical field has increased
significantly. SMC is one such nonlinear control method that
is simple in design, achieves faster system response, and
attenuates parametric uncertainties and external disturbances.
The SMC has been incorporated in various biomedical re-
search, such as the regulation of human blood sugar [30],
[31], artificial pancreas in type 1 diabetes patients [32],
cancer chemotherapy treatment [33]–[36], etc. However, the
major issue with the SMC is input chattering due to the
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switching function in the control law. The higher-order SMC
techniques were incorporated in [34]–[36] to address the
chattering problem. However, the formulation of control
scheme then becomes complex as it employs the exact differ-
ential observers to estimate the higher-order state variables
[37]. Besides, the SMC schemes in [33]–[35] assume a priori
upper bound knowledge of disturbance for designing the
control law, which is not always practically feasible.

In this regard, the technique of time-delayed estimation
(TDE) is proposed to estimate the uncertainties and the
unmodelled dynamics of the considered system to design
a time-delayed control (TDC) methodology [38]–[41]. This
approach alleviates the conservative assumption of apriori
knowledge of upper bounds and also of bounded uncer-
tainties, provided the uncertainties are slowly varying with
respect to the control cycle. In the TDC strategy, the uncer-
tainties along with the unknown parts of the system dynamics
are effectively estimated utilizing the data from prior instant
through the use of an artificial delay, which is introduced
for the control law formulation in an otherwise delay-free
system.

The primary contributions of this work can be listed as
• Unlike the aforementioned model-based control

schemes, the proposed time delay-based control struc-
ture for the nonlinear cell-kill models is model-free.
With the use of immediate past input and output infor-
mation, the proposed control is devised.

• The controller design doesn’t require prior information
about the bounds of uncertainties and disturbances.
Therefore, it relaxes the restrictive assumption of un-
certainties in the system model. Further, to establish the
efficacy of the proposed control design, it has been ana-
lyzed on multiple hypotheses of cancer chemotherapy.

• A comprehensive theoretical stability analysis is pre-
sented using Lyapunov theory, which ensures tracking
capabilities and robustness against various uncertain-
ties. Further, Lyapunov analysis affirms a uniformly
ultimately bounded (UUB) stability.

• A detailed comparison with the state-of-the-art super-
twisting algorithm for the discussed problem is also
included in this work.

The rest of the paper is organized as follows: The con-
sidered model is described in Section II, followed by the
formulation of the control law in Section III. The stability
analysis and the results are reported in Section IV and V,
respectively, while the conclusion is presented in Section VI.

II. MODEL DESCRIPTION
Mathematical modeling plays a pivotal role in cancer re-
search by providing a rigorous tool that can be utilized to
influence and enhance the efficacy of cancer treatment. Thus,
the chemotherapy process has been modeled in the literature
using dynamical systems as presented in [14], [42]. Also,
based on in-vitro research, cell death was contemplated to be
proportional to the tumor population in some studies [10].
Instead of a fixed quantity, a constant percentage of the

tumor population was eliminated by a particular dosage of
medications. Therefore, it may be deduced that a malignant
tumor’s volume decreases more quickly when it has a big
population than when it has a relatively small population.

The log-kill mechanism is an alternate term for this cell-
killing theory, however this technique was unable to ade-
quately demonstrate the nature of cell death for humans and
certain experimental solid tumors. The growing process of
a tumor volume is expressed in the study using a particular
growth function (Gompertzian growth curve [43]). There
is an occurrence of a paradox with the log-kill hypothesis
regarding acute lymphoblastic leukemia and Hodgkin’s dis-
ease, where the decrease in tumor volume was seen to obey a
completely different function [11]. An alternative theory was
devised by [11], which suggested that the cell-kill was related
to the rate of tumor population growth.

Another theory put out in [12] that suggested an enzyme
should assimilate the tumor volume before chemotherapy
medications are delivered. The theory is known as the Emax

hypothesis. The metabolic process produces a saturable func-
tion of cell-kill. Following is the generalized dynamics of a
cell-kill model:

dx

dt
= rxΨ(x)− Γ(x, t) (1)

where, x is the tumor volume, r is the rate at which x
is expanding, Ψ(x) is the generalized growth function, and
Γ(x, t) stands for the drug’s pharmacodynamic effects. Here,
the Gompertzian type growth function is considered, and
mathematically it is stated as,

Ψ(x) = ln(k/x) (2)

with k being the scaling factor. The mathematical expressions
of the Γ(x, t) for the three cell-kill hypotheses are as follows:

Γ(x, t) =
δx

k
u(t), for log-kill hypothesis, (3a)

Γ(x, t) = δΨ(x)u(t), for Norton-Simon hypothesis, (3b)

Γ(x, t) =
δx

x+ λ
u(t), for Emax hypothesis (3c)

where u(t) represents the controlled usage of chemothera-
peutic medicines, constant λ is clinically observed, and δ is a
constant proportional to the amount of drug use. For ease of
expression, the following transformations are employed:

x̄ = x/k, δ̄ = δ/k, λ̄ = λ/k. (4)

The aforementioned hypotheses (1), (2), and (3) can be
rewritten in terms of the transformed variable as:
For log-kill hypothesis,

dx̄

dt
= −rx̄ ln(x̄)− δx̄u(t). (5)

For Norton-Simon hypothesis,

dx̄

dt
= − ln(x̄) (rx̄− δu(t)) . (6)
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And for Emax hypothesis,

dx̄

dt
= −rx̄ ln(x̄)− δx̄

x̄+ λ
u(t). (7)

The clinically determined starting condition for the tumor
volume is x̄(0) = x0.

III. CONTROLLER DESIGN
This section investigates a robust control strategy using TDC
for the cancer treatment procedure with cell-kill hypothesis.
According to clinical findings, a patient’s tumor volume
should decrease or reach a risk-free limit after chemother-
apeutic treatment. The standard practice recommends a set
amount of time for therapy. The tumor volume x(t) should
decrease along a targeted trajectory during the course of
treatment.

Control Objective: Given the three cell-kill models (5)–
(7), the proposed controller aims to track the reference tumor
growth trajectory x̄r(t) in the presence of perturbations and
model uncertainties without knowing their upper bounds.

The equations of three cell-kill based cancer chemotherapy
process models (5)–(7) can be expressed in a more general-
ized way as:

˙̄x = f(x̄) + g(x̄)u (8)

where x̄ ∈ R is the tumor volume and u ∈ R is the con-
trolled drug input. Moreover, in the presence of unmodelled
dynamics and/or unknown non-dissipating disturbance (let’s
say d(t) ∈ R), the system model (8) can be redefined as

˙̄x = f(x̄) + g(x̄)u+ d(t) (9)

Assumption 1: The disturbance d(t) is bounded with an
unknown bound.

A. TIME-DELAYED CONTROL LAW
This section presents a robust tracking scheme such that the
tumor volume x̄(t) at time t follows a reference trajectory
represented as x̄r(t). For that, we first denote the error in
tumor volume as σ = x̄− x̄r. Differentiating σ with respect
to time and substituting the expression for ˙̄x as (9), the error
dynamics is:

σ̇ = f(x̄) + g(x̄)u+ d(t)− ˙̄xr (10)

A function that merges the states and uncertainties is taken
as f̄(x̄) = f(x̄) + d − ˙̄xr. The error dynamics (10) now is
expressed as

σ̇ = f̄(x̄) + g(x̄)u (11)

Considering g(x̄) ̸= 0, let us assume ḡ(x̄) = g−1(x̄) and
multiply ḡ(x̄) to the both sides of (11) to obtain

ḡ(x̄)σ̇ = g1(x̄) + u (12)

where g1(x̄) = ḡ(x̄)f̄(x̄). Adding and subtracting h(x̄)σ̇ in
(12), we obtain,

h(x̄)σ̇ = ḡ1(x̄) + u (13)

where ḡ1(x̄) = ḡ(x̄)f̄(x̄) + [h(x̄) − ḡ(x̄)]σ̇ and h(x̄) is a
user-defined positive function, which is discussed more in
detail in later section. The arguments of functions for (13) are
henceforth dropped in this work for the purposes of brevity.
Further, the parameters, which are explicit functions of time,
would from now on be represented as h(t) and ḡ1(t) instead
of h(x̄) and ḡ1(x̄). Therefore, (13) now is:

h(t)σ̇(t) = ḡ1(t) + u(t). (14)

For deriving the stabilizing control, u(t) for (14), an artificial
time-delay philosophy has been utilized as

u(t) = h(t)v(t)− ĝ1(t), (15)

where the estimated value of ḡ1(t) is represented as ĝ1(t) and
the auxiliary input v(t), which is the closed loop feedback
control law is given as

v(t) = −Kσ(t) (16)

where K is the gain designed for the controller. Now, utiliz-
ing (15) and (16), (14) can be re-written as

h(t)[σ̇(t) +Kσ(t)] = ḡ1(t)− ĝ1(t)

⇒ σ̇(t) +Kσ(t) = h−1(t)[ḡ1(t)− ĝ1(t)] (17)

Hence, the closed loop error dynamics is obtained as

σ̇(t) +Kσ(t) = ξ(t) (18)

where ξ(t) = h−1(t)[ḡ1(t) − ĝ1(t)]. It should be noted
that when ξ(t) goes to zero, by selecting an appropriate
controller gain K, the closed loop system can be steered to
the origin. This would lead to an ideal tracking behavior of
x̄r(t). However, as ḡ1(t) is estimated by ĝ1(t), the estimation
error denoted by ξ(t) appears in (18). Also, ḡ1(t) can be
expressed by using (14) as

ḡ1(t) = h(t)σ̇(t)− u(t) (19)

The TDE approach is used in this study to complete the
necessary estimation. The approach calculates the estimated
value ĝ1(t) using input-output measurement data and knowl-
edge of system dynamics. The ideal estimation is obtained
when ĝ1(t) is computed utilizing measurement data of the
current time instant t, as can be seen from the expression
(19). Such a need, however, shows the presence of control
input and other state measurements at that specific instant
in time. In a real-world setting, such an implementation
is not possible, and instead, it is possible to predict the
consequences of uncertainties by using measurement data
from the immediate previous instant of time. Without a doubt,
such an approach leads to a near-perfect estimate as the
time difference between the present and earlier timestamps
approaches zero. The estimated value is then represented as
a time-delayed version of the preceding instant as follows:

ĝ1(t) ≈ ḡ1(t− γ) (20)

where γ is a small delay introduced artificially, representing
the difference between two consecutive time instances. From
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FIGURE 1: Block diagram for the proposed ATDC scheme.

(20), it can be intuitively concluded that introducing a time-
delay γ, which is small enough, would ultimately result in
a relatively smaller estimation error ξ(t). Since, in practical
applications, the sampling interval of the onboard processor
is the smallest time realizable. Thus, the time-delay γ is also
chosen to be the same for this work. Thus, the estimate in
time-delayed estimation philosophy is computed as

ĝ1(t) ≈ ḡ1(t− γ) = h(t− γ)σ̇(t− γ)− u(t− γ) (21)

Finally, for closed loop system (18), the control law is ob-
tained by utilizing (20) and (21) in (15) as

u(t) = h(t)v(t)− h(t− γ)σ̇(t− γ) + u(t− γ). (22)

The schematic diagram for the proposed ATDC algorithm
is shown in Fig. 1. In this block representation, the in-
nermost loop gives the information of the immediate past
value of input u(t − γ). While the middle loop updates the
controller with the immediate past value of error derivative
term σ̇(t − γ). The proposed controller also uses the current
error value σ(t), which is fed through the outermost loop.
The chemotherapy process is under the influence of model
uncertainties and disturbances as well.

IV. STABILITY ANALYSIS
The stability analysis for the error system in (18) on applica-
tion of the TDC law in (22), is derived in this section. The
following assumption has to be taken into consideration for
the implementation of the TDC-based control law.
Assumption 2: The lumped uncertainties f̄(x̄(t)), vary slowly
with time for the error dynamics described in (11) and any
variation appearing in v(t), which is the feedback auxiliary
input is bounded between successive instants of time.

In real-time cases, a tumor in the human body does not
exhibit a sudden abrupt growth in a very short span of time.
By taking practical scenarios into consideration, it can be
concluded that Assumption 2 is a realistic constraint that
has been considered in this work. Such an assumption leads
to the boundedness of estimation error under the proposed
robust philosophy, which has been presented in the following
lemma.
Lemma 1: With Assumption 2 being satisfied, the estimation
error ξ(t) at any time instant t obtained as a result of imple-

mentation of TDE scheme (20) and robust control law (22),
remains bounded when the following condition holds∥∥ḡ−1(t)h(t)− 1

∥∥ < 1, ∀ t ≥ 0. (23)

Proof: In terms of auxiliary input v(t), Equation (18) is
re-written to represent the estimation error ξ(t) as

ξ(t) = σ̇(t)− v(t). (24)

With a factor ḡ(t) multiplied to both sides of (24) and using
(12), the above expression appears as

ḡ(t)ξ(t) = g1(t) + u(t)− ḡ(t)v(t). (25)

Now consider the input u(t) designed using TDC law (22)
with u(t−γ) replaced with time-delayed version of equation
(12) as u(t− γ) = ḡ(t− γ)σ̇(t− γ)− g1(t− γ), to yield

u(t) = h(t)v(t)−
{
h(t− γ)− ḡ(t− γ)

}
σ̇(t− γ)− g1(t− γ).

(26)

Next, the control input u(t) represented as (26) is used to
modify equation (25) as follows

ḡ(t)ξ(t) =
{
h(t)− ḡ(t)

}
v(t) + g1(t)− g1(t− γ)

−
{
h(t− γ)− ḡ(t− γ)

}
σ̇(t− γ). (27)

The term {h(t)− ḡ(t)} v(t − γ) is added and subtracted to
further modify the above expression as

ḡ(t)ξ(t) =
{
h(t)− ḡ(t)

}{
v(t)− v(t− γ)

}
+ g1(t)

− g1(t− γ)−
{
h(t− γ)− ḡ(t− γ)

}
σ̇(t− γ)

+
{
h(t)− ḡ(t)

}
v(t− γ). (28)

Note the auxiliary input in time-delayed form can be obtained
from (24) as v(t− γ) = σ̇(t− γ)− ξ(t− γ). Replacing the
expression of v(t−γ) in the last term of the above expression,
equation (28) is achieved as

ḡ(t)ξ(t) = −
{
h(t)− ḡ(t)

}
ξ(t− γ) + g1(t)− g1(t− γ)

+
{
ḡ(t− γ)− ḡ(t) + h(t)− h(t− γ)

}
σ̇(t− γ)

+
{
h(t)− ḡ(t)

}{
v(t)− v(t− γ)

}
. (29)

Recall that the control law u(t) stands for the amount of
chemotherapeutic medicine that is required to be injected
into a patient body. Consecutive injection of two dosages
of drugs into the patient’s body and corresponding bodily
response in zero time duration is physically impossible, and
hence, the smallest time interval between two consecutive
drug injections should be a small scalar, at least in the time
unit of minutes. Thus, the possible selection of the time
delay γ should also be considered accordingly. In such a
scenario, the error system can be represented in the discrete-
time domain with time instant t and (t−γ) denoted as kth and
(k− 1)th time instant, respectively. In discrete-time domain,
the expression for ξ using (29) appears as

ḡ(k)ξ(k) = −
{
h(k)− ḡ(k)

}
ξ(k − 1) + g1(k)− g1(k − 1)

+
{
ḡ(k − 1)− ḡ(k) + h(k)− h(k − 1)

}
σ̇(k − 1)

+
{
h(k)− ḡ(k)

}{
v(k)− v(k − 1)

}
. (30)
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The factor ḡ−1(k) is multiplied to the left and right sides of
(30) to yield

ξ(k) = −
{
ḡ−1(k)h(k)− 1

}
ξ(k − 1)

+
{
ḡ−1(k)h(k)− 1

}
µ1(k − 1)

− µ2(k − 1)
{
ḡ(k − 1)−1h(k − 1)− 1

}
µ3(k − 1)

+
{
ḡ−1(k)h(k)− 1

}
µ3(k − 1) + µ4(k − 1) (31)

where

µ1(k − 1) =
{
v(k)− v(k − 1)

}
, (32a)

µ2(k − 1) = ḡ−1(k)ḡ(k − 1), (32b)
µ3(k − 1) = σ̇(k − 1), (32c)

µ4(k − 1) = ḡ−1(k)
{
g1(k)− g1(k − 1)

}
. (32d)

Assumption 2 bounds the functions µ1(k−1) and µ2(k−1).
The user chooses the reference attitude trajectory x̄r(k) and
can design it to keep the reference time derivative ˙̄xr(k)
bounded. With this in mind, Assumption 2 ensures that the
error in the rate of tumor growth in volume µ3(k − 1) is
bounded using equation (11). Additionally, slowly varying
uncertainties, as considered in the TDE methodology, ensure
that µ4(k− 1) is bounded. Thus, one arrives at the following
condition that affirms the boundedness of the estimation error
ξ(k). ∥∥ḡ−1(k)h(k)− 1

∥∥ < 1, ∀ k ∈ Z+. (33)

The subsequent stability theorem is derived from Lemma
1, which is stated as follows.
Theorem 1: The error dynamics (11) under the application of
the control (22) remains UUB stable.

Proof: Considering Lyapunov function as

V =
1

2
σ2. (34)

The first time derivative of the above equation provides

V̇ = σσ̇. (35)

By replacing σ̇ with the closed-loop error dynamics (18),
equation (35) is seen to evolve as

V̇ = σ(−Kσ + ξ),

⇒ V̇ = −Kσ2 + σξ,

⇒ V̇ ≤ −K ∥σ∥2 + ∥σ∥ ∥ξ∥ . (36)

Note that Lemma 1 already confirms that the estimation error
ξ obtained as a result of the implementation of time-delayed
estimation (20) philosophy remains bounded. Thus, V̇ can
be shown to be negative definite if the following condition is
satisfied

K ∥σ∥2 > ∥σ∥ ∥ξ∥ ,

∥σ∥ >
∥ξ∥
K

= ℧. (37)

The closed-loop system (18) has UUB stability as it is af-
firmed by the condition (37), and the stability bound is given
by ℧.

Remark 1: The residual bound ℧ is a function of estimation
error ξ and controller gain K. Consequently, increasing the
value of K and/or decreasing the sampling time γ can further
reduce ℧.
Remark 2: For accurate time delay estimation, it’s advisable
to choose γ as small as possible. However, there’s a practical
limit to how fast a processor can actually take samples.
Therefore, γ is selected as the processor’s sampling time.
It’s important to remember that faster sampling (smaller
γ) typically comes with a higher cost for the processor.
Therefore, γ is selected to be the sampling instant for the
processor. It is to be noted that the shorter the sampling time
of the processor, the higher its cost will be. There’s a trade-off
between accuracy and cost.
Remark 3: With low-cost processors having large sampling
intervals, it will become necessary to raise the controller
gains under the proposed scheme. However, it’s important to
recognize that setting the controller gain too high can lead
to excessive transients, potentially pushing systems toward
instability.

V. NUMERICAL ANALYSIS
This section demonstrates the simulation analysis of the
proposed TDC scheme for the aforementioned cell-kill hy-
potheses (5)-(7). Moreover, this work compares the efficacy
of the proposed approach with the powerful super twisting
variant of the well-established robust control technique of
sliding mode control presented in [33]. Depending on the
recommendations made by medical professionals, various
therapy lengths can be suggested. For this study, a 15-day
chemotherapy treatment course is adopted.

The desired tumor volume decay has the following form
[33]:

x̄r(t) = b+ (x̄(0)− b)e−at (38)

with a being the rate of tumor volume reduction and b be-
ing the required steady-state level. These constant reference
values in (38) depend on how long a patient is treated. In
[33], parameter values of a and b are chosen as a = 0.4 and
b = 0.01 based on the chemotherapy treatment period of 15
days. Other parameters of all cell-kill models are tabulated
in Table 1. The expression of exogenous disturbance for the
cell-kill system is taken as d = 10−2 × (1− sin(t)) [33].

TABLE 1: Model parameters

Description Symbol Value
Initial normalized tumor volume x̄(0) 0.9

Normalized parameter of drug usage δ̄ 0.225
Clinically observed normalized value λ̄ 0.25

Period of chemotherapy tf 15 days
Tumor growth rate r 0.1

The control parameter values of the proposed TDC ap-
proach and the ST-SMC approach under different hypotheses
are illustrated in Table 2. The sampling time of the processor
has been considered to be γ = 0.01 sec.
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FIGURE 4: For Emax hypothesis

TABLE 2: Parameter values of controls under different hy-
potheses

Scheme Log-kill Norton-Simon Emax

TDC K = 25 K = 20 K = 30
[33] k1 = 0.8, k2 = 1 k1 = 0.6, k2 = 0.5 k1 = 0.3, k2 = 1

A. COMPARATIVE PERFORMANCE WITH LOG-KILL
HYPOTHESIS

The performance of the TDC and ST-SMC strategies under
the log-kill hypothesis is compared in this subsection. The
behavior of tumor volume in a log-kill chemotherapy pro-
cedure under ST-SMC and TDC schemes is demonstrated
in Fig. 2(a). The tumor volume tracking response in the
proposed TDC method has a faster convergence with a

lower maximum overshoot value than the ST-SMC design.
The tracking error response in Fig. 2(b) also validates the
superior performance of the TDC approach, where the error
state converges to zero within 0.2 days. Figure 2(c) displays
the control input or chemotherapeutic medication given to
the patient under two control approaches. Moreover, other
performance measures, like the amount of drug usage (calcu-
lated through the area under the curve of Fig. 2(c)), maximum
overshoot, and convergence bound, are tabulated in Table 3.
These performance indices also indicate better results for the
proposed algorithm with the same amount of drug usage.
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TABLE 3: Performance comparison for log-kill hypothesis

Measures ST-SMC TDC
Total amount of drug dosage 52.86 52.86

Max. overshoot from desired dosage 0.092 0.0015
Error convergence bound 5.85× 10−4 1.06× 10−4

B. COMPARATIVE PERFORMANCE WITH
NORTON-SIMON HYPOTHESIS
The simulation results of both the control schemes under
the Norton-Simon hypothesis are illustrated in Fig. 3. The
tracking performance of tumor volume under the proposed
controller is quicker with better transient error response than
the ST-SMC design, as shown in Fig. 3(a) and Fig. 3(b).
Moreover, the amount of medication usage (control input) is
also lesser in the TDC approach, as seen from Fig. 3(c) and
Table 4. Likewise, the TDC design performs better in other
measures as well, which are depicted in Table 4.

TABLE 4: Performance comparison for Norton-Simon hy-
pothesis

Measures ST-SMC TDC
Total amount of drug dosage 9.42 9.28

Max. overshoot from desired dosage 0.092 0.0086
Error convergence bound 5.85× 10−4 9.3× 10−7

C. COMPARATIVE PERFORMANCE WITH Emax

HYPOTHESIS
Figure 4 illustrates the comparative performance of TDC
and ST-SMC under Emax procedure. In the case of TDC
design, tumor volume reaches the desired trajectory more
quickly than ST-SMC, as shown in Fig. 4(a), and has a better
transient error behavior, as shown in Fig. 4(b). The controlled
medication input for the TDC and ST-SMC is shown in
Fig. 4(c). The comparative measure in Table 5 also indicates a
more proficient performance of the proposed controller over
TDC. The control response under all three cell-kill-based
models shows that the tracking of tumor volume is successful
even under the influence of unknown disturbance.

TABLE 5: Performance comparison for Emax hypothesis

Measures ST-SMC TDC
Total amount of drug dosage 17.61 17.64

Max. overshoot from desired dosage 0.092 0.0017
Error convergence bound 5.85× 10−4 3.22× 10−5

VI. CONCLUSION
The quantity of cancer cells within a patient’s body deter-
mines how serious their cancer is. Therefore, reducing these
cancer cell numbers is a primary goal of most therapeu-
tic methods. In this paper, three cell-kill based models for
cancer chemotherapy were investigated using the proposed
time-delayed control methodology to reduce the cancer cells
to zero. The designed control approach effectively com-
pensates for the effects of unknown disturbances and the
ambiguous parametric effect without knowing their bounds.

The performance of the proposed control approach gives
the predicted satisfactory results to the simulations of three
cell-kill models for cancer treatment function. In a physical
treatment method, chemotherapy medicines are never admin-
istered continuously. However, the trajectory of continuous-
time control input will indeed be directed toward choosing
the medicine dose and distribution method intermittently
after a certain duty cycle. Thus inspiring a new concept of
hybrid chemotherapy treatment modeling in the future. The
extension of this research work will focus on the effect of
measurement noise on the performance of cancer therapy
medication diagnoses. The future extension of this work will
also explore the scalability of the proposed algorithm to more
complex scenarios with practical real-time datasets.
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