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ABSTRACT The global rise in the elderly population, which presents challenges to healthcare systems 

owing to labor shortages in caregiving facilities, necessitates innovative solutions for elderly care services. 

Smart aging technologies such as robotic companions and digital home gadgets, offer a solution to these 

challenges by improving the elderly’s quality of life and assisting caregivers. However, limitations in data 

privacy, real-time processing, and reliability often hinder the effectiveness of the existing technologies. 

Among these, privacy concerns are a major barrier to ensuring user trust and ethical implementation. 

Therefore, this study proposes a more effective approach for smart aging through elderly activity 

monitoring that prioritizes data privacy. The proposed system utilizes stereo depth cameras to monitor the 

activities of the elderly. Data were collected from real-world environments with the participation of six 

elderly individuals from a care center and hospital. This system focuses on recognizing common daily 

actions of the elderly including sitting, standing, lying down, and seated in a wheelchair. Additionally, it 

recognizes transition states (in-between actions such as changing from sitting to standing) that are crucial 

for assessing balance issues. By integrating motion information with a deep-learning architecture, the 

system achieved a high accuracy of 99.42% in recognizing daily actions in real-time. This high accuracy 

was maintained even with minimal data from new environments through transfer learning, and the 

adaptability of this model ensured its potential for real-world applications. For intuitive interaction between 

the caregivers and the system, a user-friendly graphical interface (GUI) was also designed in the proposed 

approach. 

INDEX TERMS deep learning architecture, elderly activity monitoring, GUI, motion information, real-

time action recognition, smart aging, stereo depth cameras, transition state recognition 

I. INTRODUCTION 

The global population aged 65 and above is rapidly 

growing, placing significant strain on healthcare systems 

as the demand for services and nursing care increases [1, 

2]. Declining mobility and health are common issues 

associated with aging that significantly affect the quality 

of life and independence of the elderly [3]. Therefore, it is 

necessary to develop effective solutions to promote 

mobility and independent living of the elderly without 

overburdening caregivers with excessive workloads. 

One promising solution involves understanding the 

well-being of the elderly through the concept of ‘smart 

aging’ [4]. Smart aging can be defined as an innovative 

approach that enables the elderly population to live freely, 

securely, comfortably, healthily, and happily [2]. 

Although there are various ways to facilitate smart aging 

for the elderly, the utilization of modern technologies has 

increased in recent years, leveraging advanced software 

and hardware. Assisted living [5], [6] and healthcare 

monitoring [7], [8] are among the approaches aimed at 
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helping elderly individuals with independent living and 

smarter aging. 

However, existing smart aging technologies often rely 

on physical sensors in the environment or require intrusive 

wearables, which can be inconvenient and limit the 

mobility of elderly individuals. In addition, privacy 

concerns can arise with certain monitoring methods to 

ensure user trust and ethical implementation. Hence, this 

study proposes a more effective approach to smart aging 

through indoor activity monitoring for the elderly by 

pushing the boundaries of the existing limitations. 

The primary objective was to develop an activity 

monitoring system for elderly people in indoor settings 

using stereo depth cameras while keeping everything 

confidential. To achieve robust performance, Deep 

Learning (DL), a subset of Machine Learning (ML) and 

Artificial Intelligence (AI), recognized as a cornerstone of 

the Fourth Industrial Revolution (4IR or Industry 4.0, is 

employed. Notably, the DL approach is particularly well-

suited to this application compared to ML or the Internet 

of Things (IoT). This is because traditional ML algorithms 

such as Support Vector Machine (SVM) and k-nearest 

neighbors (kNN) often require manual feature extraction 

from the data (depth information in this case). This can be 

a time consuming and domain-specific process that 

requires expert knowledge. In contrast, DL algorithms, 

such as Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) networks excel at 

automatically learning these features directly from the 

data, making them less reliant on human intervention. 

Moreover, DL architectures, with their multi-layered 

structure, are adept at handling complex relationships 

within the data, leading to more accurate recognition of 

the intended actions. On the other hand, IoT generally 

focuses on connecting devices and sensors to collect and 

share data. Although depth cameras can be integrated into 

IoT systems, real-time action recognition often requires 

additional processing and analysis. By contrast, DL excels 

in this analysis by extracting meaningful data. Therefore, 

the proposed approach offers several advantages over 

other existing methods. It eliminates the need for wearable 

devices or sensors that may interfere with the elderly, 

allows for easy camera installation within the room, is 

cost-effective, achieves robust performance without 

manual feature extraction from the data, and preserves 

privacy by utilizing depth rather than color images. 

To ensure the practicality of the system, data were 

collected from real-world environments, including a care 

center and hospital, with the participation of six elderly 

individuals (three from the care center and another three 

from the hospital). The focus was on recognizing seven 

common daily actions indoors: seated in a wheelchair, 

standing, sitting on the bed, lying on the bed, transition 

states between these actions, being outside the room, and 

receiving assistance.  

 

FIGURE 1. Illustration of transition states between sitting and standing 
actions. 

 

Among them, transition states, which denote changes 

in body position and movement from one specific action 

to another (e.g., changing from sitting to standing), are 

crucial elements in the daily monitoring routines of the 

elderly. Fig. 1 illustrates the example transition states 

between sitting and standing actions. During transition 

states, elderly individuals may experience feelings of 

exhaustion due to the need for body balance or may be 

concerned about falling due to weakened physical 

conditions. Hence, recognizing transition states is 

important for health monitoring in the elderly. Such 

recognition addresses the challenges associated with 

impaired mobility and balance, thereby promoting the 

overall safety of elderly individuals. 

Previously, action recognition models [9], [10], [11] 

were developed for elderly activity monitoring using 

various feature extraction methods and ML-based 

recognition approaches. While these models achieved 

reliable performance for specific actions, such as sitting, 

standing, and lying down, accurately recognizing 

transition states proved challenging. Transitional 

movements are often confused with specific actions 

because of their similar visual patterns, leading to lower 

recognition rates. To address this limitation, the proposed 

study refines the feature extraction and classification 

method for action recognition from prior studies to 

achieve a more effective distinction between transition 

states and specific actions. Motivated by this, accurate 

action classification is crucial for precisely recognizing 

the actions of the elderly. This study addresses this need 

by proposing an efficient classification method using DL 

algorithms. 

The main findings of this study indicate that the 

system achieves significantly higher accuracy rates by 

integrating motion information into existing DL 

architectures. This novel architecture, named Motion-

based Convolutional Recurrent Neural Networks 

(MotionCRNN), is described in detail in the methodology 

section. This model performs well, particularly in 

recognizing transition states, compared with the authors’ 

prior studies, owing to the utilization of DL algorithms in 

action recognition. In addition to prioritizing the accurate 

recognition of transition states, the proposed method also 

Exhausted! Worrying!

Standing Transition Sitting Transition Standing
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effectively recognizes other common daily actions and 

enables real-time processing. Furthermore, the 

adaptability of the proposed MotionCRNN model to 

transfer learning ensures its potential applicability to 

different environments. 

In caregiving facilities, elderly residents typically rely 

on caregivers for monitoring. However, caregivers are 

unable to provide constant monitoring. The proposed 

system was developed to reduce the workload of 

caregivers while monitoring the well-being of the elderly. 

Therefore, prioritizing the interaction between the system 

and caregivers is more important than interaction with the 

elderly. To achieve this, a user-friendly Graphical User 

Interface (GUI) was designed in the proposed approach to 

assist caregivers and provide a convenient environment 

for seniors. The results obtained through the proposed DL 

model and GUI can be shared with the care staff, family 

members, and healthcare providers, enabling 

comprehensive monitoring and potentially leading to early 

interventions.  

The main contributions of the paper are as follows: 

1) Proposing an effective approach for real-time 

action recognition in indoor elderly activity 

monitoring by integrating stereo depth cameras 

and DL algorithms. 

2) Enabling the proposed MotionCRNN to achieve 

promising recognition of transition states by 

integrating motion information into existing 

hybrid DL architectures. 

3) Demonstrating MotionCRNN’s capability for 

generalizability in recognizing elderly actions 

across different environments through transfer 

learning. 

4) Illustrating the proposed system’s reliability by 

developing and evaluating using real-world 

datasets. 

The remainder of this paper is organized as follows: 

Section II reviews the literature related to the proposed 

system. Section III describes the methodology employed, 

and Section IV presents the experimental results. Section 

V provides a discussion, including limitations and future 

implications. Finally, Section VI concludes the paper. 

 
II. RELATED WORKS 

In this section, literature related to the proposed system is 

reviewed. Subsections A and B cover smart aging 

technologies and indoor elderly monitoring systems using 

various sensors and cameras. In Subsection C, different 

approaches to identifying transition states in elderly actions 

are discussed. Subsection D describes the relevant research 

on action recognition that employs DL algorithms. 

A. SMART AGING TECHNOLOGIES 

Smart aging technologies offer a range of innovative 

solutions to support elderly people in their daily lives and 

promote aging. These solutions encompass smart home 

products, gadgets, wearable devices, remote monitoring 

systems, and IoT-enabled healthcare applications [12], [13], 

[14]. These include features such as fall detection, electronic 

fences, temperature monitoring, and sleep monitoring. For 

example, a smart wearable device based on IoT has been 

designed to monitor physiological parameters in real time 

and provide remote access to the elderly’s health status [15]. 

On the other hand, public entities deploy and operate smart 

mobility technologies to improve mobility and independence 

for older adults, while reducing operating costs [16]. 

Similarly, smart grid technology has been developed to 

provide useful information on the activities of daily living 

and monitor the short and long-term health of elderly 

individuals [17]. Owing to advancements in technology, AI 

has played a crucial role in developing smart aging systems 

to personalize healthcare for the elderly. For instance, AI 

tools such as ML and DL models are used to develop 

solutions that improve quality of life and autonomy and 

reduce caregiver burden [18], [19], [20], [21]. 

However, challenges arise in the implementation of 

personalized healthcare using smart aging technologies. 

Typical challenges include the potential disruption of 

existing care systems, technological literacy gaps, and 

privacy concerns due to constant monitoring [22], [23], [24]. 

Moreover, security vulnerabilities in IoT systems [25] and 

ethical considerations in AI must be addressed carefully. For 

instance, co-adaptation between technology and the elderly is 

crucial for user satisfaction and long-term adoption [26]. 

Therefore, a person-centered approach and sufficient 

governance are necessary to ensure generalizability, 

transparency, and effectiveness [24] in implementing smart 

aging technologies. 

Overall, smart aging technologies offer promising 

solutions for aging and enhancing the well-being of the 

elderly. However, addressing security vulnerabilities, ethical 

considerations, and implementation challenges are crucial for 

successful adoption and impact. Motivated by this, this study 

addresses data privacy concerns in smart aging through 

indoor elderly activity monitoring using stereo depth 

cameras. This practical system, developed and evaluated for 

easy adoption in real-world environments, utilizes data 

collected from a care center and hospital with the 

participation of elderly individuals. As an ethical 

consideration, a waiver of written informed consent was 

obtained from all participants, and the data acquisition 

protocol received ethical approval for the experiment. Some 

related systems for indoor elderly activity monitoring are 

explained in the next subsection. 

B. INDOOR ELDERLY MONITORING SYSTEMS 

Elderly monitoring refers to an indoor system designed to 

process data related to the daily activities of the elderly, 

collected from sensors or cameras. It provides information 

concerning health conditions and behavioral status to aid in 

understanding the well-being of the elderly. A recent 

introduction to activity monitoring utilized wearable sensor 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3405954

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

4 

data and environment-independent fingerprints generated 

from wireless-fidelity channel state information using a 

hybrid DL model [27]. This system aimed to enhance the 

independence of the elderly and visually impaired 

individuals, achieving an accuracy of 99% in experiments 

conducted on two public datasets featuring various activities. 

However, sensor-based systems sometimes face challenges, 

including noisy data affecting the accuracy, unreliable 

readings owing to sensor placements, and the need for 

sophisticated data collection and processing. Additionally, 

they often require frequent charging, causing inconvenience 

for the elderly who may forget to use them. 

In contrast, camera-based systems have gained popularity 

owing to several advantages [9]. They are non-invasive and 

comfortable, aligning well with the principles of smart aging 

to promote freedom and comfort among the elderly. Cameras 

offer a broader field of view, enabling monitoring of multiple 

activities using one device within a room or area. 

Importantly, they can serve multiple purposes beyond action 

recognition, including fall detection, medication monitoring, 

and remote communication. However, they also present 

challenges such as privacy concerns and limitations in 

environments with poor lighting or clutter. 

On the other hand, depth cameras offer several distinct 

advantages over traditional RGB cameras. Whereas regular 

cameras capture 2D information, depth cameras provide 3D 

depth data, revealing the distance between the objects and 

camera sensor [28]. Thus, depth data offers privacy 

advantages because they capture distance information 

without facial details or identifiable features. Moreover, 

depth cameras perform well under low-light conditions, 

where regular cameras struggle, making them suitable for 

monitoring various indoor environments with limited 

lighting. However, depth cameras also have limitations such 

as limited sensing distance and low resolution [29]. Despite 

these limitations, the evolution and advancement of depth 

cameras in gaming, automotive, and medical fields have led 

to their increasing application in elderly care and smart 

homes. 

Several studies have explored the use of depth cameras to 

monitor the elderly by analyzing their activity patterns [30], 

[31], [32], [33]. For example, a non-invasive sleep 

monitoring system was developed using a 3D depth camera 

(Microsoft Kinect II) [30] with the aim of long-term 

monitoring of sleep behaviors in seniors. Another study 

utilized depth-video-based methods for human activity 

recognition in indoor environments [31], and achieved 

efficient and robust results by experimenting with three 

publicly available depth datasets. In addition, a framework 

for fall detection that utilizes both accelerometer data and 

depth maps from a Kinect sensor was proposed [32], 

demonstrating a high performance in differentiating falls 

from other daily activities. The experiment was conducted on 

a public fall detection dataset and achieved a high 

performance. Furthermore, a solution was proposed that 

solely utilizes depth information from RGB plus depth 

(RGBD) cameras to monitor the elderly within indoor living 

spaces [33], enabling remote monitoring by family members 

and caregivers to understand their behavior and take 

appropriate action when needed. 

Through a review of previous studies, it is evident that 

various categories are included for elderly monitoring 

purposes, such as sleep monitoring, fall detection, remote 

monitoring, and activity recognition. However, many of 

these systems rely on public datasets or performance datasets 

demonstrated by young people rather than testing actual 

elderly data. In addition, the camera view in most datasets is 

typically located in front of a person, which may be 

uncomfortable or impractical in real-world scenarios. In 

contrast, the system in this study collects real-world data on 

the elderly from care centers by using stereo depth cameras. 

The cameras were strategically placed above a person at a 

downward angle to minimize interference with the person’s 

activities. This system aims for 24-hour monitoring and real-

time action recognition processing for elderly residents in 

indoor settings. In the action recognition process, primitive 

actions such as sitting, standing, seated in the wheelchair, and 

lying down are identified and transition states that can pose 

potential risks, such as falling and abnormal activities are 

recognized. Different approaches to recognizing transition 

states for the elderly are explained in the following 

subsection. 

C. TRANSITION-AWARE ACTION RECOGNITIONS 

Transitions between actions are usually disregarded in action 

recognition because of their low incidence and short duration 

compared with other actions, affecting the performance of 

recognition systems if not properly addressed [34]. Hence, 

the real-time detection of transitions between actions is a 

valuable but somewhat untapped challenge, especially for 

continuous human daily action recognition [35], [36]. 

Although transition-aware action recognition faces several 

key challenges, it offers various benefits. The potential 

applications of transition-aware action recognition span 

online health monitoring, smart environments, and 

biomedical engineering, highlighting its relevance and 

impact in real-world scenarios. 

Several studies have proposed effective systems for 

recognizing transition states in human action. For instance, 

real-time ML-based methods have been employed for 

automatic segmentation and recognition of continuous 

human daily action by integrating change point detection 

algorithms with smart home action recognition [37], [38]. 

Among them, an online change point detection strategy was 

introduced [36] that segmented continuous multivariate time-

series smartphone sensor data and applied it to a transition-

aware action recognition framework based on the hypothesis 

and verification principle. When paired with an ensemble 

classifier, the authors stated that their proposed strategy 

achieved recognition rates up to 99.8%. In another study, a 

transition-aware context network was proposed [39] to 

distinguish transition states. The network comprised two 
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components: a temporal context detector to extract long-term 

context information and a transition-aware classifier to 

classify actions and transition states. Utilizing spatiotemporal 

features, the network achieved a competitive performance 

and significantly outperformed state-of-the-art methods on 

the untrimmed UCF101 dataset. Moreover, CNN models 

were utilized to recognize transition actions, and the 

effectiveness of the approach was demonstrated through 

experiments with fuzzy logic [40]. 

Another innovative approach [41] emphasizes the 

incorporation of realistic leg movements in valid human 

motion transitions. Referring to action-conditioned in-

betweening learning, the approach focused on encouraging 

transition naturalness through leg movements. Experiments 

on three benchmark datasets demonstrated a high 

performance in terms of visual quality, prediction accuracy, 

and action faithfulness. However, to implement this 

approach, the legs of the person must be clearly detected. 

Furthermore, an algorithm based on Standard Deviation 

Trend Analysis (STD-TA) of sensor data was proposed [42] 

for recognizing transition states, defined as the transitional 

process between two different basic actions. The evaluation 

of the real data yielded an accuracy of over 80% with their 

model. A smartphone-based system [43] has also been 

developed for transition recognition. In previous research, 

transition-aware elderly action recognition systems were 

developed using a combination of the Hidden Markov Model 

(HMM) with ML algorithms and temporally dependent 

features extracted from body movements [10], [11]. 

However, both approaches face challenges such as confusion 

between transition states and specific actions, leading to 

unsatisfactory results.  

The related studies mentioned above share a common 

approach of utilizing time-series or spatiotemporal features to 

identify transition states from other actions, although they 

employ different classifier models. Building on these 

concepts, the system in this study utilizes spatiotemporal 

features extracted from the body movements of the elderly to 

distinguish between transition states and primitive actions as 

well as among specific actions. Specifically, spatial features 

focus on body and object positioning, whereas temporal 

features capture the movement dynamics over time. To 

achieve this, the proposed system introduces a novel fusion 

of deep-learning algorithms, namely CNN and Recurrent 

Neural Networks (RNN), applied to depth data. These 

algorithms automatically extract spatiotemporal features 

from data, thereby enhancing the accuracy and effectiveness 

of the recognition process. The approach for extracting 

spatiotemporal features using DL algorithms and related 

works is described in the following subsection. 

D. CRNN-BASED ACTION RECOGNITION MODELS 

Research on spatiotemporal feature extraction and action 

recognition has explored traditional methods [44], [45], and 

DL techniques [46], [47], [48], [49], [50], [51]. DL models, 

such as CNNs and RNNs, are valuable because they can 

autonomously learn complex features and reduce reliance on 

manually crafted features. CNNs capture spatial features 

from video frames, whereas RNNs manage temporal 

dependencies by processing feature sequences over time. 

Integrating CNNs and RNNs for spatiotemporal feature 

extraction offers advantages in terms of accuracy and 

efficiency, as proven in existing literature. Therefore, the 

proposed system uses CNNs to encode spatial features and 

RNNs to decode temporal dependencies. These components 

were then fused and built into a single-model hybrid 

architecture for action recognition. 

Several studies have investigated the application of CNNs 

and RNNs in action recognition. For example, one approach 

proposed recognizing human actions from videos using a 

combination of deep CNN and multi-layered RNN, 

specifically LSTM units [46]. CNNs extract features from 

individual video frames, whereas LSTMs processes the 

sequence of extracted features to capture temporal 

information. In their approach, different GoogLeNet 

architectures were used to extract various features from 

images. The extracted features were then converted into 

sequences and fed into multi-layered LSTMs. Finally, a 

softmax regression classifier categorizes the videos based on 

processed features. Notably, the network architecture utilizes 

both residual and inception blocks to handle convergence 

during the training process. Experiments showed that this 

approach, particularly the combination of multi-layered 

LSTMs with the Inception_Residual model, improved the 

evaluation performance. 

Another study proposed a novel architecture using 

convolutional and recurrent networks for action recognition 

[47]. The approach incorporated separate layers to capture 

spatial and temporal information. In the first stage, that is, 

feature extraction, they utilized an improved p-non-local 

operation within a deep CNN. This operation is a simple and 

effective way to capture long-distance dependencies in video 

data. In the second stage, class prediction, they introduced a 

novel technique called fusion keyless attention. This was 

combined with a forward and backward bidirectional LSTM 

network to learn the sequential nature of the data, that is, how 

actions unfold over time. Their experiments on two datasets 

demonstrated that this model outperformed the traditional 

models.  

In addition, researchers have explored various DL 

architectures for action recognition in videos [48]. They 

employed transfer learning from powerful pre-trained models 

to improve performance. The approach utilized two types of 

CNNs: one analyzing spatial information from RGB image 

frames and another capturing motion information through 

optical flow. Both leveraged pre-trained models for efficient 

feature extraction. In addition to separating the spatial and 

temporal feature extraction, their study also investigated 

combining them. They employed various CNN-RNN 

architectures, where CNNs (ResNet101, GoogleNet, and 
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VGG16) act as encoders to extract features and RNN variants 

(LSTM, Bi-directional LSTM, Gated Recurrent Unit (GRU), 

and Bi-directional GRU) act as decoders to handle the 

sequential nature of video data. The researchers proposed six 

additional aggregation networks after generating the 

individual models (one motion CNN model, three spatial 

CNN models, and twelve CNN-RNN fusion models). These 

networks used a technique called Average Fusion to combine 

the outputs from the spatial and temporal CNNs, as well as 

CNN-RNNs. This was aimed at further improving the overall 

action recognition performance. 

Another approach utilized a Deep Bidirectional LSTM 

(DB-LSTM) network for action recognition in long videos 

[49]. The method combines a CNN for feature extraction and 

a DB-LSTM to handle the sequential nature of video data. 

The approach first extracts spatial features from every sixth 

frame of the video using a pre-trained CNN model (AlexNet) 

to reduce redundancy and complexity. A deep DB-LSTM 

network then processes the extracted features. By stacking 

multiple layers in both the forward and backward directions, 

the DB-LSTM learns long-term dependencies within the 

video sequence, making it suitable for analyzing longer 

videos. Experiments showed that this approach achieved 

state-of-the-art performance on the UCF-101, HMDB51, and 

YouTube action video datasets, outperforming other recent 

techniques. 

Recent research has focused on overcoming the limitations 

of DL-based action recognition, particularly in terms of 

speed, scalability, and accuracy. One promising approach 

involves lightweight architecture and transformer neural 

networks. These techniques aim to address challenges such 

as high computational demands by offering reduced model 

size and faster processing. Additionally, transformer 

networks can effectively capture long-range dependencies 

within video data, potentially improving the recognition 

accuracy. For example, a recent study proposed Vision and 

Recurrent Transformer Neural Networks (ViT-ReT) for 

human action recognition in videos [50]. The framework 

combined a Vision Transformer (ViT) for efficient feature 

extraction and a Recurrent Transformer (ReT) to model the 

temporal information within a video sequence. Researchers 

compared ViT-ReT with traditional CNN and RNN-based 

approaches on several benchmark datasets. Their findings 

demonstrated that ViT-ReT achieved a significant speedup 

compared with the baseline method (ResNet50-LSTM) while 

maintaining comparable accuracy. Furthermore, ViT-ReT 

outperformed the state-of-the-art methods in terms of both 

accuracy and processing speed, making it suitable for 

resource-constrained and real-time activity recognition 

applications. 

Previous approaches have developed a combination of 

CNN and RNN for action recognition by adjusting the model 

parameters and scaling architecture. However, many of these 

models extract spatial features from each single frame in a 

long sequence, potentially impacting real-time performance 

by processing the entire image. By contrast, the proposed 

system is simple and effective for real-time processing. First, 

the person in the image is segmented, and then spatial 

features are extracted from this segmented region rather than 

from the entire image, reducing the processing time. In 

addition, motion information is incorporated from two 

consecutive frames for the CNN to extract features, rather 

than a single frame, enhancing the model’s capability. 

However, for the encoder-decoder aggregation of CNN and 

RNN, the same concept is built upon inspired by previous 

works, but with lightweight network architectures. 

Consequently, the proposed model is named MotionCRNN, 

and its details are explained in Section III. 

In many cases, the results from DL models are not used 

directly; instead, they are refined using techniques, such as 

majority voting and reasoning, which are crucial for real-

world applications. Several related studies have applied 

majority voting decisions and conditional reasoning to action 

recognition predictions. For example, a sliding window and 

majority voting skeleton-based approach was developed for 

online human action recognition using spatiotemporal graph 

convolutional neural networks [52]. The results demonstrated 

the high performance and efficiency of the majority-voting 

approach. Similarly, a model was developed to predict four 

different actions using majority voting for gameplay [53]. 

The findings indicated that majority voting yielded more 

accurate predictions with 92.59% accuracy, exceeding the 

peak accuracy value of individual pre-trained models. 

Subsequently, a model blending technique [54] was 

developed using majority voting in an ensemble of 

DenseNet-201 and ResNet-50 for melanoma classification. 

This method displayed satisfactory results, demonstrating the 

influence of majority voting decisions.  

Regarding reasoning, one study [55] improved the 

performance of action recognition by modeling causal 

relationships based on preconditions and effects. The 

suggested cycle-reasoning model demonstrated improved 

action recognition performance through efficient reasoning 

about preconditions and effects. Additionally, an action 

reasoning framework [56] that uses prior knowledge was 

proposed to explain the semantic-level observations of video 

state changes. The experimental results indicated an 

improvement in recognition using this reasoning approach. 

Related studies have demonstrated the effectiveness of 

majority voting and reasoning in refining the action 

recognition results. Motivated by this, majority voting is 

applied in the proposed approach to refine the prediction 

results and conditional reasoning is used to address the 

potential over-segmentation of transition states. The 

difference between the previous works and the proposed 

method is the utilization of sequential-based majority voting 

decisions and reasoning to reduce over-segmentation in 

transition states. This approach aims to enhance the accuracy 

and robustness of the system to effectively recognize the 

transition states. 
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III. METHODOLOGY 

This section describes the details of the proposed process 

flow, including how data are obtained from the elder care 

center, the understanding of the recorded data, the 

visualization of the input images, and an overview of the 

system. 

A. DATA ACQUISITION PROCESS 

To develop the proposed system, experimental data were 

initially gathered from an elderly care center in Miyazaki 

City, Japan. The study involved three senior residents from 

that care center, and their comprehensive health profiles and 

recording criteria are presented in Table. I. All residents aged 

65 years and older were diagnosed with cognitive decline or 

frailty. Depth image data were recorded inside separate 

rooms for a continuous period of 24 hours. This data 

acquisition protocol received ethical approval from the 

University of Miyazaki Ethics Committee (protocol code O-

0451, on January 28, 2019), and a waiver of written informed 

consent was obtained from all participating individuals. 

Fig. 2 illustrates the experimental environment and a 

representative sample. For data acquisition, stereo depth 

cameras were used to capture the daily activities of the 

elderly residents. The Mini PCs served as processing units 

for executing the recording procedure, and the resulting data 

were stored in external HDDs. To prevent accidental 

interactions with the cameras, they were strategically 

positioned above the curtain beside the bed and angled 

downward 45° toward the bed inside the room. The distance 

between the depth camera and bed was maintained at 2.5 

meters, with the depth camera positioned 2.1 meters above 

the ground. During the recording, only depth data (distance 

information) were captured to preserve participants’ privacy, 

with color images intentionally omitted. This data recording 

strategy lasted from a minimum of one day to a maximum of 

three days in each room. 

B. UNDERSTANDING THE DATA 

The initially recorded depth data, representing the distance 

values measured from the camera to the objects, were stored 

as raw floating-point data. To facilitate data retrieval, the 

floating-point values were saved in a Comma-Separated 

Value (CSV) file format, as illustrated in Fig. 3. Each frame 

was structured as an image with a resolution of 320×180 

pixels, capturing the data at a frame rate of 5fps. For 

enhanced visualization and subsequent analysis, the retrieved 

depth images were colorized using the hue space colorization 

method, a process interpreted in a previous study [10]. Fig. 4 

shows a colorized image of the sample data from each room. 

The specific details regarding the recorded data after 

removing the error frames are listed in Table. II.  

During the recording period, elderly residents engaged in 

regular daily activities. Prominent and frequently occurring 

actions included “seated in the wheelchair,” “standing,” 

“sitting on the bed,” and “lying on the bed,” along with 

“transition states” changing from one action to another. 

TABLE I 

DATA ACQUISITION PROTOCOL FOR CARE CENTER 

Participants 
Three elderly residents (each allocated a 
separate room) 

Selection 

Criteria 

1) Residents aged 65 years and older, 

2) Residents diagnosed with cognitive 

decline or frailty, 
3) Residents in stable medical conditions, 

4) Residents who have been fully informed 

about their participation in this study, 
5) Residents who have voluntarily 

provided written consent after a 

comprehensive understanding of the 
study. 

Collected Data 

Information 

Recorded depth image data inside the room 

for a continuous period of 24 hours. 

 

 

FIGURE 2. Illustration of the experimental environment (care center). 

 

 

FIGURE 3. Example of depth data in CSV file format. 

 

 

FIGURE 4. Sample colorized depth images from the care center. 
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TABLE II 

RECORDED DATA FROM CARE CENTER 

Room 

ID 

Recorded Dates (yyyy/mm/dd_hh:mm) Duration 

(hours) Start Time End Time 

1 2019/10/12_10:15 2019/10/13_04:14 18 

1 2019/10/18_11:34 2019/10/24_13:21 146 

2 2019/10/25_11:45 2019/10/28_06:53 67 

3 2019/10/12_11:10 2019/10/13_05:10 18 

3 2019/10/18_11:25 2019/10/22_20:33 105 

3 2019/10/25_12:00 2019/10/28_07:22 68 
 

Notably, there was typically only one elderly person inside 

the room, primarily present during bedtime or rest time, with 

the person being “outside” the room at other times. Another 

significant state acquired was when the elderly person was 

“receiving assistance,” typically when a nurse or caregiver 

entered the room to provide aid. However, certain activities 

such as folding clothes and cleaning the cabinet near the bed 

were not considered significant components of their daily 

routines. Consequently, the importance of distinguishing 

among the four primitive actions (seated in the wheelchair, 

standing, sitting, and lying down) and three states (transition, 

outside, and receiving assistance) was emphasized for the 

elderly observed in this experiment. 

C. ACTION VISUALIZATION 

By utilizing the colorization approach, the visual 

representation of the depth images was enhanced, providing a 

clearer interpretation of each intended action and state, as 

illustrated in Fig. 5. In the figure, the term “outside” signifies 

the absence of any individual within the camera view. Other 

actions are represented when a person is inside the room. 

Firstly, “seated” indicates the person is in a wheelchair, 

positioned straight. Secondly, “standing” denotes that the 

person is in an upright posture. Thirdly, “sitting” represents 

the elderly individual resting on the bed. Then, “lying” 

signifies that the elderly person is lying down for rest in a 

straight posture. The term “transition” refers to an individual 

being in a state of change from one action to another, 

highlighting a period in which unexpected accidents may 

occur. Finally, “assistance” indicates that the elderly person 

is currently receiving support from a healthcare provider. 

 

FIGURE 5. Visualization of actions and states. 

 

FIGURE 6. System overview. 

D. SYSTEM OVERVIEW 

The system overview is shown in Fig. 6, encompassing three 

key steps: depth-data processing, person detection and 

segmentation, and MotionCRNN-based action recognition. 

In general, the system uses depth image data from the camera 

as input and outputs information regarding the actions or 

states in which the targeted elderly person is engaged. The 

following subsections provide an in-depth explanation of 

each step of this process. 

1) DEPTH-DATA PROCESSING 

The data obtained from the depth camera were initially in the 

form of raw depth data, characterized by substantial noise 

and depth fluctuations. To address this, instead of utilizing 

raw data, depth-processing methods were employed to 

smooth the data and fill the missing pixel values. Building 

upon an approach similar to that used in a previous work [9], 

the method was refined for implementation in the proposed 

system. Depth processing in the proposed system involved 

the following sequential steps: (i) hole filling, (ii) depth-to-

disparity conversion, (iii) application of bilateral spatial 

filtering, (iv) conversion of disparity back to depth, (v) 

thresholding within the depth range, and (vi) another round 

of hole filling applied to the resulting depth frame. 

The hole-filling process employed the “filling-from-left” 

method, which was designed to address gaps in the depth 

image caused by black pixels, indicative of information loss. 

This method involved the leftward filling, starting from the 

leftmost pixel column. The choice to start from the left was 

influenced by the camera’s reference point being the left 

camera, and shadow noise often appeared on the left 

background side. Subsequently, the resulting hole-filled 

depth image was converted into a disparity image using (1). 
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In this equation, f represents the focal length of the camera in 

pixels and b is the length of the baseline between the two 

imagers of the stereo depth camera in meters. 

Disparity
Depth

f b
=  (1) 

After converting the hole-filled depth image into a 

disparity image, spatial filtering was applied using bilateral 

filtering. The filtered disparity image was then transformed 

back into depth space using (2). Following this, depth 

thresholding was executed by limiting the minimum and 

maximum distances to 0.3 meters and 6 meters, respectively. 

Notably, this selected range accommodated the entire room, 

given that the distance between the camera and bed was 2.5 

meters. To determine the depth process, the same hole-filling 

process was repeated. 

Depth
Disparity

f b
=  (2) 

Following depth processing, the resulting depth image was 

converted into a color image through depth image 

colorization in the hue color space, as explained in previous 

sections. As a general reminder, the hue color space was 

chosen for its ability to prevent extreme white or black 

colors, ensuring that the images maintain a balanced 

appearance without becoming excessively dark or washed 

out compared with simple representations such as grayscale. 

This colorization technique provides an additional advantage 

as it facilitated the utilization of colorized images as input to 

object detectors. By converting raw depth images into color 

images, a visual representation compatible with the 

commonly employed RGB-based object detection algorithms 

was created. These colorized images acted as a bridge 

between the depth domain and object detectors, encouraging 

a more efficient and effective analysis of the captured data. 

 

2) PERSON DETECTION AND SEGMENTATION 

The fusion of You Look Only Once version 5 (YOLOv5) 

and Segment Anything Model (SAM), as employed in a 

previous study [11], was integral to the system. The process 

involved using depth-colorized images as input to the 

YOLOv5 object detector, with the resulting person bounding 

box serving as prompts for SAM to extract person masks 

exclusively. In the proposed system, notable refinements 

were made to the YOLOv5 model. New training and 

validation images were organized, and the pre-processing of 

the input was adjusted. In this study, a more extensive dataset 

encompassing diverse images was used. The input image size 

for YOLOv5 was set to 320×320, maintaining the original 

image resolution (320×180) without resizing. This approach 

contributed to an improved person detection model, which 

subsequently influenced the SAM. The outcome of the 

person mask from SAM was then padded with zeros (black 

pixels) in both dimensions to achieve uniform bounding box 

sizes across all the images as illustrated in Fig. 7. 

 

FIGURE 7. Sample process for person detection and segmentation. 

 

3) ACTION RECOGNITION 

The subsequent action recognition process, based on person 

segmentation outputs, is outlined in Fig. 8 to differentiate 

between various states and actions. The logic is described in 

the following conditions. 

1) If no person was detected in the image, it was 

defined as a person being “outside” the room. 

2) If more than one person was detected in the image, it 

was defined as an elderly individual who is 

“receiving assistance” from one or more health 

caregivers. 

3) If only one person was detected in the image, the 

MotionCRNN-based action recognition was 

employed to distinguish between “seated in the 

wheelchair,” “standing,” “sitting,” and “lying down” 

actions, as well as “transition states.” It is important 

to note that all the transition states changing from 

one action to another were categorized as 

“transition” labels. 

This approach ensured a clear interpretation of the scene, 

accounted for the presence or absence of individuals, and 

accurately characterized actions and states when a single 

person was detected. 

When making action decisions, the focus was placed on 

the sequences of images rather than on individual frames. 

The emphasis on transition states is prominent because these 

states capture changes in body movements, whereas specific 

actions tend to exhibit more stable movements. To determine 

the optimal duration for decision-making, an in-depth 

analysis of ground-truth durations for transitions in three 

experimental rooms was conducted, revealing that the most 

frequent transition duration was 3 seconds. The histogram of 

the transition durations shown in Fig. 9 supports the selection 

of an optimal duration between 2 and 12 seconds. 

Considering the trade-off between delayed recognition for 

longer durations and potential inaccuracies for shorter 

durations, a duration range of 3-5 seconds was considered 

suitable. Given a processing rate of 1fps in the experiment, a 

duration of 5 seconds was selected, encompassing five 

frames in each sequence for robust action recognition. To 

process continuously throughout the long sequence, a sliding 

window method with a window size of 5 and 1-stride 

movement was applied in the experiment. The same sliding 

window method was employed for ground-truth labeling. 
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FIGURE 8. Differentiating between different actions and states. 

 

 

FIGURE 9. Histogram of transition duration. 

 

The process flow of MotionCRNN-based action 

recognition, which is a notable contribution of the proposed 

method, is shown in Fig. 10. For this method, the integration 

of CNN and RNN was employed to extract spatiotemporal 

features. The process involved utilizing a CNN to extract 

spatial features and an RNN to extract temporal features. 

Here, CNN features were not extracted directly from the 

images; instead, they were derived from motion image 

sequences, in which the motion of two consecutive images 

was calculated from the normal image sequence. Therefore, 

the approach was denoted as MotionCRNN by extracting 

CNN features from the motion sequence and RNN for action 

prediction. Motion images were computed using segmented 

person-mask images, as shown in Fig. 11. To calculate the 

motion images, two consecutive images were first 

normalized by dividing them by 255. The normalized images 

were then summed channel-wise, and the resulting image 

was scaled up by multiplying it by 100.  

 

 

FIGURE 10. Process of MotionCRNN-based action recognition. 

 

 

FIGURE 11. Calculation of motion image. 

 

Subsequently, CNN transfer learning was applied to the 

EfficientNet architecture [57] (specifically EfficientNetB4) 

to extract spatial features. EfficientNet was chosen because 

of its efficiency and lightweight pre-trained weights. 

Regarding the RNN component, the Gated Recurrent Unit 

(GRU) [58] was chosen over LSTM because of its ability to 

handle time dependency more effectively than LSTM or 

basic RNN. 

The specific model architectures of the CNN encoder and 

the RNN decoder are shown in Fig. 12. Transfer learning of 

the CNN encoder involved removing the last Fully 

Connected (FC) layer from EfficientNetB4 and adding two 

hidden FC layers, each followed by batch normalization and 

Rectified Linear Unit (ReLU) activation functions. 

Subsequently, a dropout layer was included to prevent 

overfitting, and another FC layer was added for feature 

embedding. The main layers and their respective parameters 

are presented in the top model plotting blocks as well as the 

full model architecture of the CNN encoder in the bottom 3D 

visualization of Fig. 12 (a). These CNN features were 

embedded in four consecutive motion images and used as 

inputs to the RNN. The proposed RNN comprised three 

unidirectional GRU layers, one FC layer followed by a 

dropout layer, and the final FC layer for classification as 

shown in Fig. 12 (b), with the respective parameters.  This 

strategic integration of CNN and RNN into motion images 

allowed for the extraction of both spatial and temporal 

features, contributing to robust action prediction in the 

MotionCRNN framework. 
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(a)       (b) 

FIGURE 12. CRNN Architecture: (a) CNN Encoder, (b) RNN Decoder 

 

4) EVALUATION METRICS 

To determine whether the developed algorithm was reliable, 

different metrics were employed to assess the performance of 

the person detection and action recognition models. 

For person detection, the focus was on the detection 

model’s ability to correctly identify people (elderly in this 

context) and distinguish them from the background in 

colorized images. The two key metrics employed were 

“precision” and “recall” [59]. “Precision” measures the 

accuracy of positive detections whereas “recall” assesses the 

model’s ability to capture all relevant detections. 

Additionally, the localization accuracy of the detection model 

was evaluated using “mAP@50” and “mAP@50-95” metrics 

where mAP represents the mean Average Precision [59]. 

These metrics assess how precisely the model locates people 

within the images. They are derived from the Intersection 

over Union (IoU), which measures the overlap between a 

predicted bounding box (the model’s estimate of person 

location) and a ground-truth bounding box (actual location). 

“mAP@50” was calculated at an IoU threshold of 0.5, 

indicating a 50% overlap between predicted and actual 

bounding boxes. “mAP@50-95”, calculated across varying 

IoU thresholds (0.5 to 0.95), indicates consistent accuracy 

even with stricter overlap requirements. The description, 

focus, and indication of higher values for each evaluation 

metric for person detection are presented in Table. III. 

For action recognition, this study employed multi-class 

evaluation metrics to assess the performance of the model. 

These metrics included “accuracy,” “precision,” “recall,” and 

“F1-score.” “Accuracy” represents the overall proportion of 

actions correctly classified by the model. “Precision” focuses 

on the model’s ability to identify specific actions accurately. 

“Recall”, on the other hand, measures the model’s ability to 

detect all instances of a specific action. Finally, the “F1-

score” acts as a harmonic means of precision and recall, 

providing a balanced view of both the metrics. The 

description, focus, and indication of higher values for each 

evaluation metric in the case of transition state recognition 

are listed in Table. IV. 
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TABLE III 

EVALUATION METRICS FOR PERSON DETECTION 

Metric Description Focus Higher Value Indicates 

Precision Accuracy of positive detections Correctly identified elderly people 
Fewer false positives (background clutter identified 

as elderly) 

Recall Completeness of detections Capturing all actual elderly people 
Fewer missed detections (actual elderly people not 

identified) 

mAP@50 Localization accuracy Precise location of elderly people 
Better overlap between predicted and ground-truth 

bounding boxes (IoU ≥ 0.5) 

mAP@50-95 Consistent localization accuracy 
Accurate elderly location across 

varying overlap thresholds 

Consistent performance even with stricter overlap 

requirements (0.5 ≤ IoU ≤ 0.95) 

 

TABLE IV 

EVALUATION METRICS FOR ACTION RECOGNITION (FOR “TRANSITION STATE” CLASS) 

Metric Description Focus Higher Value Indicates 

Accuracy Overall classification performance Correctly classified actions 
Higher proportion of all actions correctly 
classified 

Precision Specific class identification accuracy Correct “transition state” classification 
Less confusion with other actions for 
“transition state” 

Recall Completeness of specific class detection Capturing all “transition states” 
Fewer missed actual “transition state” 
instances 

F1-score Balanced view of precision and recall 
Overall “transition state” classification 
performance 

Good performance with minimal confusion 
between “transition state” and other classes 

 

 

FIGURE 13. Sample evaluation for “transition state” class. 

 

Fig. 13 shows an example of calculating these metrics for 

the “transition state” label in which True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN) 

are marked in the right matrix according to the left confusion 

matrix. The resulting percentages for each metric are 

described in (3)-(10).  

Overall, achieving higher values of all these metrics across 

both person detection and action recognition tasks signifies a 

well-performing algorithm. 
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IV. EXPERIMENTAL RESULT ANALYSIS 

In this section, the dataset preparation process, evaluation 

performance for each process on different datasets, analysis 

of the results, and refining process are described. 

Furthermore, various comparisons are performed, and the 

GUI is explained. 

A. DATASET PREPARATION 

In the proposed system, trainable DL algorithms played a 

pivotal role in the implementation, encompassing the fusion 

of YOLOv5-SAM for person detection and segmentation, 

as well as EfficientNet and GRU for MotionCRNN-based 

action recognition. Diverse datasets were carefully prepared 

to facilitate the training of these algorithms. For the 

experiment, data from all three rooms of the care center 

were used, emphasizing the inclusion of a varied dataset. 

Dataset preparation involved the standard practice of 

splitting data into training, validation, and testing datasets. 

Importantly, the data used for each dataset did not overlap, 

thereby ensuring that the data used for training were distinct 

from those included in the validation and testing datasets. 

Specific datasets for each stage of the process are described 

in detail in the following sections. 

B. TRAINING AND VALIDATION DATASETS 

In the context of person detection using YOLOv5, 120,000 

images were chosen from three rooms of the care center, 

each annotated with ground-truth bounding boxes. 

Subsequently, 70% of these images (84,000 images) were 

allocated to the training dataset, and the remaining 30% 

(36,000 images) were allocated to the validation dataset. 

For action recognition, multiple sequences of five 

consecutive images each were selected to train the 

MotionCRNN. These short sequences were collected from 

all the three rooms to ensure a balanced dataset. In total, 

13,600 sequences were chosen, with 70% (9,520 

sequences) designated for training, and the remaining 30% 

(4,080 sequences) assigned to the validation dataset. These 

datasets were selected and organized to include diverse 

situations and ensure robust training of the respective 

algorithms. The following subsections detail the specific 

training parameters, procedures, and performance 

evaluations for each stage of the proposed system. 
 

1) PERSON DETECTION PERFORMANCE 

The training parameters for the person detection process are 

presented in Table. V, employing the pre-trained weight 

yolov5l6 to train the custom dataset over 100 epochs with 

an IoU threshold of 0.6. The input image size was set to 

320×320 pixels, preserving its relationship to the original 

image size. Performance evaluations of the training and 

validation datasets are presented in Table. VI. The model 

demonstrated robust performance for both datasets. It 

achieved over 99% precision, recall, and mAP@50, and 

over 97% for mAP@50-95. The detected bounding boxes 

were then passed into the SAM for segmentation. Fig. 14 

shows some of the selected images resulting from the 

fusion of YOLOv5-SAM. 

TABLE V 

YOLOV5 TRAINING PARAMETERS 

Pre-trained Weight yolov5l6.pt 

Batch Size 32 

Image Size 320×320 

IoU Threhsold 0.6 

Confidence Threhsold 0.7 

Epochs 100 

 
TABLE VI 

PERFORMANCE EVALUATION ON TRAIN AND VALID DATASETS 

Dataset Images 

Evaluation Metrics (%) 

Precision Recall mAP@50 
mAP@

50-95 

Train 84,000 99.9 100 99.5 97.6 

Valid 36,000 99.8 99.9 99.5 97.0 

 

 

FIGURE 14. Resulting images from the fusion of YOLOv5-SAM. 

 

2) ACTION RECOGNITION PERFORMANCE 

The proposed system utilized the EfficientNetB4 pre-

trained weight for CNN transfer learning and employed 

unidirectional GRUs for recurrent decision-making. In 

training the MotionCRNN, the cross-entropy loss function 

was calculated once every epoch for the CNN-RNN 

integration output, and the Adam optimizer was applied 

with the default learning rate (0.001). The model was 

trained for 20 epochs with a batch size of 64. The 

performance evaluation of the training and validation 

datasets are presented in Fig. 15. The confusion matrix for 

each dataset is shown in Fig. 16. Emphasizing the transition 

state class, it is evident that the training process performed 

well, achieving over 99% accuracy for all evaluation 

metrics on both the training and validation datasets. 

However, some false and missing predictions persisted as 

can be seen in the confusion matrices, indicating areas for 

potential improvement, despite the overall strong 

performance in training for recognizing transition states. 

Cropped Bounding Box Image

SAM-based Mask Extraction

Person Detected Image

YOLOv5 Bounding 

Box Detection

SAM Mask 

Extraction

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3405954

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

14 

 

FIGURE 15. Action recognition performance evaluation for train and valid datasets. 

 

 

FIGURE 16. Confusion matrix of action recognition for train and valid datasets. 

 

C. TESTING DATASET 

The proposed algorithm was tested on all recorded datasets 

described in Table II. However, because of the time-

consuming and intensive nature of the ground-truth labeling 

task, only one 15-hour duration (approximately) random 

long sequence from each room was selected for 

performance evaluation. The sequences comprised up to 

54,800 frames at 1fps and were recorded during both the 

daytime and nighttime. Detailed information on the selected 

testing data is presented in Table. VII, where the actions 

included in each sequence are also described. Specifically, 

these testing data were selected to include the significant 

transition states observed in each room. For example, the 

Room 1 sequence highlighted transition states from seated 

in the wheelchair to standing and vice versa, whereas the 

Room 2 sequence covered a considerable number of 

transition states from sitting to lying down and vice versa. 

Finally, the Room 3 sequence mostly featured transition 

states from sitting to standing and vice versa, which are 

actions frequently performed by elderly residents. 

Reminding of the approach, a sliding window method was 

employed with a window size of 5 and a stride of 1 to 

process the long sequence. 

 

1) PERSON DETECTION PERFORMANCE 

The performance evaluation of the testing dataset for 

person detection, using a confidence threshold of 0.7 and an 

IoU threshold of 0.6 for YOLOv5, is shown in Table. VIII. 
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TABLE VII 

TESTING DATASET INFORMATION 

Room 
ID 

Date and Time Duration 
(hours) 

Number 
of Frames 

Included 
Action a Start Time End Time 

1 
2019/10/12 

10:15:00 

2019/10/13 

00:39:00 
14.4 51,840 

A, L, O, 

Se, St, Tr 

2 
2019/10/25 

11:50:00 

2019/10/26 

02:50:00 
15 54,000 

A, L, O, 

Se, Si, Tr 

3 
2019/10/12 

11:10:00 

2019/10/13 

01:34:00 
14.4 51,840 

A, L, O, 

Se, Si, Tr 

a
 A: Assistance, L: Lying, O: Outside, Se: Seated, St: Standing, Si: Sitting, Tr: Transition states 

 
TABLE VIII 

PERFORMANCE EVALUATION ON TESTING DATASET FOR YOLOV5 

Room 

ID 

Images 

(1fps) 

Evaluation Metrics (%) 

Precision Recall mAP@50 mAP@50:95 

1 51,840 100.0 99.1 99.5 99.5 

2 54,000 100.0 99.6 99.5 99.5 

3 51,840 100.0 99.9 99.5 99.5 

 

The results indicated that the proposed person detection 

model achieved over 99% accuracy for all metrics. It also 

achieved the highest precision rate which means that there 

was no false detection when the background was detected 

as a person. However, there were some missed detections in 

which a person could not be detected by the model (recall). 

Regarding person localization between the ground truth and 

prediction, both mAP@50 and mAP@50:95 had high rates. 

The sample results are shown in Fig. 17, where the 

resulting bounding boxes were used as prompts for person 

segmentation. 

After analyzing the results of person detection, it was 

observed that the most challenging detection task occurred 

when a person was lying on the bed while being covered 

with a blanket. At that time, the distance information was 

not clearly visible or significant enough to distinguish the 

person from the bed. Despite utilizing numerous training 

annotations, some frames presented these types of missed 

detections. This also affected the recall rate. 

 

FIGURE 17. Sample person detection testing results. 

To solve this problem, a condition is introduced at this 

stage, as shown in Fig. 18. If a person is not detected in the 

current frame, the algorithm checks the previous frame to 

determine whether a detection has occurred. If detection 

occurred in the previous frame, the previous bounding box 

coordinates were used in the current frame. Subsequently, a 

frame difference was performed within the defined bounding 

box by counting the number of pixels with intensity values. If 

the summation of this count was less than 30% of the defined 

bounding box area, it was determined that there was a small 

movement similar to the previous frame. In such cases, the 

algorithm replicated the previous box, cropped the image 

accordingly, and continued with the subsequent processes. 

Conversely, if the summation exceeded the 30% threshold, a 

large movement was determined, and no bounding box was 

assigned to the current frame. 

 
2) ACTION RECOGNITION PERFORMANCE 

After applying the person detection refinement to the 

bounding box recovery process, action recognition was 

performed using the MotionCRNN model. A visual 

representation of a sample 10-minute duration action 

recognition result from the Room 1 testing sequence is 

illustrated in Fig. 19, in which the top one is the scatter plot 

and the bottom two are the bar chart representations of 

ground truth and predictions in each time frame, respectively. 

By observing the visualization in this sample result, it can be 

seen that the person was in a transition state between 

standing and seated in the wheelchair frequently within the 

10-minute duration. However, some of the results highlighted 

the occurrence of over-segmentation errors, particularly 

when the person was in a transition state, as represented by 

the red color in Fig. 19. This issue occurred primarily 

because decision making relied on the most probable action 

(Top-1 accuracy) for each prediction. To address this 

problem, a sequential-based majority voting decision and 

transition state reasoning were implemented. 

 

FIGURE 18. Bounding box recovery process. 
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Replicate the 

Previous Box

Reset (No Box)

No

Yes

Current frame, ft

Previous frame, ft-1

Current frame with 

replicated bounding box

Sum(frame_diff) < th ?

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3405954

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

16 

 
FIGURE 19. Visual representation of a sample action recognition result. 

 

To implement the majority voting decision, Top-2 

predicted labels were utilized, where “Top-2” refers to the 

two most probable predictions among the five prediction 

probabilities from the model. An illustration of the majority-

voting decision is shown in Fig. 20. For instance, in Fig. 20 

(a), to determine the predicted label for Segment-167 (bottom 

graph), the previous two segments (Segments 166 and 165) 

were considered, and the Top-2 predicted labels for each 

segment were checked. The small probability values were 

then removed using a threshold of 20 and the remaining 

probability values and labels were examined. In this 

example, two labels were identified as “lying” and one label 

as a “transition state.” Hence, the most frequent action was 

determined as “lying” for Segment-167. It is evident that the 

ground-truth label was “lying,” and the majority voting 

decision also indicated “lying,” which achieved a better 

result than the Top-1 label, which was a “transition state.” 

However, there were conditions in which the thresholded 

values resulted in the same number of labels, as shown in 

Fig. 20 (b). In such cases, the average probability values for 

each label were obtained and the decision was determined as 

the label with the highest average probability value. For this 

example, the “seated” label has the highest probability of 

50.53%. Hence, even though the Top-1 label was a 

“transition state,” majority voting correctly identified the 

action as “seated.” 

In this experiment, a transition state was generally defined 

as a state that changes from one action to another. However, 

even after applying majority voting, there were instances of 

false predictions as transition states throughout the long 

sequence. This problem occurred because of the model’s lack 

of reasoning capabilities. Applying reasoning to the 

predictions of DL models is crucial for real-world 

effectiveness. Hence, to enhance the recognition results, a 

reasoning step was introduced that specified that a transition 

state should not occur between the same specific actions. In 

cases in which this condition occurred, the system refined the 

results after a certain period (1 hour in this experiment) by 

replacing the predicted transition states with specific actions 

before or after the transition state. This approach aimed to 

improve the accuracy and reliability of the recognition results 

by integrating conditional reasoning into prediction process. 

 
(a) Decision for Segment-167 

 
(b) Decision for Segment-403 

FIGURE 20. Illustration of majority voting decisions. 

A comparison between the Top-1 and the final refined 

results is shown in Fig. 21. Upon checking the visualization, 

it is evident that the two refined approaches (sequential-based 

majority voting and transition state reasoning) smoothened 

the action recognition results and reduced the over-

segmentation errors among the predicted actions. By 

examining the resulting visualization, users can make 

decisions regarding the actions of their intended residents 

regarding health monitoring. An example of decision-making 

for the results in Fig. 21 could be: “Resident A is observed 

standing for a while, then transitioning to being seated in the 

wheelchair within 10 minutes. During this period, there are 

frequent transitions between seated and standing positions.”  
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FIGURE 21. Visualization of action recognition with two refinements. 

 

Such insights allow caregivers or observers to understand 

residents’ activities over time, facilitating informed decision-

making and appropriate interventions, as needed. 

The action recognition performance on the evaluation 

metrics and confusion matrix after the refinements are shown 

in Fig. 22. In all testing sequences, the “outside” state was 

included, which is easy to identify even after person 

detection. Therefore, the evaluation was performed after 

excluding the “outside” state; however, it was included in the 

confusion matrix. In all three testing sequences, although the 

performance was promising, there was still some confusion 

between the actions. According to the result analysis, some 

false recognition cases were identified, primarily attributed to 

occlusion, low-quality segmented person masks, and 

misalignment of the transition states. First, occlusion occurs 

when an elderly individual inside the room is covered by a 

nurse or caregiver in front of the camera view. In these 

instances, the system detected only the nurse or caregiver and 

predicted their actions instead of the intended elderly 

resident. Because of this occlusion, false predictions between 

the “assistance” state and other actions occurred because the 

person detection model detected only one person instead of 

two persons. Second, most of the confusion between specific 

actions (seated in the wheelchair, sitting, standing, and lying 

down) occurred because of the inaccuracy of the extracted 

person masks segmented from the person segmentation 

process. In the third case, misalignment of transition states 

occurred when the occurrence of transition states in the 

ground-truth labeling did not align with those in the 

predictions. This misalignment resulted in the predicted 

transition states at different times relative to the ground truth. 

Sometimes, the transition states in the ground truth occurred 

prior to the predictions, and vice versa. Therefore, these 

challenges resulted in lower evaluation performance in terms 

of precision and recall. Moreover, by emphasizing transition 

state recognition, the results after refinements and excluding 

the “outside” state are shown in Fig. 23. Although there are 

still some areas for improvement, the experimental results are 

promising, highlighting the key contribution of this study. 

MotionCRNN with result refinement achieved an average 

accuracy of 99.19% and an average F1-score of 83.39%, 

demonstrating its effectiveness in differentiating transition 

states from other specific actions. 

D. COMPARISON OF EXPERIMENTS 

In this study, various tests based on different factors were 

conducted; thus, the results of these comparisons are detailed 

in the following subsections. 

 
1) IMPACT OF REFINEMENT ON ACTION RECOGNITION 

The overall results of action recognition, particularly for 

transition states, are compared in Fig. 24, with a primary 

focus on the impact of refinements, including bounding box 

recovery, majority voting, and reasoning for transition states. 

The results indicate that while the recall rate for all three 

rooms decreased slightly, improvements in precision and F1-

score rates were evident, especially in Rooms 2 and 3, where 

they increased by up to 66% compared with the results 

without refinements. Among the refinement processes, 

conditional reasoning for transition states had the most 

significant impact on increased recognition rates. 

 
2) PROCESSING TIME COMPARISON 

The testing process was performed using a 64-bit Intel (R) 

Core i9 PC with 64GB RAM and an NVIDIA GeForce RTX 

4090 graphics card. Processing a 1-hour testing sequence at 

1fps took approximately 0.5 hours on average. This translates 

to real-time processing capability, even with initial depth 

data processing and depth image colorization. Therefore, the 

proposed system effectively utilized the stereo depth camera 

and DL to achieve real-time action recognition with high 

accuracy in indoor elderly monitoring. The real-time 

capability with high accuracy is one of the contributions of 

this study. Notably, increasing the frame rate to 2.5fps 

resulted in a processing time of 1.5 hours without significant 

accuracy gains. 

 
3) CNN BASE MODEL COMPARISON 

Furthermore, various EfficientNet architectures were tested 

to determine whether the model could be enhanced by 

changing its base model. Four model variants were used for 

comparison: one EfficientNetB4 and three EfficientNetV2 

models [60] (V2L, V2M, and V2S), which were tested in 

three testing rooms. A comparison of the overall accuracy 

and processing time of each variant is presented in Table. IX, 

where the accuracy was calculated for all classes including 

“outside” and excluding “outside”. The average processing 

time was calculated based on a 1-hour duration sequence. For 

example, the processing of the EfficientNetB4 model on the 

Room 1 testing dataset took 28.14 minutes on average for a 

1-hour duration sequence. The results demonstrated that 

although the overall accuracy rates for all models showed no 

significant improvement, there was a significant difference in 

the average processing time duration. 
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FIGURE 22. Action recognition performance after refinements for all testing sequences: (left) evaluation metrics, (right) confusion matrices. 
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FIGURE 23. Transition state recognition performance after refinements. 

 

 

FIGURE 24. Impact of refinements on transition state recognition. 

 

TABLE IX 

OVERALL ACCURACY AND PROCESSING TIME COMPARISON  
(EFFICIENTNET VARIANTS) 

EfficientNet 
Model 

Room 
ID 

Overall Accuracy (%) Average 

Processing Time 

(Minutes) All Classes 
Excluding 
“Outside” 

B4 

1 99.04 97.79 28.14 

2 99.35 99.51 27.53 

3 99.86 99.88 28.01 

V2L 

1 98.67 96.85 37.05 

2 99.20 99.29 36.95 

3 99.90 99.88 37.27 

V2M 

1 98.59 96.73 33.64 

2 99.10 99.17 32.98 

3 99.90 99.88 29.94 

V2S 

1 98.84 97.32 28.78 

2 99.26 99.37 28.54 

3 99.89 99.87 28.81 

 

FIGURE 25. Scatter plot for base model comparison. 

 

For clear visualization, a comparison scatter plot of the 

results from Table. IX is shown in Fig. 25, where the overall 

accuracy was calculated by excluding the “outside” class. 

The comparison demonstrated that the MotionCRNN with 

the EfficientNetB4 model achieved the best trade-off 

between overall accuracy and processing time. 

 

4) SYSTEM COMPARISON 

Finally, the reliability and effectiveness of the proposed 

system were compared with those of other related systems. 

Although the ultimate goal of recognizing the daily activities 

of elderly individuals remains consistent across these 

systems, various technologies have been implemented, 

employing different input data types and recognition models. 

In Table. X, a comparative analysis of the proposed system 

and recent studies that adopted distinct methodologies are 

presented. This comparison encompasses aspects such as 

input data types, usage of real-world data, awareness of 

transition state recognition, recognition model architecture, 

real-time processing capabilities, and privacy preservation 

considerations.  

The comparison results indicate that the proposed method 

achieved an average accuracy of 99.42% for recognizing 

seven actions. This approach prioritized both privacy by 

utilizing depth data and real-world reliability through the use 

of real-world data, which is one of the contributions of this 

work. In addition, it captured the crucial transition states vital 

for elderly monitoring. The proposed system significantly 

surpassed the authors’ prior works that used HMM and SVM 

with similar depth data and transition awareness [9], [10], 

[11]. While another sensor-based approach achieved 

transition-aware recognition [42], its accuracy was limited to 

80%. Notably, while state-of-the-art hybrid DL recognition 

models [27], [50], [51] obtained high accuracy, they were not 

considered for the application with real-time processing, 

privacy concerns, or transition state recognition. However, it 

is remarkable that although most of the other systems used 

public datasets, this study used custom real data; thus, the 

accuracy results may vary according to the dataset scales. 

Room 1

Room 2

Room 3
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TABLE X 

(A) SYSTEM COMPARISON-1 

Related 

Work (Year) 
Data Type 

Real 

Data 

Total 

Action 

Transition 

Awareness 

[9]  (2021) Depth ✔ 8 ✔ 

[10] (2022) Depth ✔ 5 ✔ 

[11] (2023) Depth ✔ 5 ✔ 

[27] (2023) Sensor ✘ 6 ✘ 

[42] (2020) Sensor ✔ 9 ✔ 

[50] (2023) RGB ✘ 101 ✘ 

[51] (2020) RGBD ✘ 27 ✘ 

Ours Depth ✔ 7 ✔ 

(B) SYSTEM COMPARISON-2 

Related 

Work (Year) 

Recognition 

Model  

Real-

Time 

Privacy-

Preserving 

Average 

Accuracy (%) 

[9]  (2021) SVM  ✔ ✔ 93.73 

[10] (2022) HMM-SVM  ✔ ✔ 84.08 

[11] (2023) SVM  ✔ ✔ 88.26 

[27] (2023) CNN-LSTM  N/A ✘ 99.00 

[42] (2020) STD-TA  N/A ✘ 80.00 

[50] (2023) Vit-ReT ✔ ✘ 94.70 

[51] (2020) Deep CNN  N/A ✔ 87.21 

Ours MotionCRNN ✔ ✔ 99.42 

E. EXTENDED TESTING ON DIFFERENT DATASETS 

To evaluate the generalizability, the system was tested on 

data from another hospital with significantly different camera 

positions and structures (compared to Fig. 2, see Table XI 

and Fig. 26). Three elderly patients from the hospital 

participated in the experiment. Depth image data from three 

separate rooms were recorded for a continuous period of 24 

hours for three consecutive days. This data acquisition 

protocol also received ethical approval from the University of 

Miyazaki Ethics Committee (protocol code O-1449, on 

November 20, 2023). 

The system utilized two trainable models: a YOLOv5 

model for person detection and a MotionCRNN model for 

action recognition. The person detection model was first fine-

tuned using 30,000 images from this extended dataset. While 

a smaller dataset of 600 new sequences was used for initial 

action recognition training, transfer learning enabled the 

effective evaluation of three 1-hour testing sequences (3,600 

frames at 1fps each) from the new environment. The results 

presented in Table XII, ranging from 84.83% to 99.22% 

overall accuracy rates, demonstrate the potential of the 

system as a foundational model that can adapt to diverse 

settings with minimal additional data requirements. This 

highlights another key contribution of this study. 

F. GRAPHICAL USER INTERFACE 

A GUI specifically designed for end users, including family 

members and health caregivers, was developed to facilitate 

the real-time monitoring of elderly individuals and access 

detailed action information captured by the proposed action 

recognition system. The GUI consisted of two main 

windows, as shown in Fig. 27. The first window is the action 

detail window, where users can select the name or ID of the 

elderly resident they wish to monitor and input the desired 

start and end times to view the detailed information. The GUI 

then displays the recognized actions of the selected resident 

on a scatter plot, providing a second-by-second 

representation. Additionally, a bar chart summarizes the 

actions performed during the specified time frame. For a 

more comprehensive view of continuous actions, users can 

refer to a table that lists the specific durations of the 

consecutive actions. The GUI design ensures that end users 

and healthcare providers can easily access insightful 

information within a single window. 

The second window in the GUI is a real-time monitoring 

window. Similar to the action detail window, users can input 

relevant information to either re-play or monitor the actions 

of the elderly residents in real time. This feature allows users 

to validate the accuracy of previously captured action details, 

thereby providing reassurance and confidence in the system 

performance. In summary, this GUI serves as a 

comprehensive tool for caregivers to monitor elderly in real 

time, access detailed action information, and interact with the 

analytics and recognition processes of system. 

TABLE XI 

DATA ACQUISITION PROTOCOL FOR HOSPITAL 

Participants Three elderly residents (three rooms) 

Collected Data 

Information 

Recorded depth image data for a 

continuous period of 24 hours for 3 days. 

- Room 4: 2024/01/05 to 2024/01/08 
- Room 5: 2024/01/26 to 2024/01/29 

- Room 6: 2024/01/31 to 2024/02/03 

 

 

FIGURE 26. Illustration of environments (hospital). 
 

TABLE XII 
PERFORMANCE EVALUATION ON EXTENDED DATASET 

Room 
ID 

Date and Time Included 
Action a 

Overall 
Accuracy (%) Start Time End Time 

4 
2024/01/06 

10:45:00 
2024/01/06 

11:45:00 
A, L, St, 

Tr 
99.22 

5 
2024/01/27 

07:02:00 
2024/01/27 
08:02:00 

A, L, St, 
Si, Tr 

84.83 

6 
2024/01/31 

19:56:00 

2024/01/31 

20:56:00 

A, L, O, 

Si, Tr 
94.89 

a
 A: Assistance, L: Lying, O: Outside, St: Standing, Si: Sitting, Tr: Transition states 

Depth Camera

Sample Depth Image

(Rooms 4, 5)

Rooms 4, 5

Sample Depth Image

(Room 6)

Depth 

CameraRoom 6
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(a) Action details window. 

 

 
(b) Real-time monitoring window 

FIGURE 27. Graphical user interface. 
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V. DISCUSSION 

This study developed a comprehensive elderly activity 

monitoring system that leverages real-world data from an 

elderly care center and hospital. This approach ensures data 

authenticity while prioritizing user privacy using depth 

images captured by stereo depth cameras. A resolution of 

320×180 pixels was utilized for depth images, balancing 

image quality with efficient storage and real-time processing 

capabilities. While a higher resolution could offer better 

details, it is crucial to consider the trade-off with processing 

speed for optimal system performance. 

The proposed system focuses on recognizing seven 

common daily actions, including transition states that can be 

used to predict potential risks. The results demonstrated 

improved performance compared to previous studies in 

recognizing these critical states. Person detection and 

segmentation were the fundamental components achieved by 

combining the YOLOv5 and SAM models. The analysis 

revealed a clear link between segmentation accuracy and 

action recognition accuracy, highlighting its importance. 

Although the current results are reliable, there is room for 

improvement, especially in person detection and 

segmentation. Upgrading to advanced YOLO versions or 

exploring alternative segmentation algorithms can enhance 

accuracy and processing speed. 

A unique contribution of this experiment is the application 

of MotionCRNN to image sequences for action recognition. 

This approach incorporated motion information into a hybrid 

CNN-RNN architecture, which is valuable for identifying 

transition states that rely heavily on movement patterns. The 

system achieved a high accuracy of 99.42% in recognizing 

not only the transition states but also various specific actions 

in real-time. Through experimentation, the model 

architecture and parameters were optimized, further refining 

the results with bounding box recovery, sequential-based 

majority voting, and condition reasoning to enhance action 

recognition performance. It is acknowledged that exploring 

other advanced CNN base model architectures can 

potentially push the boundaries of accuracy even further. 

Finally, a user-friendly GUI was designed to provide a 

platform for offline interaction between caregivers and the 

system, offering insights into the health trends and details of 

the activities of the elderly. In addition, various comparisons 

were performed to assess the reliability and effectiveness of 

the proposed system. 

A. LIMITATIONS 

The current method converts depth images into colorized 

images for compatibility with RGB-based object detectors. 

However, the optimal performance requires a camera-to-

person distance to align with the training dataset. Significant 

variations in this distance may lead to false or missed 

detection. Leveraging 3D processing techniques that utilize 

distance information for detection can improve 

generalization and robustness across various environments. 

Eliminating the need for colorization and focusing on 

distance-based detection can yield more reliable results.  

Another limitation is that the system is currently suitable 

for use in single-resident environments. In settings with 

multiple people, person tracking is necessary to enable 

accurate monitoring and address occlusion cases. 

B. FUTURE IMPLICATIONS 

The emphasis in implementing the elderly activity 

monitoring process has been on precisely recognizing daily 

actions including transition states. A potential future upgrade 

would involve integrating the system with cloud computing 

to automatically generate resident profiles. Another 

advancement is the utilization of Large Language Models 

(LLMs) to provide health summaries based on action 

recognition results. 

Because one of the research goals was to develop a 

foundational model, utilizing a more diverse dataset during 

training could enhance its generalizability for real-world 

applications. Experiments using extended datasets 

demonstrated that the proposed action recognition model can 

be effectively applied to other datasets with varying camera 

positions and environmental conditions through transfer 

learning with minimal additional data. Future investigations 

could involve testing with camera streaming in actual 

environments such as hospitals, elderly care centers, and 

smart homes. In addition, modifying the model for 

deployment on devices with limited computational resources, 

such as Mini PCs and Raspberry Pi computers, could be 

explored. 

VI. CONCLUSION 

The proposed system offers several advantages. It 

demonstrated the effectiveness of using stereo depth cameras 

for indoor monitoring of the elderly, enabling 24-hour 

monitoring without additional lighting while preserving user 

privacy. The camera setup in this experiment was 

unobtrusive and did not interfere with residents’ daily lives. 

Furthermore, real-time processing was successfully achieved 

at 1fps. 

In conclusion, this system can aid elderly individuals to 

age safely, facilitating smarter living with the help of AI. 

Additionally, it can be deployed in smart care centers for 

remote monitoring and access to health details through a 

user-friendly GUI, promoting independent living, and 

assisting caregivers. Furthermore, the effective recognition of 

specific actions and transition states can provide valuable 

insights into the well-being of the elderly, aiding in the early 

detection of potential health issues related to mobility and 

balance. It is important to recognize that modern technology 

can benefit all generations. By educating and assisting the 

elderly in using smart devices and tools, they can be 

empowered to experience independent living and smarter 

aging, especially as the elderly population continues to grow. 
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ABBREVIATION TABLE IN ALPHABETICAL ORDER 

Abbreviation Full Term 

AI Artificial Intelligence 
CSV Comma-Separated Value 

CNN Convolutional Neural Network 

CV Computer Vision 
DL Deep Learning 

FC Fully Connected 

FN False Negative 
FP False Positive 

GRU Gated Recurrent Unit 

GUI Graphical User Interface 
HMM Hidden Markov Model 

IoT Internet of Things 
IoU Intersection over Union 

kNN k-Nearest Neighbors 

LLM Large Language Model 
LSTM Long Short-Term Memory 

mAP mean Average Precision 

MotionCRNN Motion-based Convolutional Recurrent 
Neural Network 

ML Machine Learning 

RGBD RGB plus Depth 
ReLU Rectified Linear Unit 

RNN Recurrent Neural Network 

SAM Segment Anything Model 
STD-TA Standard Deviation Trend Analysis 

SVM Support Vector Machine 

TN True Negative 
TP True Positive 

Vit-ReT Vision and Recurrent Transformer 

Neural Network 
YOLO You Look Only Once 
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