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ABSTRACT Inspired by the human brain’s efficient knowledge assimilation, few-shot learning presents
significant promise in machine learning and artificial intelligence (AI). The field aims to create models that
classify and recognize new categories using a few labeled samples. However, existing models’ capacity to
utilize knowledge from benchmark datasets requires enhancement. In response, our research introduces an
innovative model for few-shot scene recognition in optical remote-sensing imagery. This model incorporates
a cross-attention mechanism to improve feature extraction with limited data. Additionally, it employs triplet
angular loss to introduce geometric constraints in the feature space. Our method also combines non-linear
projection transformations with fine-grained, instance-level classification. This enhances separation between
classes and improves prediction accuracy. We have evaluated our model using three renowned datasets for
few-shot remote sensing imagery: Northwestern Polytechnical University (NWPU), theAerial ImageDataset
(AID), and the University of California, Merced (UCM). The outcomes affirm our method’s capability to
feature across diverse remote sensing scene categories. Our approach represents advancing precision and
efficacy of detecting category-specific features in few-shot learning contexts.

INDEX TERMS Few-shot learning, remote sensing imagery, feature enhancement learning, contrastive
learning.

I. INTRODUCTION
Remote sensing is a technology that gathers information
about objects without direct contact, a key component of
which is optical remote sensing imagery. These images, cap-
tured through remote sensing techniques, visually depict the
Earth’s surface and environmental data. They are known for
their extensive coverage, quick acquisition, real-time solid
capabilities, and comprehensive informational content. This
makes them extremely useful in resource exploration [1],
[2], environmental monitoring [3], meteorological forecast-
ing [4], andmilitary surveillance [5]. Nevertheless, accurately
classifying and recognizing remote-sensing images presents
complex challenges, especially when dealing with ecological
variations. Challenges such as "spectral confusion," where
different materials generate similar spectral signatures, and
"spectral variability," where the same material produces dif-
ferent spectral responses under various conditions, arise [6],
[7]. Coupled with the limited availability of labeled training

samples, these factors pose significant challenges to data col-
lection and constrain cost-effectiveness. Given their reliance
on abundant training samples, traditional methods often un-
derperform when faced with such complexities.
Inspired by the rapid learning ability of the human brain,

the development of few-shot learning technologies has ad-
vanced quickly. These technologies may solve the classifica-
tion challenges of remote sensing imagery. Few-shot learning
[8] involves classifying and recognizing new categories using
a small number of labeled samples by effectively applying
knowledge from a more extensive set of labeled samples. It
emulates the human ability to generalize from a small number
of examples. Applying few-shot learning to remote sensing
offers a promising approach to addressing the scarcity of
labeled training data and enhancing classification for under-
represented or entirely new classes.
However, the few-shot classification of remote sensing

images faces a series of challenges and limitations [9]. First
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and foremost, remote sensing data is inherently complex, with
attributes such as high dimensionality, spectral variability,
and class imbalance. Moreover, because of the scarcity of
samples, models are susceptible to overfitting, which makes
it challenging to generalize to new, unseen examples. Further-
more, the restricted availability of training data may impede
the model’s capacity to capture intricate terrestrial features.
Overcoming these obstacles is essential for effectively har-
nessing the potential of few-shot learning. Furthermore, trans-
fer learning, semi-supervised learning, and other advanced
techniques also offer effective strategies to address these
issues.

This paper presents a few-shot remote-sensing scene recog-
nition method using feature enhancement learning (FEL).
The method tackles the challenges presented by a scarcity
of labeled training data and intricate remote sensing imagery.
By integrating feature enhancement techniques with the few-
shot learning paradigm, we aim to explore further and develop
new methods designed explicitly for few-shot remote sensing
scene recognition. This approach seeks to improve feature
extraction’s quality and discriminative power, even with lim-
ited samples, enhancing image recognition’s performance and
generalization ability. This will contribute to a more accurate
interpretation and utilization of remote sensing image data,
resulting in more reliable classification results for practical
resource management and environmental monitoring appli-
cations. Furthermore, we conducted comprehensive exper-
iments on benchmark remote sensing datasets to evaluate
the effectiveness of our proposed method, demonstrating its
potential to push the boundaries of few-shot remote sensing
scene recognition.

II. RELATED WORK
Here, we offer background information on the forthcoming
study topic.

A. META-LEARNING
Meta-learning, or "learning to learn," refers to a technique that
enables machines to leverage previously acquired knowledge
or models to generalize new knowledge and tackle a wide
range of novel tasks that display significant differences. We
typically classify approaches in this field into metric-based,
model-based, and optimization-based methods.

Metric-based meta-learning shares similarities with the k-
nearest neighbors algorithm, with its primary goal being to
calculate distances between samples efficiently. In addition
to classic network models, Koch et al. proposed Siamese
networks [10]; Vinyals et al. introduced Matching Networks
(MatchingNet) [11]; Snell et al. developed Prototypical Net-
works (ProtoNet) [12]; and Sung et al. suggested Relation
Networks (RelationNet) [13]. The field also includes several
notable developments. Induction Networks (InductionNet)
[14] represent a novel advancement in the field of metric-
based meta-learning. These networks focus on identifying the
optimal matching image regions to enhance meta-learning
performance. The FD-DAML networks [15] are designed

to address challenges related to variations in domain distri-
bution, label mismatches, and inadequately labeled samples
to enhance the model’s ability to generalize. The DCMLN
model [16] utilizes a meta-testing approach that combines
gradients and metrics to improve the performance of meta-
learning. These recent advancements enhance the field of
metric-based meta-learning, offering additional opportunities
to tackle complex problems. They provide new insights and
techniques in distancemeasurement and samplematching, es-
sential for enhancing meta-learning’s performance and adapt-
ability.
Model-based meta-learning is a critical technology that

aims to achieve rapid learning by adapting model architecture
and parameters. New models and methods have emerged
beyond the traditional convolutional neural networks (CNNs)
[17], recurrent neural networks (RNNs) [18], and extended
short-term memory networks (LSTMs) [19], leading to sig-
nificant advancements in meta-learning. These innovative
models and methods encompass memory-augmented neural
networks (MANNs) [20], which incorporate the neural Turing
machine concept to enhance the model’s adaptability across
diverse tasks, facilitating quicker learning and improved
generalization. Metanets (MetaNet) [21] primarily focus on
cross-task meta-learning, allowing models to adapt to vari-
ous tasks rapidly. The Simple Neural Attentive Meta-Learner
(SNAIL) [22] utilizes temporal convolutions and soft atten-
tion mechanisms to provide an efficient learning approach
for meta-learning. Moreover, notable emerging achievements
include XDNet [20], MedOptNet [23], FedMeta-FFD [24],
STDP-PNN [25], and DIFF-WRN [26]. These contributions
introduce new possibilities for advancing model-based meta-
learning, broadening the scope of its applications, and en-
hancing model performance in multi-task learning and rapid
adaptability.
Optimization-based meta-learning is a crucial approach

that utilizes meta-learning frameworks to determine the op-
timal gradient descent directions and achieve parameter op-
timization using limited samples. Several classic models
and methods have succeeded remarkably, including model-
agnostic meta-learning (MAML) [27]. This quintessential
approach enables rapid optimization of models for few-shot
tasks and quick adaptation to new tasks. It stands as a pro-
totypical example of a meta-learning architecture. LSTM-
Based Meta-Optimizer [28]: Ravi and his colleagues pro-
posed a meta-optimizer based on Long Short-Term Memory
Networks (LSTM). This approach aims to learn the initial
state of optimizers to facilitate rapid optimization on new
tasks.
Furthermore, there have been recent research break-

throughs, including MAML-SR [29], Proto-MAML [30]
(which integrates the principles of prototypical networks),
and MAML-PFL [31], among others. These advancements
have expanded the range of applications for optimization-
based meta-learning methods, offering more solutions for
addressing the challenges of few-shot parameter optimization
and making significant contributions to the development of
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the meta-learning field. These methods are crucial for im-
proving parameter tuning and optimization with limited data.

Few-shot learning is a subfield of meta-learning within
the supervised learning domain that focuses on addressing
the challenge of learning and generalizing effectively when
training samples areminimal. This article focuses on few-shot
learning as the core technology, aiming to address the com-
mon issue of limited sample sizes encountered in g imagery.

B. FEW-SHOT REMOTE SENSING IMAGE CLASSIFICATION
Remote sensing image classification encounters challenges
such as limited raw data, difficulties annotating datasets,
and various sensor characteristic limitations, all contributing
to a shortage of training sample data. In recent years, nu-
merous researchers have dedicated their efforts to studying
few-shot remote sensing image classification and have pro-
posed several effective methods. Data augmentation, which
involves distortions like random cropping, rotation, flipping,
and noise, is an accessible method for increasing the number
of samples and improving models’ generalization ability and
classification performance [32], [33]. However, this approach
does not address the fundamental issue of limited samples.
Modeling and simulating remote sensing imaging for data
augmentation [33] can rapidly produce images, yet these
synthetic images often show notable differences from natural
images. Deep generative models employ sample synthesis,
sample transfer, and multimodal techniques for data augmen-
tation [34], [35]. They automatically generate samples with-
out manual design, learn richer intrinsic features, and improve
the similarity of the distribution to the original data. However,
improving the fidelity of images with complex background
information is still necessary.

Transfer learning techniques [9] leverage knowledge from
a source domain to improve few-shot remote sensing image
classification tasks. These techniques involve transferring
models and features. This approach can reduce the problem
of insufficient samples, but it requires careful attention to
acquiring source data. Metric learning [49] techniques that
aim to find an optimal metric space are relatively straightfor-
ward and do not require fine-tuning. However, their ability
to generalize to the diversity within remote sensing images
and scale variations needs further research, as demonstrated
by SCL-MLNet [37], [38]. Meta-learning approaches involve
learning from multiple few-shot examples and accumulating
general knowledge to enhance generalization across different
tasks. They exhibit rapid adaptability and can train on vari-
ous assignments simultaneously. However, a diverse dataset
with multiple classes is a prerequisite. Designing lightweight
models [24] can decrease the number of model parameters
and the risk of overfitting. Self-learning and self-training
techniques [42] enable the exploration of unlabeled data,
enhancing learning from limited datasets. We can use these
methods individually or combine them to improve the few-
shot remote sensing image classification performance. The
specific choice depends on the nature of the problem and the
available data.

In summary, few-shot remote sensing image classification
is a challenging task that requires various methods to achieve
adequate resolution. Although researchers have proposed
many practical approaches in recent years, there remains
significant room for improvement in current models when
tested on public benchmark datasets, and they still fall short
of practical, real-world applications. Further enhancements
and refinements are necessary. Moving forward, we need to
explore further the issues and solutions related to few-shot
remote sensing image classification to support the application
and advancement of remote sensing imagery.

C. ATTENTION MECHANISM
Experts first introduced attention mechanisms in visual imag-
ing in the 1990s. Later, these mechanisms merged closely
with deep learning. Image processing extensively employs
attention mechanisms. The Recurrent Neural Network Model
RNN [43] was the first to incorporate spatial attention, using
RNNs and reinforcement learning for its implementation.
CNNs [44] combine explicit translational invariance and im-
plicit rotational invariance within neural networks. Spatial
Transformer Networks (STN) [45] can dynamically perform
spatial transformations and align data.
The field subsequently entered an era that actively utilized

channel attention, adaptively recalibrating channels through
attention weights. The prominent methods include squeeze-
and-excitation networks (SENet) [46] and the Convolutional
Block Attention Module (CBAM) [47]. SENet models the
relationships between channels to determine their weights.
CBAM combines spatial and channel attention. This method
segments the feature map and assigns weights to each re-
gion, enhancing the influence of individual channels. Aver-
age Pooling (GAP) [48] combines global spatial details with
channel data to assign weights to feature maps across spatial
and channel dimensions. Meanwhile, SPP-Net [49] applied
Spatial Pyramid Pooling (SPP) or global average pooling to
extract spatial information, increasing the focus on crucial
regions and features of the feature map.
Finally, in 2017, incorporating attention mechanisms in

Natural Language Processing (NLP) [50] marked the begin-
ning of the self-attention era. Proposers Multi-Head Self-
Attention (MHSA) [50] to integrate multi-scale features, en-
hancing the model’s generalization capabilities. In 2020, the
introduction of the Vision Transformer (ViT) [51] to the field
of computer vision marked a significant milestone. Following
this development, scholars delved deeply into transfer learn-
ing between different tasks, scaling of model sizes, and sys-
temic analysis, leading to further substantial breakthroughs.
This article leverages the characteristics of few-shot learn-

ing and introduces an innovative attention mechanism archi-
tecture. The goal is to reveal the potential relationships be-
tween support and query sets in few-shot tasks. This approach
enhances the quality of feature extraction in scenarios with
limited samples.
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D. CONTRASTIVE LEARNING
In recent years, deep learning-based contrastive learning tech-
niques have undergone rapid development. Methods such as
SimCLR [52] (self-supervised contrastive learning), MoCo
[53] (momentum contrast), BYOL [54] (bootstrap your own
latent), SwAV [55] (unsupervised clustering), and SimSiam
[56] (simple Siamese networks) have emerged as exemplary
contrastive learning algorithms. These methods typically use
twin-like neural network architectures and, during training,
compare either positive pairs (different augmentations of
the same image) or antagonistic pairs (augmentations of
other photos). Neural network models use deep contrastive
learning to automatically improve feature representations by
comparing numerous positive and negative pairs. CPC [57]
(Contrastive Predictive Coding) has established the baseline
for deep contrastive learning. Contrastive Predictive Coding
(CPC) aims tomaximize the alignment between predicted and
actual outcomes in sequential data. It enhances the feature
extraction network and incorporates the InfoNCE loss, which
has become a standard in contrastive learning research.

Khosla et al. [58] expanded the concept of contrastive
learning to supervised learning and introduced supervised
contrastive learning loss (SCL loss). The goal was to leverage
labeled data to improve the model’s feature representation
capabilities. Chen et al. [52] developed a semi-supervised
contrastive learning algorithm that first undergoes pretrain-
ing on all data through contrastive learning. The pre-trained
model’s knowledge is then transferred to a new model using
labeled data through distillation learning. Contrastive learn-
ing actively improves the quality of data feature extraction
in unsupervised learning scenarios. It creates proxy tasks for
backbone networks to handle unlabeled data.

Numerous scholars have conducted in-depth studies com-
bining self-supervised learning with contrastive learning to
devise innovative strategies that enhance themodel’s ability to
learn image representations. These approaches have achieved
outstanding performance acrossmultiple benchmark datasets,
exemplified byMoCo [53], SimCLR [52], BYOL [54], SwAV
[55], and SimSiam [56] methodologies. By integrating con-
trastive learning with knowledge distillation, they have man-
aged to match the performance of models trained on much
larger datasets, with DINO [59] being a typical example of
such research.

Furthermore, Cui introduced a versatile parametric method
that allows the model to learn visual representations and task-
specific parameters within a unified framework, thereby im-
proving themodel’s generalizability across various tasks [60].
Yin proposed carefully selecting sample pairs for clustering
objectives, which, when combined with contrastive learning,
has enhanced clustering performance [61].

This paper builds on these advancements by presenting a
triplet angular loss constraint. This constraint aim to shrink
distances between positive samples and expand distances
between negative ones. As a result, this constraint enhances
the discriminative ability of the features extracted by the
backbone network from the feature space.

III. MATERIALS AND METHODS
In this section, we outline our proposed method, which in-
cludes subsections on introducing notation, the complete ob-
jective, the rotation prediction task, the contrastive prediction
task, and network regularization.

A. NOTATION AND PRELIMINARY
In this section, we define and explain the few-shot classifi-
cation problem using relevant notation. In few-shot classifi-
cation, we often work with a large amount of labeled data
DBase and their respective classes CBase. We aim to train a
model to generalize to new, unlabeled instances DNovel from
entirely new classes CNovel . It is important to note that the sets
of base classes CBase and novel classes CNovel are disjoint, i.e.,
CBase ∩ CNovel = ϕ.
Few-shot learning addresses the challenge of having lim-

ited samples for the novel classes. Due to the need for large
amounts of data and labels in deep learning models, training
directly on new class categories is not feasible. Therefore, we
leverage the data from the base classes to facilitate learning.
Given the scarcity of samples, it is necessary to construct
numerous N -way K -shot Q-query sets for training using the
base class data. An N -way K -shot Q-query set comprises N
distinct classes, and each class contains K support samples
andQ query samples for training and evaluation, respectively.
These NK support samples comprise a support set S =

{Xi,Yi}NKi=1, while the query set Q = {Xi}NQi=1 consists of
NQ unlabeled query samples. The few-shot classification task
aims to utilize the NK support samples to recognize the
unlabeled NQ data within the query set.

B. OVERVIEW OF THE FRAMEWORK
We propose a feature-augmentation learning-based frame-
work for few-shot remote sensing scene recognition, shown
in Fig. 1. The model primarily consists of three components.

1) FEATRUE EMBEDDING MODULE
The backbone network (such as Conv-4 or ResNet-12) pro-
cesses the original remote sensing image data to extract ini-
tial, shallow representations. Then, a series of stacked cross-
attention modules process the features of the support and
query sets, refining the features for both sets.

2) CONTRASTIVE EMBEDDING MODULE
This module further refines the features of the support
and query sets within the feature space by clustering simi-
lar features closer together and pushing dissimilar features
apart. It employs a triplet angular loss to implement geometric
spatial constraints.

3) INSTANCE-LEVEL CLASSIFICATION MODULE
This module first applies a nonlinear projection transforma-
tion to the refined features of the support and query sets. Then,
it conducts fine-grained classification at the instance level.
This process enhances the model’s capacity to distinguish
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FIGURE 1. The Proposed Model Framework Diagram.

between different classes in various episodic tasks. During
testing, one can directly utilize the instance-level classifica-
tion module to infer and predict the samples in the query set.

C. FEATURE EMBEDDING MODULE
We input the remote sensing image data into a backbone
network, denoted as fB (·), to obtain shallow representations
of both the support and query set images in Equation (1).

F s = fB (X s) ,

Fq = fB (X q) ,
(1)

Here, X s and X q represent the original remote sensing
image data from the support and query sets.

In the t-th cross-attention module, the input is the output
of the (t − 1)-th cross-attention module. We can express this
module mathematically in Equations (2) and (3).

Rs[t] = softmax

(
fQ (Rs[t − 1])⊗ fK (Rq[t − 1])

√
ds

)
⊗ fv (Rq[t − 1])⊕ Rs[t − 1]

(2)

Rq[t] = softmax

(
fQ (Rq[t − 1])⊗ fK (Rs[t − 1])√

dq

)
⊗ fv (Rs[t − 1])⊕ Rq[t − 1]

(3)

In this context, ds and dq represent the sizes of the last-
order dimensions of the feature sets for the support and
query sets, respectively. Notably, when t = 1, Rs [0] = F s,
Rq [0] = Fq. As can be seen from the above formulation,
during the process of refining the support set features Rs [t],
guidance is explicitly drawn from the previous moment’s
query set features Rq [t − 1]. Similarly, the query set features
Rq [t] explicitly incorporate information from the support set
features Rs [t − 1]. The cross-attention module we propose

explicitly allows for interaction between the support and
query set features, enabling the unlabeled query set samples
to move closer in the feature space to their similar classes.
Furthermore, the module utilizes residual connections

to preserve the features from the previous moment, effec-
tively retaining valuable features and eliminating redundant
ones. This approach also tackles the vanishing gradient prob-
lem that may arise when stacking multiple layers of cross-
attention modules.

D. COMPARE EMBEDDED MODULES
The support and query set samples undergo significant feature
refinement within the feature embedding module. Since we
treat each episodic task as wholly independent and identically
distributed, we anticipate that our model will learn more
abstract and advanced general features. Drawing inspiration
from the concept of contrastive learning in self-supervised
learning, which has achieved notable success in unsuper-
vised learning, we propose a contrastive embedding module.
This module imposes additional constraints on the feature
embedding module to enhance the expressivity of features
across different classes. Firstly, the refined features Rs [T ] of
the support set undergo a nonlinear transformation through
fCE (·), expressed in Equation (4).

Z s = fCE (Rs [T ]) (4)

Traditional contrastive loss establishes fixed boundaries
between classes. The loss function generates negative gradi-
ents that may not always aim in the optimal direction. This
means they don’t guarantee pushing negative samples away
from the center of the positive samples’ class. To address
these issues, we employ the geometric space constraint of an-
gular loss, which incorporates angular constraints to achieve
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this objective. For any given episodic task, we organize the
support set features Z s into several triplets ⟨Fa,Fp,Fn⟩ using
label information. The anchor feature Fa and the positive
sample feature Fp have the same label in each triplet. How-
ever, the negative sample feature Fn belongs to a different
category. You can calculate the angular loss from the support
set features Z s with the formula provided in Equation (5).

LCE =
1

N × (N − 1)

N∑
n=1

log

1 +

N∑
m=1,m ̸=n

ed⟨F
a
n ,F

p
n ,F

n
m⟩
 (5)

Where d ⟨Fa
n ,F

p
n ,Fn

m⟩ represents the loss for an individual
triplet, calculated in Equation (6).

d
〈
Fan ,F

p
n ,F

n
m
〉
=

∣∣∣∣∣(Fan − Fpn
)2 − 4tan2α

(
Fnm −

1

2

(
Fan − Fpn

)2)2
∣∣∣∣∣
+
(6)

In this context, |·|+ means we take the value as 0 if it is less
than 0, also known as the ReLU function or rectified linear
activation. The symbol α stands for an angular hyperparame-
ter. It represents the angle formed with the anchor feature Fa,
with the positive Fp and negative Fn sample features as its
sides. This angle represents the degree of geometric constraint
required between the positive and negative samples.

E. INSTANCE LEVEL CLASSIFICATION MODULE
Our ultimate goal is to enable the model to acquire high-
quality, distinctive features. So, we need to implement a
classification module. This module aims to enhance the fea-
ture embedding module’s capability to distinguish between
categories in various episodic tasks. Like the contrastive em-
bedding module, the classification module starts with a non-
linear transformation network fCLS (·). We aim to protect the
general feature expression ability of the upstream feature em-
bedding module from any influence from downstream tasks.
In simpler terms, the feature embedding module’s ability to
express should remain unaffected by the classification and
contrastive learning tasks, regardless of changes in episodic
tasks. We apply nonlinear projection transformations to the
refined support and query set features in Equation (7).

H S = fCE (Rs [T ]) ,

H q = fCE (Rq [T ]) ,
(7)

Subsequently, we utilize the commonly used cosine sim-
ilarity to measure the distance between the features of the
support set and query sets’ features. This approach effectively
mitigates the impact of varying scales. It can also differentiate
cases where samples are close regarding Euclidean distance
but belong to different categories based on their angular
separation. We typically use the cross-entropy loss function
in Equation (8) for the classification loss.

LCLS =
1

NQ

NQ∑
i=1

N∑
n=1

I [yi = n] · e
1
σ cos⟨H q

i ,P
s
n⟩∑N

l=1e
1
σ cos⟨H q

i ,P
s
l⟩

(8)

Wherein I [yi = n] denotes that for the (i)-th query set
sample, if the label is n, then the value is 1, otherwise it is 0; σ
represents a scale factor used to control the smoothness after
category normalization; and p signifies the class prototype
within the support set, which the Equation (9) calculation
determines.

Psn =
1

K

NK∑
i=1

I [yi = n] · H s
i (9)

The variable cos ⟨H q
i ,P

s
n⟩ represents the cosine similarity

between the i-th query set sample H q
i and the n-th category

prototype Psn from the support set in Equation (10).

cos ⟨H q
i ,P

s
n⟩ =

H q
i · Psn

∥H q
i ∥2 · ∥Psn∥2

(10)

Wherein ∥·∥2 denotes the L2 norm, which is the Euclidean
norm used to calculate the magnitude of a vector.

F. MODEL REASONING AND TRAINING
We employ an instance-level classification module to catego-
rize samples from the query set directly. We can symbolically
represent the inferred category for the i-th query sample in
Equation (11).

ŷ = argmaxcos
y∈[1,N ]

〈
H q
i ,P

s
y

〉
(11)

During training, we combine contrastive learning loss and
classification loss. Then, we take a weighted sum to serve as
the global objective function for training our proposed model
in Equation (12).

l = λCE · LCE + λCLS · LCLS + λθ ·
∑

θ2 (12)

In the formula, λCE , λCLS , and λθ represent the weight co-
efficients for the loss components, which are used to control
the degree of influence of each type of loss. The final term
represents the parameter regularization term.

IV. EXPERIMENTS
In this section, we conducted experiments on three classic
and authoritative public remote-sensing image datasets with
a small sample size to evaluate the proposed method’s su-
periority. This included comparison experiments with some
of the latest advanced techniques, ablation studies, and ex-
periments analyzing sensitivity to hyperparameters. We con-
ducted our experiments using the PyTorch framework on a
single NVIDIA GeForce RTX 3090 GPU.

A. EXPERIMENTAL SETUP
1) DATASET INTRODUCTION
We assessed our approach using two prestigious datasets:
NWPU [62] and AID [63]. The NWPU dataset is a collec-
tion of classified remote sensing scenes gathered and assem-
bled by Northwestern Polytechnical University. The dataset
comprises 31,500 color images measuring 256 × 256 × 3
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pixels, covering 45 distinct scenes. Each category includes
700 remote-sensing images. Within the NWPU dataset, we
divided the 45 categories into 25 for the training set, 10 for
the test set, and 10 for the validation set. The AID dataset is a
collaborative creation of Huazhong University of Science and
Technology and Wuhan University. The collection consists
of remote-sensing scene images for classification, comprising
10,000 color images with dimensions of 600 × 600 × 3 pix-
els, covering 30 scenes. The number of images per category
ranges from 220 to 420. We divided the 30 scene categories
into 16 for training, 7 for validation, and 7 for testing. The
UCM dataset [64] comprises 2,100 images from 21 distinct
scenes. Each category includes 100 color images with a res-
olution of 256 × 256 × 3 pixels. We followed the setup of
SCL-MLNet and allocated 10 out of the 21 categories in the
UCM dataset for training, 5 for validation, and 6 for testing.

2) EVALUATION PROTOCOLS
To ensure a fair comparison and adhere to the commonly
used evaluation framework in few-shot learning, we assess
the model’s performance regarding the average classification
accuracy across different scenarios. Specifically, we evaluate
its performance under 5-way 1-shot and 5-way 5-shot settings
in Equation (13).

ACC =
1

E

E∑
t=1

Nt
εt

(13)

Herein, E denotes the number of few-shot tasks randomly
sampled during the testing phase (which we have uniformly
set to 2,000 for our experimental evaluations), Nt represents
the count of correctly predicted samples within the t-th few-
shot task, and εt signifies the total number of samples in the
t-th few-shot task.

3) NETWORK ARCHITECTURE
We use the backbone network fB with a 4-layer fully convolu-
tional neural network for primary feature extraction to ensure
a fair comparison.We set the number of channels in each layer
to 64, 128, 256, and 512, respectively. Each convolutional
block contains three layers: a convolutional layer with a 3×3
kernel, a batch normalization layer, and a global average pool-
ing layer. In our cross-attention blocks, the support and query
set samples share three identical convolutional layers—Q, K,
and V. The number of input and output channels remains
consistent across each convolutional layer, with a kernel size
of 3 × 3. We construct the instance-level classification layer
fCLS with two series-connected, fully connected neural net-
work layers, each followed by a ReLU activation function.
Similarly, the comparison module fCE comprises two serially
connected, fully connected neural network layers.

4) TRAINING SETUP
First, we sample all images from the three datasets to a reso-
lution of 128× 128× 3. From the training set, we randomly
sample 200,000 tasks for training. We set the classification

loss coefficient λCLS to 1.0 and the contrastive loss coefficient
λCE to 0.6. We empirically determine the hyper-parameter α
in the contrastive loss function to be 45◦. We fix the number
of cross-attention modules T to 2. We employ the Adam
optimizer with an initial learning rate 0.0002 and a weight
regularization coefficient of 1e-5. The learning rate decays to
90% of its previous value during the training process every
5,000 tasks.

TABLE 1. Comparative experimental results on NWPU(%) in terms of
5-way 1-shot and 5-way 5-shot scenarios with respect to average class
top-1 accuracy computed by Equation (13).

Method 5-way 1-shot 5-way 5-shot

MatchingNet 38.23 ± 0.75 47.40 ± 0.69
ProtoNet 40.35 ± 1.02 69.55 ± 0.55
MAML 47.52 ± 0.70 62.58 ± 0.43
LLSR 51.43 72.90

Meta-LSTM 47.53 ± 0.80 72.36 ± 0.54
Meta-SGD 60.58 ± 0.94 76.04 ± 0.49
RelationNet 61.95 ± 1.73 76.28 ± 1.42

DLA-MatchNet 67.85 ± 0.68 79.97 ± 0.75
RS-MetaNet 46.21 ± 0.58 68.75 ± 0.70
SCL-MLNet 62.21 ± 1.12 80.86 ± 0.76

Ours 64.16 ± 0.62 78.09 ± 0.48

B. COMPARISONS WITH ADVANCED METHODS

To demonstrate the superiority of our proposed method, we
start by choosing some of the most classic and advanced few-
shot classification approaches recently used in general scenes.
These methods include metric-based few-shot learning ap-
proaches such as MatchingNet, ProtoNet, and RelationNet.
They primarily focus on learning distance metrics between
instance-level samples and class prototypes. We also consider
optimization-based few-shot methods such as MAML, Meta-
LSTM, and Meta-SGD. These methods aim to update the
model’s gradients for current tasks by using global gradient
directions from historical tasks. Moreover, we have included
methods tailored explicitly for few-shot classification in re-
mote sensing scene images, such as LLSR, DLA-MatchNet,
Sensing-MetaNet, and SCL-MLNet. The methods above uti-
lize 4-layer convolutional blocks to extract shallow features
from remote sensing images.

We randomly sample 2,000 tasks from the test set for 5-
way 1-shot and 5-way 5-shot scenarios. We calculate the final
results by averaging the accuracy of each task via Equation
13 and present the results on three datasets in Tables 1, 2, and
3, respectively. To further demonstrate our proposed model’s
efficiency, we report a confusion matrix for a randomly sam-
pled 5-way 1-shot 20-query task from the NUPW dataset, as
shown in Figure 2.
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FIGURE 2. Confusion matrix for a randomly sampled 5-way 1-shot
20-query task from the NUPW dataset.

TABLE 2. Comparative experimental results on AID(%) in terms of 5-way
1-shot and 5-way 5-shot scenarios with respect to average class top-1
accuracy computed by Equation (13).

Method 5-way 1-shot 5-way 5-shot

MatchingNet 35.33 ± 0.47 56.41 ± 0.68
ProtoNet 54.79 ± 0.60 69.36 ± 0.10
MAML 47.98 ± 0.72 61.72 ± 0.81
LLSR - -

Meta-LSTM 49.79 ± 0.60 67.25 ± 0.89
Meta-SGD 53.14 ± 1.46 66.94 ± 1.20
RelationNet 55.26 ± 1.14 72.81 ± 0.93

DLA-MatchNet 57.21 ± 0.82 73.45 ± 0.61
RS-MetaNet 53.37 ± 0.56 72.59 ± 0.73
SCL-MLNet 59.46 ± 0.96 76.31 ± 0.68

Ours 61.12 ± 0.87 77.20 ± 0.49

TABLE 3. Comparative experimental results on UCM(%) in terms of 5-way
1-shot and 5-way 5-shot scenarios with respect to average class top-1
accuracy computed by Equation (13).

Method 5-way 1-shot 5-way 5-shot

MatchingNet 34.28 ± 0.39 53.64 ± 0.74
ProtoNet 52.42 ± 0.09 67.93 ± 1.01
MAML 49.01 ± 0.58 61.44 ± 0.63
LLSR 39.47 57.40

Meta-LSTM 47.43 ± 1.22 64.72 ± 2.49
Meta-SGD 50.21 ± 2.31 61.35 ± 2.13
RelationNet 48.74 ± 1.33 61.29 ± 0.46

DLA-MatchNet 52.76 ± 0.83 64.57 ± 0.67
RS-MetaNet 52.31 ± 1.12 67.21 ± 0.44
SCL-MLNet 51.37 ± 0.79 68.09 ± 0.92

Ours 55.03 ± 0.84 68.16 ± 0.57

TABLE 4. The Impact of contrastive embedding loss LCE in terms of
5-way 1-shot and 5-way 5-shot scenarios with respect to average class
top-1 accuracy computed by Equation (13).

Dataset Method 5-way 1-shot 5-way 5-shot

NWPU w.o. LCE 63.55± 0.87 76.23 ± 0.36
w. LCE 64.16 ± 0.62 78.09 ± 0.48

AID w.o. LCE 60.83 ± 0.76 74.96 ± 0.45
w. LCE 61.12 ± 0.87 77.20 ± 0.49

UCM w.o. LCE 54.27 ± 0.80 65.31 ± 0.64
w. LCE 55.03 ± 0.84 68.16 ± 0.57

The comparative experimental results from the three
datasets indicate that our proposed method holds a compet-
itive edge. Under the 5-way 1-shot scenario, our method

improved 1.6% on the AID dataset and 2.3% on the UCM
dataset. However, the advantage of our proposed method
is not as pronounced in the 5-way 5-shot scenario. On
the NWPU dataset, the DLA-MatchNet method outperforms
ours. This improved performance may be due to using five
convolutional blocks for feature extraction. In contrast, we
incorporated only four convolutional blocks for a fair com-
parison. Our method demonstrates a distinct advantage when
dealing with a smaller number of samples, meaning it can
more effectively capture fine-grained features of different
categories within remote sensing scenes.

C. ABLATION STUDY AND HYPER-PARAMETER ANALYSIS
1) IMPACT OF CONTRASTIVE EMBEDDING MODULE
To evaluate our contrastive embedding module’s effective-
ness, we conduct the ablation study for the contrastive loss
(LCE ) on three datasets. We displayed the results for the 5-
way 1-shot and 5-way 5-shot tasks on the three datasets in
Table 4. The assessment study results show that our con-
trastive embedding module has different levels of impact
on the three datasets. Specifically, when we integrated the
contrastive embeddingmodule in the 5-way 1-shot scenario, it
improved performance by about 0.6% on the NWPU dataset,
0.3% on theAID dataset, and 0.7% on theUCMdataset. In the
context of the 5-way 5-shot setup, the inclusion of the module
resulted in improvements of approximately 1.9%, 2.2%, and
2.9% on NWPU, AID, and UCM, respectively.
The modest gains in the 5-way 1-shot setting occur be-

cause, based on empirical evidence, the contrastive embed-
ding module requires more samples to generate better embed-
dings. This helps to enhance the distinction between different
categories. Our contrastive embedding module, when consid-
ered as a whole, is practical and achieves the goals set out at
its conception.

2) IMPACT OF THE ANGLE α

The angleα plays a crucial role in determining the embedding
orientation and distance of triplet samples within geometric
space, and varying this angle directly impacts the embedding
outcomes. Therefore, we investigated the effects of different
hyper-parameters α on the experimental results. We empiri-
cally set the value of α at 15◦, 30◦, 45◦, 60◦, and 75◦. Then,
we ran experiments to analyze the sensitivity of the hyper-
parameter α for the 5-way 1-shot and 5-way 5-shot tasks
on three datasets in Fig. 3. From the graph, it is observable
that the angle α has a significant impact on the experimental
outcomes. After thorough consideration, an embedding angle
of 45◦ generally yields the best results across all datasets.

3) IMPACT OF DIFFERENT λCE

The parameter λCE determines the dominance of the con-
trastive embedding loss’s influence within the overall loss
function. To this end, we examined the impact of different hy-
perparameters λCE on experimental outcomes. Empirically,
we set λCE in the range of [0, 1] at intervals of 0.1 and
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(a) NWPU (b) AID (c) UCM

FIGURE 3. The impact of the contrastive embedding module.

(a) NWPU (b) AID (c) UCM

FIGURE 4. The impact of different λCE .

conducted sensitivity analysis experiments for the hyperpa-
rameter λCE in the 5-way 1-shot and 5-way 5-shot settings
across three datasets in Fig. 4. The graph reveals that the
three datasets are not particularly sensitive to hyperparameter
λCE , with significant effects only when λCE = 0, when no
contrastive embedding loss is included. In summary, opti-
mal results are generally achieved across all datasets when
λCE = 0.6.

V. CONCLUSION
In our work, we introduced an innovative model framework to
tackle the challenges inherent in remote sensing image recog-
nition. By integrating a cross-attention module with residual
connections, we effectively addressed issues associated with
feature preservation, redundant information elimination, and
the vanishing gradient problem, thereby substantially boost-
ing the capability for feature extraction within limited-sample
environments. Employing a contrastive embedding module,
enhanced with Angular Loss featuring angle constraints, we
intensified the geometric restrictions within the feature space,
which elevated the discriminability between different classes.

Furthermore, our model learned features with heightened
discriminative power by amalgamating nonlinear projec-
tion transformations with instance-level classification based
on cosine similarity. We conducted comprehensive evalua-
tions of these three modules across three authoritative opti-

cal remote sensing benchmark datasets—NWPU, AID, and
UCM—achieving gratifying outcomes. Our model frame-
work is not only model-agnostic but also demonstrates con-
siderable versatility.Moving forward, we plan to delve deeper
into our research and extend the application of our findings to
additional domains and few-shot learning models, aiming to
pioneer new frontiers in the field.
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