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ABSTRACT With the continuous development of Artificial Intelligence (AI), AI services are becoming
increasingly influential in society, affecting both individual lives and enterprise production. However,
the field of AI model training grapples with a conflict between the desire to maximize the utilization
of private and external data, and the necessity to limit collaborative data sharing for privacy protection.
Strict regulations on sensitive data give rise to data silos, impeding the smooth flow of information as
well. In response to these challenges, Federated Learning (FL) emerges as a promising solution, enabling
collaborative machine learning model training across isolated data silos. Despite its potential, securing FL
systems remains a challenge, primarily due to the absence of a canonical reference model that hierarchically
summarizes existing works in this field. This lack complicates users’ understanding of federated learning in
the context of data flow and impedes their ability to pinpoint specific security issues and corresponding
solutions when utilizing an FL system. To address this gap, we propose a layered reference model for
federated learning through a comprehensive survey. The model encompasses five layers: the data interaction
layer, client management layer, local model layer, network transmission layer, and remote management
layer. Prioritizing the promotion of system security awareness, we conduct a threat analysis for each layer
and explore corresponding defense strategies drawn from existing techniques. As a result, readers can gain
insights into the federated learning system from the perspective of data flow, comprehend the security risks
their private sensitive data might encounter at each step, and explore relevant solutions to safeguard their
information.

INDEX TERMS Federated Learning, Reference Model, Information Security, Privacy Protection

I. INTRODUCTION
The rapid growth of mobile communication technology has
resulted in a surge in data generation and traffic, with pre-
dictions indicating that data traffic will constitute over 70%
of global Internet connections, with 45% attributed to mobile
connectivity (3G, 4G, or 5G) by 2023, according to statistics
from Cisco [1]. The advent of 5G enables the provision of
wired and mobile broadband services anytime and anywhere
for users [2]. Besides the improvement of network transmis-
sion, end devices like smartphones and Internet of Things
(IoT) sensors are continuously improving in performance,
allowing for more complex crowdsensing tasks, such asmedi-
cal applications [3]. However, the substantial amounts of data
generated pose challenges for both network transmission and
data processing within the system.

In parallel, Artificial Intelligence (AI) has demonstrated
significant capabilities in handling large volumes of data,
leading to the increasing importance of cloud computing-

based AI in modern society [4]. However, the mandatory
requirement to transfer dispersed original data to a central
cloud server for model training presents challenges for the
further application, encompassing issues like poor private
data protection [5] [6], weak data source robustness [7], and
high transmission bandwidth requirements [8] [9], etc.
In contrast, Federated Learning (FL), introduced by

Google in 2016, addresses these challenges by enabling col-
laborative AImodel training on distributed data without trans-
mitting the data to a central cloud server [10] [11] [12]. In
FL, models are trained locally on each end device, and only
model update information is transmitted to a central server
for aggregation. This process ensures user privacy, reduces
the burden of transmitting vast data volumes over public
networks. Furthermore, FL could integrate data from different
silos, expanding the data sources and enabling the extraction
of deeper insights.
While security threats in distributed learning like FL have
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been identified by Baruch et al. [13], existing surveys often
follow tree-like structures, as illustrated in Figure 1 [14]. It
poses challenges for users to understand FL in the context
of data flow, making it difficult to narrow down the scope
to specific security issues and corresponding solutions when
utilizing a federated learning system. In general, current work
has the following issues:

• Lacking a step-by-step and clearly defined layered sum-
mary based on the data flow throughout the entire feder-
ated learning system.

• An explicit system information security threats analysis
along the data flow is also missing.

• Simply listing some security methods rather than delv-
ing into specific solutions for the various security threats
faced by users.

To fill this gap, we propose a 5-layer reference model from
a security-oriented perspective based on the data flow, from
data generation to model training, in the federated learning
system and conduct a security analysis of each layer accord-
ing to it. We also introduce some defense strategies to secure
the system for users. We aspire for this survey to serve as
a valuable resource for readers to enhance the information
security of their FL system, with the following specific con-
tributions:

• We propose a security-oriented layered reference model
for the federated learning system based on the flow
of data. This model divides the entire FL system into
five layers: the data interaction layer, client management
layer, local model layer, network transmission layer, and
remote management layer.

• We analyze the security threats that FL encounters at
each layer and introduce appropriate defense strategies
based on existing techniques.

• Readers can gain insights into the federated learning
system from the perspective of data flow. They can
understand the types of security risks their private sen-
sitive data might encounter at each step and explore
corresponding solutions to safeguard their private infor-
mation.

The rest of this paper is organized as follows: Section II
introduces related work. Section III defines and outlines the
constitution of federated learning after showing a definition
by us. Our proposed layered reference model is presented in
Section IV. In Section V, we discuss common threats, and
Section VI analyzes the system security risks layer by layer.
Corresponding defense strategies are outlined in Section VII,
and challenges and conclusion are discussed in Section VIII.

II. RELATED WORK
Federated Learning is evolving rapidly, emerging as a promis-
ing approach for addressing critical data privacy and confi-
dentiality. While there are many existing survey works on
FL, and some of them specialize in privacy and security, they
merely list common security issues of FL rather than provid-
ing a systematic analysis based on the data flow utilizing a

reference model. This approach limits the depth of knowl-
edge conveyed to readers, as a comprehensive exploration
of security concerns and vulnerabilities in federated learning
necessitates a more nuanced and detailed examination within
the data flow architecture. Table 1 presents a comprehensive
summary of some recent surveys, offering a comparative
analysis of their distinctive characteristics.
Distinguished from other prevailing surveys, our survey

delves into the intricate realms of security and privacy in
federated learning, extending along the trajectory of data
flow. What sets our survey apart is the proposal of a security-
oriented layered reference model, which serves as a scaffold
for unraveling its underlying security issues.
Furthermore, we introduce corresponding countermea-

sures aligned with each layer of the reference model. This
strategic approach equips readers not only with theoretical
knowledge but also with pragmatic solutions. Consequently,
when confronted with security issues, readers can judiciously
narrow down their focus and select the most pertinent coun-
termeasures.

III. OVERVIEW OF FEDERATED LEARNING
In this section, we delve into a comprehensive overview
of FL, offering an exploration that spans its definition, the
pivotal components constituting its architecture, and the com-
mon federated training process.

A. DEFINITION
Based on the concept put forth by Google [10] [11] [12],
and taking into account the opinions of Yang et al. [26] and
Kairouz et al. [27], we define federated learning as follows:
Federated learning is a decentralized machine learning

setting where original data is distributed across multiple
client compute nodes, such as enterprise data centers or in-
dividual smart devices [26]. In this collaborative framework,
client compute nodes collectively train a machine learning
model, either globally shared or personalized [14], under
the coordination of an aggregation control server, either syn-
chronously or asynchronously [27] [28].
Compared to traditional centralized machine learning, this

approach prioritizes privacy protection by keeping raw data
on client compute nodes, minimizing data leakage risks
[27] [26]. However, it is crucial to recognize some inherent
challenges in practical federated learning models, especially
in terms of model evaluation, where accuracy is a notable
concern. While federated learning models are anticipated to
surpass models trained individually on local devices, they
might not reach the same performance level as those trained
in a centralized approach [14]. This trade-off is essential to
maintain privacy while effectively leveraging distributed data
sources.

B. CONSTITUTION
Referring to the study by Li et al. [14], we define three major
components in federated learning, containing two hardware
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FIGURE 1. Tree-like Structure in Current Surveys of Federated Learning [14]

and one software: the aggregation control server, client com-
pute node, and the computation communication framework
that connects the aggregation control server and client com-
pute nodes together, as illustrated in Figure 2.

Aggregation Control Server

Client Compute 
Node 1

Client Compute 
Node 2

Client Compute 
Node 3

Computation Communication Framework

FIGURE 2. Three Major Components in Federated Learning

• Aggregation Control Server: The aggregation control
server orchestrates the federated learning process, acting
as a central controller in a manner similar to centralized
schemes. It manages the entire model training process
and communications between two client compute nodes
or between client compute nodes and itself. Alterna-
tively, in decentralized schemes [29], like SimFL [30],
client compute nodes update their model over the model
parameter space by aggregating information through
communication with their one-hop neighbors, acting in
both client compute node and aggregation control server
roles at the same time.

• Client Compute Node:Client compute nodes, spanning
from smartphones to data centers, function as both the
owners of original data and users of the trained model.
They possess non-Independent Identically Distributed
(non-IID) private data generated from daily use, irre-
spective of the scale of data distribution [14] [27]. This
implies that the local private data stored on a specific
client compute node cannot represent the entire data
distribution [31], posing challenges for analysis due to
differing data distributions among nodes.

• ComputationCommunication Framework:The com-
putation communication framework facilitates commu-
nication and parameters transmission between client
compute nodes and the aggregation control server, sup-
porting local model training on client compute nodes and
gradient aggregation on the aggregation control server. It
plays a crucial role in the entire model training process,
incorporating tasks like client selection mechanism, for
example, FedCS [32], incentivemechanism, aggregation
mechanism, and transmission mechanism.

C. COMMON FEDERATED TRAINING PROCESS
We summarize the common training processes of federated
learning models according to the research by Kairouz et al.
[27], encompassing both centralized and decentralized sce-
narios, as a complement to our proposed layered reference
model
1) Nodes Selection: In centralized federated learning, the

server, which serves as the aggregation control server,
selects a group of client compute nodes who meet
eligibility requirements. While in decentralized feder-
ated learning, the aggregation control server can be a
normal client compute node that initiates the training
process. The selection mechanism of client compute
nodes is based on various criteria, such as battery status,
computational resources, and other relevant factors.

2) Initial Model Broadcast: The aggregation control
server disseminates the initial global model weights to
the selected client compute nodes through computation
communication framework.

3) Model Training: Each selected client compute node
independently trains and computes model updates us-
ing its sensitive private data.

4) Update Aggregate: After several local iterations, the
aggregation control server collects and aggregates up-
dates from the selected client compute nodes via com-
putation communication framework. This step often in-
corporates security and efficiency algorithms to ensure
data privacy.

5) Model Update:The aggregation control server updates
the global model based on the aggregated update in-
formation, under the instruction of aggregation mech-
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TABLE 1. Comparisons among Some Recent Surveys on Federated Learning

References Published Date Brief Content Security Related Providing
Model

Lim W. et al. [15] April 2020

Introduce background and
fundamentals of FL, highlight

the challenges of implementation
and review existing solutions,

present the applications, challenges,
and future research directions

Yes No

Li T. et al. [16] May 2020

Discuss the characteristics
and challenges of FL, provide

a overview of current approaches,
and outline several directions

Briefly introduce
three protection
mechanisms

No

Aledhari M. et al. [17] July 2020
Software and hardware platforms,
protocols, real-life applications

and use-cases of FL
No No

Mothukuri V. et al. [18] Octobor 2020

Description of approaches and
various implementation styles

with an examination of
the current challenges in FL

Yes No

Xu J. et al. [19] December 2020

Solutions to the statistical
challenges, system challenges,

and privacy issues in FL,
and the implications

and potentials in healthcare

Partially related No

Zhang C. et al. [20] January 2021

Introduce FL from: data
partitioning, privacy mechanism,

machine learning model,
communication architecture
and systems heterogeneity

Only some privacy
protection means No

Li Q. et al. [14] November 2021
Introduce definition of FL,
and provide a categorization

to six aspects

Briefly mention
privacy mechanisms No

Gosselin R. et al. [21] September 2022
Privacy and security risks of FL,

state-of-the-art approaches
to counteract problems

Yes No

Coelho. K. K. et al. [22] May 2023
Data security and privacy

applications for FL in Internet
of Healthcare Things networks

Yes No

Hasan J. [23] July 2023
Comprehensive taxonomy of

security and privacy
challenges in FL

Yes No

Gabrielli E. et al [24] August 2023

Summarize existing decentralized
FL approaches, identify
emerging challenges and

promising research directions

Partially related No

Kandati D.R. et al. [25] August 2023
Examine FL’s privacy
and security concerns,

and deal with several issues
Yes No

Ours
Security-oriented survey of
security risks for FL utilizing

layered reference model
Yes Yes

anism offered by computation communication frame-
work.

6) Evaluate and Repeat: Engineers evaluate the global
model’s performance and determine whether to con-
tinue training or terminate the process and deploy the
model. If training continues, the above steps are re-
peated. Some high-quality client compute nodes would
be incentivized if an incentive mechanism is itroduced
in the computation communication framework.

IV. LAYERED REFERENCE MODEL

A. MOTIVATIONS AND METHODOLOGIES IN THE
PROPOSAL

It is well-accepted that federated learning is a secure variant
of the distributed system that addresses data silos issue while
keeping private data decentralized, involving different kinds
of participants with diverse requirements and constraints [33]
[27] [34]. However, Lo et al. emphasize the lack of references
for an end-to-end federated learning framework, attributing it
to the absence of a unified referencemodel [34].We agree that
such absence impedes the further development of FL andmay
cause some repetitive work. Motivated by the willingness to
fill this gap, we decide to design a general federated learning
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system reference model.
Based on the empirical summarization collected through

our systematic literature review about federated learning from
different fields, especially survey papers mentioned but not
limited to those in II, and experiences from conducting FL-
related experiments, we arrive at a preliminary requirement,
which is to separate the problems as much as possible to
reduce the coupling of the system. Second, for the sake of
addressing diverse issues and requirements of different partic-
ipants, standardization work should be carried out. Third, the
reference model must be able to provide an easier and clearer
view for checking data privacy protection, since privacy pro-
tection is the most important principle in FL [21] [35].

Hoping to alleviate the work about deploying FL and in-
spired by the OSI 7-layer network model [36] that is dom-
inant in the current networking field, we consider a layered
model as the optimal solution for us to satisfy these three
requirements summarized above. With the assistance of the
layered model, engineers could focus on only some separated
problems at one time while using standardized interfaces
between two adjacent layers. Moreover, scalability and flexi-
bility are improved as different issues are isolated in different
layers. Lastly, the data flow becomes clearer under the layered
model, which will benefit analyzing security threats.

B. OVERVIEW OF THE MODEL
In response to the gap mentioned in IV-A and aiming to
simplify the work while hoping to standardize the develop-
ment of FL, we propose a security-oriented 5-layer feder-
ated learning system reference model, as shown in Figure 3.
This model organizes federated learning system functions
into distinct layers along the data flow and control flow,
enhancing the standardization level, scalability, flexibility and
comprehensibility of federated learning system research and
implementation.

The proposed reference model comprises the following
layers, organized from the orientation of security along the
data flow: data interaction layer, client management layer,
local model layer, network transmission layer, and remote
management layer. Each lower layer provides foundational
services and information to the upper layer, while the upper
layer offers management and reply functions to the lower
layer.

C. DEFINITION OF EACH LAYER
In this subsection, we will define and elucidate the roles of
each layer in the layered reference model, aiming to provide
readers with a clear understanding.

• Data Interaction Layer: This layer functions as the
physical device layer, encompassing client compute
nodes where users deploy applications to satisfy their
business. It serves as the source of original data, present-
ing model inference results to users, and collecting node
status information for the remote management layer to
determine training eligibility. Essentially, it acts as the

interactive interface between users/applications and the
federated learning system.

• Client Management Layer: This layer focuses on data
processing, addressing variations in data formats and
structures through data normalization and standardiza-
tion to enhance model accuracy and reliability [37] [38].
Additionally, it executes client selection decisions made
by the remote management layer, as it is impractical to
include every client compute node that requests to join in
the training process. It also handles client incentive deci-
sions and evaluates client applications based on factors
such as throughput, computation capability, and wireless
resources [32] [39].

• Local Model Layer: This core layer is pivotal in the
federated learning system. It employs approaches like
gradient descent algorithms to train a local model on
selected client compute nodes using local processed
data. After local model computes, gradient information
is forwarded to the network transmission layer. The layer
also deploys models issued from the remote manage-
ment layer and handles model inference tasks.

• Network Transmission Layer: The network transmis-
sion layer establishes communication links between
peers, the client compute node and the aggregation
control server in centralized scheme, or client compute
node’s one-hop neighbor in decentralized scheme. It
encapsulates and decapsulates information, transmitting
updated model gradient information from selected client
compute nodes to the remote aggregation control server
for global model updates. The communication link may
vary from traditional Ethernet to advanced 5G networks.
After global model aggregation, it issues the updated
model to selected client compute nodes and transmits
control information between the client and the server.
However, this transmission step is susceptible to private
information leakage, as highlighted by Zhang et al. [40].
As the result, the network transmission layer plays a
crucial role in safeguarding transmitted data. It could
apply security mechanisms such as encryption, differ-
ential privacy [41] [42], and homomorphic encryption
[43] [44] to enhance data security before transmission
to address this issue. On the receiver side, the network
transmission layer would restore the data for utilization.
It is important to note that adopting these protection
mechanisms may introduce additional complexities in
communication and computation [45].

• RemoteManagement Layer: The remote management
layer is another crucial functional layer in federated
learning. Its main role is to aggregate the updated gra-
dient information from selected client compute nodes,
using it as input to update the global model on the aggre-
gation control server. Additionally, this layer addresses
fairness concerns arising from the diverse distribution of
source data among participating client compute nodes.
It acts as the decision-making hub for client selection
and incentive allocation, while also plays a key role in
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FIGURE 3. Proposal of 5-layer Federated Learning Reference Model

enhancing the security of the transmission phase.
• Data Flow and Control Flow: Data flow and control

flow are two essential types of information movement
within the layered reference model. Upward data flow
involves the processing of data, while downward data
flow deals with the deployment and utilization of the
trained model. Upward control flow focuses on the re-
quest flow initiated by end applications, while down-
ward control flow involves responses from the remote
management layer. The low-level Data Flow Diagram
(DFD) based on our model, from the perspective of
DeMarco et al. [46], is depicted in Figure 4.

We believe the 5-layer reference model we propose, al-
though in its early stages, holds the potential to offer a stan-
dardized and open reference interface for researchers in the
federated learning community. However, we acknowledge the
need for refinement and expansion in future endeavors.

D. APPLICATION CASE EXAMPLE
To illustrate the practical relevance and applicability of our
proposed security-oriented 5-layered federated learning refer-
ence model, in the subsection, we will present an application
case to readers as an example and explain it using our model.

Assume the background of the application case is as fol-
lows: several financial enterprises in a city hope to establish
a cross-enterprise personal credit AI model to better serve
the citizens. These enterprises include insurance companies,
commercial banks, and government tax departments. While
their customers belong to the same group, sharing customer
data is impossible due to individual privacy protection re-
quirements. Fortunately, federated learning could assist them
in achieving this mission. However, the deployment is com-
plex since there are no unified design standards in place.

This task would become simpler if they adopt our proposed

layered model layer by layer. According to our model, two
flow paths must be followed to complete the design of FL
model training system: bottom-up data flow and top-down
control flow.

• Bottom-up Data Flow:
-- Data Interaction Layer: These three participants

need to separately select the original data for model
training, negotiate information collected for client
situation monitoring, and determine the desired
output.

-- Client Management Layer: The only objective is to
set the unified output standards for data processing.

-- Local Model Layer: Each enterprise needs to de-
ploy some servers for local model training, model
deployment andmodel inference as specified by the
local model layer. Until this step, participants still
maintain autonomy to make decisions following
unified standards and interfaces. This could protect
their privacy data to the greatest extent, and comply
with their respective internal rules. No matter rules
and regulations in the insurance companies, com-
mercial banks, or government tax departments.

-- Network Transmission Layer: Participants upload
the model update information following the packet
encapsulation algorithm specified by the network
transmission layer.

-- RemoteManagement Layer: The final step is to ag-
gregate this information to update the global model
on a shared server that is trusted by all parties.

• Top-down Control Flow:
-- Remote Management Layer: Participants have to

negotiate client compute node selection mecha-
nisms, incentive mechanisms, global model aggre-
gation mechanisms, and data transmission mecha-
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nisms as the control flow input based on the per-
spective of remote management layer.

-- Network Transmission Layer: For the sake of suc-
cessful transmission among each participant, a uni-
fied packet encapsulation and decapsulation al-
gorithm is required in the network transmission
layer. Besides, control information transmission
standards including client compute node selection,
global model issue, participated node incentivize,
etc. are needed to be set up.

-- Local Model Layer: The execution of client com-
pute node selection results, updated model deploy-
ment, and inference API for common use should be
considered at this layer.

-- Client Management Layer: The problem becomes
simpler as we come to this lower layer. How to
process the original inference output from local
model layer is the main objective. Since in most
instances, it is difficult to directly leverage such
original output results. Note that starting from this
layer, the control flow becomes an internal process
for the participants, whichmeans that, based on fol-
lowing unified standards, participants have room to
freely develop according to their actual conditions.
For example, the government tax department may
have higher requirements than either the insurance
company or commercial bank in protecting sensi-
tive information.

-- Data Interaction Layer: The only thing the engi-
neers have to do is exhibit the final results to the
end user through the data interaction layer.

• Security Enhancement: After designing both bottom-
up data flow and top-down control flow, a prototype of
the federated learning model training system among dif-
ferent participants is created. Then, engineers can follow
the low-level data flow diagram proposed in Figure 4
to analyze flows and further enhance the protection of
sensitive private information.

With the assistance of the application case example, we
could find that our security-oriented 5-layered federated
learning reference model simplifies the complex design of
cross-enterprise FL model training system into five separate
layers, focusing on two flows in opposite directions: bottom-
up data flow and top-down control flow. Our proposal could
assist engineers to address isolated and simple problems at a
time, simplify their work and save system design and deploy-
ment time. Additionally, system scalability is enhanced with
the improvement in standardization as well. Moreover, our
model provides a clear approach to analyze security threats
for systematically enhancing data protection.

V. THREATS INTRODUCTION
While one of the primary objectives of federated learning
is to protect the privacy of training participants by avoiding
the uploading of private and sensitive data to the centralized
server, recent research indicates that privacy and security in

federated learning can still be vulnerable under certain cir-
cumstances, as highlighted in a study by Lim et al. [15]. This
section conducts a brief introduction to the threats inherent in
the federated learning system.

A. THREATS MODELS
Before delving into attacks on federated learning, let’s intro-
duce the STRIDE model, a simple threat model developed
by Microsoft [47] for classifying threats. The STRIDE model
is commonly used in threat modeling and risk assessment
to identify potential threats and vulnerabilities in a system
or application. By categorizing threats into the following six
distinct categories, users can gain a better understanding of
the types of attacks that could impact their systems and take
appropriate measures to mitigate these risks. Table 2 provides
an overview of the threats typically associated with each
element utilizing STRIDE model, based on Adam’s work
[47].

• Spoofing: Attackers impersonate someone else to gain
unauthorized access to the system.

• Tampering: Unauthorized modification or alteration of
data, such as changing data contents or inserting new
data.

• Repudiation: Denying that an action or data alteration
occurred.

• Information Disclosure: Unauthorized exposure, re-
lease, or sharing of sensitive or confidential data with
individuals or systems that should not have access to it.

• Denial of Service: Disrupting the availability of a sys-
tem or service due to attacks.

• Elevation of Privilege: Attacker gains higher-level ac-
cess or permissions to system or data than they should
have.

B. CLASSIFICATION BASED ON ATTACKER’S KNOWLEDGE
Before delving into specific threats in federated learning,
another classification is based on the level of knowledge
attackers possess about the target machine learning system.
This classification comprises three main branches: white-box
attacks, black-box attacks, and gray-box attacks [48].

• White-Box Attack: In a white-box attack, adversaries
have comprehensive knowledge and unrestricted access
to themachine learning system, encompassing themodel
network architecture, model parameters, and even the
training data [49]. However, this type of attack is primar-
ily conducted to assess the vulnerability of the system
[48].

• Black-Box Attack: In a black-box attack, attackers pos-
sess little to no relevant knowledge about the model or
the original training data. The primary approach involves
interacting with the model through limited query access,
such as Application Programming Interfaces (APIs), to
obtain complete or partial information [50]. Black-box
attacks align more closely with real-world scenarios
compared with white-box attack, resembling normal us-

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3404948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. STRIDE Threats Per Element

Element Interaction Spoofing Tampering Repudiation Information
Disclose

Denial of
Service

Elevation of
Privilege

External
Entity

External interacting
entities pass input
into the process

✓ ✓ ✓

External interacting
entities get input
from the process

✓

Process

Process has
external data
transferred to
the data store

✓ ✓

External interacting
entities get input
from the process

✓ ✓ ✓ ✓ ✓

Process sends
output to an external
interacting entity
(Application)

✓ ✓ ✓ ✓

Process sends
output to an external
interacting entity

(User)

✓

Process has an
input data stream
from the data store

✓ ✓ ✓ ✓

Process has an
input data stream

from another process
✓ ✓ ✓ ✓

Process has input
data streams
from external

interacting entities

✓ ✓ ✓

Data Flow
(Request/
response)

Crossing machine
boundaries ✓ ✓ ✓

Data Store
(Database)

Process has
output data flowing
to the data store

✓ ✓ ✓ ✓

Process has
an input data stream
from the data store

✓ ✓ ✓

age conditions. For example, Shukla et al. successfully
launch such an attack with fewer than 1000 queries [51].

• Gray-Box Attack: The attacker may know partial train-
ing data or some knowledge about the model, encom-
passing internal states or decision logic of the model,
model architecture, or hyperparameters before they
launch an attack by approaches like side-channel attacks,
model reverse engineering, etc. Compared to white-box
attack and black-box attack, gray-box attack is often
more challenging and requires more sophisticated attack
strategies. It is also close to real-world scenarios.

However, using this taxonomy to analyze security threats
in FL systems is challenging, as it just describes the knowl-
edge level of attackers rather than illustrating vulnerabilities.
There are other taxonomies as well, for example, Suciu et
al. propose a framework to classify attackers’ knowledge and
control from four dimensions [52].

C. FEDERATED LEARNING SPECIFIC THREATS

Similar to other machine learning systems, federated learning
systems are susceptible to various forms of attacks. Lyu et al.
[53] specifically identify two prominent threats in federated
learning: poisoning attacks and inference attacks. In addition
to these, we will also discuss two other important threats:
backdoor attacks and free-riding attacks. Besides, the NIST
(National Institute of Standards and Technology) points out
that evasion attack is generating increased interest in machine
learning research space [48]. However, it’s important to note
that each type of attack has unique characteristics.

1) Poisoning Attack

The overarching intent of this assault is to perturb the com-
portment of the target model’s inferences, thereby inducing
it to deviate and render erroneous predictions. According
to Huang et al.’s work [54], it can be classified into two
categories: random attack and targeted attack. The former
seeks to curtail model accuracy, while the latter endeavors to
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manipulate the model into producing predefined adversarial
label information. The classification of poisoning attacks can
be based on their source, resulting in two categories: data
poisoning attack and model poisoning attack. [53]

• Data Poisoning Attack:Data poisoning attacks are rec-
ognized as the most common type of attack in the realm
of machine learning, and this holds true not only within
the domain of federated learning [55]. This prevalent
attack primarily occurs during local data collection. Ad-
versarial agents deliberately introduce corruption into
training data on a subset of participant devices during the
learning phase, thereby compromising the final global
model’s accuracy. Both definite and indefinite targeted
devices could potentially serve as targets for the injec-
tion of poisoned data [56]. Tolpegin et al. point out
data poisoning attacks can be either targeted or non-
targeted [57]. In the targeted variant, the attacker aims
to exert influence over a specific subset of data classes,
consequently undermining the overall model accuracy.
In contrast, non-targeted variants lack the presence of
any specific subset of data classes to be targeted for
attack [56].
Two forms of data poisoning attacks are recognized:
clean-label attack [58] and dirty-label attack [53] [59].

-- Clean-label Attack: In this scenario, adversaries in-
ject malicious information into the data while keep-
ing the data labels unchanged. Attackers attempt
to introduce subtle perturbations to the dataset,
causing the model’s predictions for this data to be
misleading, all the while preserving the true data
labels, due to the existing validation process. De-
tecting such an attack can prove challenging, as the
tampered data retains identical labels to the original
data, thereby circumventing conventional detection
methods.

-- Dirty-label Attack: Adversaries inject malicious
data with disguised labels into the dataset to disrupt
the training and performance of the model, leading
it to generate misleading predictions. The focus of
this attack is on altering the labels of the data, rather
than solely the data content itself. Such an attack
can yield a more enduring influence on the model,
as the malevolent label will continue to impact
the model’s performance during both training and
testing phases. A notable illustration of a dirty-label
attack is the label-flipping attack [60].

The extent of impact stemming from a data poisoning
attack within the context of federated learning is contin-
gent upon factors such as the number of participating
client compute nodes and the proportion of poisoned
data within the comprehensive training dataset.

• Model Poisoning Attack: This attack occurs during the
training of models. In contrast to data poisoning attacks,
model poisoning attacks have been demonstrated to be
considerably more potent by Bhagoji et al. [61]. In this

scenario, adversaries taint local model updates rather
than the underlying local data. These poisoned updates,
when introduced, aim to perturb the global model’s
classification on a chosen set of inputs characterized by
high confidence levels [62]. It is important to underscore
that the manipulation is intended to influence the model
training process, resulting in misclassifications [63].
According to various studies, model updates into which
a poisoning attack is injected can be generated through
various methods [64] [61], such as the single-shot attack
as exemplified by Bagdasaryan et al [62]. Lyu et al.
[53] indicate that a model poisoning attack could exploit
an alternating minimization strategy to enhance attack
stealth and elude detection.
However, due to the fact that a data poisoning attack
ultimately affects a subset of model updates, a model
poisoning attack is sometimes considered to encompass
a data poisoning attack [60].

2) Inference Attack
The phenomenon of inference attacks arises from the utiliza-
tion of gradients derived from the private data features of
participants within various layers, encompassing sequential
fully connected layers as well as convolutional layers. These
gradients can inadvertently leak sensitive private information,
such as class or membership details. This phenomenon is
referred to as an inference attack. Notably, Zhu et al. [65]
demonstrate the startling revelation that original samples can
be reconstructed from uploaded gradients, obviating the need
for direct access to the training dataset. Unlike localized poi-
soning attacks, inference attacks manifest more prominently
during the transmission of updated gradient information be-
tween participants and the central server. The taxonomies
proposed by Lyu et al. [53] and Liu et al. [49] classify infer-
ence attacks into seven sub-classes: representative inference,
membership inference, property inference, training inputs
and labels inference, attribute inference, model extraction,
and model inversion.

• Representative Inference: In this category, a malicious
participant exploits the real-time nature of the train-
ing process to train a Generative Adversarial Network
(GAN) capable of generating prototypical samples rep-
resentative of the private targeted training data [66].
Notably, this form of attack exclusively targets class rep-
resentatives, as the generated samples convincingly mir-
ror the distribution of the original dataset. This strategy
relies on the premise that a single participant contributes
the entire training corpus, and only when the data of all
members are similar, can the reconstructed representa-
tives resemble the original training data. Analogous to
a model inversion attack [67], this assumption is often
challenging to meet.

• Membership Inference: This attack, highlighted by
researchers from Cornell University, aims to deduce
whether a specific sample originates from private data
belonging to a single participant or a group [68]. This
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category bifurcates into two variants [53]: passive mem-
bership inference attack and active membership infer-
ence attack.

-- Passive Membership Inference Attack: This variant
hinges upon the passive observation of transmit-
ted parameters within updated models, thereby en-
abling inference without manipulation of any data.
This inference can occur during both local and
global training procedures [69].

-- Active Membership Inference Attack: In this mani-
festation, attackers manipulate model training pro-
tocols to induce the provision of supplementary
information regarding the private local data of in-
terest by introducing malicious updates. Nasr et al.
[70] term this approach a gradient ascent attack.

• Property Inference: Adversaries execute property in-
ference to deduce global information, such as whether
the training dataset possesses a specific characteristic
[71] [69]. However, the property here is not explicitly
stated as the attribute in the training set [72]. Property
inference is premised on the assumption that auxiliary
training data are labeled with the relevant property. Two
variations emerge according to Lyu et al [53]:

-- Passive Property Inference Attack: Adversaries
solely observe or eavesdrop on updated informa-
tion, leveraging a binary property classifier for the
purposes of inference.

-- Active Property Inference Attack: This variant em-
ploysmulti-task learning to induce better data sepa-
ration, thereby facilitating subsequent extraction of
private information.

Notably, the performance of property inference attacks
remains unaffected by property presence during model
training.

• Training Inputs and Labels Inference: An exemplary
instance within this category is the concept of Deep
Leakage from Gradient (DLG), introduced byMIT [65].
This framework facilitates the restoration of pixel-wise
accurate original images and token-wise matching text
contents from a limited number of iterations. Zhao et
al. [73] extend this concept with the notion of Improved
Deep Leakage from Gradient (iDLG), harnessing con-
nections between shared gradient features and labels to
extract labels. Differentiable models trained with cross-
entropy loss over one-hot labels are susceptible to this
approach [73].

• Attribute Inference:The attribute inference attack aims
to uncover concealed sensitive attributes within a given
sample [74] [75]. Fredrikson et al. suggest that the in-
put information encompassed in the confidence output
can serve as a measure, as the model prediction results
typically incorporate reasoning information about the
sample [74]. Liu et al. define the difference between
attribute inference attack and property inference attack
as follows: an attribute inference attack extracts features

related to the primary task, whereas a property inference
attack extracts features unrelated to the primary task
[49].

• Model Extraction: The goal of a model extraction at-
tack is to extract information about the model architec-
ture and parameters, or other sensitive information, by
making numerous queries to the model. As illustrated in
NIST’s work, there are predominantly three approaches
to achieve it: direct extraction, using learning methods,
and using side-channel information [48]. Each of these
methods has been demonstrated by several literature
works.
There are many subclasses of model extraction attacks
according to existing works. We introduce four common
subclasses here based on Gong et al.’s work [76]:

-- Model Parameter Extraction: The objective of
model parameter extraction is to recover the model
parameters through black-box access.

-- Hyperparameter Extraction: Hyperparameter ex-
traction aims to restore the potential hyperparam-
eters that may bring models with significantly dif-
ferent performances with different values [77].

-- Model Architecture Extraction: Taking Deep Neu-
ral Network model as the target example, attackers
attempt to infer the number of neural network lay-
ers utilizing a pre-trained model.

-- Decision Boundary: Adversaries leverage the ap-
proach of training a substitute model based on the
labels received from a large number of queries to
manipulate the decision boundary of the model.
Finally, the model would generate some incorrect
predictions under specific inputs.

Note that a model extraction attack often serves as a
step towards other powerful attacks, and it could also
support transferable adversarial attacks [78] [79], since
the attackers have already obtained detailed information
about the target model.

• Model Inversion: Model inversion attack (also known
as attribute inference attack) [80], predominantly lever-
ages the machine learning system’s APIs, and non-
sensitive attributes of the test input data to obtain hidden
sensitive information about the model [49]. This allows
attackers to reconstruct class representatives of the orig-
inal training data [67]. Although it is unable to recover
the training data completely [48], the data reconstructed
by model inversion still have higher accuracy than char-
acteristics solely inferred from data not present in the
training dataset [81].
Dibbo et al. categorizemodel inversion into optimization-
based approach and surrogate model training approach
depending on the incorporated techniques [72].

-- Optimization-based Approach: Attackers attempt
to reconstruct the training instances without the
need for training any additional model.

-- Surrogate Model Training Approach: Adversaries
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seek to invert the sensitive attributes or training
samples by exploiting auxiliary information and a
surrogate model that utilizes input-output correla-
tion in the target model.

However, it is important to note that both model inver-
sion attacks and membership inference attacks can be
executed in either black-box attacks or white-box attacks
[81] [82].

3) Backdoor Attack
The backdoor attack, alternatively referred to as a targeted
attack [55], involves a malicious participant or a group of
such participants intentionally introducing a backdoor func-
tion into the global model [59] [62]. In backdoor attacks, the
adversary manipulates individual features or small regions of
the original training datasets, with the intention of embedding
backdoors [53] that afford the attacker control over the be-
havioral patterns of the global model. Notably, this control
is achieved without compromising the overall accuracy of the
model. Sun et al.’s research [83] demonstrates that the severity
of such attacks is correlated with the proportion of compro-
mised participants and the model’s capacity. Remarkably, the
insidious nature of backdoor attacks renders them elusive to
detection, as they remain inconspicuous within the model’s
performance on clean data.

4) Free-riding Attack
The free-riding attack occurs when a malicious participant,
contributing little or nothing to the federated learning process,
seeks to exploit the benefits derived from the global model.
The attackers pretend to possess an extremely small training
dataset, inducing other participants to allocate additional re-
sources to facilitate the model training process. This attack
poses a significant threat, especially in sensitive applications
of federated learning [84].

According to research, there are two primary incentives for
client compute nodes to engage in free-riding by submitting
fake parameters:

1) The client compute node is concerned about data pri-
vacy, or even have no available local data for model
training. In the latter case, to evade security detection,
the client compute node has to submit fake gradient
information [85].

2) The client compute node aims to save its local com-
puting resources such as CPU or GPU cycles, or local
storage space [85] [86].

Depending on whether the nodes possess local data and
computing resources,Wang et al. classify free-riders in the FL
system into two types [87]: anonymous free-riders and selfish
free-riders.

• Anonymous Free-riders: In this case, there is no avail-
able data or computing resources possessed by the free-
riders, the attackers submit random Gaussian noise as
the training updates [88] [89].

• Selfish Free-riders: Selfish free-riders possess local
data and computing resources, but are loath to contribute
them for model training. Instead, they upload fake up-
dates to the aggregation control server [88] [89].

5) Evasion Attack
In evasion attacks, the primary objective is to construct spe-
cific adversarial samples whose classification can be arbitrar-
ily manipulated to a specific class controlled by the attacker
at the time of model deployment, while introducing minimal
perturbations that are imperceptible to humans [48] [90]. In
other words, an evasion attack aims to mislead the model into
producing an incorrect prediction result rather than altering
the model itself [49]. Various works, such as those conducted
by Kearns and Li [91] and Szegedy et al. [63], have success-
fully demonstrated the feasibility of evasion attacks, and cur-
rent research continues to focus on designing of adversarial
examples.
Although Liu et al. categorize evasion attacks into targeted

attacks with class-specific errors and untargeted attacks that
do not consider class-specific errors based on the optimiza-
tion objective [49], Vassilev et al. categorize them according
the perspective of the adversary’s knowledge into white-box
evasion attack and black-box evasion attack [48].

6) Summary
After introducing some federated learning specific threats
above, some comparisons are illustrated in this summary part.
Table 3 presents comparisons of the common attack methods
that appear in federated learning, and Table 4 emphasizes
some other differences among those attack methods. And
Table 5 shows the differences among variations in inference
attacks.
While these empirical comparisons may not offer a com-

plete assessment, they highlight the intricate security chal-
lenges faced by federated learning systems. This prompts us
to delve deeper into security threat analysis to bolster the
security measures of FL systems.

VI. THREATS ANALYSIS OF EACH LAYER
In order to improve the security level of federated learning
while assisting users in narrowing down the scope of the issue,
we conduct a layer by layer security analysis along the data
flow in the federated learning system, with the help of DFD
in this section. Figure 4 provides the detailed information,
while Figure 5 illustrates the high-level data flow in federated
learning. Note that we only analyze security threats in traffic
that terminates at the target layer and ignore traffic originating
from the target layer when traffic is bidirectional.

A. DATA INTERACTION LAYER
The utilization of sensors assists researchers in gaining a bet-
ter understanding of environmental features in their projects.
For example, Lu et al. develop a multilevel regression model
based on the data they collected [95]. AI techniques like fed-
erated learning provide a promising approach to processing
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TABLE 3. Comparisons of Various Common Attack Methods in Federated Learning 1

Threats Category Variations Attack
Objective

Attack
Timing

Attack
Approach

Poisoning
Attack

Data Poisoning

Clean-label
Mislead

model’s prediction
Local data collection,

training phase

Introduce subtle
perturbations to

the dataset

Dirty-label
Alter the labels of
the data, rather than
the data content

Model Poisoning None
Perturb the global

model’s classification
on specific inputs

Training of
global model Local model updates

Inference
Attack

Representative
Inference None

Infer training
data distribution

Transmission of
updated gradient
information,
during or after
the model

training phase,
inference phase

Train GAN Model,
analyze model output

Membership
Inference

Passive Membership
Inference Deduce whether a specific

sample originates from
private data [68]

Observe transmitted
parameters

Active Membership
Inference

Introduce
malicious update

Property
Inference

Passive Property
Inference Infer global information

about the training
data distribution [48]

Eavesdrop on
updated information

Active Property
Inference

Employ
multi-task learning

Training Inputs
and Labels
Inference

None
Restore the
training data

Harness connections
between shared gradient

features and labels

Attribute
Inference None

Uncover concealed
sensitive attributes [92]

Infer based on partial
information from
select training data
and a model trained
on that data [93]

Model
Extraction [76]

Model Parameter
Extraction

Recover the
model parameters

Perform large
queries on the model

Hyperparameter
Extraction

Restore the potential
hyperparameter

Model Architecture
Extraction

Infer the architecture
of the model

Decision
Boundary

Extract the decision
boundary of the
targetted model

Model
Inversion

Optimization-based
Approach Reconstruct sensitive features

of training data using
auxiliary information [94]

Reconstruct of training
instances [72]

Surrogate Model
Training Approach

Train a
surrogate model [72]

Backdoor
Attack None None Embed backdoors

Local data preparation
phase, before uploading

the local model

Manipulate parts
of the original
training datasets

Free-riding
Attack

Anonymous
Free-riders None

Capitalize on the
benefits yielded by
the global model

Malicious
participate joining,
training phase

Submit random
value noise as
model updates

Selfish
Free-riders Upload fake updates

Evasion
Attack [49]

Targeted
attack

None Decline the performance
of the model

During the model
is training,

or inference phase
Modify input dataUntargeted

attacks

such a huge amount of data. As a result, the data interaction
layer serves as a bridge between the federated learning system
and user applications. Consequently, it becomes the entry
point vulnerable to external threats.

As illustrated in Figure 6, whether the client compute node
could join the training process depends on the assessment
of the collected client system environment situation. Con-
sequently, the attackers could tamper with or repudiate the
sent information, or infer operation environment information
according to the client situation information after invading

this system-level process by injecting a backdoor or elevating
themselves to higher privileges without being noticed by
the users. These attack approaches would disturb the further
client application judgment. Furthermore, since the original
source data stem from users’ daily interactions, attackers
could tamper with the raw data generated by applications or
launch further data poisoning attacks, including clean-label
attacks and dirty-label attacks. Property inference attack is
easy to be achieved at this step as well, which is another
kind of information disclosure. Alternatively, it is possible
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TABLE 4. Comparisons of Various Common Attack Methods in Federated Learning 2

Threats
Attack Targets Attack Point

Auxiliary Knowledge Required
Model Private Information

Aggregation
Control Server

Client
Compute Node

Poisoning Attack ✓ ✓
Training data distribution,

model architecture, data injection

Inference Attack ✓ ✓
Model architecture,

data distribution, training data

Backdoor Attack ✓ ✓
Training data, backdoor
injection, system control

Free-riding Attack ✓ ✓
Only little about fake
information generation

Evasion Attack ✓ ✓ ✓
Model decision boundaries, mode

architecture, output analysis

Generate data, train model on local devices

Users Controller

Generate
Collect
Exhibit
Data

Original Data
Result Data

Process Data
Manage Client Processed Data Train Model

Deploy Model

Gradient
Information

Encapsulate
Decapsulate

Transmit

Remote
Manage

Aggregate
Updated

Information
Initial / Updated

Model

Control
Command

(Local Side)

Interact If train model

Collect after generating

Exhibit results

Output results Local ModelModel Infer

Gradient
Information

Deploy model

Model

Gradient
Information

Initial/
updated model

Initial/updated
model

Request &
Response Request &

Response

Gradient
information

Client applies to join training

If infer by deployed model

If client application to join
 the training is approved

Control
Command

(Remote Side)
Request &
Response

Manage by remoteCommunicate

Data Interaction Layer

Client Management Layer

Local Model Layer

Network Transmission Layer

External Entity

Remote Management Layer

Legend

Data Store

Process

Data Flow

Device Boundary

User operate

FIGURE 5. High-level Data Flow of Federated Learning Training

for adversaries to disturb the raw data generation process by
utilizing repudiation attacks or even denial of service after
injecting backdoors in the applications.

Besides, not all users can be guaranteed to act in good
faith. As a result, the inference result exhibition part in the
data interaction layer is another area with high risk. Once the
inferred results are provided by the model, malicious users
may launch inference attacks such as representative inference,
membership inference, property inference, etc. These could
be regarded as private information disclosures. Moreover,
they could tamper with the original results to achieve evasion
attack. What’s more, there remains a possibility of spoofing
or repudiation attacks, which are the consequences of results
leakage at the results exhibition stage.

B. CLIENT MANAGEMENT LAYER
As discussed in Section IV, the primary role of the client
management layer is data processing and client-side client
selection, serving as the starting point of FL model train-
ing. However, since the decision-making process of client
selection occurs at another layer, we will only focus on
the security threats analysis of the data processing and join
request/response. The execution part of client selection is
considered as a reliable security zone.

There are four potential paths for attackers, as illustrated in
Figure 7. The first one originates from the request of joining
the training or distributing the model. Besides spoofing fake
requests or repudiating real requests sent from the client,
attackers could infer client system information according
to the leaked data. Moreover, it is possible for attackers to
overwhelm the client resources by launching a large number
of denial of service attacks. On the other hand, the privilege
of attackers could be elevated if the adversaries invade, since
either join request or distribute request is generated based
on the client system’s current situation, which requires high
privilege to collect. Besides, malicious users who possess
little data can launch a free-riding attack to access the training
data. While this attack may not always compromise private
data, it can significantly degrade the overall training perfor-
mance due to its zero contribution.Moreover, such free-riding
nodes can potentially become vectors for more malicious
attacks, as distinguishing between genuine free-riding nodes
and malicious ones pretending to be so is impractical. In other
words, the attackers are hidden among a large number of
normal users.

The second path is related to the collected client envi-
ronment situation. Apart from the attack methods analyzed
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in the data interaction layer, a malicious participant could
initiate attacks from stored data. Spoofing or tampering is
possible at this step. There is also the possibility of informa-
tion disclosure if client compute nodes that don’t meet the
conditions are allowed to join. However, preventing this risk
is challenging, as it may require detecting physical hardware
allocation situations while checking the data at the point of
entry.

The third attack path comes from the decapsulation of
response data sent from the remote aggregation control server.
Since the aggregation control server and client compute node
are often connected through the network in many scenarios,
attacks in this path are a subset of network security threats. In
addition to tampering with or acquiring private decapsulated
data, attackers could also paralyze the entire training system
by repudiating requests or making a large number of repeated
requests. Such threats would be discussed in the network
transmission layer again.

The last invasion approach is related to data flow. Security
threats on this path are similar to those in the previous step
in the data interaction layer, as these potential threats all stem
from the original data generated by applications. Excluding
the free-riding attack, poisoning attacks including clean-label
attack and dirty-label attack, and property inference attacks
become available since original data are exposed to the ad-
versaries. This could become worth if they inject backdoors
into the original data generated by applications, or into the
applications themselves.

C. LOCAL MODEL LAYER
Wu et al. [96] state that the federated learning model training
paradigm comprises two key components:

1) The client-side: which trains models on local indi-
vidual user private data based on a distributed global
model and subsequently uploads the updated model
information to the central server.

2) The server-side: responsible for aggregating the up-
loaded model update information to train the global
model.

In our layered referenced model, the client-side model
training corresponds to the local model layer that leverages
processed data to train the local model. And the server-side
model training corresponds to the remote management layer,
which would be discussed later.
There are three sources from which security threats orig-

inate: the request for training data before the model training
phase, the execution of client selection/incentive decisions,
and the distribution of the global model to local participants,
as depicted in Figure 8.
Initially, as the model is trained on the client-side by re-

questing training data from client compute nodes, attackers
could spoof the data as being generated by the authorized
application to disrupt the training dataset. Moreover, there
is a significant possibility of private data being disclosed to
malicious attackers who breach this phase, as the processed
data are often not encrypted. This vulnerability could lead to
further clean-label attacks and dirty-label attacks. Attackers
may passively or actively infer property information of the
training data by utilizing the disclosed data. Furthermore, the
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FIGURE 7. Threats in Client Management Layer

system might be overwhelmed if adversaries send a large
number of data requests in a short time. The local model
layer would become even more vulnerable if backdoors are
injected.

Moreover, attackers can easily disrupt client selec-
tion/incentive by spoofing decisions sent from the aggrega-
tion control server. System situationsmay become transparent
as a significant amount of information is disclosed. Addi-
tionally, clients might become non-functional if adversaries
initiate many repudiations or a large number of requests
in a short time, due to limited resources being exhausted.
Moreover, attackers will possess higher privileges through
previously injected backdoors, while free-riding attacks are
another approach to steal trained model information. On the
other hand, attackers could launch attacks on the model infer-

ence process from the same data source. During the inference
stage, processed data becomes a vulnerable point of attack be-
fore being sent into the model for subsequent inference. Apart
from spoofing the real data source, attackers couldmanipulate
the data during transmission between processes or utilize the
real data to infer user private training data. Furthermore, if the
attackers gain the privilege of sending processed data to the
model for inference, the risk of launching denial of service
attacks also increases.

The third source of risk arises from the decapsulation of
data distributed from the remote aggregation control server
via the network. The transmission phase faces the same se-
curity threats as the network transmission layer, which will
be explained in the next subsection. Since the trained model
is issued to the client compute node at this step, malicious
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attackers could easily poison or even tamper with the model
tomislead the subsequent inference results.Moreover, model-
related information such as model parameters and model
architecture is also exposed to them, which could lead to
private information disclosure. Additionally, the model’s per-
formance would also be affected by the evasion attack ini-
tiated from adversaries. However, verifying the received in-
formation and detecting abnormal activities could effectively
decrease the security risk originating from this source.

D. NETWORK TRANSMISSION LAYER
In contrast to conventional machine learning model training
paradigms, federated learning highlights communication as a
pivotal bottleneck that must be paid attention to, since com-
munication costs often dominate computation costs in feder-
ated learning, according to the research by McMahan et al.
[97]. Within the domain of federated learning, several rounds
of communication between the aggregation control server and
client compute nodes are required for the model’s accuracy.
Furthermore, given that many participants are often operating
under public network environments such as Ethernet, the
presence of unreliable network conditions and asymmetric
public links could exacerbate the security situation.

Figure 9 illustrates the data flow of the network transmis-
sion layer, which involves the transmission of various data
types, including gradients, models, and control commands.
In the gradient transmission part after training on client
compute node (Threats Group 1), it is very easy for attack-
ers to infer the membership and property of training data
through observing the gradient information. If this malicious
observation continues, the possibility of more complex attack
approaches like model extraction attack and model inversion
attack increases, since deeper information could be revealed
by comparing the differences among gradient information
transmitted in each rounds. This would cause more serious
information leakage. Moreover, malicious attackers could
also simply disturb the gradient computing results through
spoofing, i.e., sending fake gradient information, or make the
gradient information unavailable by repudiation and denial
of service attacks. The situation of model-related request and
distribution flow is similar (Threats Group 5). The only differ-
ence is that adversaries could launch model poisoning attacks
instead of membership inference and property inference as
the entire models are available during the model issuance
process.

As for the control flow, including request commands sent
by client compute nodes (Threats Group 2), control responses
(Threats Group 4), and transmission controls (Threats Group
6), the security risks faced by them are almost the same due
to the same data type in their traffic. Attackers could spoof
unauthorized control command sources to affect the control
decision-making, or exploit control information to infer user
system-level situations, which are information disclosure.
Moreover, adversaries may repudiate effective commands or
even launch denial of service attacks to interfere with the
normal operation of the FL system. However, since the trans-

mission control is often exposed to insecure public network
environments in many scenarios, attackers may initiate net-
work attacks for higher privileges to further invade the entire
training system.
The information transmission step (Threats Group 3) is the

core part of the network transmission layer. This highlights
the fact that the network transmission layer is susceptible
to all six common threats: spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of
privilege, since the entire system is exposed to the public
through this layer. Compared with invasion from the data
interaction layer, invading via this layer is much easier due to
the complexity and anonymity offered by the public network.
Moreover, as gradient information is transmitted, there’s a
risk of revealing sensitive private information [98] [67] [69],
and it can even result in deep leakage, as indicated by Zhu
et al. [65]. Notably, even partially updated gradients could
be exploited to unveil local data, as shown by Aono et al.
[99]. Such leakage could occur either to a third party or even
to the malicious central server [100] [101] [53]. Once the
attackers gain access to the transmitted information, serious
attacks including model poisoning attack, model extraction
attack, and model inversion attack become possible. Except
for the deep leakage issue mentioned above, attackers could
utilize the model update information to poison the subsequent
global model. In general, the network transmission layer is the
most vulnerable part of the entire federated learning system,
so it may serve as another potential entry point for malicious
attackers from outside the system.

E. REMOTE MANAGEMENT LAYER
Serving as the orchestrator, the remote management layer
not only aggregates the gradient information uploaded from
the participating client compute nodes to train an updated
global model, but also performs various management func-
tions. Such functions include client compute node selection,
incentive mechanisms, aggregation mechanisms, and trans-
mission management.
As Figure 10 shows, there is another security zone within

it. The entrance of data from the network transmission layer
is the main threat, while the invasion from the controller
is the secondary threat. Regarding the data received from
the network transmission layer, it is the most vulnerable
point as discussed in the previous subsection. The situation
becomes worse if the data type is a command about client
selection, client incentive, model distribution, and transmis-
sion control (Threats Group 1, 4, and 5). Because malicious
invaders can inject a backdoor during data transmission at the
network transmission layer, through which they can control
either the entire system or the private data without being no-
ticed. If attackers deliberately tamper with the control request
command, they would seriously interfere with the decision-
making mechanism. Moreover, there is a possibility for them
to infer the private data including system status and training
data quantity by analyzing the control request commands.
This represents a threat of information disclosure. The con-
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FIGURE 8. Threats in Local Model Layer

troller might run out of service if they successfully exhaust
the controller’s resources deliberately or frequently repudiate
normal control requests. However, issuing a command while
identifying the actual role of the requester is a difficult task.

Moreover, attackers could spoof a legal client compute
node to disturb the updated gradient information aggregation
of the controller if they invade the decapsulation process
through which data is transmitted into the remote manage-
ment layer. Adversaries could poison the model by tampering
with updated gradient information as well. Once some private
gradient information is leaked at this step, model inference
attacks including membership inference, property inference,

etc., could be utilized for delving more private information.

As for the threat issues from the controller side, although
it is within the entire system, meaning that the operators are
often well-trained and the server is well-protected, since it
plays the role of managing the whole federated learning sys-
tem, small operation mistakes could evolve into attacks like
spoofing, elevation of privilege, which could cause serious
information disclosure. Furthermore, some backdoors may
be unintentionally injected if software security is not given
sufficient attention.
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F. SUMMARY
In addition to the threats analysis layer by layer above, the
following two critical vulnerabilities in the design of feder-
ated learning protocols identified by Lyu et al. [53] are useful
for the security analysis as well:

1) The control server continuously monitoring updated
information, could potentially be malicious, leading to
tampering with the model training process and altering
participants’ view of the global parameter.

2) Participants might also be able to observe or control
the global parameters and the upload process of those
parameters.

According to these analysis, we could draw a conclusion
that client compute node and the remote aggregation control
server are the two primary vulnerable entities in the entire fed-
erated learning system from the perspective of constitution,
rather than the computational communication framework it-
self. While data interaction layer, network transmission layer,
and remote management layer are the three main attack en-
trances from outside, from the perspective of our proposed
layered model.

However, for the sake of increasing the information secu-

rity level of the federated learning system, users can leverage
some common strategies to defend against these issues, which
will be introduced in Section VII.

VII. THREATS DEFENSE STRATEGIES

Federated learning, especially in the context of cross-silo
federated learning, offers a collaborative approach for dif-
ferent organizations to jointly train machine learning models
by aggregating gradient updates without exposing sensitive
data. However, despite its merits, there remain certain security
concerns within this framework as we have analyzed above.
In order to bolster information security and privacy, several
established security mechanisms can be integrated into the
framework of federated learning.

In this section, we will briefly introduce some common
defense strategies based on the STRIDE model mentioned in
Section VI, followed by strategies against FL-specific threats.
Finally, we will illustrate four specific approaches that can
effectively improve the overall security level of the system.
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A. DEFENSE STRATEGIES BASED ON STRIDE MODEL
Aswe discussed in Section V-A, spoofing, tampering, repudi-
ation, information disclosure, denial of service, and elevation
of privilege are the six common threats identified according
to the DFD. Threats of different risk levels may require dif-
ferent mitigation strategies. In Table 6, we list some common
strategies for addressing these threats. Note that these defense
strategies are not specific to issues in the federated learning
system, but rather general solution.

B. DEFENSE STRATEGIES AGAINST FL-SPECIFIC THREATS
In Section V-C, we have identified five specific threats unique
to federated learning. These threats pose challenges to the
security and privacy of the training and inference phase.
However, it’s essential to note that for each of these threats,
there exist corresponding defense strategies tailored to ad-
dress them effectively.

• Poisoning Attack: Employing an identification mech-
anism to scrutinize malicious participants through their
model updates before integrating them into the round of
model averaging in each learning iteration is an effective
strategy against data poisoning attacks. Additionally, the

adoption of rejection based on error rate and loss func-
tion emerges as a prevalent approach to mitigate model
poisoning attacks [102]. These defend strategies can
be employed independently, or in conjunction with the
identification mechanisms to defend against poisoning
attacks.

• Inference Attack: In essence, the successful execution
of inference attacks necessitates substantial computa-
tional resources and advanced technical capabilities on
the part of adversaries. Furthermore, these attackers
must sustain their efforts consistently over several train-
ing rounds. The employment of homomorphic encryp-
tion (HE) [26] could serve as an efficacious mechanism
for safeguarding shared gradients from the vulnerabili-
ties posed by inference attacks. Additionally, differential
privacy (DP) offers another approach to defend against
inference attacks by introducing random noise to the FL
system, and the introducing location could vary from
data to model parameters [103]. These two methods will
be further discussed in Section VII-C. Apart from HE
and DP, strengthening the security level of the network
where the FL system is located, and promptly identify-
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TABLE 6. Common Defense Strategies to STRIDE Threats

Threats Attribution Example Defense Strategy

Spoofing Certification
Basic certification, digital signature,

verification code, hash table

Tampering Integrity
Integrity control, Access Control List (ACL)s,

digital signature, verification code

Repudiation Undeniability
Security logging and auditing,

digital signature, Trusted third party
Information
Disclosure Confidentiality Encryption technology, ACLs

Denial
of Service Availability ACLs, filtering, authorization, high availability design

Elevation
of Privilege Authorization

ACLs, group or role affiliation,
privilege ownership, permissions, input validation

ing potentially malicious nodes that have existed for a
long time but rarely accept management by the remote
management layer can help reduce the likelihood of
inference attacks. Furthermore, Jia et al. propose a novel
method that adds crafted noise to each confidence score
vector to defend against membership inference attacks
[104], falling under the sub-category of information ob-
fuscation defense. In addition to information obfuscation
defense, other approaches such as limiting query control
and creating more robust model architectures [48] are
also efficient in defending against model extraction at-
tacks. The split FL framework called ResSFL proposed
by Li et al. shows another novel approach to mitigate
model inversion attack [105].

• Backdoor Attack: To counteract backdoor attacks,
Mammen et al. advocate for the application of weak
differential privacy or the imposition of a norm thresh-
olding mechanism on updates [55]. They suggest that
norm thresholding can eliminate models with artificially
boosted parameters, while the adoption of differential
privacy introduces a degree of protection, albeit poten-
tially influencing the overall model’s performance [106].
It is imperative to note that the task of distinguishingma-
licious participants from those exhibiting misbehavior
presents a formidable challenge.

• Free-riding Attack: The mitigation of free-riding at-
tacks can be advanced through the incorporation of
blockchain technology [107] [108]. Such an approach
entails the verification on exchanged model updates
among devices, thereby engendering an environment
that incentivizes participants to contribute actively to
the training process. It is noteworthy that an increase in
communication payload is found, primarily attributed to
block size. However, these findings still prompt the po-
tential for a fully decentralized federated learning archi-
tecture. Furthermore, Lin et al. propose STD-DAGMM,
which is effective in detecting free-riders [85]. More-
over, the FRAD mechanism designed by Wang et al.
outperforms their baselines in their experiments on de-
fending against free-rider attacks [88]. In addition to
defense methods, some researchers also focus on attack

approaches. For example, Zhu et al. conducted an ad-
vanced free-rider attack [86], contributing from another
perspective.

• Evasion Attack: In general, there are two main ap-
proaches to mitigate evasion attacks: empirical defense
and certified defense [49]. Although empirical defense
may not guarantee foolproof defense, it is efficient in
addressing attacks, especially when designed to target
specific types of attacks. Hong et al. [109] identify four
classes within empirical defense:
1) Gradient-Masking Defense [110] [111]: This de-

fense involves modifying the model inference pro-
cess.

2) Input-Transformation Defense [112] [113]: This
defense preprocesses the input before transforma-
tion.

3) Adversarial Training [114] [115]: First proposed
by Goodfellow et al. [78], this approach aims to en-
hance model robustness by introducing adversarial
examples into the training data. However, adver-
sarial training requires more time for training as it
iteratively generates adversarial examples [48].

4) Adversarial Examples Detection [116] [117]: This
defense focuses on the robustness of the model.

On the other hand, certified defense aims to guarantee
consistent predictions for a classifier when encountering
adversarial examples input. Randomized smoothing, in-
troduced by Lecuyer et al. [118], is the first method in the
field of certified defense that is able to certify arbitrary
classifiers of any scale [109]. In addition to randomized
smoothing, Katz et al. also propose a method based on
mathematically rigorous techniques [119].

C. OTHER DEFENSE STRATEGIES
In addition to the problem-specific solutions mentioned
above, there are some other approaches that could improve the
security level of the entire system to enhance the protection of
private data. For example: Homomorphic Encryption (HE),
Differential Privacy (DP), Secure Multiparty Computation
(SMC), and Trusted Execution Environment (TEE).
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1) Homomorphic Encryption (HE)
Homomorphic Encryption (HE) is a cryptographic technique
that allows mathematical operations to be performed on en-
crypted data without requiring prior decryption. In conven-
tional encryption, a shared key pair (comprising a public key
and a private key) is utilized for message encryption. How-
ever, this method raises privacy concerns in certain scenarios,
such as cloud services, where the control rights over data
can be a subject of contention. Additionally, third parties
with no direct involvement may access the contents of shared
encrypted data, even without access to the encryption keys
[120]. Furthermore, the identification of user elements may
endure, even long after the users terminate their engagements
with the service. To address these challenges, the concept of
HE is proposed as a means to enable secure data operations
without revealing the original data. While the theoretical
framework for Fully Homomorphic Encryption (FHE) was
introduced by Gentry et al. in 2009 [121], practical realization
of its generality across diverse platforms remains an ongoing
challenge [120].

Accordingly, HE can be applied in an additive manner
within industrial federated learning frameworks to ensure
that no update is revealed during the aggregation process.
However, this approach may introduce computational and
communication bottlenecks, which have been mitigated by
the development of the BatchCrypt solution [122].

2) Differential Privacy (DP)
Differential Privacy (DP) is a privacy-preserving technique
that involves adding random noise to data or model param-
eters to prevent the inference of private data [42] [123].
DP, grounded in information-theoretic principles [124] [125],
provides robust statistical privacy guarantees by making it
difficult for adversaries to extract specific information from
the data.

Within federated learning, DP can be classified into two
main types: Central Differential Privacy (CDP) and Local
Differential Privacy (LDP) [126].

• Central Differential Privacy (CDP): In CDP, a central
server is entrusted with a high degree of trust. Model
parameters generated in each update round are initially
aggregated on this centralized server before being per-
turbed. This approach ensures that model parameters
remain concealed from other participating client nodes.

• Local Differential Privacy (LDP): LDP introduces a
higher level of privacy, as model parameters are pro-
tected not only from external entities but also from the
central server. Differential private transformations are
applied to data on each participant before being trans-
mitted to the central server. Despite offering stronger
security, LDP may engender challenges in reconciling
security with utility preservation [127].

Research underscores that client-level DP could effectively
thwart any malicious participant’s attempt to reconstruct the
private sensitive data of others through the utilization of

the global model. [126]. Accordingly, numerous researchers
have endeavored to implement client-level DP in federated
learning. For instance, Geyer et al. have integrated CDP into
federated learning frameworks [106], while Pihur et al. have
proposed a novel federated learning framework based on LDP
[128].
Despite its capability to counter inference attacks and pro-

vide privacy guarantees through the introduction of noise into
clipped model parameters before aggregation [106], a trade-
off between privacy protection and model accuracy exists in
both CDP and LDP, since the introduction of additional noise
may compromise model accuracy [126].

3) Secure Multiparty Computation (SMC)
Secure Multiparty Computation (SMC), an alternative to ho-
momorphic encryption, is a technique that enables partic-
ipants to collaboratively compute results while solely re-
vealing computation results to a specific subset of involved
participants. It is a crucial branch of techniques in Secure
Computation (SC) that has already been operational in fed-
erated learning [55].
SMC safeguards the original model accuracy while fur-

nishing robust security assurances for participants. This is
particularly useful for federated learning, because computa-
tion results are shared while maintaining data privacy with
each participant. SMC ensures that even the central server
could gain minimal information and only observe the aggre-
gated results during each iteration.
Despite the additional computation and communication

costs associated with SMC, it remains a significant research
area. For instance, Bonawitz et al. have proposed a protocol
based on Shamir’s Secret Sharing, a widely-used approach in
federated learning, to secure updates aggregation [129].

4) Trusted Execution Environment (TEE)
The Trusted Execution Environment (TEE) serves as a se-
cure platform embedded within a device’s primary processor,
ensuring the confidentiality and integrity of both data and
code [55]. By enforcing a dual-world implementation, TEE
achieves robust isolation and attestation of secure compart-
ments, effectively mitigating threats posed by compromised
or malicious system software within the normal operational
realm [130]. In contrast to SC, TEE introduces a lower com-
putational overhead when integrated into the implementation
of federated learning [131].
Significant academic and industrial endeavors have been

directed towards the advancement of TEEs, aiming to provide
secure programmability for various device types, including
high-end and mobile devices. Notable examples include Intel
Software Guard Extensions (Intel SGX) [132] and the open-
source framework Open Portable Trusted Execution Environ-
ment (OP-TEE) [133]. An inherent advantage of TEE lies
in its substantial reduction of the Trusted Computing Base
(TCB), simultaneously maintaining execution speed while
enhancing security. Trust is established through the execution
of code within the secure environment. Nonetheless, careful
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consideration must be given to designing the size of the TEE
and mitigating potential overhead during the swapping of
memory between secure and unprotected domains [130]. It
is pertinent to note that Mo et al. emphasize the necessity of
compact TEEs due to the associated heightened vulnerability
to attacks [131]. The Privacy-Preserving Federated Learning
(PPFL) approach introduced by them exemplifies the feasi-
bility of robust privacy assurances coupled with comparable
utility of machine learningmodels, all while exertingminimal
impact on communication and system costs [130].

In order to enhance security and privacy in federated learn-
ing, a combination of these mechanisms can be employed
[59] [134] [135] [136] by users to establish a robust security
framework for the entire system.

VIII. CHALLENGES AND CONCLUSION
Federated learning, while promising and versatile, presents
practical challenges as research progresses. According to
Sone et al., privacy protection in federated learning focuses
on minimizing privacy leakage and adhering to privacy com-
pliance [126]. However, practical scenarios often overlook
the diverse stipulations governing heterogeneous parties. Ex-
isting techniques offer uniform privacy protection across all
parties [14], but in many cases, adherence to individual data
owner privacy compliance is acceptable, tailoring treatment
based on individual restrictions while maintaining equivalent
model performance. Techniques like heterogeneous differ-
ential privacy [137] show their promise, but the increase in
communication overhead and the decrease in model accuracy
are a thorny problem for most solutions. Challenges like
fairness among nodes, client incentives [138], fault tolerance,
one-shot federated learning [139], etc., are also key research
areas in the future.

This paper provides a security-oriented overview of fed-
erated learning, focusing on offering readers a systematic
introduction to security and risk prevention methods from the
perspective of data flow. We expand a comprehensive survey
about FL using the proposed 5-layer reference model, which
includes the data interaction layer, client management layer,
local model layer, network transmission layer, and remote
management layer. Additionally, we conduct a brief security
threats analysis based on the STRIDE model and specific
issues faced by each FL layer. Finally, we introduce some
existing defense strategies for each security issue.

In summary, our proposed layered model aims to offer a
concise compendium of federated learning along with data
flow and control flow in the federated learning system for
general readers, emphasizing the importance of system secu-
rity and sensitive data protection. For researchers, we hope
it could provide a standardized and layered reference model
to simplify and accelerate their complex work in designing
FL model training system, alleviate development pressure,
improve FL system scalability, and systematically enhance
the information security of federated learning by providing
a clear threats analysis approach.
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