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ABSTRACT The real-time and accurate detection of premature ventricular contractions (PVC) in patients 
is of great significance for preventing the occurrence of high-risk events such as sudden cardiac death and 
guiding cardiac surgical procedures such as radiofrequency ablation. To improve the diagnostic accuracy and 
real-time performance, and expand application scenarios, an economical wearable PVC real-time auxiliary 
diagnosis system based on the multi-parameter squeeze excitation residual network (MP-SE-ResNet) is 
proposed. We have realized the real-time acquisition, processing, and wireless transmission of dynamic ECGs 
based on ESP32, furthermore, realized the PVCs recognition based on MP-SE-ResNet. Using the lead-II 
ECGs in the MIT-BIH arrhythmia databases as training samples, and the network was evaluated using the 
remainder of this dataset and data recorded by our device, respectively. The accuracy of the MIT-BIH dataset 
reached 99.34%, and the sensitivity and specificity of PVC recognition reached 98.26% and 99.64%, 
respectively. Using the ECGs recorded by our system, we achieved the following results: the accuracy was 
94.07%, the sensitivity and specificity of PVC were 92.76% and 97.63%, respectively. The experimental 
results show that the system meets the requirements of remote monitoring and auxiliary diagnosis. Therefore, 
it provides a new method and design idea for wearable remote arrhythmia monitoring and auxiliary diagnosis. 

INDEX TERMS wearable ECG device, ESP32, ECG cloud platform, Multi-parameter SE-ResNet. 

I. INTRODUCTION 
Among patients with cardiovascular diseases, more than 80% 
of cardiovascular patients are combined with arrhythmias, 
which are highly likely to lead to malignant events such as 
stroke and sudden cardiac death [1-3]. Ventricular 
premature beat (PVC) is the most common reason of 
abnormal heartbeat[4]. Under the certain conditions, it can 
lead to life-threatening heart disease. Automatic detection 
of PVC based on wearable remote holter can effectively 
and timely prevent cardiac diseases such as arrhythmia and 
avoid the occurrence of malignant arrhythmia events. Real-
time ECG monitoring of PVC can also accurately locate the 
occurrence time of ventricular premature beat and the 
location of premature beat source, so as to guide surgical 
procedures such as radio frequency ablation [5-7]. 
However, the wearable devices are prone to introduce some 
problems such as interference and lead-fall, and massive 

real-time data and its individual and environmental 
variability put forward strict requirements on the 
implementation of pre-processing algorithms and 
arrhythmia accurate recognition [8, 9]. Therefore, the 
current wearable ECG arrhythmia diagnosis products are 
limited in terms of real-time functionality and application 
scenarios. For wearable ECG monitoring, technology 
challenges exist, and are mainly from the following two 
aspects. The first challenge comes from the physical 
implementation of the wearable smart ECG garment system, 
including textile sensor design [10], wearable client 
hardware circuit design for comfort measurement [11-14]. 
The second comes from the big data processing, data 
storage, and long-term ECG cardiovascular diseases 
monitoring and deep-mining for specific arrhythmia type, 
which involves the efficient machine learning and 
improved deep learning methods [15-20]. 
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FIGURE 1. Overall design scheme. 
Heart disease is sudden and progressive. This work intends 
to develop a wearable ECG analysis product which is 
suitable for multiple scenarios. The product uses the ESP32 
as the client chip to perform ECG signal denoising, quality 
assessment, compression and data transmission, and 
receive arrhythmia diagnosis results from remote servers in 
time. Finally, the patients' heart health status would be 
analyzed in the cloud platform using multi-parameter 
squeeze-excitation ResNet (MP-SE-ResNet) model and 
malignant arrhythmia events can be detected in time. The 
key contributions of this work are: 
 Proposed and designed the wearable ECG acquisition 

and processing system based on the BMD101 module 
and ESP32 microcontroller, which performs ECG 
signal acquisition, storage, processing, display, 
remote transmission, and reception.  

 Proposed MP-SE-ResNet model for dynamic ECG 
PVC heartbeat recognition, which incorporates a 
feature recalculation strategy that enhances useful 
features and suppresses those irrelevant to the current 
task.  

 Comparison of the proposed networks with existing 
state-of-the-art methods using the MIT-BIH 
arrhythmia database and the recorded data by our 
device.  

The remainder of this paper is organized as follows. Section 
II is the related works. Section III described the system 
design scheme for this study. Section IV provides details of 
our software Working flow. In section V, we provide 
details of a MP-SE-ResNet based PVC recognition 
performance and the experimental results. A discussion is 
presented in Section VI. Finally, section VII concludes the 
paper. 

II. RELATED WORKS 
Continuously monitoring and recognition for life threating 
arrhythmia based on wearable and smartphone devices 

using deep-learning method become a hot topic in recent 
years [21-23]. As PVC often exhibits no obvious clinical 
symptoms during the attack and is a primary contributor to 
sudden cardiac death, there have been many research 
results on the real-time recognition of PVCs [24-27]. Brito 
et al. [28] proposed a deep learning model based on ResNet 
architecture in 2019, achieving an accuracy of over 90% in 
experiments using the MIT-BIH arrhythmia database. In 
2020, Li et al. [15] classified arrhythmias using a deep 
residual network, yielding a 99.38% classification accuracy 
on the MIT-BIH arrhythmia database. In 2021, Jinbin 
Wang [29] proposed an enhanced gated recurrent unit 
network for PVC recognition, generating accuracies of 98.3% 
and 97.9% with the MIT-BIH arrhythmia database and 
China Physiological Signal Challenge 2018 database, 
respectively, using R-wave annotations provided by the 
databases. In 2022, Sarshar et al. [30] explored statistical 
features which include three morphological features (RS 
amplitude, QR amplitude, and QRS width) and seven 
statistical features are computed for each signal, and 
combined CNN model for PVC recognition on the MIT-
BIH database, producing more effective diagnosis 
performance. In 2024, Ebrahimpoor et al. [31] proposed a 
Multi-Domain Feature Extraction and Auto-Encoder-based 
Feature Reduction method for PVC recognition, the 
algorithm is also evaluated using MIT-BIH database. But 
these studies did not outline a reliable way to classify and 
detect the accuracy of PVCs based on a wearable cardiac 
monitoring system in real-time. 
In 2023, a PVC detection and classification system based 
on the Nexys 4 DDR FPGA board were proposed. Utilizing 
4.36% of the total resources, they achieved an improved 
accuracy and sensitivity of 98.29% and 98.64% for PVC 
recognition, respectively [32]. Though FPGA has high 
computation speed, the power consumption and cost are 
higher compared with the general microcontroller. 
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Though these methods perform well in PVC recognition, 
each of them has its advantages and disadvantages (as 
summarized in Table I). Furthermore, the accuracy of many 
algorithms will diminish if the clinical dynamic wearable 
large ECG data is used [33, 34]. A study of 100 patients 
with atrial fibrillation revealed that 34% of wearable ECG 
recordings were algorithmically classified as "unclassified" 
due to unknown cause, baseline artifacts, or low amplitude 
recordings [35]. Therefore, the economic wearable smart 
ECG monitoring system design and the evolution of models 
or methods is crucial to enhance PVC detection 
performance, facilitating clinical applications.

TABLE I
ADVANTAGES AND DISADVANTAGES OF THE RESEARCHES

Researches Advantages Disadvantages
Brito et al. 
[28]

Proposed ResNet for 
arrhythmias

The accuracy is lower on 
MIT-BIH database, not 
using real-time wearable 
ECGs to evaluate the 
model

Li et al. [15] The designed ResNet is 
robust and the accuracy 
for arrhythmias 
recognition is higher

Not using real-time 
wearable ECGs to evaluate 
the model

Jinbin Wang 
[29]

The first used enhanced 
gated recurrent unit 
network for PVC 
recognition

Not using real-time 
wearable ECGs to evaluate 
the proposed method

Sarshar et al. 
[30]

Using 10 ECG features 
fed to CNN for PVC 
recognition, higher 
efficient

The feature extraction 
capability of CNN cannot 
be fully utilized, not using 
real-time wearable ECGs 
to evaluation

Ebrahimpoor
et al. [31]

New feature selection 
based on an Auto-
Encoder 

Not using real-time 
wearable ECGs to evaluate 
the proposed method

Gon et al.[32] The PVC detection 
methods were performed 
on FPGA in real-time 
and achieved higher 
accuracy

The FPGA system is 
higher cost, not using real-
time wearable ECGs to 
evaluate the algorithm

III. SYSTEM DESIGN SCHEME
As shown in Figure 1, the system includes ECG signal 
acquisition, data transmission, master control unit and remote 
deep-learning based monitoring and diagnosis cloud platform. 
The BMD101 ECG acquisition module was used to collect 
ECG data, and the data was sent to the main control unit 

through Bluetooth. The ESP32-WROOM-32 module was 
used to collect and process ECG signals, then upload them to 
the cloud server by the wifi embedded in the main control 
module based on the socket communication, and display real-
time heart rate, HRV analysis, diagnosis results, etc. on the 
OLED display screen. The cloud platform aims to complete 
data reception, storage and real-time diagnosis. After 
receiving the signal sent by the main control, the cloud server 
stores the data in the user database, performs data analysis and 
subject-specific auxiliary diagnosis, and returns the diagnosis 
results to the main control unit.

A. ECG SIGNAL ACQUISITION MODULE
The stability and accuracy of ECG data acquisition directly 
affect the subsequent ECG data processing, heart rate 
calculation, ECG imaging and auxiliary diagnosis result, so 
the sensor is the key for the design of the heart detector [36, 
37]. The signal acquisition module adopted in this design is 
the BMD101 ECG signal acquisition chip. The ECG 
acquisition module integrates SPP-C Bluetooth to collect ECG 
data and send the data packets to the main control. The module 
has low power consumption, 512Hz sampling rate, 16-bit AD 
conversion accuracy, and can use metal dry electrode or gel 
wet electrode to collect ECG signals with a frequency 
response of 0.5Hz~100Hz. In order to meet the need of multi-
scenario wearable applications, a modular method is adopted 
to integrate the BMD101 ECG signal acquisition chip, SPP-C 
Bluetooth module and power module into a PCB board, which 
can be easily embedded in the vest. Figure 2 shows the PCB 
circuit of ECG acquisition block and its usage method.

(a) PCB circuit of BMD101 ECG acquisition module

(b) Usage method

FIGURE 2. BMD101 acquisition module

B. DESIGN OF MAIN CONTROL UNIT BASED ON ESP32
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FIGURE 3. Main control unit circuit based on ESP32
In order to perform the real-time processing and 

transmission of dynamic ECG signals and facilitate the 
upgrade of subsequent products, we select the ESP32-
WROOM-32 of Le Xin Company as the main control chip. 
The chip’s main advantage is low-power and has a 
Xtensa®32-bitLX6 single/dual-core processor, which has 
relatively strong computing power [38]. In addition, the chip 
also supports 2.4 GHZ Wi-Fi and Bluetooth protocols. The 
two functions can run at the same time and the data 
transmission has a good stability. The Bluetooth function can 
reach +12dBm transmission power. The above performance 
can meet the requirements of data processing algorithm and 
transmission in this design. Figure 3 shows the schematic 
design of the main control unit based on the ESP32-WROOM-
32 module. The wearable BMD101 module perform the data 
acquisition and Bluetooth transmission. The main control unit 
ESP32-WROOM-32 receives the patient's ECG signal 
through the built-in Bluetooth module. Then, it proceeds 
parsing, preprocessing and data compression, and it also 
utilizes the WIFI module of the module or the external 4G/5G 
module to upload the data to the cloud platform in real time. 
A 0.96 inch four-position OLED display is used to display the 
patient's heart rate and diagnosis results. In order to be portable, 
this design adopts a modular design, which integrates the 
ESP32-WROOM-32 module, OLED display screen and 
power module on a 28.5mm×28mm PCB board.

IV. SOFTWARE PLATFORM
The wearable heart detector includes three modules: ECG 
acquisition, main control and cloud server. ECG acquisition 
module is mainly responsible for ECG signal acquisition, A/D 
conversion, data processing and transmission; ESP32 main 
control part is mainly responsible for data transmission with 
the cloud platform and acquisition block, ECG signal analysis, 

ECG waveform and diagnostic results analysis and display; 
The cloud server is mainly responsible for receiving and 
storing the ECG data sent by the main control, decompression, 
neural network diagnosis result, etc. Figure 4 shows the main 
working flow chart of the design, in which (a) is the overall 
process, (b) and (c) are the communication process between 
the acquisition module and the main control, the main control 
and the cloud platform respectively.

FIGURE 4. Working flow chart, (a) The overall process (b) The Bluetooth 
communication flow chart (c) the wifi communication flow chart

ECG acquisition module adopts BMD101, which integrates 
the function of analog-to-digital conversion and ECG signal 
pre-processing. And band-pass filtering, median filtering and 
smooth filtering algorithms are used to preprocess the signal 
preliminary. The processed ECG data packet is sent to the 
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main control unit through the Bluetooth module. The packet 
consists of three parts: data header, valid data to be sent, and 
check variable. Among them, the sampling rate is 512Hz, and 
the effective data is 16 bits.

The main control unit based on ESP32 module is 
responsible for the receiving, processing and remote 
transmission of the ECG signals. ESP32-WROOM-32 module 
resources include WI-FI module and Bluetooth module, 
wherein the Bluetooth communication module was started at 
the beginning of the program.  However, the WIFI module is 
the thread which needs to be created after the successful 
startup of Bluetooth, and the two modules are synchronized 
after being enabled. Firstly, Call the library function 
BluetoothSerial.h to implement Bluetooth communication 
based on ESP32-WROOM-32 and write callback function 
SerialBT.Bluetooth_Even() to execute ECG data receiving, 
data parsing, etc., so that the Bluetooth module can always in 
the state of be started and working when the program is 
executed. Then, in the loop() function, the Bluetooth module 
is controlled for connection and normal data transmission 
according to whether it has successfully connected to the ECG 
signal acquisition module. At the same time, ESP32-
WROOM-32 completes ECG data analysis and real-time 
waveform display. When the OLED display works, the start 
signal is first sent by the main control unit, and then the slave 
address, read and write flag bits are sent. After the display is 
connected to the main control, 8 bits of data are transmitted to 
the main control each time, and the host replies to the reply 
signal after receiving it. When WI-FI is enabled on the ESP32, 
it is used as a slave to connect to other WI-FI networks. By 
defining a WiFiClient class object wifi_client, create the 
thread function Wifi_Connect() which is started by the WI-Fi 
module to complete the start of WI-FI ,and control whether the 
thread continues to connect to the WI-FI network to transmit 
data.

The remote cloud platform uses Alibaba Cloud server, it is 
based on ubuntu system to perform the data storge and multi-
user SE-ResNet based lightweight arrhythmia recognition 
tasks. The network is gradually modified for different 
customers and the analysis results are returned to the client in 
time. ECG data acquisition and waveform display are shown 
in the figure 5.

(a) Subject a

(b) Subject b

(c) Subject c

FIGURE 5. The Lead II ECG waveforms acquired from our device

V. PVC real-time recognition and implementation based 
on multi-parameter SE-ResNet

A. Data source and preprocessing
The experimental data were obtained from the MIT-BIH 

arrhythmia database and our acquisited data. The majority of 
lead-II ECGs from MIT-BIH arrhythmia database were used 
as training samples, the remainder and our device collected 
data are used to evaluate the proposed multi-parameter SE-
ResNet model respectively. As the MIT-BIH database has a 
total of 48 records, each record is 30 minutes, and the sample 
rate is 360Hz. Each record consists of two leads. The lead of 
each record was not exactly the same, and only 46 records 
included MLII lead signals. The lead-II ECG from these 46 
records were used in the following experiments, and all 
heartbeats are categorized into normal beats (N), premature 
ventricular beats (V), and other beats (T). Because the HRV 
parameter calculation needs to remove the first and last 
heartbeat of each record, a total of 105651 heartbeats were 
used for PVC recognition. Within this dataset, there are 
74699, 8510, and 22442 N, V, and T heartbeats, respectively. 
20000, 6500 and 10000 heartbeats were randomly selected 
from 74699 normal beats, 8510 ventricular premature beats 
and 22442 other beats respectively. A total of 36500 
heartbeats were used as training samples. Similarly, 3000, 
800 and 2000 cardiac beat data were randomly selected from 
the remaining N, V, and T heartbeats, respectively, and a 
total of 5800 data were used for evaluation, leaving the 
remaining 63,351 heartbeats for testing.  To validate the 
reliability of the designed system and the proposed model, 
ECG data of 10 patients with ventricular premature disease 
and other arrhythmias were recorded using the wearable 
system. The acquisited ECG records were annotated by three 
clinical experts of the Fifth Affiliated Hospital of Zhengzhou 
University and a total of 6875 heartbeats were obtained. 
There are 4235,926,1714 for N, V and T, respectively.

The proposed approach’s performance is gauged using 
accuracy (Acc), sensitivity (Se) and specificity (Sp). The 
specific calculation formula for each metric is as follows (1~4):

��������(���) =
�� + ��

�� + �� + �� + ��
(1)

�����������(��) =
��

�� + ��
(2)

��������������� =
��

�� + ��
(3)

�������� ���������������� =
��

�� + ��
(4)

All of the detection statistics are centered on the mutually 
exclusive categories of true positive (TP), false positive (FP), 
true negatives (TN), and false negative (FN) [39-41]. TP refers 
to accurate identification of a condition or trait while FP refers 
to incorrect identification of a condition or trait. TN refers to 
accurate identification of the absence of a condition or trait 
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whereas FN denotes incorrect identification of the absence of 
a condition or trait.

B. Multi-parameter SE-ResNet modeling
Wearable ECGs exhibit individual variability and strong 

interference. Addressing these issues, our study adopts the SE-
ResNet model, a deep network architecture with robust 
nonlinear fitting ability. The model incorporates a squeeze-
excitation module embedded within a residual structure. The 
network model employs a feature recalculation strategy, 
automatically determining the importance of each feature 
channel by learning. Subsequently, useful features are 
enhanced, while the features not useful to the current task are 
suppressed based on their importance. Because the ECG has 
time-dependent features, such as double and triple rhythm, the 
characteristics such as heart rate variability (HRV) parameters 
and age, are important features for the arrhythmia recognition. 
As HRV parameters can compensate for the morphological 
characteristics of single heartbeat ECG. In this study, five 
characteristics: RR interval, ratio of RR interval before and 
after heartbeats, root mean square of the difference between 
adjacent RR intervals, age, and gender, are computed and 
integrated into the fully connected layer, providing useful 
information and effectively improving the model’s 
classification accuracy.

In order to obtain the best network structure parameters and 
structures, SE-ResNet models with different layers and 
structures are designed, and repeated experiments and 
comparisons are made using MIT-BIH arrhythmia dataset. 
Figure 6 shows the cross-validation accuracy of MP-SE-
ResNet networks with layers 8, 12, 16 and 20, respectively. As 
shown in the figure, the 16-layer SE-ResNet achieved better 
test results, and the performance of the 20-layer network was 
comparable to the 16-layer network. Considering the 
processing speed of wearable ECG data and the real-time 
requirements of the system, therefore, this paper chooses 16-
layer SE-ResNet (Fig 6; Table II) as the PVC recognition 
model.

FIGURE 6. PVC recognition results of different network complexity
As shown in Figure 7, the input single-channel ECG 

heartbeat size is 1×320, and after a layer of convolution, it is 
sent to the residual block, and 16,32 and 64 channels were 
selected respectively. The network model has 15 convolution 
layers and one fully connected layer in total.  Take the first 
group of residual blocks (short-connect) as an example. In 
order to make better use of the context ECG characteristic 
information, channel level statistics are generated by global 
average pooling. The excitation layer adopts two fully 
connected layers (FC) to realize channel scaling, the reduction 
rate is set to 4, and the dimension of feature data is changed 
from 1×16 to 1×4, and then played back to 1×16. Finally, 
the activation function is used to re-scale the data back to the 
data dimensions before the squeeze. It is equivalent to 
mapping the data associated with the input to a set of channel 
weights, so that the channel features are not limited to the local 
receptive field of the convolutional network, and giving
different weights to the channels.

C. PVC Recognition results based on MP-SE-ResNet

FIGURE 7. Deep MP-SE-ResNet learning network modeling
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In this work, the partial data of the MIT-BIH Lead-II ECG 
heartbeats are used for training the networks, the remaining 
and our device recorded data for evaluating the model, 
respectively. In order to avoid the chance of random data 
extraction, three random experiments were carried out, and the 
average value of the three experiments was taken as the final 
experimental result. The evaluation metrics derived from the 
experiments (Table III) reveal that our proposed method 
achieves an overall recognition accuracy of 99.34% using the 
MIT-BIH database. The Se, Sp and Pp of PVC recognition 
reach 98.26%, 99.64%, and 84.03%, respectively. The overall 
recognition accuracy on our recorded data is 94.07%, with the 
Se, Sp and Pp yielding 92.76%, 97.63%, and 86.33%, 
respectively. Despite the imbalance in heartbeats within the 
MIT-BIH dataset, the experimental results underscore the 
effectiveness and robustness of the proposed model.

TABLE II
DETAILS OF THE PROPOSED SE-RESNET STRUCTURE

Layer 
Name

Input 
Size

Output 
Size Operation

Conv1 1×230 1×59
Kernel Size:(1, 3), stride:2, 

padding:3
MaxPool: Kernel Size:3, stride:2, 

padding:1
Block1 1×59 1×59 �1 × 3 16

1 × 3 16� × 2

Block2 1×59 1×30 �1 × 3 32
1 × 3 32� × 3

Block3 1×30 1×15 �1 × 3 64
1 × 3 64� × 2

1×15 1×15 BN, Relu,

1×15 Flayer in Features:960, Output 
Features: NumClass

The ROC curves of the MIT-BIH and our recorded data are 
illustrated in Figure 8. Among them, Micro-average is a 
micro-average method which adds up the number of true 
positives, false positives and false negatives of all categories 
and then calculates the overall index. Macro-average is a 
macro average method, which calculates the metrics (such as 
sensitivity, positive and predictability) of each category and 
then uses the average of these metrics as the overall metric. 
Class 0, Class 1, and Class 2 represent N, V and T, respectively. 

(a) MIT-BIH database

(b) our recorded data

FIGURE 8. ROC curves of using different database
TABLE III

ABLATION EXPERIMENT OF MP-SE-RESNET
Database Confusion matrix Evaluation metrics (%)

N V O Se Sp Pp Acc

MIT-
BIH

N 51531 151 17 99.68 98.51 99.67
99.34V 17 1189 4 98.26 99.64 84.03

O 155 75 10212 97.8 99.96 99.79

Our 
recorded

N 4083 49 103 96.41 94.15 96.5
94.07V 46 859 21 92.76 97.63 86.33

O 102 87 1525 88.97 97.55 92.48
From Figure 8 (a) and (b), indicating that the model exhibits 

the best classification performance for the three type 
heartbeats. The area under the curve for N and V are the larger, 
the recognition result of the O type is relatively lower. The 
reason for being lower than N and V is that the sample size is 
too small.

D. Abliation experiments and comparison of different 
networks

To evaluate the effects of our proposed multi-parameter 
(MP) and squeeze-excitation (SE) block for the ResNet model. 
We performed experiments using the MP-SE-ResNET, MP-
ResNet, SE-ResNet and ResNet respectively. The PVC 
recognition results on the MIT-BIH and our recorded 
databases of the five networks are depicted.

TABLE IV
ABLATION EXPERIMENT OF MP-SE-RESNET

Database
Modules

Acc(%)
MP SE ResNet

MIT-BIH

 97.43
  97.86

  97.82
   99.34

Our recorded

 90.89
  92.53

  92.51
   94.07

From Table IV, it can be observed that both the MP module 
and the SE module consistently improve the results, whether 
in the MIT-BIH dataset or in our recorded dataset. In the MIT-
BIH dataset, the use of the SE module and ResNet module 
together results in a 0.43% improvement compared to using 
ResNet alone, while the use of the MP module and ResNet 
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module together leads to a 0.39% improvement over using 
ResNet alone. The combined use of the MP module and the 
SE module improves the results by 2.11% compared to not 
using these two modules. Similar improvements of 1.64%, 
1.62%, and 3.18% are observed in our recorded dataset. Table 
IV also indicates that the simultaneous use of the MP module 
and the SE module does not conflict; instead, their combined 
use yields greater improvement. 

We compare our proposed approach with the published 
robust deep learning classifiers, such as ResNet, LSTM, CNN, 
and AlexNet. The same number of convolutional layers were 
designed, and the structural parameters were adjusted to the 
optimum. The same data were used to evaluate the networks 
respectively, and the results were compared. In the above 
experiments, the epoch is set to 30. 

The PVC recognition results on the MIT-BIH and our 
recorded databases of the five networks mentioned before are 
depicted in Fig. 9 (a) and (b), respectively. As shown in 
Fig.9(a), SE-ResNet yields an improved overall accuracy of 
1.52%, 1.68%, 3.46% and 7.25% compared to MP-ResNet, 
MP-LSTM, MP-CNN, and MP-AlexNet, respectively. In 
contrast, MP-SE-ResNet yields a Se of 98.26% for V, 
compared to 93.88%, 92.64%, 83.97% and 81.4% of MP-
ResNet, MP-LSTM, MP-CNN, and MP-AlexNet, 
respectively. The overall recognition accuracy of our designed 
MP-SE-ResNet is 99.34%. The proposed model outperforms 
other existing models. Using our recorded data, the proposed 
MP-SE-ResNet model yields higher overall accuracy and 
enhanced accuracy and sensitivity of PVC recognition in 
abnormal heartbeat detection tasks. The accuracy of the 
developed SE-ResNet algorithm is 94.07%, higher than MP-
ResNet, MP-LSTM, MP-CNN, and MP-AlexNet. The Se of 
premature ventricular contractions recognition is 92.76%, 
compared to 86.61%, 85.96%, 79.16% and 84.77% of MP-
ResNet, MP-LSTM, MP-CNN and MP-AlexNet, respectively. 
It can be seen from the figure that the model used in this paper 
has better results than other models. Moreover, the 16-layer 
network has low complexity, high efficiency and convenient 
real-time implementation, so it has certain application value. 

 
(a) using the MIT-BIH database 

 
(b) using our recorded data 

FIGURE 9. Results of PVC recognition of using different classifiers 

VI. DISCUSSION 
ECG is the gold standard for arrhythmias detection. 
Development of wearable and Internet of Things (IoT) 
technologies enables the real-time and continuous individual 
ECG monitoring and arrhythmia diagnosis. The existing key 
technology challenges are mainly including the hardware 
implementation, the real-time signal analysis performed on 
the embedded processor and the cloud computing for long-
term ECG disease type mining. In this paper, we designed a 
wearable dynamic single lead ECG SmartVest system based 
on the MP-SE-ResNet model. We proposed the system 
hardware and software design in detail, and also the ECG 
preprocessing real-time PVC recognition system are 
developed and the experiments are performed.  

As wearable dynamic ECG exhibits strong background 
noise and variability. Furthermore, ECG is weak time domain 
waveform, and the microvariation of its morphological 
characteristics is key for arrhythmia recognition. But the 
microvariation of the ECG waveform is easily arise the 
gradient disappearance of the deep-CNN networks. The 
residual network aims to solve the gradient disappearance 
issue in deep neural networks by incorporating a residual 
block. This mechanism allows the network to adapt to the 
network structure of any depth by learning the residual. The 
squeeze-excitation network incorporates the attention 
mechanism, automatically determining the importance of each 
feature channel through learning. This mechanism promotes 
useful features and suppresses less useful features following 
their importance. The network model comprehensively 
considers the weight of each channel and the main wave of 
ECG signals. Therefore, it can fully extract the morphological 
features from multiple channels and their primary waves, 
enhancing the network’s robustness and generalization 
capability. 

The heartbeats are categorized into classes, and the 
confusion matrix on the MIT-BIH and our recorded databases 
are depicted in Figs. 10 and 11, respectively. The proposed 
MP-SE-ResNet network demonstrates excellent performance 
in PVC recognition experiments using single-lead long-term 
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ECGs. However, the network produces suboptimal 
recognition results of the third class in the MIT-BIH database 
due to data imbalance, with an excessive amount of the first 
type and a limited number of other types.

FIGURE 10. Confusion matrix of different networks on the MIT-BIH 
database. (a) MP-SE-ResNet; (b) MP-ResNet; (c) MP-LSTM; (d) MP-CNN; 
(e) MP-AlexNet.
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FIGURE 11. Confusion matrix of different networks on our recorded
database. (a) MP-SE-ResNet; (b) MP-ResNet; (c) MP-LSTM; (d) MP-CNN; 
(e) MP-AlexNet.

We investigated the open-access published PVC 
recognition literature on the MIT-BIH database (Table V). 
Acharya et al. [42] developed a deep convolutional network 
model to classify heartbeats. The MIT-BIH database is 
employed for classification, and the model yields an overall 
classification accuracy and Se of 94.03% and 94.07%, 
respectively. Wang et al. [43] proposed an ECG technique 
based on multi-lead signals and a deep learning architecture. 
Automatic identification of ECG signals is performed using 
the INCART arrhythmia database, producing an overall 
classification accuracy and Se of 93.40% and 84.10%, 
respectively. Niu [44] employed three morphological and 
seven statistical features and developed an artificial neural 
network (ANN) classifier for PVC and non-PVC ECG 
heartbeat recognition. The classification accuracy and Se of 
PVC achieved using the MIT-BIH dataset are 96.40% and 
85.70%, respectively.  Wang [29] proposed an improved gated 
recurrent unit (IGRU) by setting a scale parameter into 
existing bidirectional GRU (BGRU) model for PVC signals 
recognition. The experimental results of the model on the 
MIT-BIH database yields the recognition accuracy of 98.3%.
Sarshar et al. [30] explored a combined statistical features and 
CNN model for PVC recognition on the MIT-BIH database, 
producing more effective diagnosis performance. Cai et al. [24]
developed a novel PVC recognition algorithm that combined 
deep learning-based heartbeat template cluster and expert 
system-based heartbeat classifier. The PVC identification Se, 
P+ and ACC are 87.51%, 92.47% and 98.63%, respectively. 
Harkat et al. [45] proposed a DCT and CWT feature extraction 

and RBF classifier for PVC recognition, achieving an overall 
sensitivity of 95.2% and an accuracy of 98.2%. The discussed 
literature highlights the superior sensitivity of the proposed 
SE-ResNet in recognizing PVCs in wearable ECG, which is 
of clinical significance.

TABLE V
PVC RECOGNITION RESULTS BASED ON MP-SE-RESNET

Method Year Number of 
classes Se Acc

Acharya et al. 
[42] 2017 5 94.07% 94.03%

Wang et al. [43] 2020 3 84.10% 93.40%
Niu et al. [44] 2020 3 85.70% 96.40%

Wang et al. [29] 2021 2 97.9% 98.3%
Sarshar et al. [30] 2022 2       99.2%(N+V) *

Cai et al. [24] 2022 2 87.51% 98.63%
Harkat et al. [45] 2023 2 95.2% 98.2%
Algorithm in this 

paper 2024 3 98.26% 99.34%

TABLE VI
COMPARISON OF COMPUTATIONAL COMPLEXITY WITH SIMILAR METHOD

Method Yea
r

layer
s

Maximu
m kernel 

size

MPara
ms

MFLO
Ps

Acc(
%)

Acharya 
et al. 
[42]

201
7 6 (1,4) 127335 1.206 94.03

Wang et 
al. [43]

202
0 9 128 65060 0.129 93.40

Niu et 
al. [44]

202
0 7 (1,30) 360448 3.978 96.40

Algorith
m in this 

paper

202
4 16 (1,3) 23791 3.739 99.34

To evaluate the algorithm complexity, of our method, we 
compared our method with the recently published algorithms 
in Table VI. Where Params represents the number of 
parameters in the entire network; MFLOPs stands for Million 
Floating Point Operations Per Second, indicating the 
computational complexity of the model; Maximum kernel size 
refers to the largest one-dimensional convolutional kernel size 
or the number of units in the fully connected (FC) layer. In the 
proposed MP-SE-ResNet in this paper, the network primarily 
utilizes convolutional and fully connected layers to extract and 
transform features from input data. Therefore, similar 
algorithms were selected for comparison of network 
complexity. In previous studies, most networks chose shallow 
networks (less than 10 layers) for classification. Due to the 
shallow network depth, larger-sized (or quantity) 
convolutional kernels or more units in the fully connected 
layers were needed to extract sufficiently discriminative 
features, resulting in a large number of parameters. The 
method used in this paper achieves higher classification 
accuracy by stacking multiple convolutional kernels of small 
sizes and multiple FC layers with a small number of units. 
However, inevitably, better performance may lead to higher 
computational costs. We noticed that methods using CNNs 
(except for Wang et al. [36], who used two parallel multilayer 
FC layers) generally result in higher computational 
complexity, consistent with the principles of deep learning, as 
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convolutional operations are more complex than matrix 
multiplication. Compared to other methods, MP-SE-ResNet 
achieves a balance in performance, number of parameters, and 
model computational complexity. 

VII. CONCLUSION 
This paper proposes a design scheme of a multi-scene 
wearable wireless ECG acquisition and real-time auxiliary 
analysis system, and completes the software and hardware 
design and algorithm effect test. Based on multi-parameter 
deep SE-ResNet network, the recognition of single lead 
wearable ECG signal ventricular premature beat was realized. 
BMD101 ECG acquisition module and ESP32 master 
control unit to complete real-time acquisition and ECG 
preprocessing. We also developed a real-time PVC 
recognition software based on multi-parameter SE-ResNet 
model. MIT-BIH lead-II ECG arrhythmia data were used as 
training samples. The whole recognition accuracy on the 
remaining MIT-BIH arrhythmia dataset was 99.34%, and the 
Se and Sp were 98.26% and 98.94% respectively. The 
recognition accuracy of our recorded data was 92.54%, and 
the Se and Sp of V reached 91.68% and 97.60%, respectively. 
Experimental results demonstrated that our proposed model 
outperforms other existing models. The system is 
economical and reliable, and provides technical ideas for 
chronic cardiac disease management and real-time 
monitoring of arrhythmia, and has certain popularization and 
application value. Considering the real-time operation of the 
ECG monitoring and the non-balance of Arrhythmia data, in 
the future research, we will focus on the highly efficient ECG 
data compression algorithm and the exploring of robust 
classification strategies for handling imbalanced ECG data. 
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