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ABSTRACT The automatic pulmonary segmentation for chest X-ray(CXR) plays an important role in
assisting diagnosis. Many deep learning methods have the problems of high computational complexity
and low segmentation accuracy, which hinder the application to clinical workstations. Therefore, this
paper proposes a lightweight multiple attention network(LMA-Net), which improved U-Net by using the
progressive dilated convolution(PDC) for lightweight. A reinforced channel attention(RCA) and amultiscale
attention(MSA) are embedded in the decoder to further improve the network segmentation performance.
We fuse four types of pulmonary disease CXR from the COVID-QE-Ex dataset to generate a multi-source
heterogeneous dataset. Effectiveness of LMA-Net is shown by achieving Intersection over Union(IoU ) of
96.28%, Dice of 96.95%, Average symmetric surface distance(ASSD) of 13.11mm and Hausdorff Distance
95th percentile(HD95) of 81.12mm, respectively. It can be seen that lightweight of LMA-Net is achieved
according to parameter(Param) of 2.89M and floating-point operations(FLOPs) of 2.64G. This method can
effectively improve segmentation performance and speed.

INDEX TERMS Convolutional neural network, Attention, Lightweight,Multi-source heterogeneous dataset,
Medical image segmentation.

I. INTRODUCTION

DUE to the pandemic of COVID-19, pulmonary diseases
have received more attention. It is highly sensitive and

efficient to use medical image for pulmonary diseases. Com-
pared to CT, chest X-ray(CXR) is widely applied to diagnose
various pulmonary diseases due to lower cost, lower radiation
and faster speed [1].

As shown in FIGURE 1, not every CXR is standardized.
Pulmonary segmentation becomes challenging due to several
factors: (1) non-pathological changes: the shape and size of
the pulmonary vary with age, gender and heart size [2]; (2)
pathological changes:the opacity caused by severe pulmonary
disease reaches a high-intensity value [3]; (3) foreign body
coverage: the pulmonary field is obscured by the patient’s
clothes or medical equipment (pacemaker, infusion line, med-

ical catheter) [4]. For example, the medical device implanted
in the body affects the lung imaging in FIGURE 1(a) and
FIGURE 1(b). The boundary between the albino lung area
and the normal lung area in FIGURE 1(b) and FIGURE 1(c)
is blurred. In Figure 1(d), there is a significant difference in
lung morphology between females and males. These unstable
factors can cause delays and misdiagnosis. Artificial intelli-
gence partneringwithmassive data will improve this dilemma
[5].
Pulmonary segmentation is a crucial step in quantitative

analysis of CXR in computer-aided medical diagnostic sys-
tems [6] [7]. This initial step significantly affects the perfor-
mance of downstream analysis, such as anomaly detection or
classification of lung diseases, such as cancer [8] [7].
With the development of deep learning methods, state-of-
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FIGURE 1. There are four non-standard CXR images.

the-art convolutional neural network(CNN) can automatically
learn ROI from a large dataset [9], which can solve the delay
and misdiagnosis caused by non-standard images. However,
the existing CNNs commonly used in medical image process-
ing usually have high computing costs, especially on graphic
processing unit(GPU). Deploying deep learning models to
medical workstations with limited resources would lead to
various restrictions for real-time analysis. Therefore, on the
premise of the accurate prediction, it is necessary to further
promote the development of models towards lightweight and
reduce the complexity in time and space.

To address these challenges, this paper proposes a
lightweight multiple attention network(LMA-Net) for pul-
monary segmentation. Experimental results show that the
proposed method can effectively segment pulmonary region
from CXRs and achieve lightweight. The main contributions
of this paper are as follows.

• We design LMA-Net that incorporates four types of
pulmonary CXR to automatically segment pulmonary
region. This model can solve the delay and misdiagnosis
caused by non-standard images.

• Based on the encode-decode structure of U-Net [10],
we extend dilated convolution [11] to progressive di-
lated convolution(PDC). In LMA-Net, PDC gradually
expands with the network deepening. Small-dilated con-
volution effectively captures fine details in low-level fea-
tures, and large-dilated convolution captures semantic
information in high-level features. What’s more, PDC
develops the structure of depthwise separable convolu-
tion [12] to achieve ultra lightweight, which is crucial
aspect in solving the problem of limited clinical com-
puting resources.

• To make full use of channel information in feature map,
we propose reinforced channel attention(RCA). Every
layer of decoder are embeded with RCA to handle the
concatenation of high-level and low-level features. The
RCA compresses the concatenated feature maps to ob-
tain the weights for each channel. Subsequently, residual
connection [13] is introduced to combine the concate-
nated feature maps with the corresponding weights sev-
eral times to self-adaptively reinforce the feature channel
information and suppress irrelevant features. The RCAs
in different layers enable LMA-Net to focus on the target
features.

• Multi-scale attention(MSA) is introduced to subtly fuse
features at different scales to cope with feature loss,
which allows the fine details in low-level features and the
semantic information in high-level features to be fully
utilized. In addition, in order to overcome the problem
of class imbalance within feature channels, a Channel
Factor Enhancement(CFE) module is proposed based
on dimension transformation, which can automatically
calibrates the target region prediction to improve seg-
mentation performance.

II. RELATED WORK

In this paper, CNN and attention mechanism are introduced
for medical image segmentation.

A. U-NET VARIANTS FOR MEDICAL IMAGE
SEGMENTATION

Deep learning methods such as CNN [14] have excellent
performance for medical image segmentation tasks in recent
years. Fully convolutional network(FCN) [15] is a successful
network in image segmentation. Inspired by the encoder-
decoder architecture of FCN, subsequently, the 2D U-Net
[10] has been developed and widely implemented for med-
ical image segmentation tasks. Since the invention of U-
Net, many improved networks based on U-Net have great
performance for medical image segmentation tasks. In [16],
R2U-Net referred to the idea of recurrent CNN and residual
CNN to gain the precise segmentation results. The U-Net has
also been extended into attention modules such as Attention
U-Net [17], which introduced the Attention gates(AGs) and
replaced hard-attention with soft-attention. U-Net++ [18] is a
nested architecture of U-Net, which adopts dense connection
to eliminate gradient problems, reuse feature and enhance
feature propagation. Trans U-Net [19] is the combination of
transform and U-Net, where transform can provide global
self-attention based on the U-Net. These methods show quite
high performance for medical image segmentation tasks.
However, these state-of-the-art models have problems of high
complexity and parameter quantity. There are various limita-
tions in deploying above models to workstations with limited
computing resources.
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B. ATTENTION MECHANISM
Attention mechanism originates from human vision research
and is often used in computer vision research [20]. The at-
tention mechanism simulates the human behavior of paying
attention to a few more important words in the process of
reading [21], [22]. In the research of computer vision, in order
to make full use of limited resources and focus on specific rel-
evant feature information, the attention mechanism is realized
through dynamic adaptive weighting of feature information
[23].

SEnet [24] automatically strengthens channel information
of features through learning, and uses the obtained impor-
tance to enhance features and suppress features that are not
important to the current task. Woo et al. [25] creatively
proposed CBAM, which combines the attention mechanism
of channels and spaces, and automatically obtains the im-
portance of each feature space to enhance features related
to segmented targets and suppress unimportant features in
the current task. With the development of deep learning,
recently many new attention mechanisms not only focus on
performance but also on lightweight. Wang et al. [26] not
only proposed an effective channel attention module ECA,
which realized lightweight, but also achieved significant per-
formance gains. Hou et al. [27] proposed a coordinate atten-
tion(CA) that is new efficient attention mechanism, which
can encode the horizontal and vertical location information
into the channel attention, so that the network can focus
on a wide range of location information without too much
computation. Dai et al. [28] proposed a trainable second-
order channel attention (SOCA) module, which adaptively
rescale the channel-wise features by using second-order fea-
ture statistics for more discriminative representations. Yang et
al. [29] proposed parameter-free attention module(SimAM),
which inferred 3-D attention weights for the feature map in a
layer without adding parameters to the original networks. D2-
Net [30] address the problem of finding reliable pixel-level
correspondences under difficult imaging conditions. LCNet
[31] introduces a partial-channel transformation (PCT) strat-
egy to minimize computing latency and hardware require-
ments of the basic unit.

In conclusion, existing attention mechanisms not only
achieve high performance, but are also moving towards
lightweight. Therefore, following the current development
steps, we propose a lightweight network based on U-Net
and multiple attentions. This method can effectively improve
segmentation performance and speed.

III. METHODS
A. LMA-NET: LIGHTWEIGHT MULTIPLE ATTENTION
NETWORK
In medical image segmentation, U-Net preserves high-level
semantic features and low-level spatial details by using a skip
connected symmetric encoder-decoder architecture, which is
crucial for accurately dividing organ boundaries and fine
structures [10]. The proposed methodology utilizes its ba-
sic architecture to construct a lightweight multiple attention

network (LMA-Net). The LMA-Net has been specifically
designed to facilitate the accurate localization of the elu-
sive lung area, and subsequently, deftly execute CXR image
segmentation with clinical precision. This network has skip
connections which can fuse different scale features, improves
the convolutional modules to achieve lightweight, and uses
multiple attention modules to improve segmentation perfor-
mance.
The structure of LMA-Net is shown in FIGURE 2, where

LMA-Net innovatively proposes progressive dilated convolu-
tion(PDC) [11] and reinforced channel attention(RCA) [24]
to replace the classical convolutional modules of five scales.
The proposed PDC improves the strategy in [11] to achieve
lightweight and avoid the problem about the local infor-
mation loss due to the excessive expansion of the dilated
convolutional kernel. The PDC captures more global infor-
mation while preserving local information loss. The proposed
RCA improves the dual-channel feature fusion, and adopts
residual connection [13] to avoid gradient disappearance and
explosion caused by network deepening. To avoid the loss
of significant information during decoding, the LMA-Net
aggregates the multi-scale feature maps by using channel
connection. Then the target features can be extracted by using
the multiscale attention (MSA).
The proposed LMA-Net uses five PDCs to replace the clas-

sical convolutional modules in the encoder, and the dilated
rate d increases with the network deepening. The proposed
RCA accepts the cascade features of the low-level features
from the encoder and high-level features from the decoder, so
as to obtain more relevant channel weight factors. In addition,
four output feature maps from RCA are spliced, and the
proposed MSA is used to process the cascade feature map
to obtain target features map.

B. PROGRESSIVE DILATED CONVOLUTION
Due to the complexity and uncertainty of the CXR images, in
general, CXR images will contain many different organs or
tissues. It is not easy to distinguish these organs and tissues in
clinical situations. The classical convolutional kernel would
ignore the organ features with large receptive field while pro-
cessing medical images in the forward propagation process.
Therefore, the LMA-Net uses dilated convolution [11]

to improve the classical convolutional kernel to solve the
problem of large receptive field feature loss, but retains the
basic structure of depthwise separable convolution. We set
the groups of depthwise separable convolution as the greatest
common divisor of input channel number and output channel
number to minimize the Param and FLOPs.
As shown in FIGURE 3(a), the dilated convolutional kernel

can be seen as an expansion of the classical convolutional
kernel, where the dilated rate is expressed by a positive integer
d . As shown in FIGURE 3(b), the process of the classical
convolution can be expressed as:

α = k⊛f =
C∑
l=1

r∑
i=−r

r∑
j=−r

k(i, j)fl(px + i, py + j) (1)
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FIGURE 2. The proposed lightweight multiple attention network(LMA-Net). Blue rectangle and d correspond the progressive dilated convolution and
expansion rate, respectively. We use four reinforced channel attention(RCA) to replace the classical convolutional modules. Green rectangle MSA
represents multiscale attention.
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FIGURE 3. (a)The dilated convolutional kernel with the shape of 3 ∗ 3 under dilated rate d of 1, 2 and 3. (b)The classical convolutional operation. (c)The
dilated convolutional operation with d = 2.

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3400119

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: LMA-Net: Lightweight Multiple Attention Network for Multi-source Heterogeneous Pulmonary CXR Segmentation

where k represents the convolutional kernel of size (2r +
1)(2r + 1). The input f ∈ RC∗H∗W in FIGURE 3 contains C
feature channels, and H ,W represent the height and width of
input, respectively(C = 1 in section III-B). ⊛ represents the
convolutional operation. k(i, j) represents an element in the
convolutional kernel k , where (i, j) ∈ {(i, j)|i ∈ [−r , r ], j ∈
[−r , r ], r ∈ N}. (px , py) represents the coordinates of a pixel
in the input f . fl(px + i, py + j) represents a pixel of the l-
th channel in input f . Eventually, the result α represents a
pixel point in the output f ′, where α is obtained by sliding the
convolutional kernel k once in the input f .
As shown in FIGURE 3(a), the dilated rate d can separate

and expand receptive field of the convolutional kernel k . The
dilated convolution helps the network learn more contextual
features, such as lung and lung lesion area, without increasing
the time and space complexity.

In LMA-Net, the dilated rate d increases with the network
deepening. The process of PDC is shown in FIGURE 3(c)
when d = 2, which can be expressed as:

α = k⊛d=2f =
C∑
l=1

2r∑
i=−2r

2r∑
j=−2r

k(i, j)fl(px + i, py + j) (2)

where ⊛d=2 is convolutional operation with dilated rate of
d = 2.

From FIGURE 2, FIGURE 3(c) and EQUATION 2, we can
see that the excessive increase in dilated rate inevitably leads
to the loss of local image information [11]. To address this
issue, we propose an improved strategy where the dilated rate
slowly increases with the network deepening, ensuring that
more global image information is captured while retaining
more local fine detail.

C. REINFORCED CHANNEL ATTENTION

𝑃𝑔𝑎
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′

𝑓𝑟
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Sigmoid3 ∗ 3, 2𝐶 S

S

FIGURE 4. Structure of reinforced channel attention(RCA) module with
residual connection. The η1 and η2 represent the channel factors.

Inspired by CBAM [25], we propose a reinforced channel
attention(RCA) module which is shown in FIGURE 4. The
proposed RCA is used to replace the classical convolutional
module in the decoder, which canmake full use of the channel
information. The decoding process often involves upsampling
and concatenation operations, which can lead to a loss of fine-
grained details and spatial context. RCA modules strategi-
cally placed in the decoder can help mitigate this issue by

recalibrating channel-wise feature responses based on their
global dependencies, ensuring that important details are pre-
served and emphasized during the upsampling process.
First of all, let fr ∈ R2C∗H∗W represent the concatenated

feature map. A 3∗3 convolution is used to smooth fr obtained
of two different f ′p to get f ′r , and the process is expressed as:

f ′r = conv(fr) (3)

Subsequently, RCA implements global average pooling(Pga)
and global maximum pooling(Pgm) to compress the dimen-
sion of f ′r to 2C ∗1∗1 in parallel. After pooling, two different
feature maps with size 2C ∗ 1 ∗ 1 are sent to the shared
multilayer perceptron(MLP) to get two channel factors η1
and η2(η1, η2 ∈ [0, 1]2C∗1∗1). MLP consists of two fully
connected layers, with the ReLU function after the first layer
and the Sigmoid function after the second layer. The above
process is represented as:

{ηi}2i=1 = MLP(Pgm(f ′r ),Pga(f
′
r )) (4)

The channel factors can guide feature maps to automati-
cally highlight the relevant feature channels and restrain the
irrelevant feature channels. Different from the channel atten-
tion in CBAM [25], we introduce residual connection [13] in
RCA to avoid gradient explosion and gradient disappearance
due to network deepening. Through residual connection, η1
and η2 are multiplied by f ′r from convolutional operation
respectively. Eventually, the results of multiplication is added
by fr pixel-wisely to obtain f ′′r ∈ R2C∗H∗W , and the above
process is expressed as:

f ′′r = η1 ∗ f ′r + η2 ∗ f ′r + fr (5)

D. MULTISCALE ATTENTION
Benefiting from multiscale architecture of U-Net, the nearest
interpolation is utilized to up-sample four feature maps from
RCA of different scales, as shown in FIGURE 2. After up-
sampling, four feature maps {fi}4i=1 are gotten with a same di-
mension ofC ∗H ∗W (C = 4 in section III-D). Concatenating
{fi}4i=1 channel-wisely and getting fm ∈ R4C∗H∗W , the fm rep-
resents the input feature map of multiscale attention(MSA)
module. The process of generating fm is specifically expressed
as:

fm = Concat(f1, f2, f3, f4) (6)

The first module of MSA is the ChannelGate, as shown
in FIGURE 5(a). To highlight the channel correlation of
concatenated feature maps fm, fm is sent to global average
pooling(Pga), global maximum pooling(Pgm) and MLP to
obtain channel factors {µi}2i=1 ∈ R4C . The channel factors
can be used to distinguish the importance of channels. Sub-
sequently, µ1 and µ2 are added to obtain β ∈ R4C , which
serves as input to channel factor enhancement(CFE) module.
The transformation of β is shown in FIGURE 6.

Specifically, CFE utilizes compression and expansion op-
erations to enhance the information of different dimensions
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in the feature map fm. Firstly, β is reshaped to obtain β1 ∈
R2

√
C∗2

√
C (C = 4 in section III-D) without changing the

amount and value of the data. Subsequently, all elements
of β1(i, :) in β1 are summed and averaged to obtain β2 ∈
R2

√
C∗1, i = 1, 2, ..., 2

√
C . After the above compression,

each pixel in β2 captures more contextual information. Next,
β2 is replicated 2

√
C times to obtain β3 ∈ R2

√
C∗2

√
C , and

then β3 is reshaped to obtain β4 ∈ R4C without changing the
amount and value of the data. Therefore, the dimensions of
β4 are the same as the dimensions of β. To fit the dimensions
of the MSA input fm, each β4(j, 0) are replicated H ∗ W
times, so C single-channel feature maps of size H ∗ W is
obtained, where H = W and j = 1, 2, ..., 4C . Finally, the
single-channel feature maps are concatenated channel-wisely
to obtain β5 ∈ R4C∗H∗W . The process of channel factor
enhancement(CFE) is specifically described in Algorithm 1.

After dimension-based transformation of CFE, β5 is fed
into sigmoid to obtain the enhanced channel factor β6 ∈
[0, 1]4C∗H∗W . Eventually, we use Hadamard product to mul-
tiply the input fm and the β6 pointly to obtain f ′m ∈ R4C∗H∗W .

The second module of MSA is the SpatialGate, which is
used to achieve spatial attention, as shown in FIGURE 5(b).
MSA consists of two 3 ∗ 3 convolutional modules and one
CFE module. Firstly, the SpatialGate uses 3∗3 convolutional
module to smooth f ′m, which is then activated by sigmoid to
obtain γ ∈ [0, 1]C∗H∗W . Subsequently, the γ is processed by

use of the CFE to obtain γ′ ∈ [0, 1]4C∗H∗W . In addition, we
use residual connections to recover feature information loss
as the network deepening. Eventually, γ′ is processed using
3 ∗ 3 convolutional module to obtain prediction p ∈ RC∗H∗W ,
which is used to calculate the loss function with the ground
truth, as shown in FIGURE 2.

E. LOSS
BCEWithLogitsLoss is a loss function for binary classifica-
tion. It combines the sigmoid function with the binary cross
entropy(BCELoss). p is the feature map predicted by the
LMA-Net. Before calculating the loss, we activate p using
sigmoid to obtain p ∈ [0, 1]C∗H∗W . In binary classification
problems, the pixel yi in the ground truth y is usually 0 or 1.
The BCEWithLogitsLoss formula is expressed as:

L =
1

N

N∑
i=1

[
yi · log(σ(pi)) + (1− yi) · log(1− σ(pi))

]
(7)

σ(x) =
1

1 + e−x
(8)

where L is the BCEWithLogitsLoss, yi is the i-th pixel in the
ground truth y and pi is the i-th pixel in the prediction p, and
N represents the number of samples and σ() is the sigmoid
function.

IV. EXPERIMENTS
A. DATASETS
Experiments are conducted on the public dataset COVID-
QU-Ex. The researchers of Qatar University have com-
piled the COVID-QU-Ex dataset, which consists of 34,613
chest X-ray (CXR) images, including 11,956 lung im-
ages of COVID-19 infection, 5,897 lung images of Viral
Pneumonia(VP), 6,059 lung images of Bacterial Pneumo-
nia(BP) and 10,701 normal lung images. Four typical im-
ages of these four categories are shown in FIGURE 7.
Ground truths are provided for the entire dataset. This is
the largest ever created lung mask dataset. The download
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Algorithm 1: Channel Factor Enhancement(CFE)

Input: feature map β ∈ R4C

Output: feature map β4 ∈ R4C∗H∗W

1: count = 0
2: for i = 0 to 2

√
C − 1 do

3: for j = 0 to 2
√
C − 1 do

4: β1[i, j] = β[count, 0]
5: count = count + 1
6: end for
7: end for
8: count = 0
9: for i = 0 to 2

√
C − 1 do

10: for j = 0 to 2
√
C − 1 do

11: count = count + β1[i, j]
12: end for
13: β2[i, 0] = count / j
14: end for
15: for i = 0 to 2

√
C − 1 do

16: for j = 0 to 2
√
C − 1 do

17: β3[i, j] = β2[i, 0]
18: end for
19: end for
20: count = 0
21: for i = 0 to 2

√
C − 1 do

22: for j = 0 to 2
√
C − 1 do

23: β4[count, 0] = β3[i, j]
24: count = count + 1
25: end for
26: end for
27: for i = 0 to 4C do
28: for j = 0 to H do
29: for k = 0 to W do
30: β5[i, j, k] = β4[count, 0]
31: end for
32: end for
33: if i > 0 then
34: Channelconcatenation
35: end if
36: end forreturn β5

address of dataset COVID-QU-Ex is https://www.kaggle.
com/datasets/anasmohammedtahir/covidqu.

TABLE 1. Distribution of dataset

Set COVID-19 VP BP Normal Total

Training 1000 1000 1000 1000 4000
Validation 120 120 120 120 480
Testing 120 120 120 120 480

The number of training set, validation set and testing set
is shown in TABLE 1 for four types of CXR images. In
our study, we carefully considered the balance between these
subsets to ensure that the model could efficiently and quickly
learn from the training set, avoid overfitting through val-

(a) COVID-19 (b) Viral Pneumonia

(c) Bacterial Pneumonia (d) Normal

FIGURE 7. (a) to (d) represent four types of input images, which are
COVID-19, Viral Pneumonia(VP), Bacterial Pneumonia(BP) and Normal
respectively.

idation, and provide a fair assessment of its usability via
the testing set. Therefore, we randomly collect and split the
dataset into 4000, 480 and 480 for training, validation and
testing in three different datasets respectively.
To avoid training termination due to inconsistent images,

we preprocess the entire dataset before training, such as
grayscale, tensor transformation, and random cropping. Pre-
processing ensures pulmonary image size of 1*256*256.

B. IMPLEMENTATION DETAILS
The LMA-Net is implemented using Pytorch framework.
For network training, the BCEWithLogitsLoss is used as
the loss function, while adaptive moment estimation(Adam)
optimization with initial learning rate of 1e-3, standard beta
values of (0.9, 0.999) and eps of 1e-8 is applied to minimize
this loss. The LMA-Net is trained for 300 epochs with a batch
size of 8. All experiments are conducted on GeForce RTX
3090 with 24 GB of memory.

C. EVALUATION INDICATORS
Specifically, the LMA-Net is evaluated by use of intersection
over union(IoU ), dice coefficient(Dice), average symmetric
surface distance(ASSD) and 95th percentile of the hausdorff
distance(HD95). The IoU and Dice are respectively defined
as

IoU =
|p ∩ y|
|p ∪ y| (9)

Dice =
2|p ∩ y|
|p|+ |y| (10)

where p and y denote prediction and ground truth respectively,
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Both ASSD andHD95 are used to calculate the surface dis-
tance and measure the accuracy of the segmentation bound-
ary. The ASSD calculates the average distance between pre-
dicted boundary and ground truth boundary, while HD95 cal-
culates the maximum distance between the two boundaries.
ASSD and HD95 are defined as

ASSD =

∑
a∈Sa minb∈Sbd(a, b) +

∑
b∈Sb mina∈Sad(b, a)

len(Sa) + len(Sb)
(11)

HD95 = 0.95max[max
a∈Sa

min
b∈Sb

d(a, b),max
b∈Sb

min
a∈Sa

d(a, b)] (12)

where Sa and Sb indicate the predicted segmentation boundary
and the manual segmentation boundary respectively. Both a
and b indicate pixels on the boundary, and d(·, ·) is distance
function. len() represents the sum of pixels that make up the
boundary Sa or Sb.

D. EXPERIMENTAL RESULTS
This paper takes COVID-QU-Ex as the research object and
carries out four groups of experiments. In order to verify the
effectiveness of each module in LMA-Net, ablation experi-
ments are conducted. In addition, LMA-Net is compared with
the current advanced segmentation network.

1) Ablation experiments for segmentation results

TABLE 2. Ablation experiments for segmentation results

Network IoU (%) Dice(%) ASSD(mm) HD95(mm)

Baseline 95.85 96.26 16.63 83.37
PDC 95.80 96.77 16.90 83.59
RCA 95.31 96.80 13.29 81.07
MSA 94.08 96.77 12.32 79.88

PDC+RCA 95.29 95.24 14.17 81.74
PDC+MSA 95.22 96.77 14.80 81.76
RCA+MSA 94.75 96.17 13.44 81.14
LMA-Net 96.28 96.95 13.11 81.12

The proposed LMA-Net takes the U-Net as the base-
line, where LMA-Net includes progressive dilated convolu-
tion(PDC), reinforced channel attention(RCA) andmultiscale
attention(MSA). To verify the effectiveness of combining dif-
ferent network, we compared LMA-Net with six variants of
different combinations of PDC, RCA and MSA. Specifically,
PDC means progressive dilated convolution used only in the
encoder of the baseline. RCA represents reinforced channel
attention used only in the decoder of the baseline. MSA
represents multiscale attention used only in decoder of the
baseline.

TABLE 2 presents quantitative comparison of the LMA-
Net and other variants lung segmentation, where IoU , Dice,
ASSD and HD95 are adopted to evaluate the segmentation
effect. It can be observed that LMA-Net has the highest
score of 96.28% and 96.95% respectively in IoU and Dice.
At the same time, in the comparison between ASSD and
HD95, LMA-Net is also close to the best MSA, reaching

13.11mm and 81.12mm respectively. FIGURE IV-D1 shows
the visual comparison of different CNNs dealing with CXR
segmentation task.

2) Ablation experiments for computing cost
We randomly generate a tensor f ∈ R1∗256∗256 as the in-
put of the segmentation models to test computing cost and
inference time. Then, the parameters(Param), floating point
operations(FLOPs) and inference time of networks can be
tested. As show in TABLE 3, the LMA-Net outperforms
all other variants in Param, FLOPs and inference time, and
the corresponding values are 2.89M, 2.64G and 609.31ms,
respectively. It follows that LMA-Net can effectively reduce

TABLE 3. Ablation experiments for computing cost

Network Param(M) FLOPs(G) Time(ms)

U-Net 3.91 7.72 724.38
PDC 3.80 7.52 701.87
RCA 3.59 4.96 779.68
MSA 3.92 7.99 781.04

PDC+RCA 3.59 4.69 763.52
PDC+MSA 3.92 7.99 813.43
RCA+MSA 3.60 4.96 903.81
LMA-Net 2.89 2.64 609.31

the number of parameters and floating point operations in the
segmentation process. This method can effectively improve
segmentation speed.

3) Comparison with other methods for segmentation results

TABLE 4. Comparison with other methods for segmentation results

Network IoU (%) Dice(%) ASSD(mm) HD95(mm)

U-Net [10] 93.85 94.26 17.63 85.37
FCN [15] 92.70 93.70 16.60 85.21

DenseNet [13] 92.73 93.21 16.57 84.22
U-Net++ [18] 93.88 93.91 15.36 83.54

Attention U-Net [17] 94.84 94.11 16.69 83.68
R2U-Net [16] 95.20 95.88 13.76 82.30
MFM-Net [32] 93.45 92.78 14.59 84.12

LMA-Net 96.28 96.95 13.11 81.12

LMA-Net is compared with seven state-of-the-art methods
which are U-Net, FCN, DenseNet, U-Net++, Attention U-
Net, R2U-Net and MFM-Net. These models are all retrained
on COVID-QU-Ex.
As shown in TABLE 4, segmentation results of the segmen-

tationmodels are listed in the contrastive experiment. It shows
that the LMA-Net has good segmentation performance. The
LMA-Net obtains a IoU of 96.28%, which is a great improve-
ment compared with 93.85% of U-Net. Although the LMA-
Net is similar to the Attention U-Net and R2U-Net in segmen-
tation performance, ourmodel is far less than other models for
comparative experiments in terms of Param and FLOPs, as
shown in TABLE 5. FIGURE 9 shows the visual comparison
of different CNNs dealing with CXR segmentation task.
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FIGURE 8. Visual comparison of ablation experiments for lung segmentation. The red arrows highlight some mis-segmentations. The blue border is the
result of manual segmentation. The green border is the predicted segmentation result.

FIGURE 9. Visual comparison between LMA-Net and state-of-the-art networks for lung segmentation. The red arrows highlight some mis-segmentations.
The blue border is the result of manual segmentation. The green border is the predicted segmentation result.

4) Comparison with other methods for computing cost

TABLE 5. Comparison with other methods for computing cost

Network Param(M) FLOPs(G) Time(ms)

U-Net [10] 3.91 7.72 724.38
FCN [15] 30.02 801.97 1119.81

DenseNet [13] 7.97 3.64 1372.41
U-Net++ [18] 36.63 138.52 726.72

Attention U-Net [17] 9.83 19.91 980.13
R2U-Net [16] 39.09 152.81 879.82
MFM-Net [32] 0.31 8.77 817.66

LMA-Net 2.89 2.64 609.31

We randomly generate a tensor f ∈ R1∗256∗256 as the input
of the segmentation models to test computing cost. Then,
the parameters(Param), floating point operations(FLOPs) and
inference time of networks can be tested. As show in TABLE
5, the LMA-Net outperforms other state-of-the-art networks
in Param, FLOPs and inference time, and the corresponding
values are 2.89M, 2.64G and 609.31ms, respectively. Al-
though the LMA-Net has more parameters than MFM-Net,
its segmentation performance is much higher than MFM-
Net. It follows that the LMA-Net achieves lightweight while
ensuring superior segmentation performance.

5) Comparison for generalization

TABLE 6. Generalization comparison with other methods for
segmentation results

Network IoU (%) Dice(%) ASSD(mm) HD95(mm)

U-Net 95.96 96.36 32.62 158.62
FCN 93.35 93.52 37.33 143.89

DenseNet 93.59 94.03 29.58 125.22
U-Net++ 95.10 95.40 36.74 163.37

Attention U-Net 95.44 95.83 34.10 180.24
R2U-Net 94.29 94.90 34.06 170.64
MFM-Net 94.85 95.69 27.73 155.47
LMA-Net 97.10 97.16 34.70 138.22

LMA-Net is compared with seven state-of-the-art methods
which are U-Net, FCN, DenseNet, U-Net++, Attention U-
Net, R2U-Net and MFM-Net. These models are all retrained
on the colon polyp dataset Kvasir-SEG.
As shown in TABLE 6, segmentation results of the segmen-

tationmodels are listed in the contrastive experiment. It shows
that the LMA-Net has good segmentation performance. The
LMA-Net obtains a IoU of 97.10%, which is a great im-
provement compared with 95.96% of U-Net. Although the
LMA-Net is similar to the U-Net++ and Attention U-Net in
segmentation performance, our model is far less than other
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FIGURE 10. Visual comparison between LMA-Net and state-of-the-art networks for colonic polyps segmentation. The red arrows highlight some
mis-segmentations. The blue border is the result of manual segmentation. The green border is the predicted segmentation result.

models for comparative experiments in terms of Param and
FLOPs, as shown in TABLE 6. FIGURE 10 shows the visual
comparison of different CNNs dealing with Kvasir-SEG seg-
mentation task.

V. DISCUSSION AND CONCLUSION
In this paper, we explore the possibility of deep learning to
assist in medical diagnosis. To address the two key issues
of limited computing resources in clinical medical work-
stations and low accuracy of deep learning networks for
medical image segmentation, a lightweight multiple attention
network(LMA-Net) is proposed to achieve pulmonary seg-
mentation of CXR images, which is used to assist diagnosis.
This method improves the classical convolutional module
to achieve lightweight, and innovatively proposes reinforced
channel attention and multiscale attention to heighten seg-
mentation accuracy. In addition, the COVID-QU-Ex dataset
is improved and multiple lung lesion images are fused to im-
prove the generalization of the segmentation network. Com-
pared with other approaches, it verifies that the proposed
method is superior through comprehensive experiments. To
conclude, we will explore imagedriven methods for lesion
recognition in future work.
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