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ABSTRACT The color of a product is one of the main factors that affect consumer choices. However, it can
be difficult to discern the subtle differences in color in order to inspect or classify products without expensive
and specialized equipment. In this study, we proposed an approach where standard off-the-shelf components
(digital camera and RGB LED lights) can be used to robustly classify products based on their color. By
varying the color of the illumination, environment-independent information of the color of the object can
be obtained. Then, using a Log-Linearized Gaussian Mixture Neural Network (LLGMN), a neural network
based on a statistical model, the objects can be effectively and robustly classified based on their color without
requiring a large number of training data. An experiment was performed to verify the effectiveness of this
approach. 8 samples with only a subtle difference in color were prepared, and a prototype was developed to
be used to classify these 8 samples. We demonstrate that we are able to classify the 8 samples an accuracy
of 100% when there was no ambient light and were still able to maintain an accuracy of 94.1% when there
was ambient light in the room.

INDEX TERMS Colorimetry, Visual Inspection

I. INTRODUCTION
The color appearance of a product can have a significant
effect on consumer choices. Therefore, producers have strong
incentives to maintain consistency in the surface color of their
products. In the case of manufactured goods, there is a need to
inspect their products to ensure the colors are even throughout
and that there is minimal variation between batches [1], [2].
For natural products that are mined or harvested, such as
ceramic tiles [3], wood panels [4], [5], producers often need
to classify and sort them based on their color. Furthermore,
color is one of the main attributes used by consumers when
evaluating the safety and quality of food products [6]–[9].

Traditionally, this inspection and classification was done
by humans using only their naked eyes. In addition to the
high labour costs and relatively low speeds of this approach,
there is also often variability between human observers [10],
[11]. This variability can increase substantially when different
light sources are used, even when the color of these light
sources appears the same. These metameric light sources
can have very different spectral distributions [12], leading

to radically different colors being perceived [13]–[15]. This
is especially a problem in recent years, where LED-based
lighting is becoming increasingly prevalent due to their cost
and energy advantages. The white light in these lighting
systems is produced from a combination of narrowband or
spikey spectra sources [12], [16], which can change the color
appearance of objects. There is a need for an automatic visual
inspection system that is robust to variations in ambient light
and can discern subtle color difference.
We propose a system utilising of off-the-shelf components,

specifically, RGB LED lights and a digital camera, in combi-
nation with a Log-Linearized Gaussian Mixture Neural Net-
work (LLGMN) [17] to automatically classify the different
grades or classes of a product.
This study is structured as follows. First, Section II dis-

cusses the works related to our research the advantages of
our approach. Section III introduces the proposed method’s
system components and the LLGMN algorithm encompass-
ing the statistical structure. In Section IV, verification experi-
ments will be conducted using plastic parts colored with blue

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3398630

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

paint containing slight color differences. In the experiment,
we verify the effectiveness of LLGMN to identify the color
information array extracted by the proposed method. Finally,
Section VI presents a summary of this study.

II. RELATED WORKS

One often used solution to these metameric issues is
through the use of conventional high-performance spectrom-
eters to obtain the reflectance of these surfaces [18]. Although
able to provide objective and accurate information about the
surface color of an object under various lighting conditions,
these devices are often expensive, have narrow field-of-view,
and require a lot of space. Traditional scanning methods
such as whiskbroom or pushbroom scanning can suffer from
low speed due to their scanning mechanism, and snapshot
spectral imaging methods are often bulky and expensive due
to their complex optical systems [18], [19]. Additionally, they
can also suffer from reduced pixel density due to spatial
binning [20].

These characteristics of traditional spectrometers often
make them unsuitable for many colorimetric applications.
In today’s increasingly high-mix, low-volume manufacturing
environments, where a large variety of products are produced
in small quantities [21], there is a desire for flexible, low-
cost, and portable systems that can be quickly repurpose and
adapted to new products. Also, in applications where there are
substantial benefits to the inspection or classification being
performed in the field, such as when classifying the color of
soil [22], [23], simple, portable, and robust devices are often
preferred.

With technological advances in consumer electronics, dig-
ital cameras and RGB LED lights, where the intensity of its
RGB channels can be individually controlled, are becoming
ever cheaper and ubiquitous. Therefore, in this study, we pro-
pose combining these ubiquitous off-the-shelf components to
produce a system that can objectively inspect and classify
the colors of products. Digital cameras, on their own, with
only red, green, and blue channel filters are often not suffi-
cient to produce environment-independent measurements of
surface color [24], [25]. Therefore, we propose making use
of the narrowband RGB LED lights at different intensities to
measure how the surface color changes. By the simultaneous
multiplexing of the illumination and the imaging system using
these off-the-shelf components, the environment-independent
colorimetric properties of the surface can be determined, and
products can be inspected for defect or to be classified into
different grades.

Due to advances in the miniaturized, cost-effectiveness and
efficiencies in digital camera and LEDs, the proposed system
can bemade portable and affordable, allowing them to be used
flexibly and in the field. Additionally, the system can leverage
advances in computer vision due to its use of a standard digital
camera. For example, objects in raw image often need to
be segmented before color inspection or classification; rice
seeds need to be separated from its background before color

identification [20], and the colors of early- and latewood of
wood panels needs to be identified separately [4]. Further-
more, other visual inspection procedures, such as identifying
defects, can be easily added to the same setup [26]–[28].
Although there has been research into using RGB LEDs with
a digital color camera, their goal has been to reproduce a
multi-spectral imaging system that can be used in placed of
an imaging spectrometer [29], [30].
Finally, the classification approach proposed, LLGMN,

does not require as many training samples as in general deep
learning and has the excellent feature of building models
based on statistical criteria, even from a few samples [31].

III. METHODS
A. SYSTEM COMPONENTS
The proposed measurement system component is shown in
Fig. 1. During themeasuring process, the object is illuminated
with color light (MD2-100UPRLGB, SHIMATEC Y.K.), and
images are acquired using an RGB color camera (HD Pro
Webcam C920, Logicool Co Ltd.). A computer (HP ProBook
430 G5, HP Development Co Ltd.) is connected to an RGB
color camera and a microcontroller (Arduino Uno, Arduino,
LLC Co Ltd.). The microcontroller is connected to a color
light and a color light controller. The RGB color camera
has a focal length of 3.67 [mm], an optical resolution of 3
[megapixel], and a maximum frame rate of 30 [fps]. The
controller of the color light can control the intensity of each
of the three LEDs (Red, Green, and Blue) in the color light by
PWM control. The color light spectrum is shown in Fig. 2.

RGB Camera

Color Light

PC Controller

FIGURE 1. System components

B. EXTRACTION OF COLOR INFORMATION ARRAY
In image acquisition, the brightness values in the 3 color
planes (Red, Green, Blue) of the RGB color camera are mea-
sured when the object is illuminated in 7 different color light
conditions to extract a multi-dimensional color information
array of the object. The measurement algorithm is shown in
Fig. 3.
The computer sends commands to the microcontroller via

serial communication to control the intensity of the Red,
Green, and Blue LEDs in the color light. As shown in Fig. 2,
we use 3 monochromatic lights (Red, Green, Blue) and 4
colors (Yellow, Cyan, Magenta, White), which are a combi-
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FIGURE 2. Color light specification

nation of these colors, for a total of 7 colors. The color light
is switched every 0.4 [sec] and the image is acquired at 2.8
[sec] per object.

Each time the color light is switched, the brightness val-
ues in the Red, Green, and Blue color planes are measured.
Brightness values are expressed in 8-bit(256) gradations. The
image is acquired at 1280 × 720 [pixel]. Calculate the av-
erage brightness value of the object’s center in the image
extracted by 100[pixel]×100[pixel]. In other words, the 21-
dimensional average brightness values of 7-color × RGB
planes (3-planes) are extracted as a color information array
for 1-object.

(i) Image acquisition with color lights

- Color information extension by 7 color lights 

White Magenta Blue Cyan Green Yellow Red

(ii) RGB image plane extraction

- 3 planes ×7 color lights

…

(iii) Color information array extraction

-
3 plane

7 color lights
R

G

B

0 50 100 150 200 250

FIGURE 3. Color information array extraction algorithms

C. DISCRIMINATION USING A STATISTICAL NEURAL
NETWORK
1) Log-Linearized Gaussian Mixture Neural Network
Color information arrays are identified using LLGMN, which
is a neural network with statistical structures [17].

The structure of LLGMN is shown in Fig. 4. First, the
feature vector X ∈ Rd is pre-processed and transformed into
the input vector X ∈ Rd . The first layer consists of H units

FIGURE 4. Structure of LLGMN

corresponding to the dimensionality H of the input vector X
and uses identity functions for the input-output functions of
the units. The input-output relationship in the first layer is
given by Equations (1) and (2), where (1)Ij is the input and
(1)Xj is the output.

Yk,m =

H∑
h=1

(1)Ohw
k,m
h (1)

(2)Ok,m =
exp[Yk,m]∑K

ḱ=1

∑MK
ḿ=1 exp[Yḱ,ḿ]

(2)

Note that wK ,MK = 0.

The third layer consists of K event units and outputs the
posterior probability of event k(k = 1, · · ,K ). Unit k is cou-
pled with Mk units k,m(m = 1, · · ,MK ) in the second layer.
The input-output relationship is represented by Equations (3)
and (4).

(3)Ik =
MK∑
m=1

(2)Ok,m (3)

Ok =
(3) Ik (4)

The LLGMN is trained using N sample data x(n)(n =
1, · · ,N ). Given N sample data points (training data), the log-
likelihood function L is given by Equation (5).

L =

N∑
n=1

K∑
k=1

T (n)
k log(3) Ok (5)

The output value of the network (3)Ok corresponds to the
posterior probability P(k | x(n)). For evaluation function J ,
we use Equation (6), which is Equation (5) with a negative
sign, and learn to minimize it, that is, to maximize the likeli-
hood.
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J =

N∑
n=1

Jn = −
N∑
n=1

K∑
k=1

T (n)
k log(3) Ok (6)

IV. EXPERIMENTS AND RESULTS
Validation experiments were conducted to demonstrate the
effectiveness of the proposed method. The following sec-
tions describe the experimental conditions, the improvement
in identification performance with a multidimensional color
information array, and the improvement in robustness of iden-
tification performance to changes in lighting conditions.

A. EXPERIMENTAL CONDITIONS
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8. TS-51 RACING BLUE

FIGURE 5. Target objects

The object is a plastic bottle cap painted with a color spray
of a similar color. The color sprays are made by Tamiya Co
Ltd. and are all blue in color. There were 8 variations, ranging
from combinations that can be visually identified to those
that are very difficult to identify. Blue color sprays are TS-10
FRENCH BLUE, TS-15 BLUE, TS-44 BRILLIANT BLUE,
TS-50 MICA BLUE, TS-51 RACING BLUE, TS-53 DEEP
METALLIC BLUE, TS-54 LIGHT METALLIC BLUE, and
TS-57 BLUEVIOLET. As a preprocessing step, a primer was
sprayed with a surfacer before spraying. FINE SURFACE

PRIMER FOR PLASTIC & METAL (LIGHT GRAY) was
used for the surfacer. The spectra generated on the object and
the object are shown in Fig. 5. The number to the left of the
object name in Fig. 5 represents the class number.
The distance between the RGB color camera and the object

was 90[mm]. The parameters for the RGB color camera were
Brightness: 110, Contrast: 0.05, Exposure: 0.0088, Focus: 65,
Gain: 0, White Balance: 4847, Saturation: 128, Sharpness:
25, Pan: 0, Tilt: 0, Zoom: 100. Sharpness: 25, Pan: 0, Tilt:
0, Zoom: 100.

B. IMPROVED IDENTIFICATION PERFORMANCE USING
MULTIDIMENSIONAL COLOR INFORMATION ARRAY
Fig. 6 shows the color information that can be obtained using
our proposed method. Images acquired under natural light of
two target objects (6. TS-53 DEEP METALLIC BLUE and
5. TS-50 MICA BLUE) shown in Fig. 5 are shown on the
left and the corresponding RGB intensity information under
the seven color lights are shown to the right of each object.
The brightness of each plane is converted to grayscale and
displayed as a 256 grayscale image.
The columns in each group represent the color light colors,

and the rows represent the RGB planes. It was confirmed that
the images in the upper and lower rows differ in appearance
according to the color of the color light and the extracted
planes. In particular, when the color light is Magenta, the
images extracted from the Green and Blue planes were very
different. The proposed method is expected to facilitate the
identification of objects that are difficult to identify by visual
inspection or traditional methods.

7 Color lights

TS-51 RACING BLUE

TS-50 MICA BLUE

R

G

B

R

G

B

GreenBlue YellowMagenta Cyan RedWhite

FIGURE 6. Example of extraction color information using the proposed
method

Next, the distribution of the average brightness values cal-
culated from the extracted images, i.e., the color information
array, is visualized in Fig. 7. Images were acquired for each
of the eight target objects from 1 to 8. Images acquired under
natural light are shown at the top of each graph. In each graph,
50 images are taken for the object and 50 points are plotted
each. The color of each point corresponds to the color of the
color light, the labels on the horizontal axis represent RGB3
color planes, and the vertical axis represents the average
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brightness value of each color plane. The multidimensional
plots extracted by the proposed method are distributed with
unique features for each object, indicating that each object
can be easily identified from this information.

Furthermore, we compared the degree of separation of the
extracted image information between the proposed method
and common image feature extraction methods using F val-
ues. The proposed method lights the object with 7-color light
and extracts a 21-dimensional color information array of 7×3
from 3 RGB planes. In contrast, the general method lights the
object with white monochromatic light and extracts average
brightness values of only 3 types from 3 RGB planes. Images
were acquired 50 times for each condition, and the average
brightness value was extracted. The comparison results are
shown in Table 1. The F value of the color information array
of the proposed method is larger. A large F value indicates
a large variance in the average brightness value extracted
among each object. Since a larger variance of themean bright-
ness value facilitates identification, we were able to show
that the proposed method is superior to common methods in
identifying the color of an object.

TABLE 1. Comparison results in terms of F-value

Method F value
Color information array 8236.7
RGB values under white light 2557.9

C. IMPROVED ROBUSTNESS TO CHANGES IN LIGHTING
ENVIRONMENT
In general, automated visual inspection requires a completely
light-shielded environment to eliminate the effects of ambient
light, but the equipment tends to be large. In actual manu-
facturing sites, it is often difficult to ensure a stable light-
shielding environment due to sudden changes in manufac-
turing plans or production lines or to respond to inspections
of irregularly manufactured products. It would be efficient if
automatic visual inspection could be realized without needing
a large light-shielding environment. The proposed method
combines color light and color planes to extract a multidi-
mensional color information array. It thus has the potential
to achieve color identification that is robust to changes in
ambient light, even in the absence of special light-shielding
environments.

This study conducted experiments in two lighting patterns
to verify whether the accuracy could be maintained when
affected by ambient light. Images were acquired under normal
living room conditions, with the fluorescent lighting in the
room "on" and "off." In both environments, images were
acquired at night. The illuminance of the room was measured
using an iOS application (QUAPIXLite, Iwasaki Electric Co.,
Ltd.). The illuminance was 660[lx] with "room lights on" and
10[lx] with "room lights off." The distance between the light
and the object was 85[mm].
Table 2 and Fig. 8 show the data used in the verification

experiment train the LLGMN model, and the experiment

TABLE 2. Condition of the experimental environment

Condition
1 2 3 4

Number of dimensions used 3 3 21 21
Training data Room light Off Off Off Off

Number of data 30 30 30 30
Test data Room light Off On Off On

Number of data 30 30 30 30

scene. The 4 conditions are shown based on 2 types of the
lighting environment and 2 types of image feature extraction
methods. As shown in Fig. 8, there are 2 types of lighting
environments: "room lighting on" and "room lighting off".
There are two methods for extracting image features: the
proposed method using a 21-dimensional color information
array and the conventional method using 3-dimensional RGB
information under white lighting. For each condition, 30 sam-
ples of training and test data were used.
We then attempted to classify the target objects under these

four conditions using our proposed classification method.
The parameters of LLGMN were set to 3 for the number of
components, 8 for the number of classes, 30 for each class for
the number of training samples, and 30 for each class for the
number of test samples.

To compare the performance of our proposed method, we
implemented two other classification methods. The first is a
conventional method similar to LLGMN, Gaussian Mixture
Model (GMM) [32], and the second is a convolutional neural
network, ResNet101 [33].

GMM is a semiparametric model that allows flexible mod-
eling from a smaller number of samples than deep learning.
It is a method for modeling the statistical distribution of an
object by mixing Gaussian distributions and is the basis of
LLGMN. Because GMM is an unsupervised model, training
and test data were mixed, and all 60 samples were used for
modeling. The number of training sessions was set by trial
and error to obtain the best test performance. The parameters
of GMM were set to 3 for the number of components and 8
for the number of classes, as in LLGMN.

In recent years, ResNet101 is a popular convolutional neu-
ral network that is often used to classify images [34], [35].
The raw image under conditions 1 and 2 in Table 2was used to
train and test the accuracy of this method. To generate training
and test samples for ResNet101, 2000 images were generated
for each target object by randomly cropping 100×100 pixels
around the center of the target object (within -50 to 50 pixels).
A total of 16000 images were generated; 8000 images were
used for training and the other 8000 images were used as test
data. To input the images into ResNet101, these images were
resized, and their intensities rescaled to 224× 224 pixels and
between 0 - 1. The weights of ResNet101 were initialised
using the pre-trained ImageNet weights [36]. The model was
trained with a batch size of 16, a stochastic gradient descent
(SGD) optimizer and for an epoch of 20.

The experiment results are shown in Fig. 9. The graphs
in columns 1 through 4 show conditions 1 through 4 of
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7 Color lights

Color image plane

Target object

1. TS-10 FRENCH BLUE, 2. TS-44 BRILLIANT BLUE, 3. TS-57 BLUE VIOLET, 4. TS-54 LIGHT METALLIC BLUE, 5. TS-50 MICA BLUE,
6. TS-53 DEEP METALLIC BLUE, 7. TS-15 BLUE, 8. TS-51 RACING BLUE

FIGURE 7. Color band examples

Room lighting off

(without ambient light)

Room lighting on

(without ambient light)

FIGURE 8. Experiment scene

Table. 2, respectively, with the first row showing the results
from GMM and the second row showing the results from
LLGMN. Conditions 1 and 2 show that the proposed method
using a 21-dimensional color information array achieves high
identification accuracy. In particular, the LLGMN discrimi-
nateswith 100%accuracy in both cases. However, when using
the conventional GMM, the identification accuracy drops
to 86.7% in Condition 2. This is presumably because the
color information array did not allow for sufficient modeling
because the samples’ distribution varied between the room’s
"on" and "off" lighting conditions. Conditions 3 and 4 are

the cases where no color information array is used, which
is a common conventional method using only 3-dimensional
RGB information under white monochromatic lighting. Un-
der these conditions, the identification accuracy tended to de-
crease. In particular, the accuracy of the conventional GMM
drops to 70.2% in Condition 3 and 50.4% in Condition 4.
LLGMN maintains an accuracy of 94.1% in Condition 3 and
74.6% in Condition 4, even without color information array,
due to its high modeling capability.
ResNet101, on the other hand, achieved a classification

accuracy of 99.2%and 90.5% for conditions 1 and 2. The
proposed method, LLGMN in conditions 3 and 4 (using
7 color lights), achieved a 100% accuracy. Although the
ResNet101 model achieved good results relative to other
approaches when only white lighting was used, the proposed
method of using 7 colored lights with LLGMN outperformed
ResNet101.

V. DISCUSSION
The experimental results demonstrated that the proposed
color information array effectively improves the identifica-
tion performance of slight color differences by expanding
the color information to multiple dimensions compared to
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LLGMN

Condition 1 Condition 2 Condition 3 Condition 4

Correct classification Incorrect classification

1. TS-10 FRENCH BLUE, 2. TS-44 BRILLIANT BLUE, 3. TS-57 BLUE VIOLET, 4. TS-54 LIGHT METALLIC BLUE, 5. TS-50 MICA BLUE,
6. TS-53 DEEP METALLIC BLUE, 7. TS-15 BLUE, 8. TS-51 RACING BLUE

FIGURE 9. Classification results of target objects

conventional general methods.
In addition, improved robustness to changes in the lighting

environment was observed, confirming that LLGMN can be
used to achieve stable and high accuracy. In other words,
it has been proven that the system can stably demonstrate
high identification accuracy without requiring a special light-
shielding environment, even for data with only a slight change
in color, which is conventionally difficult to distinguish.

As discussed in Sections I and II, illumination can have a
substantial effect on the perception of colors. Hu et al. utilized
deep learning to recognize the color of vehicles in natural
scenes and found that most of the mistakes made were due
to differences in illumination or indistinguishable colors [37].
Joze et al. proposed a solution to this color constancy problem
by estimating illuminant colors and intensities by comparing
the color of surfaces in the image to actual colors of known
surfaces [38]. Our approach, although requiring additional
hardware (RGB LED lights), does not make assumptions
about the illumination, but instead imposes additional illu-

minations onto the object, increasing the information avail-
able to distinguish between colors. The increased information
from our approach may enable classifications that are more
robust external disturbances and be more sensitive to small
differences in color.
The first limitation of this study is that artificial colored

target objects were used. Although this simulated the chal-
lenges of discriminating between objects of similar colors
in a manner which can be easily replicated, the colors used
may not reflect that of actual products used in real-world
industries. Nonetheless, we demonstrated that our approach
of expanding the color information by using colored LED
lights substantially increases the F-value of the target objects
(ratio of the variance between the colors of the different
objects to the variance of the observed colors of within each
object).
Another limitations of this study is that the robustness of

ourmethodwas only tested using ambient white indoor lights.
The effects of different lighting environments and brightness,
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such as under direct sunlight or under warm lights, has not
been investigated. Further research is needed to understand
these effects and develop strategies to deal with these dis-
turbances. However, the robustness of our method to indoor
lights suggests that the use of a shade, which decreases the
intensity of the surrounding ambient light, might be sufficient
to maintain the classification accuracy of different colors
using our proposed method.

VI. CONCLUSION
In this study, we proposed a system that uses a neural net-
work LLGMN based on a statistical model to identify color
differences by extending color information through image
measurement using a combination of seven-color color light
and RGB color cameras. This method can distinguish slight
color differences, is robust to changes in ambient light, and is
inexpensive and lightweight, making it easy to implement on
existing lines. The experiment was conducted in two different
environments, shaded and natural lighting, with eight samples
having slight color differences that were difficult to distin-
guish with a typical RGB color camera. A comparison of
the proposed and previous methods proved that the proposed
system has extremely high identification accuracy.

In the future, we would like to introduce the system to
actual production lines and try to apply it to various industrial
products in high-mix, low-volume production. The system’s
accuracy will also be verified under various lighting condi-
tions to establish a more practical visual inspection system.
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