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ABSTRACT This paper addresses the challenge of identifying the paths for vessels with operating routes of
repetitive paths, partially repetitive paths, and new paths. We propose a spatial clustering approach for label-
ing the vessel paths by using only position information. We develop a path clustering framework employing
two methods: a distance-based path modeling and a likelihood estimation method. The former enhances the
accuracy of path clustering through the integration of unsupervised machine learning techniques, while the
latter focuses on likelihood-based path modeling and introduces segmentation for a more detailed analysis.
The result findings highlight the superior performance and efficiency of the developed approach, as both
methods for clustering vessel paths into five clusters achieve a perfect F1-score. The approach aims to offer
valuable insights for route planning, ultimately contributing to improving safety and efficiency in maritime
transportation.

INDEX TERMS Spatial clustering, vessel path identification, maritime transportation, average nearest
neighbor distance, hierarchical clustering, likelihood estimation.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Maritime transportation is crucial for global
trade, generating extensive vessel trajectory data
that reveals intricate spatial and temporal navi-
gation patterns. Understanding these patterns is
vital for effective maritime traffic surveillance
and management [1].
It is crucial to distinguish between trajectory

and path when studying movement data.
The term path refers to the specific course taken
by the object. While, a trajectory refers to a se-
quence of consecutive geographical points, each

representing a specific location at a given times-
tamp [2]. Thus, the trajectory typically denotes
the movement of an object over time. In other
words, a trajectory is a path with schedule and
speed information. For instance, if a vessel trav-
els from origin port to destination port, its tra-
jectory is the sequence of geographical points
it passes through, while its path is the specific
course taken, such as a fairway in a small river
or through a specific canal. While the vessel
trajectory is its navigation including time and
space information, such as time schedule, speed,

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399116

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and location [3], [4].
The primary distinction between a path and a
trajectory lies in the absence of temporal data
within the path, which solely encompasses spa-
tial and sequential information.
Trajectories, observed in various scenarios

such as pedestrian movements, vehicular routes,
and natural events like wildlife migrations or
hurricanes, involve time-evolving position data.
Trajectory mining aims to uncover significant
patterns within datasets, enabling tasks like path
classification, anomaly detection for accidents or
traffic congestions, surveillance for suspicious
activities, and prediction of vessel trajectories in
different landscapes [5].
Additionally, the term route it is the path or

trajectory (according to their respective data) that
shares the same origin and destination. Con-
versely, any difference in either the origin or des-
tination represents another route. For example,
when a vessel travels from an origin port to three
destination ports, we say this vessel has three
distinct routes to reach its three destinations.
The visual example for the aforementioned

definitions are illustrated by Figure 1. The way-
points in the graphs represent the type of infor-
mation that are encompassed with the path are
positional data (pi), while in the trajectory are
spatial and temporal data (fi).

Moreover, a Voyage is a contextual term, gen-
erally referring to the period between a departure
from a port to the departure from the next port.
Voyage is commonly used in reference to sea
travel, much like the term ’trip’ is used in the
context of air travel.
Path clustering - same as trajectory clustering,

but we do not consider the time information.
Our focus is primarily on spatial information of
the moving object. Path clustering, a versatile
technique, involves grouping paths into clusters
based on their similarity, demonstrating its ef-
fectiveness in a myriad of practical applications.
In the realm of navigation, path identification
empowers systems to generate clear and detailed
instructions for users seeking their way. Traffic
analysis benefits from path clustering as it facili-

tates the identification of diverse traffic patterns,
such as the smooth flow of traffic on highways
and the congestion often encountered on city
streets. Path identification proves equally valu-
able in route planning, enabling the optimization
of routes for transportation systems, including
public and maritime transportation services [6].
In the scope of the maritime industry, path

identification from Automatic Identification
System (AIS) data is a challenging task due to the
high spatial freedom and, especially in coastal
areas, the high frequency of ship’s navigation
maneuvers. Thus, it is imperative to develop a
path identification tool that integrates with route
planning systems for improving maritime safety
and optimizing vessel routing. As data-driven
approaches from AIS data continue to grow and
evolve, path clustering will undoubtedly play
an increasingly important role in understanding
vessel behavior and supporting decision-making
in maritime transportation [7].

B. AIMS AND CONTRIBUTIONS
This paper aims to address the challenge of iden-
tifying vessel paths in scenarios characterized by
repetitive, semi-repetitive, and novel operations.
In general, the aims and contributions of the
proposed approach in this paper can be outlined
as follows:

• The proposed clustering approach of vessel
paths requires only position information,
specifically longitude and latitude.

• The clustering approach has a proven added
value for clustering challenging unseen or
unknown paths.

• The approach is robust and interpretable by
applying a similarity measure that reduces
the influence of noise or outliers and offers
a clear interpretation of path clustering.

• The approach has a customizable parameter
to determine the number of path clusters,
thereby enhancing the flexibility and adapt-
ability of the framework and allowing users
to tailor it to their specific needs.

• The approach also includes a method to
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(a) Example of a vessel path (b) Example of a vessel trajectory

(c) Example of vessel routes

FIGURE 1: Illustration for the definitions of (a) path, (b) trajectory, and (c) route of a vessel.

study and analyze the patterns within spe-
cific segments of a path.

• It is a data-driven solution that can be used
as a valuable asset for informed decision-
making in route planning and optimization,
traffic management, and resource alloca-
tion.

The rest of this paper is organized as follows.
Section II reviews the relatedwork on vessel path
identification. Section III describes our proposed
spatial clustering approach in detail. The real-
world vessel data of our case study is described
in Section IV. Section V presents the results
of our experimental evaluation. Section VI con-
cludes the paper and discusses future work.

II. RELATED WORK
Path clustering can be done using a variety of
different methods [8].Wewill explore the related
works of these various methods.
Clustering is gaining popularity for route ex-

traction. Machine learning (ML) has recently
been applied extensively for vessel path identifi-
cation by learning patterns from historical data.
Lee et al., in [5] introduced TRACLUS, a trajec-

tory clustering algorithm employing a partition-
and-group framework to discover common sub-
trajectories. Demonstrating efficacy through for-
mal trajectory partitioning and density-based
clustering and efficiently identifies shared pat-
terns in real trajectory data. The study presented
in [9] introduced a framework, Traffic Route
Extraction and Anomaly Detection (TREAD),
which utilizes unsupervised learning for mar-
itime route extraction. The primary emphasis is
on anomaly detection and route prediction, high-
lighting the crucial role of AIS data in enhanc-
ing maritime situational awareness. The work
specifically addresses challenges related to in-
termittency and persistence in AIS data. An-
other method of route extraction was proposed
in [10], transforming ship trajectories into ship
trip semantic objects (STSO) and utilizing graph
theory for route extraction. The method proves
robustness in extracting traffic routes for mer-
chant ships but may have limitations for ves-
sels with frequent navigation behavior changes,
such as fishing vessels. The approach in [11],
on the other hand, adopts a dynamic time warp-
ing (DTW) distance as a similarity measure and
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considers vessel course changes to analyze its
trajectories. Experiments demonstrated its high
accuracy in distinguishing and detecting sim-
ilar vessel trajectories, outperforming existing
methods in accuracy and cluster degree evalua-
tion. Moreover, [12] presents a machine learn-
ing framework for maritime vessel trajectory
analysis, incorporating clustering, classification,
and outlier detection. It employs piecewise lin-
ear segmentation for compression and alignment
kernels to integrate geographical domain knowl-
edge, enhancing task performance. Results show
reduced computation time without compromis-
ing accuracy.

Capobianco et al. [13] proposed a deep
learning approach using recurrent neural net-
works, employing a Bidirectional Long Short-
Term Memory (BiLSTM) layer as an encoder
and a Unidirectional Long Short-Term Memory
(LSTM) layer as a decoder, for vessel trajec-
tory prediction. Their model outperforms base-
line approaches, showcasing the effectiveness of
sequence-to-sequence neural networks. In their
study, Li et al. [14] present an AIS data-based
machine learning method for feature extrac-
tion and unsupervised route planning for Mar-
itime Autonomous Surface Ships (MASS). The
method uses Automatic and Adaptive Dynamic
Time Warping (AADTW), Spectral Clustering
with Affinity Feature (SCAF), and a route opti-
mization algorithm based on dynamic program-
ming to extract features, obtain movement pat-
terns, and plan routes. The proposed method
outperforms existing methods by considering the
impact of hidden factors and providing differ-
ent routes for different types of MASS. The
work in [15] systematically analyzes the per-
formance of twelve ship trajectory prediction
methods, including classical machine learning
and emerging deep learning techniques. It com-
pares twelve methods across three AIS datasets,
representing different maritime traffic scenarios,
and evaluates their effectiveness based on six
indexes. The study concludes that traditional ma-
chine learning-based trajectory prediction meth-

ods struggle to meet the rising demands for ac-
curacy and real-time performance, leading to in-
creased interest in and promising results from
deep learning-based approaches. EnvClus*, in-
troduced in [16], it is an innovative unsuper-
vised data-driven framework for vessel trajectory
forecasting, achieving a 33% improvement over
state-of-the-art methods. EnvClus* excels in ac-
curately predicting vessel routes, particularly in
long trips, showcasing its effectiveness in mobil-
ity analytics and trajectory prediction.

A maritime traffic route extraction approach
based on multi-dimensional density-based spa-
tial clustering of applications with noise (MD-
DBSCAN) was developed in [17]. The approach
incorporates trajectory compression, similarity
measures, and extraction of ship trajectory clus-
ters. The approach demonstrates effectiveness in
noise reduction and route extraction. The au-
thors in [18] proposed a trajectory clustering
method based on Hierarchical Density-Based
Spatial Clustering of Applications with Noise
(HDBSCAN) andHausdorff distance to generate
a similarity matrix. The method adapts to shape
characteristics and exhibits good clustering scal-
ability and improved clustering results compared
to DBSCAN, k-means, and spectral clustering
algorithms.

Eljabu et al. proposed spatial clustering meth-
ods (SPTCLUST and SPTCLUST-II) in [19]
and [20] respectively, for maritime traffic routes
extraction from AIS data. The approach consists
of data preprocessing, pathfinding, and route ex-
traction without using traditional clustering al-
gorithms. It achieved high F1-scores, 97% and
99%, for tankers and cargo maritime traffic
routes.

The study in [21] enhanced the DBSCAN
method by integrating the Mahalanobis distance
metric for vessel behavior modeling. The pro-
posed methodology includes clustering histori-
cal AIS data and detecting anomalies. The study
showcases applicability to diverse water regions,
contributing to situational awareness, collision
prevention, and route planning.
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Farahnakian et al. [22] conducted a compre-
hensive examination of clustering-based tech-
niques, including k-means, DBSCAN, Affinity
Propagation (AP), and the Gaussian Mixtures
Model (GMM), for detecting abnormal vessel
behaviors from AIS data. Results indicate that k-
means is particularly effective in detecting dark
ships and spiral vessel movements, which is cru-
cial for enhancing maritime safety. Furthermore,
the study [23] proposed two methods for trajec-
tory outlier detection, with the first utilizing DB-
SCAN clustering and Hausdorff distance, and
the second employing Support Vector Machine
(SVM) classifier and the Generalized Sequence
Pattern algorithm. Both models outperform the
baselines, with the SVM approach demonstrat-
ing superior performance in the identification
of traffic patterns and outliers. The study [3]
developed MUITAS, a novel trajectory similar-
ity measure addressing limitations in existing
approaches for multiple-aspect trajectories en-
riched with heterogeneous semantic dimensions.
Through evaluation on real datasets, MUITAS
demonstrates robustness and outperforms cur-
rent methods in precision at recall and clustering
techniques for diverse mobility data. Moreover,
the authors in [24] presented a methodology for
extracting navigation network information from
vessel trajectories, utilizing AIS data. The pro-
posed model identifies key areas, speed, and
course patterns, forming a network abstraction
for optimizing ship routing and scheduling in the
maritime industry, demonstrated through analy-
sis in the eastern Mediterranean sea. This model
is also useful in an outlier behavior detection.

The research paper [25] offers a detailed sur-
vey of visual analytics for vessel trajectory data.
The authors discuss a variety of methods, in-
cluding map-based visualization, timeline-based
visualization, and interactive visualization.

The survey [4] delves into the growing focus
on semantically rich trajectories in movement
data analysis, covering concepts, management
issues, and techniques for constructing, enrich-
ing, and mining trajectories, with attention to

emerging privacy challenges.
The paper [26] comprehensively reviews var-

ious approaches for vessel trajectory predict-
ing, including clustering algorithms andmachine
learning algorithms. It also discusses the chal-
lenges and future research directions, such as
the uncertainty in the data, the dynamic environ-
ment, and the computational complexity.

Among the identified challenges, which are
subjects of ongoing research and require ad-
ditional attention, three are worthy of specific
mention: navigating dynamic maritime environ-
ments poses a substantial challenge in accurately
identifying vessel paths (I); ensuring stability,
explainability, and managing the computational
cost of the model add further complexity (II);
finally, addressing the need for flexibility, scal-
ability, and practical applicability is crucial for
a comprehensive solution in the field of ves-
sel path identification (III). Motivated by these
challenges, we aim to develop a framework that
focuses on vessel path identification and poten-
tially tackling such challenges faced in maritime
transportation.

III. METHODOLOGY
This section covers the theoretical background
and description of our proposed framework’s un-
derlying methodology. The framework of vessel
path identification is depicted in Figure 2.

1) Problem Formulation
The equations (1-3) serve as a mathematical rep-
resentation to describe the clustering of vessel
paths.
It is worth mentioning that the clustering process
is conducted sequentially, point by point, while
the labeling of path clusters is performed for
the entire voyage. Therefore, each voyage has a
single label of path cluster.

Voyages ∈ Path Clusters (1)

Voyages = {ts1[p1, . . . , pn], . . . , tsj[p1, . . . , pn]}
(2)
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Path Cluster Set = {cluster1, . . . , clusterk}
(3)

where:
Voyages: a collection of time series, each repre-
senting a voyage of the vessel taken following a
given path, with a predicted cluster.
tsj: a time series corresponding to voyage j, i.e., a
sequence of n data points, where each data point
p represents the vessel position and is defined
by a pair of coordinates, namely latitude and
longitude.
n: the number of time steps (duration) of each
voyage, which can differ from one voyage to
another.
j: a total number of voyages.
Path Cluster Set: a set of k clusters into which
the path of voyages are being clustered.
Remark: In the definition of k clusters, it is

important to clarify that this study is for labeling
or identifying predefined fairways for vessels
navigating in confined waters rather than open
sea, resulting in a predetermined number of path
clusters, k .

2) Distance-Based Method
The similarity between two paths is measured by
the average nearest neighbor distance (ANND),
as shown in Eq. (4).

ANND(i, j) =
1

ni

ni∑
k=1

Distance(Pki ,NN (Pkj ))

(4)
where:
ANND(i, j): is the average nearest neighbor dis-
tance between path i and path j, present in the
distance matrix at row i and column j. It is a
symmetric, meaning that ANND(i, j) is the same
as ANND(j, i)
Distance(Pki ,NN (Pkj )) : The distance between
the k th point in path i, denoted as Pki , and its
corresponding nearest neighbor point in path j,
indicated as NN (Pkj ). ni is the total number of
points in path i.
The measure Distance is an Euclidean distance.
However, for longer curved routes, Haversine or

(a) (b)

FIGURE 2: Framework of vessel path identifi-
cation. (a) Flowchart of distance-based method.
(b) Flowchart of segmented Gaussian likelihood
method.

Great-circle distance would be more suitable.
The ANND, as expressed in Eq. (4), is com-

puted by averaging the distances between each
point in one path and its nearest neighbor in the
other path.
Then, the similarity value (i.e., ANND) of this
pair of paths is stored as an element in the dis-
tance matrix.
A lower ANND indicates that the paths within
a cluster are more similar. The distance matrix
will have dimensions (m × m) , where m is the
number of paths.
For instance, the computed distance matrix for a
set of 12 paths is illustrated in Figure 3.
After the construction of the distance matrix,

the machine learning (ML) technique is applied
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to cluster the paths based on their corresponding
values in this distance matrix. The ML tech-
niques that we used are k-means, Gaussian Mix-
ture Model (GMM), and hierarchical clustering.

FIGURE 3: Heatmap of the distance matrix for
12 paths of Cinderella II vessel.

3) Segmented Gaussian Likelihood Method
In addition to identifying the vessel’s path, to bet-
ter understand how the vessel changes its paths,
we employ Gaussian distributions on several dis-
tinct segments of the vessel route. This technique
can be summarized as follows:

• Utilize a training dataset comprising vessel
position information that should adequately
represent all potential paths of the vessel
route.

• Divide the route into different distinct seg-
ments.

• Train a single GMM model for each seg-
ment to find the Gaussian distributions of
all segments of the route.

• Estimate likelihoods of the segments by us-
ing the trained GMMmodels with their cor-
responding segments of each vessel voyage
in the test dataset.

• Label the path clusters based on the esti-
mated likelihood at the unique segments of
the route.

IV. CASE STUDY
In this section, we describe the case study, in-
cluding the data collection, preprocessing, and
analysis.

A. DATA COLLECTION
In this study, we utilized datasets collected from
two passenger ships, named Cinderella II and
Buro, operating in Sweden. The vessels are
shown in Figure 4, additional information about
vessels Cinderella II and Buro can be found
in [27].

Cinderella II operates in Stockholm archipelago,
east of Sweden. The data of Cinderella II spans
over five months (July to November 2022). It
comprises information on 124 voyages of this
vessel, connecting the two main ports of Vax-
holm in the east and Sodra in the west.

While Buro works in Gothenburg, west of
Sweden. It dataset has been gathered over a pe-
riod of 15 months (between January 2020 and
March 2021). The data of Buro has 1755 voy-
ages, between two main ports, Groto in the south
and Ockero in the northwest.

(a) Cinderella II. (b) Buro.

FIGURE 4: Images of two vessels that are used
in the case study [27].

B. DATA PREPARATION AND ANALYSIS
In our approach, we emphasize the significance
of data representation. As a result, we group the
path points based on their timestamps with a
resolution of one second and store these grouped
path points with distinctive Voyage IDs.
The routes of Cinderella II and Buro, along their
chosen paths, are depicted in Figure 5. Path clus-
ter distribution for both vessels are illustrated by
the histograms in Figure 6.
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(a) Cinderella II route. (b) Five clusters of path.

(c) Buro route. (d) Three clusters of path.

FIGURE 5: Routes of the two vessels beside
their all possible path clusters, which will be
identified by applying proposed framework.
Note: The colored lines on right side are correct
path clusters or ground truth for both vessels.

Afterward, these paths are ready to be pro-
cessed by the path clustering approach to de-
termine the overall path cluster. In order to ex-
ploit the resulting cluster information, statistical
analysis is conducted to determine differences in
vessel paths concerning fuel, time, distance, and
speed. The histograms representing these quan-
tities across various path clusters can be found in
Figure 7. Notably, when the vessel traverses the
shorter southern paths, it employs slower speeds,
effectively reducing fuel consumption without
significantly impacting travel time.

V. RESULTS AND DISCUSSION
In this section, we present the results of our
spatial clustering approach for vessel path iden-
tification and discuss the implications of these
findings. The approach involved the utilization
of position information and various clustering
techniques, specifically k-means, hierarchical
clustering, and Gaussian distributions clustering,
with the dataset containing 124 voyages.

(a) Distribution of Cinderella II voyages across the
five path clusters.

(b) Distribution of Buro voyages across the three
path clusters.

FIGURE 6: Distribution of voyages if both ves-
sels across the the path clusters.

A. EVALUATION OF PATH CLUSTERING

The results of vessel path identification are eval-
uated through visual inspection and tabulation
using metrics such as confusion matrix, preci-
sion, recall, and F1-score [28].

The hits and messes of path clustering are pre-
sented by the confusion matrix. For our results of
path clustering, the confusion matrix is a one-vs-
one type matrix. Then, the confusion matrix is
converted into a one-vs-all type matrix (binary-
class confusion matrix) as shown in Eq. (5),
for calculating class-wise metrics like precision,
recall, and F1-score.
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FIGURE 7: Average fuel and time, distance, and
speed of five path clusters of Cinderella II vessel.

Pred. Pos. Pred. Neg.
Act. Pos. TP FN
Act. Neg. FP TN

(5)

where True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN)
are determined by comparing the predicted
(Pred.) and actual (Act.) path clusters.
The confusion matrix transformation involves

considering one class as positive at a time, while
combining all other classes as negative. This pro-
cess is repeated iteratively for each class, result-
ing in multiple binary-class confusion matrices.
The following performance metrics were

used:
• Precision: the ratio of true positives to the

total number of predicted positives.
• Recall: the ratio of true positives to the total

number of actual positives in the data.
• F1-score: the harmonic mean of precision

and recall.
The equations for precision, recall, and F1-

score are shown in Eqs. (6), (7), and (8).

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1-score = 2× (Precision× Recall)
(Precision+ Recall)

(8)

B. DISCUSSION

1) Results of Cinderella II Vessel

Table 1 shows the results of applying k-means
or Gaussian Mixture Model (GMM) models to
identify the vessel paths from the distance matrix
in the distance-based method of the path identifi-
cation approach. Notably, the paths with clusters
of North-West, South, and South-West achieved
an F1-score of 1.0, indicating that the approach
correctly identified all the paths of these clusters.

In contrast, the North-East and North-Middle
paths exhibited lower F1 scores compared to
other clusters. The path cluster of North-Middle
is the most challenging path to identify since six
such paths have been clustered as North-East, as
can be seen by comparing Figures 8 and 9, which
are the visualization for all the paths, color-
marked based on their ground truth clusters. Fig-
ure 10 illustrates the probability distribution of
mis-clustered paths with respect to latitude and
longitude coordinates. It is obvious that these
paths have nearly identical coordinates, which
makes them challenging paths to cluster with
k-means or GMM. This suggests that there is
still room for improvement by using other ML
clustering methods.

Table 2 presents the results of employing hi-
erarchical clustering to the distance matrix in the
distance-based method for clustering the vessel
paths. In hierarchical clustering, there is a pa-
rameter called "Dendrogram Cut-off threshold,"
and its value should be selected depending on the
number of path clusters. Hence, as illustrated in
Figure 11, this parameter is denoted by the Y-
axis as a clustering height, and its value is set
to 100 for clustering the vessel path into five
clusters.

Remarkably, all path clusters achieved an F1-
score of 1, indicating that hierarchical clustering
successfully identified all paths with high accu-
racy from the distance matrix using the distance-
based method. This suggests that the choice of
ML clustering techniquewith the distancematrix
can influence the accuracy of path identification.
Table 2 displays the outcomes of clustering, now

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399116

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

by applying the segmented likelihood Gaussian
method. This method achieved perfect precision,
recall, and F1-score for all path clusters.
Figures 12, 13, and 14 present visualizations for
the segmented Gaussian likelihood method.
The accuracy in results by hierarchical and

segmented Gaussian likelihood clustering for
path clusters indicates the efficacy of the devel-
oped approach of spatial clustering for vessel
path identification.

FIGURE 8: The observations of the five clusters
of path for Cinderella II vessel. Note: These are
the correct path clusters or ground truth.

2) Results of Buro Vessel
In this part the results from applying the frame-
work of both hierarchical clustering and seg-
mented likelihood Gaussian clustering of Buro
vessel paths to three clusters. Following a similar
evaluation procedure as in the case of Cinderella
II vessel.

As it can be seen, the results of likelihood
Gaussian clustering also achieved F1-score of
1, as in Cinderella vessel. But for the hierarchi-
cal clustering in Buro vessel case has F1-scores
of 0.957 and 0.996 for clustering East_Canal
and West_Canal paths respectively. This results
can be considered remarkable when take into
account that these two paths, East_Canal and
West_Canal, are challenging to be clustered,
since they have several paths that are slightly

TABLE 1: Result of implementing of both k-
means and GMM clustering of the paths of Cin-
derella II vessel to five clusters.

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

North-East (NE) 0.7 1 0.824
North-Middle (NM) 1 0.85 0.919
North-West (NW) 1 1 1

South (S) 1 1 1
South-West (SW) 1 1 1

(b) Confusion Matrix

Actual Predicted TotalNE NM NW S SW

NE 14 0 0 0 0 14
NM 6 34 0 0 0 40
NW 0 0 16 0 0 16
S 0 0 0 52 0 52
SW 0 0 0 0 2 2
Total 20 34 16 52 2 124

FIGURE 9: Results of both k-means and GMM
clustering to five path clusters for Cinderella II.
The quantitative results for correct and incorrect
paths into the five clusters are shown by the
confusion matrix in Table 1 (b).

different form each other. Figure 19 shows the
heatmap of the distance matrix of 12 sample
paths for Buro vessel. Notably, the East_Canal
and West_Canal paths exhibit high similarity,
which make not easy clustering task.
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FIGURE 10: Probability distribution of location
coordinates for mis-clustered paths of Cinderella
II by both k-means and GMM.

FIGURE 11: Results of hierarchical clustering
the paths of Cinderella vessel to five clusters.

Choosing a proper value of the agglomerative
threshold for the hierarchical clustering to get the
three clusters, as shown in Figure 15, with an
agglomerative threshold = 4.7.

FIGURE 12: Distribution of the route of Cin-
derella II into eight segments.

TABLE 2: Result of implementing both hi-
erarchical clustering and segmented likelihood
Gaussian clustering of paths for Cinderella II
vessel into five clusters.

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

North-East (NE) 1 1 1
North-Middle (NM) 1 1 1
North-West (NW) 1 1 1

South (S) 1 1 1
South-West (SW) 1 1 1

(b) Confusion Matrix

Actual Predicted TotalNE NM NW S SW

NE 14 0 0 0 0 14
NM 0 40 0 0 0 40
NW 0 0 16 0 0 16
S 0 0 0 52 0 52
SW 0 0 0 0 2 2
Total 14 40 16 52 2 124

FIGURE 13: Probability distributions of location
coordinates for the eight segments of the route of
Cinderella II.

3) Results of Implementing TRACLUS Algorithm
For benchmarking our framework, we employed
TRACLUS, a well-established algorithm for tra-
jectory clustering [5], to provide a baseline for
evaluating the performance of our framework.

Figure 20 displays the implementation of TR-
ACLUS clustering approach on the case study of
Cinderella II vessel.

The quantitative outcomes of employing TR-
ACLUS algorithm on both vessels, Cinderella II
and Buro, are detailed in Table 6 and Table 5,
respectively.
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FIGURE 14: Gaussian distributions for seven
segments of Cinderella II vessel route.

FIGURE 15: Results of hierarchical clustering to
three path clusters of Buro vessel.

By implementing the TRACLUS as a bench-
mark model for our case studies, it exhibits rela-
tively lower performance.
TRACLUS utilizes DBSCAN to group similar
trajectories together, a method that inherently
identifies clusters based on density-connected
sets [29]. The inherent characteristics of the DB-
SCAN clustering model come into play, par-
ticularly in scenarios where trajectory density
varies significantly with complex navigational
patterns are present. In addition, the sensitivity of
TRACLUS to threshold parameters further com-
plicates its performance, as it requires careful
tuning to suit specific datasets. This sensitivity
can lead to difficulties in reproducibility and

TABLE 3: Result of Buro vessel by implement-
ing hierarchical clustering to three path clusters

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

Direct 1 1 1
East_Canal 0.946 0.861 0.901
West_Canal 0.989 0.996 0.993

(b) Confusion Matrix

Actual Predicted TotalDirect E-C W-C

Direct 62 0 0 62
E-C 0 105 17 122
W-C 0 6 1565 1571
Total 62 111 1582 1755

FIGURE 16: Distribution of the route of Buro
vessel into seven segments.

practical application.
These limitations emphasize the necessity of

exploring alternative methodologies that better
align with the rigorous demands of the maritime
industry.

VI. CONCLUSION
The proposed approach is able to identify the
vessel paths with partially defined or unknown
paths. In the distance-based method, the hierar-
chical clustering used in the approach outper-
forms k-means and GMM clustering techniques.
The approach of hierarchical clustering in-

cludes a user-customizable parameter, a cut-off
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FIGURE 17: Probability distributions of location
coordinates for the seven segments of the route of
Buro vessel.

FIGURE 18: Gaussian distribution for seven seg-
ments of the route of Buro vessel.

threshold, which allows desired control for the
number of path clusters, enhancing the flexibility
and adaptability of the proposed approach.
In the distance-based method, adopting

ANND as a measure of similarity makes path
clustering less affected by noise or outliers and
provides a more intuitive interpretation of path
similarity, ultimately enhancing the robustness
and interpretability of our approach.
The segmented Gaussian likelihood method is

particularly useful for identifying and analyzing
the vessel path alterations at different segments
of the vessel route.
The proposed approach is computationally ef-

TABLE 4: Result of Buro vessel by implement-
ing segmented likelihood Gaussian clustering to
three path clusters

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

Direct 1 1 1
East_Canal 1 1 1
West_Canal 1 1 1

(b) Confusion Matrix

Actual Predicted TotalDirect E-C W-C

Direct 62 0 0 62
E-C 0 122 0 122
W-C 0 0 1571 1571
Total 62 122 1571 1755

FIGURE 19: Heatmap of the distance matrix for
12 paths of Buro vessel.

ficient and has the potential to be a valuable
tool for planning vessel paths. Accurate path
identification can contribute to safer and more
efficient maritime transportation practices, aid-
ing in route planning, collision avoidance, and
navigation optimization.

Nevertheless, the framework has some poten-
tial limitations, such as the segmented Gaus-
sian likelihood method exhibiting sensitivity to
segment definition, which could affect its sal-
able performance, particularly in complex mar-
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(a) The observations of five path clusters of Cinderella
II, ground truth.

(b) The result of TRACLUS for five path clusters of
Cinderella II.

FIGURE 20: Clustering path clusters of Cin-
derella II to five clusters by TRACLUS algo-
rithm.

TABLE 5: Result of implementing TRACLUS
for clustering the paths of Buro vessel to three
path clusters

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

Direct 1 1 1
East_Canal 0 0 0
West_Canal 0.928 0.999 0.962

(b) Confusion Matrix

Actual Predicted TotalDirect E-C W-C

Direct 62 0 0 62
E-C 0 0 122 122
W-C 0 6 1565 1571
Total 62 6 1687 1755

itime scenarios. Moreover, while the study case
demonstrates that the framework is computation-
ally efficient, it is essential to discuss any po-
tential scalability issues, especially when dealing
with large datasets, since the computational effi-

TABLE 6: Result of implementing of TRACLUS
for clustering the paths of Cinderella II vessel to
five clusters.

(a) Precision, Recall, and F1-score

Paths Precision Recall F1-score

North-East (NE) 1 0.714 0.833
North-Middle (NM) 1 0.450 0.621
North-West (NW) 1 0.562 0.720

South (S) 1 1 1
South-West (SW) 0.057 1 0.108

(b) Confusion Matrix

Actual Predicted TotalNE NM NW S SW

NE 10 0 0 0 4 14
NM 0 18 0 0 22 40
NW 0 0 9 0 7 16
S 0 0 0 52 0 52
SW 0 0 0 0 2 2
Total 10 18 9 52 35 124

ciency may vary depending on the dataset size
and the nature of the paths.
Our framework is specifically designed to

exceed the rigorous requirements of the mar-
itime industry, surpassing typical clustering ap-
proaches like TRACLUS.
Further work could explore the scalability and

real-world applicability of the proposed clus-
tering approach, as well as its integration with
related systems of maritime transportation.
In future studies, we aim to upgrade the frame-

work by incorporating additional information
such as time, speed, direction, and pertinent en-
vironmental factors for clustering trajectories in
open sea navigation. This will enhance the appli-
cability and robustness of our approach for var-
ious real-world maritime operations, including
optimizing route planning, risk assessment, and
navigation management.
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SUPPLEMENTARY MATERIALS
The source codes that are implemented on
Python 3.9.7 to produce the results are avail-
able at: https://github.com/MohamedAbuella/
Path_Clustering
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