

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

Enhancing Software Co-Change Prediction:
Leveraging Hybrid Approaches for Improved
Accuracy
M. Zagane 1, M. Alenezi 2, Member, IEEE
1Departement of computer science, Mustapha Stambouli University, Mascara, Algeria
2Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia

Corresponding author: M. Zagane (e-mail: m_zagane@univ-mascara.dz).

This work was supported by the College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia

ABSTRACT Accurate prediction of co-changes in software systems is crucial for efficient development and
maintenance, especially as systems grow in complexity. While deep learning-based approaches have shown
promise, they often struggle with diverse and complex data. In this paper, we present a novel hybrid approach
that combines traditional software engineering methods with deep learning techniques to improve co-change
prediction accuracy. Our approach leverages software metrics and deep learning models, incorporating the
unique characteristics induced by naming conventions, such as PascalCase and camelCase, used by
developers for naming consistency. By utilizing char n-gram embedding and sub-token context, we enrich
the vector representations of source file names, capturing relationships and dependencies between files. We
comprehensively evaluate our hybrid approach using three open-source software projects. The findings of
this study have significant implications for the development of more effective software co-change prediction
tools and techniques, enabling better decision-making in software development and maintenance processes.
Our approach outperforms traditional software engineering methods and deep learning-based approaches,
demonstrating its potential to significantly improve software development and maintenance efficiency.

INDEX TERMS Co-change prediction, Change impact analysis, Change prediction, Code metrics, Neural
embedding model, Char n-gram embedding, Recommendation systems.

I. INTRODUCTION
In the realm of software development and maintenance,
accurately predicting co-changes has become increasingly
crucial as software systems grow in complexity [1]. Co-
change prediction involves identifying the modules or
components that are likely to change together in the future
[2]. Precise co-change prediction can assist developers in
anticipating potential changes, prioritizing testing efforts,
and reducing the overall time and cost required for software
maintenance [3].

While traditional software engineering methods, such as
statistical analysis and modelling, have been widely
employed for co-change prediction [1], they have
limitations when it comes to handling diverse and intricate
data such as changelogs data. Deep learning-based
approaches have shown promise in addressing these
limitations by leveraging extensive data to learn complex
patterns and relationships. However, these approaches
often face challenges in interpreting the learned patterns

FIGURE 1. Co-changed source files often share similar naming patterns and convention.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

and require substantial amounts of labelled data, which can
be difficult to acquire.

To overcome these limitations, this paper introduces a
novel hybrid approach that combines the strengths of
traditional software engineering methods with the power of
deep learning techniques. Our approach incorporates a
combination of code metrics and a char n-gram embedding
model to significantly enhance co-change prediction
accuracy. By integrating the interpretability of traditional
methods with the learning capabilities of neural-based
embedding models, our approach effectively leverages co-
change patterns induced by both the source code and the
changelogs data which provides a more effective and
efficient way to predict co-changes.

Previous studies that utilized changelogs data in co-
change prediction have demonstrated that the context
provided by co-change instances, as captured by
dependency networks [4] or word embedding techniques
[5], offers valuable insights into source files that tend to
change together. Word embedding techniques enable the
creation of low-dimensional representations of sets of
tokens or words (source file names), placing co-occurring
tokens closer together in the resulting vector space [5].
However, prior studies overlook an important characteristic
induced by naming conventions, such as PascalCase and
camelCase, which developers adopt to maintain naming
consistency throughout projects. Source file naming often
signifies relationships, particularly when files are
interconnected or dependent (Figure 1). For example,
consider three Java files: 'BookRepository.java' implies a
class handling database operation specific to books,
'BookService.java' indicates a higher level of business logic
related to books, likely utilizing the repository, and
'BookController.java' denotes a controller managing book-
related requests, likely interacting with 'BookService' for
operations. Here, the names themselves suggest
relationships and dependencies. In our analysis of the
Spring Frame-work and Elasticsearch projects used in the
experimental evaluation, we observed that more than
28.80% in Spring Frame-work and 35% in Elasticsearch of
co-change instances contain identical parts in all file
names, with no instances found where file names lack
identical parts. To leverage this characteristic, our approach
incorporates char n-gram embedding [7], which relies on
sub-token context. In this technique, the vector
representation of each token (source file name) is enriched
by the vector representations of its sub-tokens which is
better, in the context of our study, than the hole-token
embedding used in related work.

The contribution of this study is two-fold:
 Proposing a novel hybrid approach that combines the

strengths of code metrics in quantifying co-change
attributes from the source code and the power of char
n-gram embedding to effectively learn co-change
patterns from the changelogs data,

 Proposing and making publicly available a hand-
curated dataset of co-change instances and code
metrics extracted from three well-known open-
source projects, we also propose pre-trained models.
These materials can be used to replicate our study
and also, they can be used by other researchers in
future works.

The rest of this paper is organized as follows: in section
2, we present the most relevant related works, in section 3,
we describe the proposed approach and the methodology to
establish and evaluate it, in section 4, we present the
experimental setups, in section 5, we present and discuss
the obtained results and highlight the limitations of the
work and in section 6, we summarize the work done in this
study and indicate perspectives for future works.

II. RELATED WORK
Given the crucial role of change management in the software
maintenance task, huge research efforts have been devoted to
developing effective approaches to software change impact
analysis (SCIA) and co-change prediction (CCP). For the sake
of brevity, we will focus on presenting the most relevant
research works that used code metrics and changelogs data.
For more details about techniques and methods used in the
field, please refer to the systematic literature reviews done
such as [8], [9].

Code metrics were widely used to solve challenging
problems in the field of software engineering such as defect
prediction [10], [11], [12], [13], [14], [15], [16] and
vulnerability prediction [17], [18], [19], [20], [21], [22], [23].
This is motivated by the fact that code metrics are known for
their ability to quantify software attributes such as size,
complexity and coupling which are proven in practice to be
correlated with defects and vulnerabilities [24]. Motivated by
similar intuition, several research works in the field of SCIA
and CCP have used different code metrics types to propose
approaches and methods. Especially, the metrics that directly
quantify dependency and coupling between software modules
gained more researchers' interest. In [25], researchers have
investigated the relationship between object-oriented coupling
and ripple effects. They used metrics such as Coupling
Between Object (COB), Data Abstraction Coupling (DAC),
etc. to propose a SCIA model. Researchers have reported that
these metrics can indicate class pairs with higher ripple effect
probability and have also recommended focusing on all sorts
of requirements and design documentation that provide
additional information for coupling aspects that cannot be
captured by source code metrics. Metrics that indirectly
quantify coupling and dependencies were also investigated, S.
Black in [26] has investigated the ripple effects in non-OO
software projects, he used four variations of McCabe’s
complexity metric to propose the Ripple Effect and Stability
Tool (REST) which was based on an approximated algorithm
to assess the SCIA for C programs. Researchers in [27] have
investigated the correlation of the cohesion metrics with the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

impact of write interactions between class members and have
proposed revisions to the existing cohesion metrics to consider
the impact of the write interactions. Code metrics were also
used as features with machine learning techniques to build
prediction models of SCIA, Abdi et al. in [28] proposed
prediction models built using OO coupling metrics and several
classification algorithms.

To address the lack of code metrics in particular and all
techniques that are based on the source code in general in
capturing some aspects of dependencies and coupling between
the software modules. Researchers have leveraged external
sources of information in SCIA and CCP. Significant parts of
these works have investigated the usefulness of using
changelogs provided by version-controlling systems (VCS) to
capture co-change patterns between software modules and
also combine them with information extracted from the source
code to propose hybrid approaches that improve accuracy.
Wiese [29] found that contextual information, such as commit
metadata and developer communication, can significantly
enhance prediction models, reducing false recommendations.
Similarly, Shakirat [30] reviewed hybrid techniques for
software change impact analysis, highlighting their potential
to enhance accuracy. These studies and others such [31], [32]
that leveraged hybrid approaches to change-prone prediction
collectively underscore the potential of hybrid approaches in
improving the accuracy of software co-change prediction.

The success of deep learning in the field of natural language
processing especially neural model-based word embedding
techniques such as word2vec [33], FastText [7] and BERT[34]
that provide text vector representations; has motivated
researchers in the field of software engineering to explore
similar techniques for source code analysis. Inspired by
word2vec, Alon et al. in [35] have proposed code2vec a source
code representation model that is based on the notion of AST
paths and the attention mechanism. This model aims to
transform source code into numerical vectors that preserve
semantic and syntactic characteristics of the code, enabling
deep learning models to effectively analyze and classify code
for various software engineering tasks such as semantic
labelling of code snippets, captioning a block of code,
generating code to complete a missing piece of a larger
program and defect prediction. In the field of co-change
prediction, a promising model, FCP2Vec, inspired of
Code2vec is proposed in [5]. FCP2Vec (File-level Change
Propagation to vector, aims to represent file names in co-
change instances extracted from the changelogs of a software
project to vector representations that preserve co-change
patterns. Researchers proposed a recommendation system
based on unsupervised nearest neighbors that can suggest for
developers the source file that may need modification based
the file being presently worked on.

The drawbacks of this approach lie in two key aspects:
Firstly, it is based on word2vec embeddings, cannot leverage
the rich information offered by the naming conventions
employed in software projects. It only captures semantic

information induced by the context of each file in its co-
change context. Secondly, the proposed recommendation
system is limited only to changelogs data and does not
consider the source code of the software entities (packages,
files, or classes), missing very important information related
to software attributes (complexity and coupling) that can give
insight into the likelihood of co-change occurrences. In this
paper, we proposed a hybrid approach that aims to improve
co-change prediction by addressing these drawbacks.

III. METHODOLOGY
In this section, we present a hybrid approach to predict
software co-changes, which combines the strengths of both
machine learning and software engineering techniques. Our
proposed approach aims to address the research gap identified
in the previous section, by providing a more accurate and
effective way of predicting co-changes in software systems.

A. APPROACH OVERVIEW
In this work, we propose a novel approach to software co-
change prediction that leverages both changelogs and source
code information to enhance prediction accuracy at the file
level. Our approach is designed to be implemented as a plugin
in an Integrated Development Environment (IDE) or as a
standalone tool for tasks such as change impact and
propagation analysis.

Our approach builds upon the previous work of Lee al. [4],
[5], who treated the co-change prediction problem as a
recommendation system problem. In this context, the goal is
to recommend the top K elements (source files) that are likely
to co-change with the currently edited source file (the query
element). The key contribution of our work lies in the use of
both changelogs and source code information to improve co-
change prediction performances. We extract co-change
instances from changelogs, which provide valuable insights
into source files that tend to change together. We then harness
this information using a char n-gram embedding technique
that captures relationships induced by the context within co-
change instances, as well as insightful information related to
files' sub-names induced by naming conventions. This
technique avoids the problem of Out-of-Vocabulary (OOV)
and enables the model to capture nuanced relationships
between files. In addition to leveraging changelogs, our
approach integrates code metrics to improve prediction
accuracy. Code attributes such as coupling and complexity
have been proven to be correlated with co-change, and
integrating them into the prediction task can provide valuable
insights into the relationships between software modules. By
incorporating code metrics into our model, we can quantify
these attributes and improve the accuracy of our predictions.

Figure 2 shows how the approach leverages both
changelogs and source code information to generate
recommendations for co-changed files. The input to the
system is a source file under edition, and the output is a list of
recommended files that are likely to co-change with the edited

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

file. Overall, our approach offers a novel and effective solution
to the software co-change prediction problem, leveraging both
changelogs and source code information to improve prediction

accuracy at the file level. By integrating code metrics into the
model, we can provide valuable insights into the relationships
between software modules and enhance the accuracy of our

FIGURE 2. Overview of our proposed approach for co-change prediction in software systems.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

predictions. The approach consists of several steps, which are
described in detail in the following sub-sections.

B. PREDICTION
In our approach, the process of co-change prediction involves
two steps: initial prediction and prediction refinement.
During the first step, we utilize a char n-gram embedding
model to generate the initial N (where N > K) co-change file
names (a list of N file names) based on the query file name.
This capability stems from the model's capacity to suggest file
names whose vector representations closely match that of the
query file name or the vectors of its sub-tokens. In [5], the
authors utilized the K ranking score using unsupervised
nearest neighbor (UNN)[36]. They adopted a uniform
interface for three different neighbor algorithms: ball tree,
KDT tree, and brute force. In our approach, we opted for a
simple ranking based on cosine similarity [37], which avoids
additional computational load without compromising
performance.

This is achieved by following these sub-steps:
1. Vector representation: retrieve the vector

representation for the query file's name from the
model's learned embeddings,

2. Cosine similarity calculation: calculate the cosine
similarity between the vector representation of the
query file name and all other file names in the model
vocabulary,

3. Sorting: sort the file names based on their cosine
similarity scores in descending order,

4. Returning Top-N closely file names: returns the
top-N file names (co-change file names) with the
highest cosine scores as the query file name.

In the second step, we refine the first prediction and generate
the final K co-change file names. This is achieved by
incorporating code metrics calculated from the first N source
files selected in the first step. This integration involves
recalculating the similarity scores and reordering the initial N
files predicted by the embedding model, to select the top K co-
change files (Algorithm 1).

C. DATA PREPARATION
As with any data-driven approach, to train and validate our
framework, we need to collect and prepare data from the
repositories of the studied software projects.
The final used data consists of two parts, changelogs data and
code metrics data. The changelogs data is used to train the char
n-gram embedding model which makes the first predictions
and the metrics data is used to refine the first predictions to
generate the final predictions. In the following subsections, we
describe each data and the processes of collecting and
preparing them.

1) CHANGELOGS DATA
Each instance in the changelog data consists of the file names
of the co-changed source files in a commit. Algorithm 2,
shows the steps followed to prepare this data.

 After cloning the repository, we parse it to extract the list of
all commits done on the project and filter them, as
recommended in [5] by removing commits that involve less
than two source files and commits that involve more than 50
source files. After that, we form the co-change instances by
extracting file names of the co-changed files from each
commit. A portion of 19 co-change instances from the final

Algorithm 1 Prediction ;
 Inputs:
 QueryFileName // the file under edition
 EmbeddingModelPath
 N,K
 Outputs:
 FinalPrediction // list of file names with hybrid similarity scores
Begin
 //First step
 Model = LoadModel (EmbeddingModelPath);
 FirstPrediction = Model.GetTopNSimilar(QueryFileName, N);
 //Second Step
 Foreach FileName, SimilarityScore In FirstPrediction Do
 Begin
 Metrics = CalculateMetrics(FileName);
 HybridSimilarityScores [FileName] = Mean (Metrics) +

SimilarityScore;
 End;
 Sort (HybridSimilarityScores);
 For i=0 To K Do // select the first k file names
 Begin
 FinalPrediction.Add (HybridSimilarityScores [i]);
 End;
 Return FinalPrediction ;
End.

Algorithm 2 ChangeLogDataPreparation;
 Inputs: RepositoryURL
 Outputs: CoChangeInstancesList
Begin
 Repo = CloneRepository (RepositoryURL);
 CommitsList = ExtractAllCommit(Repo);
 Foreach Commit In CommitsList Do
 Begin
 ChangedFiles = getCommitChangedFiles(Commit);
 If (50 < Count (ChangedFiles) < 2) Then
 Continue; // ignore commit
 Else
 Clear(CoChangeInstance);
 Foreach ChangedFile In ChangedFiles Do
 Begin
 FileName = ExtractFileName (ChangedFile);
 CoChangeInstance += FileName + ‘ ’;
 End;
 CoChangeInstancesList.Append (CoChangeInstance);
 End;
 Return CoChangeInstancesList;
End.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

changelogs data used in the experimental evaluation is shown
in the Figure 3.

2) CODE METRICS DATA
Each instance in the code metrics data consists of a source file
name and the values of the used code metrics. Any file-level,
class-level or method-level code metrics can be used. Since we
deal with co-changes in file level, the code metrics for a file
can be calculated as follows: the method-level or class-level
metrics for all the methods or classes in a file are aggregated
to compose the final metrics of the file. In this study we
evaluated the metrics described in the Experiments section.

3) DATA PREPROCESSING
When feeding changelog data to the char n-gram embedding
model for training, a simple data preprocessing step is
required. This step consists of removing the file extensions
(e.g., .java) from file names. We remove extensions because
they can be considered stop words, similar to words like 'of,'
'the,' and 'and' in natural text classification problems.
Additionally, since the code metrics data are combined with
the similarity scores returned by the char n-gram embedding
model (which range from 0 to 1) to calculate the hybrid
similarity score (as shown in Algorithm 1), a normalization
preprocessing step is applied to the metrics data.

D. PERFORMANCE EVALUATION
To assess the effectiveness of our co-change prediction
approach, we employ two well-established metrics commonly
used for evaluating top-K recommendation systems: Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG).
These metrics are particularly relevant in this context as our
approach aims to recommend the most likely co-changing

source files (relevant items) at the top of a ranked list for a
given query file (currently edited file). [38], [39]:

 Hit Ratio (HR@K): Measures the proportion of
queries where the truly co-changing file appears
within the top K recommendations. A higher HR@K
indicates that our approach successfully identifies
relevant co-changing files within the top K positions
of the recommendation list. The HR@K can be
calculated by the following formula,

 Normalized Discounted Cumulative Gain
(NDCG@K): This metric not only considers
whether the relevant co-changing file is present in the
top K recommendations but also takes into account
its ranking position. Relevant files ranked higher in
the list contribute more to the overall score,
emphasizing the importance of prioritizing the most
likely co-changing files. A higher NDCG@K
reflects our approach's ability to not only identify
relevant files but also position them prominently
within the recommendation list for developers.

HT@K is calculated by the formula (1) where NH@K
(number of hits @ K) represents the number of source file
names present in each top-K list and TNI (total number of
test items) represents the total number of source file
names in each test list (test instances in the dataset).

@
@

NH K
HR K

TNI
 (1)

NDCG@k is calculated by the formula (2) where rsi represents
the relevance score which can be binary (1 for truly co-
changing files, 0 for others). The logarithmic term (log2(i +
1)) in the formula applies a discounting factor that diminishes
the contribution of lower-ranked items, further emphasizing

FIGURE 3. Example of the final changelogs data

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

the importance of placing highly relevant co-changing files at
the top of the recommendation list [39].

1
2

2 1
@ ()

log (1)

irs
k

i
NDCG k

i




 (2)

IV. EXPERIMENTS
 To carry out the experimental evaluation of our approach, we
prepared a dataset following the data preparation described in
the previous section. We used three well-known and open
source Java projects available on GitHub. Two of them are
already used in related work. Spring Framework is a
comprehensive framework for building enterprise Java
applications, offering features such as dependency injection
and aspect-oriented programming to streamline development
processes. Elasticsearch, an open-source distributed search
engine, provides powerful indexing and search capabilities,
making it ideal for large-scale data analysis and search
applications. Apache Cassandra, a distributed NoSQL
database management system, excels in handling vast amounts
of data across multiple nodes with high availability and fault
tolerance. These projects represent diverse domains within the
Java ecosystem, offering valuable insights into the
effectiveness and applicability of the proposed co-change
prediction approach across different software development
contexts. Table 1 shows some statistics about the dataset used
in the experimental evaluation.

A. EVALUATION PROTOCOL
 To accurately evaluate the performances of our approach, in
our experiments, we adopted a cross-validation protocol. For
each co-change instance in the dataset, we select one file name
as the query item, and the remaining file names are used as
recommendations. This process is repeated so that all file
names in each co-change are used as the query item and also
as part of the recommendation. The final performance results
are then calculated by averaging the results of all the iterations
[40].

B. SETUP AND PARAMETER TUNING
To implement all operations related to the experimental
evaluation, we used the following Python libraries:

 Char n-gram embedding: we utilized the Facebook
FastText [7] implementation provided in Gensim
version 4.3.2,

 Evaluation metrics: we employed the
implementation of the HR and the NDCG provided
in scikit-learn version 1.4.1,

For code metrics calculation, we used the CK open-source tool
[41]. CK allows the calculation of 35 class-level and method-
level code metrics in Java projects (refer to the CK reference
for the complete list). As mentioned before, since we work at
the file-granularity level, a metric for a file is calculated by
summing the values of that metric across all the file’s
methods/classes. To select the metrics relevant to our task, we
implemented a custom selection method and experimentally
tuned the list of metrics to use. The final metrics evaluated in
our experiments are shown in Table 1.

When training the embedding models and to mitigate
extensive computational loads and time required for automatic
parameter tuning techniques such as grid search, random
search, and Bayesian optimization, we experimentally tuned
our hyperparameters. We initiated this process with initial
values recommended in related work specifically in [5]. For
hyperparameters specific to char n-gram embedding, such as
the minimum size (min_n) and the maximum size (max_n) of
sub-tokens, we commenced with default values. The final
values used in our experiments are the following: vector size
= 37, window size = 12, min_n = 3, max_n = 20, and epochs
= 1000. All the experiments and related operations are caried
out on a laptop with the following characteristics: i7-4500U
CPU, 8.00 GB of RAM and Windows 10 OS.

V. RESULTS AND DISCUSSION
This section presents and discusses the results obtained

from the experimental evaluation designed to validate our co-
change prediction approach. We focus on the impact of two
key adjustable parameters (N and K) on the effectiveness of
our approach, as measured by Hit Ratio at K (HR@K) and
Normalized Discounted Cumulative Gain at K (NDCG@K),
where higher values indicate better performance. As a
reminder, our approach can be implemented to operate as an

Project # total commits # extracted co-change
instances

Spring Framework 28732 13148
Elasticsearch 74173 31581
Apache Cassandra 29663 5041

Metric Description

FAN-IN Counts the number of input dependencies for
a class

FAN-OUT Counts the number of output dependencies
for a class

LOC (Lines
 of code)

Counts the total lines of code (ignoring
empty lines and lines of comments)

WMC (Weight
Method Class)

Counts the number of branch instructions in a
class (McCabe's complexity)

Quantity of
comparisons

Quantify the comparison by counting
comparison operators such as == and !=

Quantity of
parenthesized
expressions

Counts the number of expressions inside
parenthesis

RFC (Response for a
Class)

Counts the number of unique method
invocations in a class

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

IDE plugin and predicts co-changing source files
(recommendations) based on the currently edited file (query
element). The prediction process involves two steps: an initial
selection of N source file names based on the similarity score
calculated from the vector representations obtained by the DL
model, followed by refinement using code metrics to generate
the final K recommendations from the initial pool of N
candidate source files.

A. INFLUENCE OF K (NUMBER OF CO-CHANGE FILE
NAMES TO CONSIDER)

In the evaluation of recommendation systems, the selection of
K (the number of recommendations to consider) is influenced
by various factors, including the specific characteristics of the
dataset and the objectives of the recommendation system. In
many research studies, the value of 10 is commonly chosen,

with results reported in terms of HR@10 and NDCG@10.
This practical choice reflects the typical number of
recommendations presented to users in real-world scenarios.

To understand how performance varies with K, we conducted
evaluations of our approach using different values of K. In this
series of experiments, the parameter N is set to 80, a value that
yielded promising results in our preliminary investigations.
The results are shown in Figure 4. As can be seen, the best
performance in both HR@K and NDCG@K indicators was
observed when K was set to 5 and 10. Notably, performance
consistently declined with increasing values of K across all
 three studied projects: Spring Framework, Elasticsearch, and
Apache Cassandra. Additionally, it is evident that the hybrid
approach, incorporating code metrics, consistently
outperforms the DL-only approach in terms of both HR@K
and NDCG@K across all scenarios.
As expected, we observed a notable correlation between the
performance of our approach and the size of training data
(number of co-change instances. Specifically, we found that

the performance tended to improve with the size of the project.
Indeed, performances in the cases of Spring Framework and
Elasticsearch were better than performances in the case of

FIGURE 4. Performance vs. Number of Co-change File Names (K).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

Apache Cassandra which have the smallest number of co-
change instances. This can be interpreted by the fact that char
n-gram embedding, in particular, and all neural and DL-based
approaches, in general, tend to perform better with cases that
involve more training data than cases with less training data.

B. Influence of N (length of the first prediction)
To investigate the influence of the initial prediction length

(N) on the final prediction accuracy, we conducted
experiments using various N values. We fixed K at 10, which
is a commonly used value in related work. The results in terms
of HR@10 and NDCG@10 are summarized in Figure 5.
As shown in Figure 5, we observe a consistent improvement
in both HR@10 and NDCG@10 for the Spring framework

and Elasticsearch projects as the initial prediction length (N)
increases from 12 to 100. This indicates that considering a

larger pool of candidate files in the initial prediction stage
leads to more relevant and better-ranked recommendations.
However, there seems to be a diminishing return beyond
N=100, with both HR@10 and NDCG@10 showing a slight
decline. This suggests an optimal range for N where the
approach achieves its best performance. In our case, the range
between 80 and 120 appears to be critical, as both HR@10 and
NDCG@10 peak within this range. An interesting observation
is the behaviour for the Apache Cassandra project (small-
scale). Unlike the other two projects, the performance metrics
for Apache Cassandra continue to improve even beyond
N=120. This suggests that the Apache Cassandra project, with
less training data, might benefit from a larger initial prediction
length to achieve best performances. This highlights the

potential impact of the training data size on the effectiveness
of the chosen initial prediction length and we can conclude that

FIGURE 5. Performance vs. Length of First Prediction (N).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

when the training data is small a higher value of N is
suggested.

C. Comparison with related work
As mentioned earlier (see approach overview for more
details), this study addresses co-change prediction as a
recommendation system problem. Our hybrid approach draws
inspiration from the work presented in [5]. However, our
work offers key advancements by integrating code metrics and
leveraging co-change data through a char n-gram embedding
technique. For a more comprehensive understanding of the
improvements introduced by our approach, we compared it
directly with [5]. We ensured a fair comparison by using the
same software projects (Spring framework and Elasticsearch),
performance indicators (HR@10 and NDCG@10), and
granularity level (file-level) as in the baseline method [5]. As

shown in Figure 6, our approach outperforms FCP2vec in
terms of NDCG for both projects: Spring framework and
Elasticsearch. Specifically, our approach achieves an NDCG
improvement of 19% for the Spring framework and 10% for
Elasticsearch. A higher NDCG indicates that our approach
prioritizes the most relevant co-changing files at the top of the
recommendation list, potentially due to the combined
influence of code metrics that quantify characteristics of the
source code that might influence co-change behaviour and the
char n-gram embedding technique which captures file name
semantics by considering character n-grams and potential
naming conventions that can reveal relationships between co-
changing source files. Interestingly, while our approach
achieves a significant improvement in NDCG for both
projects, the Hit Ratio (HR) results show a different trend. In
the case of Spring framework project, our approach surpasses

FIGURE 6. Comparison with baseline method.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

the baseline method in HR as well, indicating a higher
likelihood of recommending at least one truly co-changing file
at the top of the recommendation list. However, in the case of
the Elasticsearch project, the baseline method outperforms our
approach in HR. This contrasting outcome for HR between
project sizes is in line with what we found earlier about the
performance tended to improve with the size of the project. It's
important to remember that HR focuses solely on whether the
top recommendation is a true co-change, while NDCG
considers the ranking quality of all recommendations. Our
approach's consistent improvement in NDCG suggests it
prioritizes the most relevant co-changing files throughout the
recommendation list, even if the very top recommendation
might occasionally differ between the approaches in the
Elasticsearch project. Given the importance of NDCG in
capturing the overall quality of recommendations, our
approach demonstrates a more robust performance across all
scenarios.

D. Limitations and Open Research Problems
We are aware that our work may have the following
limitations that represent an interesting open research problem
to be addressed in future works:

 Programing Language Applicability: While our
evaluation focused on Java projects, a potential
limitation of the current implementation is its
restriction to a single programming language.
However, it's important to note that our approach is
built upon language-agnostic aspects. Changelogs
data, which tracks file modifications, and code
metrics, which can be calculated using established
tools, are not inherently tied to specific programming
languages. This suggests that the core principles of
our approach could potentially be extended to
support co-change prediction in projects written in
different languages. Future work could explore the
generalizability of the approach by evaluating its
effectiveness on software projects developed with
various programming languages beyond Java,

 Advanced DL Models Exploration: Char n-gram
embedding model, which can be considered a
shallow neural network architecture. While effective
in our approach (no need to huge computing power
and training data), some researchers argue that
shallow architectures may not be considered as full
DL models. To potentially enhance even more the
effectiveness of co-change prediction, future work
could investigate the integration of more advanced
DL models such as: RNNs which are well-suited for
sequential data and Transformers for their ability to
model long-range dependencies and relationships
between elements which could be particularly
beneficial for capturing intricate patterns within
changelogs data.

VI. CONCLUSION
In this work, we tackled the complex challenge of co-change
prediction in software engineering, proposing a novel hybrid
approach that combines the strengths of both changelogs data
and code metrics. Our two-step prediction process leverages
Char n-gram embedding to generate initial predictions, which
are then refined using code metrics to provide accurate co-
change recommendations.
 Our experimental evaluation demonstrated the effectiveness
of our approach, achieving significant improvements in co-
change prediction accuracy compared to a baseline method.
The integration of code metrics into the prediction refinement
stage proved to be a key factor in enhancing the accuracy of
our co-change predictions, providing valuable insights into the
relationships between software modules.
 The final K co-change file names generated by our approach
have the potential to support various software engineering
tasks, such as change impact analysis and code review, and
can be used to improve the efficiency and effectiveness of
software development processes.
 While our approach has shown promising results, there are
still some limitations and open research problems that need to
be addressed. Future research works could focus on exploring
new techniques to improve the accuracy of co-change
predictions, such as incorporating additional data sources or
developing more sophisticated machine learning models.
Moreover, investigating the applicability of our approach to
different software systems and evaluating its impact on
software maintenance and evolution would be interesting
avenues for further research.
 Our work represents a significant step forward in the field
of co-change prediction, demonstrating the potential of hybrid
approaches that combine the strengths of different data
sources and techniques. We believe that our findings will
inspire and support further research in this area, ultimately
leading to the development of more effective and efficient
software engineering tools and techniques.

ACKNOWLEDGMENT
We would like to acknowledge the support of Prince Sultan
University for paying the Article Processing Charges (APC)
of this publication.

REFERENCES
[1] A. Agrawal and R. K. Singh, “Predicting co‐change probability in

software applications using historical metadata,” IET Software,
vol. 14, no. 7, pp. 739–747, Dec. 2020, doi: 10.1049/iet-
sen.2019.0368.

[2] W. Jin, D. Zhong, Y. Cai, R. Kazman, and T. Liu, “Evaluating the
Impact of Possible Dependencies on Architecture-Level
Maintainability,” IEEE Transactions on Software Engineering,
vol. 49, no. 3, pp. 1064–1085, Mar. 2023, doi:
10.1109/TSE.2022.3171288.

[3] Y. Huang, Z. Tang, X. Chen, and X. Zhou, “Towards
automatically identifying the co‐change of production and test
code,” Software Testing, Verification and Reliability, Jan. 2024,
doi: 10.1002/stvr.1870.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

[4] J. Lee and Y. S. Hong, “Data-driven prediction of change
propagation using Dependency Network,” Eng Appl Artif Intell,
vol. 70, pp. 149–158, Apr. 2018, doi:
10.1016/j.engappai.2018.02.001.

[5] H. A. Ahmed and J. Lee, “FCP2Vec: Deep Learning-Based
Approach to Software Change Prediction by Learning Co-
Changing Patterns from Changelogs,” Applied Sciences, vol. 13,
no. 11, p. 6453, May 2023, doi: 10.3390/app13116453.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 1st
International Conference on Learning Representations, ICLR
2013 - Workshop Track Proceedings, 2013.

[7] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
Word Vectors with Subword Information,” Trans Assoc Comput
Linguist, vol. 5, pp. 135–146, Dec. 2017, doi:
10.1162/tacl_a_00051.

[8] S. Lehnert, “A review of software change impact analysis,” 2011.
[Online]. Available:
https://api.semanticscholar.org/CorpusID:10622808

[9] M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou, I. Deligiannis,
and V. C. Gerogiannis, “Change impact analysis: A systematic
mapping study,” Journal of Systems and Software, vol. 174, p.
110892, Apr. 2021, doi: 10.1016/j.jss.2020.110892.

[10] V. Singh, V. Bhattacherjee, and S. Bhattacharjee, “An analysis of
dependency of coupling on software defects,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 1, p. 1, Jan. 2012, doi:
10.1145/2088883.2088899.

[11] B. Turhan, A. Bener, and T. Menzies, “Nearest neighbor sampling
for cross company defect predictors,” in Proceedings of the 1st
International Workshop on Defects in Large Software Systems
(DEFECTS’08), 2008, p. 26. doi: 10.1145/1390817.1390824.

[12] E. Sreedevi, Y. Prasanth, E. Sreedevi, and Y. Prasanth, “A Novel
Multi-Ensemble based Feature Selection and Defect Prediction
Model on Software Defect Projects,” vol. 9, no. 40, pp. 827–836,
2016.

[13] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static
Code Attributes to Learn Defect Predictors,” IEEE Transactions
on Software Engineering, vol. 33, no. 1, pp. 2–14, 2007, doi:
10.1109/TSE.2007.10.

[14] C. Tantithamthavorn et al., “A review of process metrics in defect
prediction studies,” Methods of Applied Computer Science, vol. 1,
no. 5, pp. 133–145, 2015, doi: 10.1007/978-3-319-26285-7.

[15] B. Turhan and A. Bener, “A multivariate analysis of static code
attributes for defect prediction,” in Proceedings - International
Conference on Quality Software, 2007, pp. 231–237. doi:
10.1109/QSIC.2007.4385500.

[16] C. Manjula and L. Florence, “Deep neural network based hybrid
approach for software defect prediction using software metrics,”
Cluster Comput, vol. 22, no. S4, pp. 9847–9863, Jul. 2019, doi:
10.1007/s10586-018-1696-z.

[17] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges
with applying vulnerability prediction models,” in Proceedings of
the 2015 Symposium and Bootcamp on the Science of Security -
HotSoS ’15, New York, New York, USA: ACM Press, 2015, pp.
1–9. doi: 10.1145/2746194.2746198.

[18] X. Du et al., “LEOPARD: Identifying Vulnerable Code for
Vulnerability Assessment Through Program Metrics,”
Proceedings - International Conference on Software Engineering,
vol. 2019-May, pp. 60–71, Jan. 2019, doi:
10.1109/ICSE.2019.00024.

[19] I. Kalouptsoglou, M. Siavvas, D. Tsoukalas, and D. Kehagias,
“Cross-Project Vulnerability Prediction Based on Software
Metrics and Deep Learning,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 12252 LNCS, pp. 877–893,
2020, doi: 10.1007/978-3-030-58811-3_62.

[20] K. Z. Sultana, B. J. Williams, and A. Bosu, “A Comparison of
Nano-Patterns vs. Software Metrics in Vulnerability Prediction,”
Proceedings - Asia-Pacific Software Engineering Conference,
APSEC, vol. 2018-Decem, pp. 355–364, 2019, doi:
10.1109/APSEC.2018.00050.

[21] S. Moshtari and A. Sami, “Evaluating and comparing complexity,
coupling and a new proposed set of coupling metrics in cross-
project vulnerability prediction,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing - SAC ’16, New
York, New York, USA: ACM Press, 2016, pp. 1415–1421. doi:
10.1145/2851613.2851777.

[22] M. Zagane, M. K. Abdi, and M. Alenezi, “A New Approach to
Locate Software Vulnerabilities Using Code Metrics,”
International Journal of Software Innovation, vol. 8, no. 3, pp.
82–95, Jul. 2020, doi: 10.4018/IJSI.2020070106.

[23] M. Zagane, M. K. Abdi, and M. Alenezi, “Deep Learning for
Software Vulnerabilities Detection Using Code Metrics,” IEEE
Access, vol. 8, pp. 74562–74570, 2020, doi:
10.1109/ACCESS.2020.2988557.

[24] M. Zagane and M. K. Abdi, “Evaluating and Comparing Size,
Complexity and Coupling Metrics as Web Applications
Vulnerabilities Predictors,” International Journal of Information
Technology and Computer Science(IJITCS), vol. 11, no. 7, pp.
35–42, 2019, doi: 10.5815/ijitcs.2019.07.05.

[25] L. C. Briand, J. Wust, and H. Lounis, “Using coupling
measurement for impact analysis in object-oriented systems,” in
Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). “Software Maintenance for
Business Change” (Cat. No.99CB36360), IEEE, 1999, pp. 475–
482. doi: 10.1109/ICSM.1999.792645.

[26] S. Black, “Computing ripple effect for software maintenance,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 13, no. 4, pp. 263–279, Jul. 2001, doi:
10.1002/smr.233.

[27] G. Woo, H. S. Chae, J. F. Cui, and J.-H. Ji, “Revising cohesion
measures by considering the impact of write interactions between
class members,” Inf Softw Technol, vol. 51, no. 2, pp. 405–417,
Feb. 2009, doi: 10.1016/j.infsof.2008.05.014.

[28] M. K. Abdi, H. Lounis, and H. Sahraoui, “Predicting Change
Impact in Object-Oriented Applications with Bayesian
Networks,” in 2009 33rd Annual IEEE International Computer
Software and Applications Conference, IEEE, 2009, pp. 234–239.
doi: 10.1109/COMPSAC.2009.38.

[29] I. S. Wiese et al., “Using contextual information to predict co-
changes,” Journal of Systems and Software, vol. 128, pp. 220–
235, Jun. 2017, doi: 10.1016/j.jss.2016.07.016.

[30] Y. SHAKIRAT, A. BAJEH, T. O. Aro, and K. ADEWOLE,
“Improving the Accuracy of Static Source Code Based Software
Change Impact Analysis Through Hybrid Techniques: A
Review,” International Journal of Software Engineering and
Computer Systems, vol. 7, no. 1, pp. 57–66, Feb. 2021, doi:
10.15282/ijsecs.7.1.2021.6.0082.

[31] X. Zhu, Y. He, L. Cheng, X. Jia, and L. Zhu, “Software change‐
proneness prediction through combination of bagging and
resampling methods,” Journal of Software: Evolution and
Process, vol. 30, no. 12, Dec. 2018, doi: 10.1002/smr.2111.

[32] R. Malhotra and M. Khanna, “An exploratory study for software
change prediction in object-oriented systems using hybridized
techniques,” Automated Software Engineering, vol. 24, no. 3, pp.
673–717, Sep. 2017, doi: 10.1007/s10515-016-0203-0.

[33] C. Tomas Mikolov (Google Inc., Mountain View, “Word2Vec.”
[Online]. Available:
https://code.google.com/archive/p/word2vec/

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” in North American Chapter of the Association
for Computational Linguistics, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52967399

[35] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2Vec:
Learning Distributed Representations of Code,” Proceedings of
the ACM on Programming Languages, vol. 3, no. POPL, pp. 1–
29, 2019, doi: 10.1145/3290353.

[36] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi:
10.1109/TIT.1967.1053964.

[37] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto, “Soft
Similarity and Soft Cosine Measure: Similarity of Features in

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 7

Vector Space Model,” Computación y Sistemas, vol. 18, no. 3,
Sep. 2014, doi: 10.13053/cys-18-3-2043.

[38] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
Web search engine,” Computer Networks and ISDN Systems, vol.
30, no. 1–7, pp. 107–117, Apr. 1998, doi: 10.1016/S0169-
7552(98)00110-X.

[39] M. Li, K. Tei, and Y. Fukazawa, “An Efficient Adaptive Attention
Neural Network for Social Recommendation,” IEEE Access, vol.
8, pp. 63595–63606, 2020, doi: 10.1109/ACCESS.2020.2984340.

[40] M. Zagane, M. Alenezi, and M. K. Abdi, “Hybrid Representation
to Locate Vulnerable Lines of Code,” International Journal of
Software Innovation, vol. 10, no. 1, pp. 1–19, Jan. 2022, doi:
10.4018/IJSI.292020.

[41] M. Aniche, “Java code metrics calculator (CK).” 2015.

MOHAMMED ZAGANE is an Associate
Professor in the Computer Science
Department at the University of Mustapha
Stambouli, Mascara, Algeria. He received his
Ph.D. in Computer Science from Université
Oran 1, Oran, Algeria in October 2020.
Previously, Dr. Zagane obtained his engineer
degree in computer science from the
University of Mascara in 2007 and his
magister degree in computer science from the
Higher School of Computer Science, Algiers
in 2010. From 2009 to 2012, he served as a

computer engineer in the administration services of the state of Mascara. Dr.
Zagane's research interests focus on applying machine learning and deep
learning techniques to solve challenging problems in software engineering.

MAMDOUH ALENEZI is a distinguished
software engineering expert and the Dean of
Quality Assurance and Development at Prince
Sultan University. He holds a Master's and Ph.D.
in Software Engineering from DePaul
University and North Dakota State University.
With a strong focus on software engineering and
security, he is a full professor and has made
significant contributions to the academic and
scientific community. He has authored over 100
research papers and has interests in software

engineering, digital transformation, higher education, and intelligent
transportation. He has also served in various roles, including Chair of the
Computer Science Department, Chief Information Technology Officer, and
Dean of Educational Services. He is a respected figure in the field, known
for his exceptional research and professional experience.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3399101

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

