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ABSTRACT Accurate prediction of co-changes in software systems is crucial for efficient development and 
maintenance, especially as systems grow in complexity. While deep learning-based approaches have shown 
promise, they often struggle with diverse and complex data. In this paper, we present a novel hybrid approach 
that combines traditional software engineering methods with deep learning techniques to improve co-change 
prediction accuracy. Our approach leverages software metrics and deep learning models, incorporating the 
unique characteristics induced by naming conventions, such as PascalCase and camelCase, used by 
developers for naming consistency. By utilizing char n-gram embedding and sub-token context, we enrich 
the vector representations of source file names, capturing relationships and dependencies between files. We 
comprehensively evaluate our hybrid approach using three open-source software projects. The findings of 
this study have significant implications for the development of more effective software co-change prediction 
tools and techniques, enabling better decision-making in software development and maintenance processes. 
Our approach outperforms traditional software engineering methods and deep learning-based approaches, 
demonstrating its potential to significantly improve software development and maintenance efficiency. 

INDEX TERMS Co-change prediction, Change impact analysis, Change prediction, Code metrics, Neural 
embedding model, Char n-gram embedding, Recommendation systems.

I. INTRODUCTION 
In the realm of software development and maintenance, 
accurately predicting co-changes has become increasingly 
crucial as software systems grow in complexity [1]. Co-
change prediction involves identifying the modules or 
components that are likely to change together in the future 
[2]. Precise co-change prediction can assist developers in 
anticipating potential changes, prioritizing testing efforts, 
and reducing the overall time and cost required for software 
maintenance [3]. 

While traditional software engineering methods, such as 
statistical analysis and modelling, have been widely 
employed for co-change prediction [1], they have 
limitations when it comes to handling diverse and intricate 
data such as changelogs data. Deep learning-based 
approaches have shown promise in addressing these 
limitations by leveraging extensive data to learn complex 
patterns and relationships. However, these approaches 
often face challenges in interpreting the learned patterns 

FIGURE 1. Co-changed source files often share similar naming patterns and convention. 
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and require substantial amounts of labelled data, which can 
be difficult to acquire. 

To overcome these limitations, this paper introduces a 
novel hybrid approach that combines the strengths of 
traditional software engineering methods with the power of 
deep learning techniques. Our approach incorporates a 
combination of code metrics and a char n-gram embedding 
model to significantly enhance co-change prediction 
accuracy. By integrating the interpretability of traditional 
methods with the learning capabilities of neural-based 
embedding models, our approach effectively leverages co-
change patterns induced by both the source code and the 
changelogs data which provides a more effective and 
efficient way to predict co-changes. 

Previous studies that utilized changelogs data in co-
change prediction have demonstrated that the context 
provided by co-change instances, as captured by 
dependency networks [4] or word embedding techniques 
[5], offers valuable insights into source files that tend to 
change together. Word embedding techniques enable the 
creation of low-dimensional representations of sets of 
tokens or words (source file names), placing co-occurring 
tokens closer together in the resulting vector space [5]. 
However, prior studies overlook an important characteristic 
induced by naming conventions, such as PascalCase and 
camelCase, which developers adopt to maintain naming 
consistency throughout projects. Source file naming often 
signifies relationships, particularly when files are 
interconnected or dependent (Figure 1). For example, 
consider three Java files: 'BookRepository.java' implies a 
class handling database operation specific to books, 
'BookService.java' indicates a higher level of business logic 
related to books, likely utilizing the repository, and 
'BookController.java' denotes a controller managing book-
related requests, likely interacting with 'BookService' for 
operations. Here, the names themselves suggest 
relationships and dependencies. In our analysis of the 
Spring Frame-work and Elasticsearch projects used in the 
experimental evaluation, we observed that more than 
28.80% in Spring Frame-work and 35% in Elasticsearch of 
co-change instances contain identical parts in all file 
names, with no instances found where file names lack 
identical parts. To leverage this characteristic, our approach 
incorporates char n-gram embedding [7], which relies on 
sub-token context. In this technique, the vector 
representation of each token (source file name) is enriched 
by the vector representations of its sub-tokens which is 
better, in the context of our study, than the hole-token 
embedding used in related work.  

The contribution of this study is two-fold: 
 Proposing a novel hybrid approach that combines the 

strengths of code metrics in quantifying co-change 
attributes from the source code and the power of char 
n-gram embedding to effectively learn co-change 
patterns from the changelogs data, 

 Proposing and making publicly available a hand-
curated dataset of co-change instances and code 
metrics extracted from three well-known open-
source projects, we also propose pre-trained models. 
These materials can be used to replicate our study 
and also, they can be used by other researchers in 
future works.  

The rest of this paper is organized as follows: in section 
2, we present the most relevant related works, in section 3, 
we describe the proposed approach and the methodology to 
establish and evaluate it, in section 4, we present the 
experimental setups, in section 5, we present and discuss 
the obtained results and highlight the limitations of the 
work and in section 6, we summarize the work done in this 
study and indicate perspectives for future works.  

II. RELATED WORK 
Given the crucial role of change management in the software 
maintenance task, huge research efforts have been devoted to 
developing effective approaches to software change impact 
analysis (SCIA) and co-change prediction (CCP). For the sake 
of brevity, we will focus on presenting the most relevant 
research works that used code metrics and changelogs data. 
For more details about techniques and methods used in the 
field, please refer to the systematic literature reviews done 
such as [8], [9].  

Code metrics were widely used to solve challenging 
problems in the field of software engineering such as defect 
prediction [10], [11], [12], [13], [14], [15], [16]  and 
vulnerability prediction [17], [18], [19], [20], [21], [22], [23]. 
This is motivated by the fact that code metrics are known for 
their ability to quantify software attributes such as size, 
complexity and coupling which are proven in practice to be 
correlated with defects and vulnerabilities [24]. Motivated by 
similar intuition, several research works in the field of SCIA 
and CCP have used different code metrics types to propose 
approaches and methods. Especially, the metrics that directly 
quantify dependency and coupling between software modules 
gained more researchers' interest. In [25], researchers have 
investigated the relationship between object-oriented coupling 
and ripple effects. They used metrics such as Coupling 
Between Object (COB), Data Abstraction Coupling (DAC), 
etc. to propose a SCIA model. Researchers have reported that 
these metrics can indicate class pairs with higher ripple effect 
probability and have also recommended focusing on all sorts 
of requirements and design documentation that provide 
additional information for coupling aspects that cannot be 
captured by source code metrics. Metrics that indirectly 
quantify coupling and dependencies were also investigated, S. 
Black in [26]  has investigated the ripple effects in non-OO 
software projects, he used four variations of McCabe’s 
complexity metric to propose the Ripple Effect and Stability 
Tool (REST) which was based on an approximated algorithm 
to assess the SCIA for C programs. Researchers in [27]  have 
investigated the correlation of the cohesion metrics with the 
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impact of write interactions between class members and have 
proposed revisions to the existing cohesion metrics to consider 
the impact of the write interactions. Code metrics were also 
used as features with machine learning techniques to build 
prediction models of SCIA, Abdi et al. in [28] proposed 
prediction models built using OO coupling metrics and several 
classification algorithms. 

To address the lack of code metrics in particular and all 
techniques that are based on the source code in general in 
capturing some aspects of dependencies and coupling between 
the software modules. Researchers have leveraged external 
sources of information in SCIA and CCP. Significant parts of 
these works have investigated the usefulness of using 
changelogs provided by version-controlling systems (VCS) to 
capture co-change patterns between software modules and 
also combine them with information extracted from the source 
code to propose hybrid approaches that improve accuracy. 
Wiese  [29] found that contextual information, such as commit 
metadata and developer communication, can significantly 
enhance prediction models, reducing false recommendations. 
Similarly, Shakirat [30] reviewed hybrid techniques for 
software change impact analysis, highlighting their potential 
to enhance accuracy. These studies and others such [31], [32] 
that leveraged hybrid approaches to change-prone prediction 
collectively underscore the potential of hybrid approaches in 
improving the accuracy of software co-change prediction. 

The success of deep learning in the field of natural language 
processing especially neural model-based word embedding 
techniques such as word2vec [33], FastText [7] and BERT[34] 
that provide text vector representations; has motivated 
researchers in the field of software engineering to explore 
similar techniques for source code analysis. Inspired by 
word2vec, Alon et al. in [35] have proposed code2vec a source 
code representation model that is based on the notion of AST 
paths and the attention mechanism. This model aims to 
transform source code into numerical vectors that preserve 
semantic and syntactic characteristics of the code, enabling 
deep learning models to effectively analyze and classify code 
for various software engineering tasks such as semantic 
labelling of code snippets, captioning a block of code, 
generating code to complete a missing piece of a larger 
program and defect prediction. In the field of co-change 
prediction, a promising model, FCP2Vec, inspired of 
Code2vec is proposed in [5]. FCP2Vec (File-level Change 
Propagation to vector, aims to represent file names in co-
change instances extracted from the changelogs of a software 
project to vector representations that preserve co-change 
patterns. Researchers proposed a recommendation system 
based on unsupervised nearest neighbors that can suggest for 
developers the source file that may need modification based 
the file being presently worked on.  

The drawbacks of this approach lie in two key aspects: 
Firstly, it is based on word2vec embeddings, cannot leverage 
the rich information offered by the naming conventions 
employed in software projects. It only captures semantic 

information induced by the context of each file in its co-
change context. Secondly, the proposed recommendation 
system is limited only to changelogs data and does not 
consider the source code of the software entities (packages, 
files, or classes), missing very important information related 
to software attributes (complexity and coupling) that can give 
insight into the likelihood of co-change occurrences. In this 
paper, we proposed a hybrid approach that aims to improve 
co-change prediction by addressing these drawbacks.  

III. METHODOLOGY 
In this section, we present a hybrid approach to predict 
software co-changes, which combines the strengths of both 
machine learning and software engineering techniques. Our 
proposed approach aims to address the research gap identified 
in the previous section, by providing a more accurate and 
effective way of predicting co-changes in software systems.  

A. APPROACH OVERVIEW 
In this work, we propose a novel approach to software co-
change prediction that leverages both changelogs and source 
code information to enhance prediction accuracy at the file 
level. Our approach is designed to be implemented as a plugin 
in an Integrated Development Environment (IDE) or as a 
standalone tool for tasks such as change impact and 
propagation analysis. 

Our approach builds upon the previous work of Lee al. [4], 
[5],  who treated the co-change prediction problem as a 
recommendation system problem. In this context, the goal is 
to recommend the top K elements (source files) that are likely 
to co-change with the currently edited source file (the query 
element). The key contribution of our work lies in the use of 
both changelogs and source code information to improve co-
change prediction performances. We extract co-change 
instances from changelogs, which provide valuable insights 
into source files that tend to change together. We then harness 
this information using a char n-gram embedding technique 
that captures relationships induced by the context within co-
change instances, as well as insightful information related to 
files' sub-names induced by naming conventions. This 
technique avoids the problem of Out-of-Vocabulary (OOV) 
and enables the model to capture nuanced relationships 
between files. In addition to leveraging changelogs, our 
approach integrates code metrics to improve prediction 
accuracy. Code attributes such as coupling and complexity 
have been proven to be correlated with co-change, and 
integrating them into the prediction task can provide valuable 
insights into the relationships between software modules. By 
incorporating code metrics into our model, we can quantify 
these attributes and improve the accuracy of our predictions. 

Figure 2 shows how the approach leverages both 
changelogs and source code information to generate 
recommendations for co-changed files. The input to the 
system is a source file under edition, and the output is a list of 
recommended files that are likely to co-change with the edited 
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file. Overall, our approach offers a novel and effective solution 
to the software co-change prediction problem, leveraging both 
changelogs and source code information to improve prediction 

accuracy at the file level. By integrating code metrics into the 
model, we can provide valuable insights into the relationships 
between software modules and enhance the accuracy of our 

FIGURE 2. Overview of our proposed approach for co-change prediction in software systems. 
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predictions. The approach consists of several steps, which are 
described in detail in the following sub-sections. 

B. PREDICTION 
In our approach, the process of co-change prediction involves 
two steps: initial prediction and prediction refinement. 
During the first step, we utilize a char n-gram embedding 
model to generate the initial N (where N > K) co-change file 
names (a list of N file names) based on the query file name. 
This capability stems from the model's capacity to suggest file 
names whose vector representations closely match that of the 
query file name or the vectors of its sub-tokens. In [5], the 
authors utilized the K ranking score using unsupervised 
nearest neighbor (UNN)[36]. They adopted a uniform 
interface for three different neighbor algorithms: ball tree, 
KDT tree, and brute force. In our approach, we opted for a 
simple ranking based on cosine similarity [37], which avoids 
additional computational load without compromising 
performance.  

This is achieved by following these sub-steps: 
1. Vector representation: retrieve the vector 

representation for the query file's name from the 
model's learned embeddings, 

2. Cosine similarity calculation: calculate the cosine 
similarity between the vector representation of the 
query file name and all other file names in the model 
vocabulary, 

3. Sorting: sort the file names based on their cosine 
similarity scores in descending order, 

4. Returning Top-N closely file names: returns the 
top-N file names  (co-change file names) with the 
highest cosine scores as the query file name. 

 

In the second step, we refine the first prediction and generate 
the final K co-change file names. This is achieved by 
incorporating code metrics calculated from the first N source 
files selected in the first step. This integration involves 
recalculating the similarity scores and reordering the initial N 
files predicted by the embedding model, to select the top K co-
change files (Algorithm 1). 

C. DATA PREPARATION 
As with any data-driven approach, to train and validate our 
framework, we need to collect and prepare data from the 
repositories of the studied software projects.  
The final used data consists of two parts, changelogs data and 
code metrics data. The changelogs data is used to train the char 
n-gram embedding model which makes the first predictions 
and the metrics data is used to refine the first predictions to 
generate the final predictions. In the following subsections, we 
describe each data and the processes of collecting and 
preparing them. 

1) CHANGELOGS DATA 
Each instance in the changelog data consists of the file names 
of the co-changed source files in a commit. Algorithm 2, 
shows the steps followed to prepare this data. 

 
 After cloning the repository, we parse it to extract the list of 
all commits done on the project and filter them, as 
recommended in [5] by removing commits that involve less 
than two source files and commits that involve more than 50 
source files. After that, we form the co-change instances by 
extracting file names of the co-changed files from each 
commit. A portion of 19 co-change instances from the final 

Algorithm 1  Prediction ; 
    Inputs:  
         QueryFileName // the file under edition 
         EmbeddingModelPath 
         N,K 
    Outputs:   
         FinalPrediction // list of file names with hybrid similarity scores 
Begin 
    //First step 
    Model = LoadModel ( EmbeddingModelPath ); 
    FirstPrediction = Model.GetTopNSimilar(QueryFileName, N );     
    //Second Step 
    Foreach FileName, SimilarityScore In  FirstPrediction  Do 
    Begin 
         Metrics = CalculateMetrics(FileName); 
         HybridSimilarityScores [ FileName] = Mean ( Metrics) + 

SimilarityScore; 
    End; 
    Sort ( HybridSimilarityScores ); 
    For  i=0 To  K  Do // select the first k file names 
    Begin 
         FinalPrediction.Add ( HybridSimilarityScores [i]); 
    End; 
    Return  FinalPrediction ; 
End. 

Algorithm 2 ChangeLogDataPreparation; 
    Inputs: RepositoryURL 
    Outputs: CoChangeInstancesList  
Begin 
    Repo = CloneRepository (RepositoryURL); 
    CommitsList = ExtractAllCommit(Repo); 
    Foreach Commit In CommitsList Do 
    Begin 
       ChangedFiles = getCommitChangedFiles(Commit); 
       If ( 50 < Count (ChangedFiles) < 2) Then  
          Continue; // ignore commit 
       Else 
          Clear(CoChangeInstance); 
          Foreach  ChangedFile In ChangedFiles Do 
          Begin 
             FileName = ExtractFileName (ChangedFile); 
             CoChangeInstance += FileName + ‘ ’; 
          End; 
       CoChangeInstancesList.Append (CoChangeInstance); 
    End; 
    Return CoChangeInstancesList; 
End. 
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changelogs data used in the experimental evaluation is shown 
in the Figure 3. 

2) CODE METRICS DATA 
Each instance in the code metrics data consists of a source file 
name and the values of the used code metrics. Any file-level, 
class-level or method-level code metrics can be used. Since we 
deal with co-changes in file level, the code metrics for a file 
can be calculated as follows: the method-level or class-level 
metrics for all the methods or classes in a file are aggregated 
to compose the final metrics of the file. In this study we 
evaluated the metrics described in the Experiments section. 

 

3) DATA PREPROCESSING  
When feeding changelog data to the char n-gram embedding 
model for training, a simple data preprocessing step is 
required. This step consists of removing the file extensions 
(e.g., .java) from file names. We remove extensions because 
they can be considered stop words, similar to words like 'of,' 
'the,' and 'and' in natural text classification problems. 
Additionally, since the code metrics data are combined with 
the similarity scores returned by the char n-gram embedding 
model (which range from 0 to 1) to calculate the hybrid 
similarity score (as shown in Algorithm 1), a normalization 
preprocessing step is applied to the metrics data. 
 

D. PERFORMANCE EVALUATION 
To assess the effectiveness of our co-change prediction 
approach, we employ two well-established metrics commonly 
used for evaluating top-K recommendation systems: Hit Ratio 
(HR) and Normalized Discounted Cumulative Gain (NDCG).  
These metrics are particularly relevant in this context as our 
approach aims to recommend the most likely co-changing 

source files (relevant items) at the top of a ranked list for a 
given query file (currently edited file). [38], [39]:  

 Hit Ratio (HR@K): Measures the proportion of 
queries where the truly co-changing file appears 
within the top K recommendations.  A higher HR@K 
indicates that our approach successfully identifies 
relevant co-changing files within the top K positions 
of the recommendation list. The HR@K can be 
calculated by the following formula, 

 Normalized Discounted Cumulative Gain 
(NDCG@K):  This metric not only considers 
whether the relevant co-changing file is present in the 
top K recommendations but also takes into account 
its ranking position. Relevant files ranked higher in 
the list contribute more to the overall score, 
emphasizing the importance of prioritizing the most 
likely co-changing files.  A higher NDCG@K 
reflects our approach's ability to not only identify 
relevant files but also position them prominently 
within the recommendation list for developers. 

HT@K is calculated by the formula (1) where NH@K 
(number of hits @ K) represents the number of source file 
names present in each top-K list and TNI (total number of 
test items) represents the total number of source file 
names in each test list (test instances in the dataset). 

 

@
@

NH K
HR K

TNI
                            (1) 

NDCG@k is calculated by the formula (2) where rsi represents 
the relevance score which can be binary (1 for truly co-
changing files, 0 for others). The logarithmic term (log2(i + 
1)) in the formula applies a discounting factor that diminishes 
the contribution of lower-ranked items, further emphasizing 

FIGURE 3. Example of the final changelogs data 
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the importance of placing highly relevant co-changing files at 
the top of the recommendation list [39]. 
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2

2 1
@ ( )

log ( 1)
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k
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NDCG k

i




     (2) 

IV. EXPERIMENTS 
 To carry out the experimental evaluation of our approach, we 
prepared a dataset following the data preparation described in 
the previous section. We used three well-known and open 
source Java projects available on GitHub. Two of them are 
already used in related work. Spring Framework is a 
comprehensive framework for building enterprise Java 
applications, offering features such as dependency injection 
and aspect-oriented programming to streamline development 
processes. Elasticsearch, an open-source distributed search 
engine, provides powerful indexing and search capabilities, 
making it ideal for large-scale data analysis and search 
applications. Apache Cassandra, a distributed NoSQL 
database management system, excels in handling vast amounts 
of data across multiple nodes with high availability and fault 
tolerance. These projects represent diverse domains within the 
Java ecosystem, offering valuable insights into the 
effectiveness and applicability of the proposed co-change 
prediction approach across different software development 
contexts. Table 1 shows some statistics about the dataset used 
in the experimental evaluation. 

A.  EVALUATION PROTOCOL 
 To accurately evaluate the performances of our approach, in 
our experiments, we adopted a cross-validation protocol. For 
each co-change instance in the dataset, we select one file name 
as the query item, and the remaining file names are used as 
recommendations. This process is repeated so that all file 
names in each co-change are used as the query item and also 
as part of the recommendation. The final performance results 
are then calculated by averaging the results of all the iterations 
[40]. 

B.  SETUP AND PARAMETER TUNING 
To implement all operations related to the experimental 
evaluation, we used the following Python libraries:  

 Char n-gram embedding: we utilized the Facebook 
FastText [7] implementation provided in Gensim 
version 4.3.2, 

 Evaluation metrics: we employed the 
implementation of the HR and the NDCG provided 
in scikit-learn version 1.4.1, 

For code metrics calculation, we used the CK open-source tool 
[41]. CK allows the calculation of 35 class-level and method-
level code metrics in Java projects (refer to the CK reference 
for the complete list).  As mentioned before, since we work at 
the file-granularity level, a metric for a file is calculated by 
summing the values of that metric across all the file’s 
methods/classes. To select the metrics relevant to our task, we 
implemented a custom selection method and experimentally 
tuned the list of metrics to use. The final metrics evaluated in 
our experiments are shown in Table 1.  

When training the embedding models and to mitigate 
extensive computational loads and time required for automatic 
parameter tuning techniques such as grid search, random 
search, and Bayesian optimization, we experimentally tuned 
our hyperparameters. We initiated this process with initial 
values recommended in related work specifically in [5].  For 
hyperparameters specific to char n-gram embedding, such as 
the minimum size (min_n) and the maximum size (max_n) of 
sub-tokens, we commenced with default values. The final 
values used in our experiments are the following: vector size 
= 37, window size = 12, min_n = 3, max_n = 20, and epochs 
= 1000. All the experiments and related operations are caried 
out on a laptop with the following characteristics: i7-4500U 
CPU, 8.00 GB of RAM and Windows 10 OS. 
 

V. RESULTS AND DISCUSSION 
This section presents and discusses the results obtained 

from the experimental evaluation designed to validate our co-
change prediction approach. We focus on the impact of two 
key adjustable parameters (N and K) on the effectiveness of 
our approach, as measured by Hit Ratio at K (HR@K) and 
Normalized Discounted Cumulative Gain at K (NDCG@K), 
where higher values indicate better performance. As a 
reminder, our approach can be implemented to operate as an 

Project # total commits # extracted co-change 
instances 

Spring Framework 28732 13148 
Elasticsearch 74173 31581 
Apache Cassandra 29663 5041 
   

Metric Description 

FAN-IN Counts the number of input dependencies for 
a class 

FAN-OUT Counts the number of output dependencies 
for a class 

LOC (Lines 
 of code) 

Counts the total lines of code (ignoring 
empty lines and lines of comments) 

WMC (Weight 
Method Class) 

Counts the number of branch instructions in a 
class (McCabe's complexity) 

Quantity of 
comparisons 

Quantify the comparison by counting 
comparison operators such as == and !=  

Quantity of 
parenthesized 
expressions 

Counts the number of expressions inside 
parenthesis 

RFC (Response for a 
Class) 

Counts the number of unique method 
invocations in a class 
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IDE plugin and predicts co-changing source files 
(recommendations) based on the currently edited file (query 
element).  The prediction process involves two steps: an initial 
selection of  N source file names based on the similarity score 
calculated from the vector representations obtained by the DL 
model, followed by refinement using code metrics to generate 
the final K recommendations from the initial pool of N 
candidate source files.  

A. INFLUENCE OF K (NUMBER OF CO-CHANGE FILE 
NAMES TO CONSIDER) 

In the evaluation of recommendation systems, the selection of 
K (the number of recommendations to consider) is influenced 
by various factors, including the specific characteristics of the 
dataset and the objectives of the recommendation system. In 
many research studies, the value of 10 is commonly chosen, 

with results reported in terms of HR@10 and NDCG@10. 
This practical choice reflects the typical number of 
recommendations presented to users in real-world scenarios. 

To understand how performance varies with K, we conducted 
evaluations of our approach using different values of K. In this 
series of experiments, the parameter N is set to 80, a value that 
yielded promising results in our preliminary investigations. 
The results are shown in Figure 4. As can be seen, the best 
performance in both HR@K and NDCG@K indicators was 
observed when K was set to 5 and 10. Notably, performance 
consistently declined with increasing values of K across all  
 three studied projects: Spring Framework, Elasticsearch, and 
Apache Cassandra. Additionally, it is evident that the hybrid 
approach, incorporating code metrics, consistently 
outperforms the DL-only approach in terms of both HR@K 
and NDCG@K across all scenarios.  
As expected, we observed a notable correlation between the 
performance of our approach and the size of training data 
(number of co-change instances. Specifically, we found that 

the performance tended to improve with the size of the project. 
Indeed, performances in the cases of Spring Framework and 
Elasticsearch were better than performances in the case of 

FIGURE 4. Performance vs. Number of Co-change File Names (K). 
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Apache Cassandra which have the smallest number of co-
change instances. This can be interpreted by the fact that char 
n-gram embedding, in particular, and all neural and DL-based 
approaches, in general, tend to perform better with cases that 
involve more training data than cases with less training data. 

B. Influence of N (length of the first prediction) 
To investigate the influence of the initial prediction length 

(N) on the final prediction accuracy, we conducted 
experiments using various N values. We fixed K at 10, which 
is a commonly used value in related work. The results in terms 
of HR@10 and NDCG@10 are summarized in Figure 5. 
As shown in Figure 5, we observe a consistent improvement 
in both HR@10 and NDCG@10 for the Spring framework 

and Elasticsearch projects as the initial prediction length (N) 
increases from 12 to 100. This indicates that considering a 

larger pool of candidate files in the initial prediction stage 
leads to more relevant and better-ranked recommendations. 
However, there seems to be a diminishing return beyond 
N=100, with both HR@10 and NDCG@10 showing a slight 
decline. This suggests an optimal range for N where the 
approach achieves its best performance. In our case, the range 
between 80 and 120 appears to be critical, as both HR@10 and 
NDCG@10 peak within this range. An interesting observation 
is the behaviour for the Apache Cassandra project (small-
scale). Unlike the other two projects, the performance metrics 
for Apache Cassandra continue to improve even beyond 
N=120. This suggests that the Apache Cassandra project, with 
less training data, might benefit from a larger initial prediction 
length to achieve best performances. This highlights the 

potential impact of the training data size on the effectiveness 
of the chosen initial prediction length and we can conclude that 

FIGURE 5. Performance vs. Length of First Prediction (N). 
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when the training data is small a higher value of N is 
suggested.  

C. Comparison with related work 
As mentioned earlier (see approach overview for more 
details), this study addresses co-change prediction as a 
recommendation system problem. Our hybrid approach draws 
inspiration from the work presented in [5].  However, our 
work offers key advancements by integrating code metrics and 
leveraging co-change data through a char n-gram embedding 
technique. For a more comprehensive understanding of the 
improvements introduced by our approach, we compared it 
directly with [5]. We ensured a fair comparison by using the 
same software projects (Spring framework and Elasticsearch), 
performance indicators (HR@10 and NDCG@10), and 
granularity level (file-level) as in the baseline method [5]. As 

shown in Figure 6, our approach outperforms FCP2vec in 
terms of NDCG for both projects: Spring framework and 
Elasticsearch. Specifically, our approach achieves an NDCG 
improvement of 19% for the Spring framework and 10% for 
Elasticsearch.  A higher NDCG indicates that our approach 
prioritizes the most relevant co-changing files at the top of the 
recommendation list, potentially due to the combined 
influence of code metrics that quantify characteristics of the 
source code that might influence co-change behaviour and the 
char n-gram embedding technique which captures file name 
semantics by considering character n-grams and potential 
naming conventions that can reveal relationships between co-
changing source files. Interestingly, while our approach 
achieves a significant improvement in NDCG for both 
projects, the Hit Ratio (HR) results show a different trend. In 
the case of Spring framework project, our approach surpasses 

FIGURE 6. Comparison with baseline method. 
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the baseline method in HR as well, indicating a higher 
likelihood of recommending at least one truly co-changing file 
at the top of the recommendation list. However, in the case of 
the Elasticsearch project, the baseline method outperforms our 
approach in HR. This contrasting outcome for HR between 
project sizes is in line with what we found earlier about the 
performance tended to improve with the size of the project. It's 
important to remember that HR focuses solely on whether the 
top recommendation is a true co-change, while NDCG 
considers the ranking quality of all recommendations. Our 
approach's consistent improvement in NDCG suggests it 
prioritizes the most relevant co-changing files throughout the 
recommendation list, even if the very top recommendation 
might occasionally differ between the approaches in the 
Elasticsearch project. Given the importance of NDCG in 
capturing the overall quality of recommendations, our 
approach demonstrates a more robust performance across all 
scenarios. 

D. Limitations and Open Research Problems 
We are aware that our work may have the following 
limitations that represent an interesting open research problem 
to be addressed in future works:  

 Programing Language Applicability:  While our 
evaluation focused on Java projects, a potential 
limitation of the current implementation is its 
restriction to a single programming language.  
However, it's important to note that our approach is 
built upon language-agnostic aspects.  Changelogs 
data, which tracks file modifications, and code 
metrics, which can be calculated using established 
tools, are not inherently tied to specific programming 
languages.  This suggests that the core principles of 
our approach could potentially be extended to 
support co-change prediction in projects written in 
different languages.  Future work could explore the 
generalizability of the approach by evaluating its 
effectiveness on software projects developed with 
various programming languages beyond Java, 

 Advanced DL Models Exploration: Char n-gram 
embedding model, which can be considered a 
shallow neural network architecture. While effective 
in our approach (no need to huge computing power 
and training data), some researchers argue that 
shallow architectures may not be considered as full 
DL models. To potentially enhance even more the 
effectiveness of co-change prediction, future work 
could investigate the integration of more advanced 
DL models such as: RNNs which are well-suited for 
sequential data and Transformers for their ability to 
model long-range dependencies and relationships 
between elements which could be particularly 
beneficial for capturing intricate patterns within 
changelogs data. 

VI. CONCLUSION 
In this work, we tackled the complex challenge of co-change 
prediction in software engineering, proposing a novel hybrid 
approach that combines the strengths of both changelogs data 
and code metrics. Our two-step prediction process leverages 
Char n-gram embedding to generate initial predictions, which 
are then refined using code metrics to provide accurate co-
change recommendations. 
    Our experimental evaluation demonstrated the effectiveness 
of our approach, achieving significant improvements in co-
change prediction accuracy compared to a baseline method. 
The integration of code metrics into the prediction refinement 
stage proved to be a key factor in enhancing the accuracy of 
our co-change predictions, providing valuable insights into the 
relationships between software modules. 
    The final K co-change file names generated by our approach 
have the potential to support various software engineering 
tasks, such as change impact analysis and code review, and 
can be used to improve the efficiency and effectiveness of 
software development processes. 
    While our approach has shown promising results, there are 
still some limitations and open research problems that need to 
be addressed. Future research works could focus on exploring 
new techniques to improve the accuracy of co-change 
predictions, such as incorporating additional data sources or 
developing more sophisticated machine learning models. 
Moreover, investigating the applicability of our approach to 
different software systems and evaluating its impact on 
software maintenance and evolution would be interesting 
avenues for further research. 
    Our work represents a significant step forward in the field 
of co-change prediction, demonstrating the potential of hybrid 
approaches that combine the strengths of different data 
sources and techniques. We believe that our findings will 
inspire and support further research in this area, ultimately 
leading to the development of more effective and efficient 
software engineering tools and techniques. 
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