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ABSTRACT Unmanned aerial vehicles (UAVs) play an important role within mobile edge computing
(MEC) networks in improving communications for ground users during emergency situations. However,
sustaining high-quality service for extended periods is challenging because of constraints on battery
capacity and computing capabilities of UAVs. To address this issue, we leverage zero-energy reconfigurable
intelligent surfaces (ze-RIS) within UAV-MEC networks and introduce a comprehensive strategy that
combines task offloading and resource sharing. A deep reinforcement learning (DRL) driven energy efficient
task offloading (DEETO) scheme is presented. The primary objective is to minimize UAV energy ingestion.
DEETO aims to enhance task offloading decision mechanism, computing and communication resource
allocation, while adopting hybrid task offloading mechanism with intelligent RIS phase-shift control.
We begin by modeling it as a DRL problem, structuring it as a Markov decision process (MDP), and
subsequently resolving it effectively through the use of the advantage actor-critic (A2C) algorithm. Our
simulation results highlight the superiority of the DEETO scheme compared to alternative approaches.
DEETO excelled by achieving a notable energy savings of 16.98% from the allocated energy resources,
coupled with the highest task turnover rate of 94.12%, all achieved within a shorter learning time frames
per second (TFPS) and yielding higher rewards.

INDEX TERMS DRL, MEC, Task offloading, UAV, ze-RIS.

I. INTRODUCTION
The mobile edge computing (MEC) networks have evolved
as a very potential technological boost the quality of ser-
vice (QoS) for tasks that demand significant computational
power and low latency [1]. When MEC networks incorporate
unmanned aerial vehicles (UAVs) into their infrastructure,
they can harness the flexibility of UAV deployment [2].
This means that they can quickly expand the communication
coverage and also guarantee the connectivity of the mobile
users, particularly in cases of the destruction of the terrestrial
communication infrastructures or a sudden influx of large
numbers of users [3].

However, deploying additional UAVs in MEC networks
comes with substantial costs and increased power consump-
tion caused by the constraints in UAVs’ energy and computa-

tional resources [4]. Moreover, UAV-assisted MEC systems
encounter several hurdles. For instance, in urban settings,
direct links between UAVs and IoT devices may encounter
obstacles such as buildings, leading to significant deteriora-
tion in channel conditions. Similarly, since UAV is energy
limited, it becomes critical to co-optimize UAV trajectory and
computation energy to improve the overall energy efficiency.
To take full advantage of UAV integration benefits in MEC
and to further enhance the IoT task offloading performance,
there is increasing interest in exploiting a new paradigm
which is referred to as reconfigurable intelligent surfaces
(RIS). RIS has emerged as an energy-efficient alternative
capable of enhancing network capacity [5].

With the integration of a energy-efficient, cost-effective
and high-gain metasurface, wireless propagation environ-
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ment can be modified by RIS. This reconfiguration can
minimize the energy consumption of the MEC networks and
enhances communication capacity [6]. Recent research, such
as studies in [7] through [8], has explored the applicability of
RIS in MEC systems. Lately, numerous studies have delved
into the theoretical exploration of leveraging RIS for network
optimization. For instance, a notable work [9] focuses on
integrating RIS into MEC systems to facilitate device task
offloading. It seeks to enhance computational performance
by maximizing the summation of computational bits. This
is achieved through a joint optimization approach involv-
ing time allocation, transmit power and CPU frequency for
computational offloading, while adjusting phase shifts of the
RIS. The RIS beamforming and sensing mechanism for near
field communications is investigated in [10]. Additionally,
research by [11] delves into joint resource allocation and user
grouping aided by IRS. Furthermore, [12] offers valuable in-
sights into the resource trading mechanisms within MEC en-
abled UAV networks. Subsequently, in [13], the focus shifts
on enhancing the total completed task-input bits within RIS-
assisted MEC networks, a problem initially tackled by using
an algorithm called block coordinate descending (BCD). A
framework of deep learning is devised which can support the
BCD algorithm and its online implementation in order to mit-
igate its computational complexity. Moreover, work in [14]
explores the integration of wireless energy transfer (WET)
into RIS-assisted MEC networks to meet both computation
and energy supply demands of IoT devices.

In the context of RIS-assisted UAV networks, RIS deploy-
ment serves to mitigate blockages and improve achievable
rates. In [15], the focus lies on maximizing the sum rate of
users in the down-link through a joint optimization approach.
This involves optimizing UAV trajectory, power control, THz
sub-band allocation and RIS phase shifts. To ensure secure
communication between the UAV and legitimate users, [16]
employs RIS deployment to enhance legitimate transmission
quality while compromising eavesdropping. To achieve the
maximum average secrecy rate an iterative algorithm was
proposed. Likewise, [17] explores secure transmission in
UAV and RIS-assisted mmWave networks, achieving near-
optimal RIS and UAV positions through exhaustive search
methods. Moreover, [18] introduces a decaying deep Q-
network (D-DQN) algorithm to address the dynamic stochas-
tic environments in RIS-assisted UAV networks. This algo-
rithm aims to minimize UAV energy consumption by op-
timizing RIS phase shift, power allocation, UAV trajectory
and decoding order. Results of the simulation demonstrate
that D-DQN algorithm effectively balances training speed
acceleration, convergence to local optima, and oscillation
avoidance. In [19], an active RIS-aided MEC system was the
subject of attention. Acknowledging the fact that there are
some tasks that cannot be partitioned, the author presented a
multi-user MEC system with RIS assistance, which operates
based on both binary and partial offloading policy [20].
Meanwhile, in [21], the author proposed an RIS-assisted it-
erative algorithm for MEC downlink communication system,

aiming to minimize transmission power through alternating
optimization (AO) and penalty-based optimization.

In studies [22] and [23], an innovative communication
concept was introduced, featuring a UAV-based base station
transmitting data to the users on ground with the simulta-
neous support of a reflecting and transmitting reflecting RIS
(STAR-RIS). In [24], an approach was developed to enhance
the energy efficacy of the system by jointly augmenting
the UAV’s flight trajectory in three-dimensional space and
designing RIS phase shifts. Authors in [25] introduced an
innovative MEC framework powered by RIS and UAV relays,
specifically targeting a maximum-minimum computation ca-
pability issue.

The previously discussed networks utilizing RIS predom-
inantly focus on two areas: RIS-assisted MEC networks,
where user equipment (UE) computational capabilities bene-
fit from access point (AP) resources, and RIS-assisted UAV
architectures. This enhances the UE communication rates
via UAV trajectory adaptability. However, scant attention has
been given, to our knowledge, to the performance enhance-
ment potential of RIS in UAV-enabled MEC environments.
In studies [26], despite the use of a UAV-mounted RIS to
aid ground user communication with an MEC server, the
UAV’s computational capacity remains unaddressed. Task-
input data offloading by users to the MEC server via orthog-
onal multiple access (OMA) protocol is employed, which
fails to fully exploit time and frequency resources. Sub-
sequently, the authors in [27] introduces a non-orthogonal
multiple access (NOMA) into the RIS-assisted UAV-MEC
system, aiming to optimize UAV computational capacity.
Simulation outcomes demonstrate the superior performance
of the NOMA scheme compared to OMA. In association to
it, a waveform design and detection mechanism in NOMA
systems is also presented in [28]. Work presented in [29] also
considered a IRS based NOMA assisted MEC mechanism for
energy efficiency with queue stability option. A Lyapunov-
function-based mixed integer DDPG (LMIDDPG) algorithm
is proposed for centralized learning and a heterogeneous
MA-LMIDDPG algorithm is proposed for distributed learn-
ing, considering system throughput, power consumption, and
queue stability for computing decisions, power allocation,
and phase shifts optimizations.

In an other work [30] a DDQN based resource allocation
scheme, DTORA, is introduced. DTORA optimizes task of-
floading and resource allocation decision using double DQN
algorithm. These decisions target to mitigate UAV energy
consumption through optimizing computing and communi-
cation resources and RIS phase shifts. Additionally, work
presented in [31] utilized another concept of RIS-equipped
UAVs to facilitate MEC. A DDPG based energy-efficient
solution mechanism is proposed for MEC network with RIS-
equipped UAVs, considering energy conservation for ground
users and UAVs. The optimization problem maximizes sys-
tem energy efficiency by jointly optimizing ground user
transmission power, UAV trajectory, and RIS phase shifts.
The works presented in [32] explored a multi-UAV assisted
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TABLE 1: Contrast of our work and related studies, emphasizing disparities and distinctive contributions.

Offloading
Mechanism RAT RIS

Usage
ZED

Association
Relaying Objective

(Minimization)
Solution

Type
Binary Partial Cellular NR UAV RIS Energy Delay Other DRL

This Work ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – A2C
[20] ✓ ✓ – ✓ ✓ ✓ ✗ ✓ ✓ ✓ – A2C
[21] ✗ ✓ ✓ – ✓ ✗ ✗ ✓ ✓ ✗ Optimization –
[24] ✓ ✗ ✓ – ✓ ✗ ✗ ✓ ✓ ✗ – DQN
[29] ✗ ✓ ✓ – ✓ ✗ ✗ ✓ ✓ ✓ – LMIDDPG
[30] ✓ ✗ ✓ – ✓ ✗ ✓ ✓ ✓ ✓ – DDQN
[31] ✓ ✗ ✓ – ✓ ✗ ✓ ✓ ✓ ✗ – DDPG
[32] ✗ ✓ ✓ – ✓ ✗ ✗ ✓ ✓ ✓ – MA-TD3

MEC system with RIS. A multi agent DRL based MA-
TD3 algorithm is proposed while aiming the optimization
of computation offloading, UAV trajectories, and RIS phase
shifts.

Motivated by the promising features of RIS and the
performance limitations encountered by UAVs operating in
MEC based networks, we intend to harness RIS to enhance
UAV communications within MEC based networks. The
RISs offer opportunities to reduce energy expenditures, boost
UAVs’ channel capacity, improve transmission reliability
in MEC based networks, and expand wireless coverage.
However, there is a notable scarcity of research concerning
RIS-assisted UAVs in the field of mobile edge computing
networks. While previously discussed studies have laid the
groundwork for a novel system framework that incorporates
RIS-assisted UAV-MEC, limited consideration has been de-
voted to investigating the energy ingestion aspect of RIS-
assisted UAV-MEC systems.

Besides, while the offloading users intend to use UAV’s
resources, but given the limited resources and UAV’s en-
ergy constraints, it’s infeasible for users to execute their
computation tasks concurrently on the UAV. Hence, there’s
a need to mutually augment task offloading and resource
allocation to efficiently manage UAV resources and decrease
energy consumption [13], [14], [21], [24]–[26]. However,
the challenge lies in the complex, non-convex nature of this
joint optimization problem, making it impractical to swiftly
attain the optimal solution using conventional methods. Prov-
identially, DRL has recently emerged as a powerful instru-
ment for tackling numerous optimization problems within
wireless communication networks. DRL offers the ability
to derive optimal solutions for wide-reaching, intricate, and
non-convex problems without necessitating complete and
precise network information [18], [20], [24], [33].

The study outlined in [20] focused on minimizing en-
ergy and delay with ze-RIS considerations, albeit limited to
vehicular networks and lacking the UAV relaying mecha-
nism. Similarly, the research in [21] solely addressed partial
offloading mechanism without considering ze-RIS or UAV
relaying, while also being a non-DRL solution, potentially in-
creasing complexity overhead. Additionally, [24] exclusively
explored binary offloading mechanism without incorporating
ze-RIS and only focused on energy optimizations. More-
over, [29] and [30] examined partial offloading mechanisms

without considering UAV relaying or ze-RIS. Both [30] and
[31] only delved into binary offloading mechanisms without
any association with ze-RIS, with the latter not considering
delay optimizations. The work in [32] is limited to partial
offloading mechanisms without a UAV relaying mechanism.

Taking these factors into account, this paper introduces
a hybrid resource allocation and task offloading scheme
tailored for ze-RIS-assisted UAVs operating within MEC
networks. ze-RIS offers energy efficiency, making it suitable
for power-constrained environments [34]. The ze-RIS and
conventional passive RIS differs in their power requirements.
ze-RIS operates without external power sources, relying on
energy harvesting or wireless power transfer. In contrast, con-
ventional passive RIS requires a continuous power supply.
While both enhance wireless communication by reflecting
and manipulating radio waves [35], [36].

The scheme formalizes the objective of minimizing energy
ingesting and leverages the DRL-based A2C algorithm to
efficiently address the optimization problem. A specified
comparison of related studies and our work is presented in
the Table 1, and the key contributions of this work are as
follows:

• The proposed DRL driven energy efficient task offload-
ing (DEETO) scheme is based on B5G technological
infrastructure. It incorporates an innovative RIS-assisted
UAV-MEC system that not only equips the UAV with
computation capabilities but also empowers it for relay
transmissions. Within the proposed framework, we con-
duct a comprehensive joint optimization of several crit-
ical parameters, including the allocation of the UAV’s
computational resources, working environment commu-
nication resource allocation, task offloading decisions,
and phase shifts for the RIS. The primary objective of
this optimization is to minimize the energy consumption
of the UAV.

• Given the non-convex nature of the objective function,
our approach involves an initial problem formulation
using a Markov decision process (MDP). In this context,
it’s important to highlight that both of the MDP spaces,
the state space and the action space are continuous. To
efficiently tackle this challenge, we employ the A2C
algorithm.

• Our simulation outcomes demonstrate the notable en-
ergy efficiency improvements achieved by our RIS-
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FIGURE 1: System model, demonstrating the conceptual
framework.

aided UAV-MEC system, which employs the A2C
algorithm. When compared to alternative benchmark
schemes, our approach substantially reduces the overall
energy consumption of UAVs.

II. SYSTEM AND OFFLOADING MODEL
A. SYSTEM MODEL
Recognizing the capabilities and advancements in 5G-NR
communications, we have explored an RIS-enhanced UAV-
MEC system, as depicted in Fig. 1. The UAV serves as a
spatial base station, equipped with computational capabilities
and the ability to function as a relay station. Thus, enabling
the transmission of ground user’s computational tasks to the
next generation evolved node B (gNB) type base transceiver
station (BTS). The BTS is supposed to be provided with
multi CPU MEC server. We have integrated zero-energy
reconfigurable intelligent surface (ze-RIS) elements into the
architecture, thoughtfully positioned on the building’s fa-
cade. We have followed the work proposed in [34], [35],
and [36] for ze-RIS, and the zero energy device (ZED) based
network configurations. The ze-RIS elements play a pivotal
role in redirecting signals when needed. When users need to
offload their computational tasks, they can choose between
transmitting them directly to the UAV or using the UAV as a
relay to send them to a distant small cell BTS for processing.
The remarkable contribution of ze-RIS is its capacity to assist
in signal relay from the UAV to the BTS, particularly in
some situations where a direct communication is created
amongst users and the BTS is hindered by physical barriers
or obstructions.

Within the scheme, we have gum ground users, a UAV
avi, an RIS rj equipped with k reflecting elements and a
5G small cell gNB type BTS bl connected to MEC infras-

tructure. Here i ∈ I, j ∈ J , k ∈ K, l ∈ L,m ∈ M
takes on values from the set {1, 2, . . . ,N}, and N belongs
to a natural number. To manage the RIS’s reflection ca-
pabilities, we employ a reflection factor matrix denoted as
Θ = diag[θ1(n), θ2(n), . . . , θk(n)]T , which embodies the
reflecting beam-forming functionalities of the RIS. Here,
θk(n) signifies the reflection factor of the k-th reflecting
component during time slot n. The phase shift, ϕk(n), is
contained within the interval [0, 2π), and λk is the ampli-
tude reflection coefficient, residing within the range [0, 1].
To optimize signal reflection, we typically set λk = 1, as
previously done in [33]. We then divide total time period, T ,
into n distinct time periods. The variable n belongs to the set
N , and each of these time slots has a duration of δ. Users,
during each of these time slots, offload their intended tasks
to the in-range UAV following orthogonal frequency-division
multiple access (OFDMA).

The channel gains for the ground user gum to UAV (gum–
avi link), from the UAV to BS (avi–bl link), UAV to RIS
(avi–rj link), and from RIS to BS (rj–bl link) during time
period n can be mathematically signified as Gm(n), hi,l

m (n),
hi,j
m (n), and hj,l

m (n), respectively. The gum–avi link, avi–bl
link, and avi–rj link are categorized as line-of-sight (LoS)
links, and modeled using the free-space path loss model, and
expressed as:

Gm(n) =

√
β0dm,i

−2(n) : Gm(n) ∈ gum – avi – link,
(1)

hi,l
m (n) =

√
β0di,l

−2(n) : hi,l
m (n) ∈ avi – bl – link, (2)

hi,j
m (n) =

√
β0d

−2
i,j (n)

[
1, e−j 2π

λ dφi,j(n), . . . ,

e−j 2π
λ d(K−1)φi,j(n)

]
: hi,j

m (n) ∈ avi – rj – link, (3)

In the given context, dm,i(n), di,l(n), and di,j(n) signify
the distances for the gum–avi, avi–bl, and avi–rj links in
time slot n, respectively. The path-loss at reference distance
of one meter is represented by β0, d represents the inter RIS
elements distance, and φi,j(n) = (xj − xi)/(di,j) denotes
the cosine of the angle of arrival (AoA) of the signal. It’s
important to note that, for simplicity, the channel from RIS
to BTS is considered to be mainly influenced by the Rician
fading channel, expressed as:

hj,l
k (n) =

√
β0d

−2
j,l (n)

[√
β1

1 + β1
hLoS
j,l (n) +√

1

β1 + 1
hNLoS
j,l (n)

]
: hj,l

m (n) ∈ rj – bl – link, (4)

hLoS
j,l (n) =

[
1, e−j 2π

λ dφj,l(n), . . . , e−j 2π
λ d(K−1)φj,l(n)

]
(5)

where β1 represents the Rician factor, dj,l(n) corresponds
to the distance for the rj–bl link., and hLoS

j,l (n) is the LOS
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component. φj,l(n) = (xl − xj)/(dj,l) denotes the AoD
signal’s cosine. For the NLoS component, hNLoS

j,l (n) follows
a Gaussian distribution with zero mean and unit variance, i.e.,
hNLoS
j,l (n) ∼ CN (0, 1).

B. OFFLOADING AND PROCESSING MODEL
In our study, we categorize the processing of user compu-
tation tasks into three specific phases. Initially, there is the
task offloading from the ground users to the UAV, followed
by the computation processing at the UAV, and finally, the
relaying of tasks to the BTS. It is important to note that the
BTS, being grounded and potentially equipped with multi-
CPU MEC servers. These servers are expected to have a
considerably higher computation rate compared to the UAV.
Therefore, we can safely disregard the computing latency of
BTS within all time slot.

1) UAV offloading
Given the constraints of finite computational power then the
battery size for the ground user, the decision is made to trans-
fer all of the computation tasks to UAV. In this context, the
computation tasks of the m-th user in the n-th time slot are
denoted as tk(n). Each tk(n) is characterized as a 3-tuple:
tkm(n) = {sm, cm, tm, em}, where sm represents the task
size in bits, cm indicates the required CPU cycles for 1 bit
computation, tm, and em are the time and energy threshold
units allocated for task completion. Since all the tasks are
pre-decided to be offloaded, the transmission rate Rofld

m (n)
of the m-th user in the n-th time slot while offloading task
tkm(n) is given by:

Rofld
m (n) = B0 log2

(
1 +

pm(n) ||Gm(n)||2

σ2

)
,

and B0 = B/m, (6)

Here, B is the total bandwidth, distributed into m even
channels as. pm(n) is the transmission power of m-th user in
the n-th time slot. σ2 denotes the power of additive Gaussian
white noise. The offloading delay for the m-th user, when
offloading their computation extensive tasks to the in range
UAV, is calculated while following Eq. (7). Additionally,
offloading a given task must follow the constraint tofldm < tm.

tofldm (n) = sm(n)/Rofld
m (n). (7)

2) UAV Computation
Since all of the user’s computational tasks are transferred
to UAV. The UAV dynamically determines the decisions of
offloading depending on the incoming task count from the
ground users. By employing a partial task offloading strategy,
the UAV handles the ζ portion of the task, while the β
segment is relayed to the BTS. The decision-making process
involves the UAV determining the allocation of the m-th
user’s computation tasks, deciding how much of the task
should be processed on the UAV and how much should be

relayed to the BTS. These decisions adhere to the constraint
ζ + β = 1. The decision parameters ζm and βm are binary
in nature. In the case of adopting a partial task processing
model, both of these parameters are set to 1. When exclu-
sively UAV processing is preferred, ζm is set to 1, and βm

is set to 0. Conversely, when only relaying is favored, βm

is set to 1, and ζm is set to 0. The time tavm and energy eavm
consumed in processing task tk(n) during the n-th time slot
at UAV avi can be expressed as follows:

tavm (n) =
(
(1−ζm(n)(1−βm(n))

){ζsm(n) cm(n)

fav
m (n)

}
(8)

eavm (n) = (1− dm(n))
{
ζsm(n) cm(n) φav

(
fav
m (n)

)2}
(9)

where fav
m (n) in Eq. (8) signifies the CPU resources allocated

to the task tk in n-th time slot, and φav in Eq. (9) is the UAV
chip specific effective capacitance coefficient, determined by
architecture of the chip.

3) UAV–BTS Relaying
For the decisions (ζm = βm = 1) or (ζm = 0 ∧ βm − 1)
the task is to be relayed to the BTS for processing, either in
parts or as a whole. Therefore, the transmission rate and time
for the UAV–BTS link can be calculated while following Eq.
(10), and Eq. (11), while the consumed energy for relaying
can be calculated while following Eq. (12).

Rrel
m = B0 log2

(
1 +

pm(n) ||h(n)||2

σ2

)
,

where h(n) = hi,l
m (n) + hi,j

m (n) Θhj,l
k (n) (10)

trelm (n) =
(
(1− ζm(n)(1− βm(n))

){β sm(n)

Rrel
m

}
(11)

erelm (n) =
(
(1−ζm(n)(1−βm(n))

){P rel
m β sm(n)

Rrel
m

}
(12)

III. OBJECTIVE AND SOLUTION METHODOLOGY
In this segment, we present our approach to addressing the
challenge of reducing energy ingesting while enhancing the
computational efficacy of the UAV based MEC network. The
key objective is to fine-tune the use of computation resources,
while aiming to maximize the proportion of total processed
bits to the energy consumed by UAVs. In line with our
goal, we can articulate the average energy ingesting and time
consumed while offloading, computing, and relaying the task
m is expressed in Eq. (13) and Eq. (14).

Tm =
1

M

M∑
m=1

(
tofldm (n) + tavm (n) + trelm (n)

)
(13)

Em =
1

M

M∑
m=1

(
eavm (n) + erelm (n)

)
(14)
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A. DEXTERITY FACTOR

To ensure fair and impartial assessments of efficiency, we
have introduced a parameter known as the dexterity factor.
This factor is designed to incorporate standard benchmarks
for time and energy consumption into the evaluation process.
Specifically, we establish tmm as the average of the maximum
and minimum time thresholds assigned to tasks, representing
the benchmark for delay, and emm as the average of the
maximum and minimum energy thresholds allocated to tasks,
serving as the benchmark for energy. These benchmarks,
derived from the range of allowable time and energy values,
provide a reference point against which the actual perfor-
mance of the UAV can be compared.

In a dynamic RIS-assisted MEC network, the performance
of a UAV in terms of time and energy can vary significantly
across different time slots. To ensure unbiased evaluations of
efficiency, we have introduced a dexterity factor. This factor
is designed to incorporate standard benchmarks for time and
energy consumption into the evaluation process. We define
tmm = mean(tmax

m , tmin
m ) as the benchmark for delay and

emm = mean(emax
m , emin

m ) as the benchmark for energy. Here,
tmax
m and tmin

m signify the maximum and minimum threshold
times allocated to the tasks, while emax

m and emin
m signify the

maximum and minimum threshold energy units allocated to
the tasks, respectively. These benchmarks provide reference
points against which the actual performance of the UAV can
be compared, allowing for a more accurate evaluation of its
efficiency. The dexterity factor is then formulated as:

Dm = {((tm + tmm)− Tm) + ((em + emm)− Em)} (15)

It is worth noting that a larger value of Dm corresponds to
a greater amount of saved energy and reduced delay. Since
the dexterity factor Dm is associated with single task tkm ,
the average dexterity factor for all M tasks can be expressed
as:

Da =
1

M

M∑
m=1

{((tm + tmm)− Tm) + ((em + emm)− Em)}

(16)

Building upon these foundational concepts, we establish
our joint objective to optimize Dm. This encompasses deci-
sions associated with offloading, UAV processing and execu-
tion, and the relaying mechanism.

maximize
ζ, β, Θ, P rel, fav

1

N

N∑
n=1

(
1

M

M∑
m=1

Dm

)
(n),

s.t.

C1 : Em(n) ≤ em(n), (17)
C2 : Tm(n) ≤ tm(n), (18)
C3 : 0 ≤ fav

m , and
M∑

m=1

(1− ζm(n)(1− βm(n))fav
m (n) ≤ Fmax(n), (19)

C4 : 0 ≤ P rel
m , and

M∑
m=1

(1− ζm(n)(1− βm(n)) P rel
m (n) ≤ P rel

max(n),

(20)
C5 : 0 ≤ ϕk < 2π, (21)
C6 : ∀ ζm ∈ {0, 1}, and ∀ βm ∈ {0, 1}. (22)

Constraint C1 is directly associated with energy and stipu-
lates that the energy consumed during task processing and re-
laying must be less than or equal to the allocated energy. Con-
straint C2 pertains to user experience, ensuring that the time
taken for task offloading, processing, and relaying must be
less than or equal to the allocated threshold time. Constraints
C3 and C4 signify the limitations on UAV computation
and energy resources, respectively. Constraint C5 denotes
the phase shift constraints for RIS elements. Constraint C6
signifies the parameters governing task offloading decisions.

The objective of the optimization problem described in Eq.
(17), i.e., to maximize the Dm, corresponds to minimize the
overall energy consumption of the UAV during its operational
tasks. This involves a comprehensive approach to optimizing
various aspects, including the task offloading decisions ζm
and βm, the phase shift Θ of RIS elements, the power con-
sumption P rel during relay transmissions, and the allocation
of UAV computational resources fav .

Given the dynamic nature of problem Eq. (17) and its
inherent involvement in a multidimensional spaciotemporal
environment, employing traditional optimization approaches
proves challenging due to significant difficulty and high-
order complexity. To address these challenges, we have cho-
sen to employ a DRL based methodology. This decision is
driven by the adaptive and learning-centric nature of DRL,
which is particularly well-suited for handling dynamic and
complex optimization problems in dynamic environments.

B. MDP FORMULATION
In the scope of this paper, the UAV plays the role of an agent
that actively interact with the environment, with the primary
objective of collecting comprehensive state information and
formulating an optimum policy to exploit the cumulative re-
ward. The designations for the MDP components, including
the state, action spaces, and reward function, are explicitly
outlined as follows:
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1) State Space
The state space st in our MDP at the t time slot is charac-
terized by various UAV states, including UAV position state
spu, UAV velocity state svu, UAV energy state seu, and UAV
processing capacity state scu. Additionally, the state space
also incorporates RIS configuration state sr, BS status state
sb, MEC workload state swm, MEC capacity state scm, and
task-related states such as task size state sstk, task CPU cycles
requirement state sctk, task threshold time state sttk, and task
energy threshold state setk. The comprehensive definition of
the state space is as follows:

S
∆
= {s|s = (spu, s

v
u, s

e
u, s

c
u, sr, sb, s

w
m, scm, sstk,

sctk, s
t
tk, s

e
tk)
}

(23)

2) Action Space
The action state at in our MDP at t time slot encompasses
UAV flight related actions including UAV speed asu, UAV
direction adu, and UAV altitude aau. Additionally, it also
includes actions related to RIS phase shifts adjustments ar,
local task processing actions altk, task offloading decision
action aotk, and task relaying actions artk. In a comprehensive
view, the action space can be articulated as follows:

A
∆
=
{
a|a = (asu, a

d
u, a

a
u, ar, a

l
tk, a

o
tk, a

r
tk)
}

(24)

3) Reward Function
The reward function R(st, at, st+1) in our MDP encapsulates
the goal of minimizing UAV energy consumption, ensuring
task completion, and promoting efficient utilization of the ze-
RIS. We have formulated the reward function as specified in
Eq. (25), incorporating various factors to effectively train the
DRL agent for optimal alignment with our objectives.

R(st, at, st+1)
∆
= {r|r = (rdf + ree + rtc + rru)} (25)

The rewards rdf , ree, rtc, and rru in Eq. (25) are directly
related to the objective function. rdf , dexterity factor reward,
this factor represents the agility and flexibility of the system
in handling tasks. In the objective function, this could be
associated with constraints related to task completion C2
and energy consumption C1. Maximizing rdf encourages
the system to efficiently complete tasks while managing
energy resources effectively. ree, the energy efficiency fac-
tor reward, this factor focuses on minimizing energy con-
sumption, which directly aligns with constraint C1 in the
objective function. By maximizing ree, the system aims to
optimize energy usage while achieving its objectives. rtc,
the task completion reward, this factor is binary, indicating
whether tasks are successfully completed rtc = 1 or not
rtc = 0. In the objective function, this corresponds to the
task completion constraint C2. Maximizing rtc encourages
the system to prioritize completing tasks efficiently. rru,
the RIS utilization reward, this factor promotes the optimal

utilization of RIS elements to enhance communication and
energy consumption, aligning with constraints C4 and C5
in the objective function. Maximizing rru encourages the
system to leverage RIS effectively to achieve its goals.

In order to train the DRL agent and guiding that towards
higher rewards we have added weights with these factors as
these can be observed from Eq. (26)

R(st, at, st+1)
∆
= {r|r = (rdf + (−w1 · ree)+

(w2 · rtc) + (w3 · rru))} (26)

Here, w1 weight is used to prioritize the importance of
UAV energy consumption. The weight w2 is associated with
task completion reward, and w3 is a measure indicating how
effectively the RIS is utilized.

C. THE A2C BASED DEETO ALGORITHM
The DEETO scheme includes the collaboration among the
DRL agent and the RIS-assisted MEC based UAV task of-
floading environment. The algorithm 1 integrates the Ad-
vantage Actor-Critic (A2C) algorithm with the UAV task
offloading and relaying scenario for obtaining optimal task
offloading decisions policy. The DEETO algorithm starts by
initializing the policy network πθ and the value function
Vϕ, along with the learning rate α and discount factor γ
hyperparameters. Then algorithm iterates through episodes,
representing sequences of interactions between the UAV and
the environment. Each episode captures a series of time steps.
At each time step within an episode, the algorithm the policy
network πθ samples an action at based on the current state st.
Later, the sampled action at is executed in the environment,
resulting in a reward rt and a new state st+1. Then, based on
the current state and connectivity information, the algorithm
determines the communication scenario. This scenario can
be a direct link gum – avi between the mobile user and the
UAV or relay link gum – avi – bl from mobile user to UAV
to BS, or an RIS assisted link gum – avi – rj – bl an RIS-
assisted link. Depending on the communication scenario,
the state of the mobile user, BS, RIS, and UAV is updated
to reflect changes in parameters such as task status, band-
width, energy levels, delays, phase shifts, channel conditions,
and resource availability. After updating, the transition tuple
(st, at, rt, st+1) is stored in a trajectory buffer for later use
in policy and value function updates. Then the advantage
At is calculated using the reward rt and the value functions
Vϕ for the current and next states st and st+1, respectively.
Next the policy parameters θ and value function parameters ϕ
are updated using the A2C algorithm. The policy parameters
are updated in the direction that increases the likelihood of
selecting actions that yield higher advantages, while the value
function parameters are updated to reduce the difference
between the estimated value of the current state and the
estimated value of the next state. After the specified number
of episodes, the algorithm outputs the optimal policy πθ and
value function Vϕ, which can then be used to make task
offloading and relaying decisions in the UAV environment.
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Algorithm 1 A2C assisted DEETO Algorithm

1: Input: Initial state s0, policy network πθ, value function
Vϕ, gum, avi, rj , bl parameters

2: Initialize policy network πθ and value function Vϕ, learn-
ing rate α, discount factor γ

3: for each episode do
4: Initialize environment initial state s0
5: for each time step t do
6: Take sample offloading action at ∼ πθ(·|st)
7: Execute offloading action at, observe reward rt

and new environment state st+1

8: Determine communicating node locations and
connectivity

9: Select communication link (gum – avi, gum –
avi – bl, gum – avi – rj – bl)

10: if gum – avi then
11: Update location, trajectory, computation and

energy states of avi
12: else if gum – avi – bl then
13: Update location, trajectory, computation and

energy states of avi,
14: Update bl states
15: else if gum – avi – rj – bl then
16: Update location, trajectory, computation and

energy states of avi,
17: Update phase shifts, channel conditions, en-

ergy states of rj ,
18: Update bl states
19: end if
20: Update gum, avi, rj , and bl state parameters
21: Update communication scenario used,
22: Update energy consumed,
23: Update delay incurred,
24: Update available resources
25: Store transition (st, at, rt, st+1) in trajectory

buffer
26: Calculate advantage At = rt + γVϕ(st+1) −

Vϕ(st)
27: Update policy parameters θ and value function

parameters ϕ using A2C:

θnew = θ + α∇θ log πθ(at|st) ·At

ϕnew = ϕ+ α∇ϕ

(
0.5(Vϕ(st+1)− Vϕ(st))

2
)

28: end for
29: end for
30: Output: Optimal offloading policy πθ and value function

Vϕ

Throughout the algorithm, mathematical notations such as
πθ, Vϕ, α, γ, ∇θ, and ∇ϕ are used to represent the policy
network, value function, hyperparameters, and gradients for
policy and value function updates. The algorithm provides
a rigorous framework for delay and energy optimizing task
offloading and relaying decisions in the UAV environment.

TABLE 2: Simulation Parameters

Simulation Parameter Value
CPU frequency of avi, and MEC 2MHz–2GHz, 2GHz–5GHz

bl antennas, RIS elements 4, 50
Maximum pm, P rel

m , β0 and σ2 0.5W, 1W, -50dB, and -90dBm
avi – rj link Rician factor 10dB
rj – bl link Rician factor 10dB

gum – avi link Rician factor 3dB
rj – bl link path loss exponent 2dB

gum – avi link path loss exponent 3.5dB
avi – rj link path loss exponent 2.8dB

Cellular Bandwidth 10MHz
A2C Algorithm Parameter

Time steps 100k
Update window size per step 100
γ, GAE λ, and Learning rate 0.99,1.0, 0.0005

Value function coefficient 0.5

IV. SIMULATION SETUP, RESULTS AND DISCUSSION
In this section, we present the experimental setup and out-
comes of our study on optimizing task offloading and re-
laying in a UAV-assisted MEC system while minimizing
delays and energy consumption. The underlying subsection
contains the details regarding simulation parameters, and
configurations. The subsequent section contains the achieved
results, discussing the DEETO algorithm’s performance.

A. SIMULATION SETUP
We consider a UAV-assisted MEC based communication en-
vironment with RIS enhancement. The network is equipped
with BTS having the communication range radius of 200m
with ze-RISs support. Similarly, the UAV have a communi-
cation range radius of 500m. The positions of gum users are
circularly distributed in an area around the UAV with 100m
radius, randomly. We configure the channel parameters by
equipping the ze-RIS with a uniform planar array (UPA),
organized in an Mx ×My grid layout. Employing the Rician
fading model, our channel model encompasses both line-of-
sight (LoS) and non-LoS components for the links between
the gum – avi, avi – bl, avi – rj , and rj – bl. The path loss
is characterized by PL(α, d) = β0(d/d0) − α, where d
represents the transmission distance, β0 denotes the path loss
at the reference distance d0 = 1m, and is set to −40dB.
The α signifies the path loss exponent. The task attributes,
including size and processing time thresholds, are selected at
random from predefined intervals. Task sizes vary from 1 to
50Mb, while processing thresholds range from 200 to 500ms,
and 1–50 joules of energy units to process it, accordingly.
Additionally, our system incorporates a sub-task feature, en-
abling each task to comprise a flexible number of sub-tasks,
ranging from 1 to 100. The simulations were executed on a
M1-MacBook, using Python 3.7, PyTorch 2.0, Spyder, and
Jupyter Notebook IDEs were employed for implementation.
The DRL algorithms adhered to OpenAI standards. Other
simulation parametric values and hyperparameters are given
in Table 2.

For thorough analysis, we conducted convergence tests on
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FIGURE 2: Convergence analysis of A2C based DEETO
scheme for different learning rates.

the proposed DEETO scheme using various A2C DRL agent
learning rates. Specifically, we evaluated the A2C algorithm’s
performance with learning rates set at 7e−2, 7e−4, 7e−6,
and 7e−8. The convergence and reward collection analysis,
depicted in Fig. 2, revealed distinct patterns. Notably, results
indicated that the 7e−4 and 7e−8 learning rates achieved
earlier convergence compared to 7e−2 and 7e−6, albeit expe-
riencing declines in performance over additional time steps.
While the convergence pattern for 7e−2 appeared superior
to 7e−4 and 7e−8, it exhibited lower reward collection than
7e−6. Remarkably, the A2C algorithm demonstrated notable
efficacy with DEETO at a learning rate of 7e−6, exhibiting
enhanced convergence and higher rewards. Consequently,
we have selected 7e−6 as the learning rate for subsequent
experimental analyses.

B. RESULTS AND DISCUSSION
The efficiency of the DEETO scheme is systematically ex-
amined in dynamical scenarios, comparing it with other can-
didate DRL-based offloading techniques. we have evaluated
and analyzed these schemes in terms of rewards, time frames
per second (TFPS), task completion rate, energy consump-
tion rate, and dexterity factors. Confirming an adequate com-
parison, all schemes are assessed using consistent simulation
parameters. we have compared the DREEO scheme with the
following contender schemes:

• DEETO: This is the proposed scheme.
• DREEO: This is a DRL based energy optimizing task

offloading scheme. DREEO is an RIS assisted scheme,
comprising hybrid task offloading scheme including
binary and partial offloading mechanisms [20].

• DTORA: This is an RIS enabled UAV based MEC
task offloading scheme. The DTORA optimizes task
offloading and resource allocation decision using double
DQN algorithm. These decisions target to mitigate UAV
energy consumption through optimizing computing and

communication resources and RIS phase shifts [30].
• DQN: This is an other DRL driven scheme to optimize

task offloading delays and energy consumption. The
DQN algorithm is adopted to optimizing task offloading
decisions.

Several assessments have been made to verify and affirm
the efficacy of our proposed DEETO scheme in a dynamic
UAV-centric edge computing network environment. Fig. 3
provides a comprehensive comparison between DEETO and
other schemes concerning rewards, a key metric in DRL-
based approaches. Fig. 3(a) illustrates raw episodic rewards,
while Fig. 3(b) depicts smoothed episodic rewards across
time steps. Here, the DRL agent interacts with the environ-
ment, receiving rewards or penalties based on its actions. As
the iteration with the environment progresses, the DRL agent
adapts its policy to optimize its reward value. Favorable ac-
tions corresponding to the current environmental state yield
higher rewards, whereas unfavorable actions result in reduced
or negative rewards (penalties).

Besides, in the context of evaluating DRL based algo-
rithms, apart from the comparison of rewards, time frames
per seconds (TFPS) serves as a crucial performance metric.
TFPS refers to the rate at which an algorithm processes the
environment state steps within a given timeframe. A lower
TFPS indicates that the algorithm can process each time
frame more efficiently, meaning it can accomplish its tasks or
decision-making processes in less time. Therefore, achieving
a lower TFPS over time signifies improved performance and
efficiency. Fig. 4 provides an illustration of the TFPS for all
the contender approaches.

The observations indicate that the proposed DEETO
scheme initially shows a higher TFPS, which gradually de-
creases over time and eventually converges to the lowest
rate compared to all competing schemes. DEETO scheme
achieves the lowest average TFPS rate of 870 among all
other schemes. The DREEO scheme closely follows the
characteristics of the DEETO scheme in terms of TFPS rate,
yet it concludes with a slightly higher average TFPS of 910.
Contrarily, the DTORA scheme starts with a higher TFPS,
experiences a temporary decrease, but eventually shows an
increasing trend over time, and finally converging at an
average TFPS of 992. In contrast, the DQN-based scheme
performs the poorest in terms of TFPS, obtaining an average
TFPS rate of 1048.

The DRL characteristics shown in Fig. 3 and Fig. 4 il-
lustrate the performance of each scheme in terms of re-
wards and TFPS, respectively. However, evaluating both
features simultaneously unveils optimal algorithmic perfor-
mance when higher rewards are achieved at lower TFPS rates
collectively. It is understandable that the proposed DEETO
scheme outperforms all contestant schemes while adhering
to this measure. This performance gap between DEETO and
other schemes can be accredited to several advantages of
employing the A2C algorithm. A2C’s simplicity, combining
policy gradients and value-based methods, along with lower
variance, renders it more robust. These attributes make it
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(a) Reward Raw (b) Reward Smoothed

FIGURE 3: Evaluation of mean episodic rewards across different DRL based offloading schemes.

FIGURE 4: Evaluation of time frames per second across
completing DRL based offloading schemes.

predominantly suitable for real-time learning scenarios, en-
abling firmer convergence and compliance to the dynamic
communication environments.

Apart from the DRL characteristics, it is necessary to
consider the interacting environmental factors in which the
DRL agent operates. Therefore, to assess the effectiveness
of these task offloading schemes we have analyzed the task
turnover rate and energy consumption rate, as shown in
Fig. 5(a) and Fig. 5(b). The analysis illustrates how accu-
rately and effectively task offloading decisions are made,
balancing task completion and energy optimization consider-
ations. This decision involves determining whether to execute
tasks locally, on the UAV, or to relay them to the edge
server. For the DEETO and DREEO schemes, there exists
an additional dimension of decision-making, i.e., whether
task processing/offloading occurs in a binary or partial man-
ner. Fig. 5(a) illustrates the analysis, representing that all

schemes performed worthily in terms of task success and
drop rates, although with slight variations. However, the
DEETO scheme achieved the highest task success rate of
94.12% and the lowest drop rate of 05.87%. The DREEO
scheme closely followed, achieving a 93.42% task success
rate and a 06.58% drop rate. Conversely, the DTORA and
DQN schemes achieved task success rates of 83.04% and
80.13%, with corresponding task drop rates of 16.96% and
19.87%, respectively.

Similarly, Fig. 5(b) depicts the percentage of energy con-
sumed and saved during task processing and relaying. All
schemes successfully conserved energy within the allocated
resources while observing to delay and task completion
constraints. The DREEO scheme demonstrated the highest
energy savings, conserving 16.98% of the allocated energy
resources. Moreover, DREEO remained a close competitor
to the DEETO scheme, achieving energy savings of 12.51%.
In comparison, the DTORA and DQN schemes saved 12.22%
and 8.32% of the allocated energy resources, respectively.

In addition to the aforementioned analyses, we conducted
a comparative investigation involving the dexterity factor
across varying numbers of tasks, task threshold times, and
task sizes. The dexterity factor is composed as the sum of
differences between consumed time and benchmark time, as
well as consumed energy and benchmark energy.

Fig. 6a illustrates the comparative performance of all
offloading schemes as the number of tasks increases. It is
evident that an increase in the number of tasks leads to higher
delay and energy consumption. However, the dexterity factor
also increases concurrently, as it represents the average sum
of saved energy and time. Notably, both the DREEO and
DEETO schemes exhibit a similar pattern of energy and time
savings, although with differing scales. This similarity can
be attributed to the shared utilization of a hybrid task of-
floading mechanism. However, DEETO achieves the highest
average dexterity factor, reaching 239.07 against 209.79 of
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(a) task rate (b) energy rate

FIGURE 5: Task completion and energy consumption of various DRL based schemes.

(a) Dexterity factor vs increasing number of tasks (b) Dexterity factor vs increasing threshold time (tmax)

FIGURE 6: Evaluation of dexterity factor against increasing number of tasks and the task threshold time

DREEO, 195.55 of DTORA, and 178.79 of DQN scheme.
The superior decision-making mechanism of DEETO results
in a higher dexterity factor, reflecting the cumulative savings
in energy and time. This further validates the efficacy of
relaying through ze-RIS via efficient phase shift mechanisms
in reducing UAV energy consumption.

Expanding the analysis, we examined the performance of
the DEETO scheme against the other schemes while increas-
ing the threshold time, as depicted in Fig. 6b. It is evident
that at lower threshold times, DEETO, DREEO, and DTORA
exhibit similar performance levels, but as the threshold time
increases, DEETO emerges as the superior scheme. However,
the DQN scheme demonstrates the least efficiency. The pro-
posed DEETO scheme achieved an average dexterity factor
of 270.89, closely followed by DREEO with an average dex-
terity factor of 268.90. DTORA also closely trails DREEO
with an average dexterity factor of 266.81, while the DQN
scheme attained an average dexterity factor of 264.45.

The Fig. 7 illustrates the relationship of dexterity factor
against increasing task size. it is obvious that as the task

size increases the computation and communication over head
also increases. the results show that DEETO and the DREEO
schemes again has the same pattern of achieving dexterity
factor, but the DEETO scheme has a smooth non linear trend
as the task size increases and tends to convergence. However
all the other schemes has a near linear sharp decreasing trend
of dexterity factor with the increasing task size. The DEETO
scheme achieved the highest average dexterity factor of
282.32, while DREEO, DTORA, and DQN achieved average
dexterity factor of 277.65, 273.26, and 271.84, respectively.

The DREEO scheme emerged as the decent performer
among all contender schemes due to its intelligent optimiza-
tion of ze-RIS phase shifts coupled with a strategic hybrid
task offloading mechanism. DREEO consistently remained
a close competitor of DEETO across all evaluation results,
leveraging the A2C algorithm alongside its hybrid task of-
floading approach, however with a random ze-RIS phase shift
mechanism. In contrast, the DTORA scheme utilized the
DDQN algorithm along with an intelligent RIS phase shift
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FIGURE 7: Dexterity factor vs increasing task size

mechanism but lacked a hybrid task offloading mechanism,
resulting in slightly inferior performance. On the other hand,
the DQN scheme, employing a deep Q-Network and employ-
ing a binary task offloading mechanism with random RIS
phase shifts put it poorer scheme against all the competitor
task offloading schemes.

V. CONCLUSIONS
This study addresses the challenge of sustaining high-quality
communication services over extended periods in mobile
edge computing (MEC) networks, particularly during emer-
gencies, by leveraging UAVs and RIS. We introduced a com-
prehensive strategy that integrates ze-RIS into UAV-MEC
networks, incorporating task offloading and resource alloca-
tion mechanisms. Our proposed DRL-driven energy-efficient
task offloading (DEETO) scheme minimizes UAV energy
consumption by optimizing task offloading decisions, UAV
computing resource allocation, communication resource allo-
cation, and RIS phase shift control, employing a hybrid task
offloading mechanism. We modeled this problem as a DRL
problem and structured it as an MDP and employed A2C al-
gorithm due to its simplicity and less complexity. Simulation
results demonstrate that the DREEO scheme emerged as a
strong performer, utilizing intelligent ze-RIS phase shift op-
timization and a strategic hybrid task offloading mechanism.
DEETO scheme showcased a significant energy savings of
16.98% from allocated resources, alongside the highest task
turnover rate of 94.12%. Notably, DEETO scheme achieved
these outcomes within shorter average learning time frames
per second (TFPS) of 870 while yielding higher rewards
of 57.38, underscoring its effectiveness over alternative ap-
proaches.
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