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ABSTRACT The objective of image style transfer is to create an image that has the artistic features
of a reference style image while also retaining the details of the original content image. Despite the
promising outcomes of current approaches, they are still susceptible to generating image information
distortion or noise texture problems due to the absence of an effective style representation. As a solution
to the aforementioned issues, this paper proposes AMS-CycleGAN (Attention Moment Shortcut-Cycle
Generative Adversarial Network), a CycleGAN-based method that achieves style transfer, resulting in
artwork that closely resembles hand-painted masterpieces by artists. Initially, the framework makes use of
the Positional Normalization-Moment Shortcut (PONO-MS) module, the purpose of which is to retain and
transmit structural information in the generator. Additionally, the Multi-Scale-Structural Similarity Index
(MS-SSIM) loss is added to strengthen the constraint on the brightness and colour contrast of images.
Finally, an attention mechanism module is introduced in the discriminator to emphasize available features
and suppress irrelevant features during the style transformation process. According to the experimental
results obtained, our method demonstrates a higher level of consistency with human perception when
compared to current state-of-the-art methods in image style transfer.

INDEX TERMS CycleGAN, Image Style Transfer, Multi-Scale-Structural Similarity Index, Attention
Mechanism.

I. INTRODUCTION

Painting is a captivating and enduring art form that has con-
stantly captured the public’s interest. Diversified artworks ex-
hibit a wide array of hues, luminosity, brushstrokes, shapes,
and other elements. In the field of computer vision, re-
searchers have been exploring how computer technology can
be used to transform ordinary images into artistic paintings.
This above process is known as artistic style transfer, which is
to extract texture and colour information from the referenced
artistic images, and then add this information back to the
content image after the transformation. Art style transfer
has been utilized across different industries, including film,
animation, and gaming, due to its ability to enhance visual
effects. Its research has garnered significant attention owing
to its value in both scientific and artistic fields.

The latest practices of image style transfer can be catego-
rized into two main categories [1]. The first category is the

slow neural method based on online image optimization that
generates the stylized image through pixel iteration on the
noise image. Based on the distinction of the style loss func-
tion, this category can be further categorized into two main
types: parameter based methods [2]–[5] and non-parameter
based methods [6]–[9]. The limitations of the aforementioned
methods include high computational complexity, lengthy
processing time, and challenges for real-time applicability.
The second group consists of fast neural methods based on
offline model optimization. This category encompasses feed-
forward network based methods [10]–[15] and generative
adversarial network (GAN) [16]–[20] based methods. These
approaches leverage pre-training to generate stylized images
more efficiently. Specifically, our research focuses on GAN-
based methods, where stylized images are generated through
an interplay between the generator and the discriminator.

Even though GAN-based methods have made significant
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FIGURE 1. The result of CycleGAN shows the problem of noise texture, UNIT and MUNIT models fail to manifest the distinct characteristics of specific
styles and exhibit the problem of noise artifacts in their generation results.

improvements on unpaired datasets, the generated stylized
results are not consistently satisfactory. As shown in Fig.1,
the CycleGAN [17], UNIT [21] and MUNIT [19] suffer
from issues such as inconsistent semantic information, noisy
textures, and colour distortion. To solve this limitation, a
structure of style transfer network called AMS-CycleGAN
is proposed. The AMS-CycleGAN method is designed to
achieve effective style representation and generate high-
quality images with improved content consistency and re-
duced distortion. The results in Fig.1 show that our method
can reflect the semantic information from the original photos
better. For instance, the color of the sky surrounding the
moon and clouds is accurately retained. The contributions of
the proposed method are summarized as follows:

1) To enhance the model’s ability to capture and utilize
the structural features in the images, we have incorpo-
rated the Positional Normalization-Moment Shortcut
(PONO-MS) module into the generator.

2) To mitigate issues related to brightness, color con-
trast, and object structure within the generated im-
ages, the Multi-Scale-Structural Similarity Index (MS-
SSIM) loss combined with L1 norm loss is applied to
the reconstructed images.

3) By incorporating an attention mechanism module, the
discriminator can recognize the authenticity of the gen-
erated image more effectively, and assist the generator
to emphasize the key content of the input image.

The following of this paper is organized as: Section II
reviews related works about fast neural style transfer; Sec-
tion III describes the structure of AMS-CycleGAN net-
work; Section IV illustrates the implementation details of
the proposed network; Section VI presents and analyzes the
comparative experimental results on the public image style
transfer datasets; Section VII provides the discussion and the
conclusion of this study.

II. RELATED WORK
The representative works of fast neural style transfer are
reviewed and their classification is discussed, including feed-
forward network based methods and GAN-based methods.
In this section, we will outline the latest and most pertinent
research papers.

A. FEED-FORWARD NETWORK BASED METHODS
The feed-forward network based methods [10], [11], [13],
[15], [22]–[24] typically employs a single generator network
to generate stylized results, wherein the generator network
is trained by minimizing the style loss function to optimize
the differences between the generated images and the style
images.

Johnson et al. [10] trained feed-forward networks for
image transformation tasks by leveraging perceptual losses
extracted from deep convolutional neural networks. Ulyanov
et al. [11] proposed a texture network that incorporated
a multi-scale architecture to learn features from the input
image across various dimensions. However, this approach
could face challenges when handling intricate textures and
styles, potentially resulting in the generation of distorted
images. Then, Ulyanov et al. [22] used Instance Normal-
ization (IN) to replace Batch Normalization (BN) [23]. The
IN layer performed independent calculations of the mean
and variance for each channel and sample, thereby avoiding
limitations imposed by batch size. Therefore, Dumoulin et al.
[13] proposed Conditional Instance Normalization (CIN) as
an extension of IN, in which distinct sets of affine parameters
were learned for different styles. This approach assumed
that various styles had shared computational dimensions. For
instance, many Impressionist painters may have had similar
brushstrokes while the choice of colours varied. Adaptive
Instance Normalization (AdaIN) was initially introduced by
Belongie et al. [15] and by matching the mean and variance of

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397492

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the content input to those of the style input, and it extended
the concept of IN. As the affine parameters in AdaIN were
directly computed from the input images, the need for addi-
tional training time was eliminated. Afterwards, Park et al.
[24] discovered that previous algorithms did not effectively
balance global and local style patterns. Therefore, they pro-
posed the Style-Attentional Network (SANet), which learned
semantic information between content and style features by
spatially rearranging style features based on content features.

In the various normalization schemes of the aforemen-
tioned models, a common theme is followed, which involves
normalizing across spatial dimensions and discarding ex-
tracted statistical data, resulting in a lack of effective style
representation. The generated results of these models may
also exhibit image information distortion or noise texture
issues. Hence, this paper introduces the AMS-CycleGAN
model for unsupervised artistic image style transfer, aiming
to retain or transmit style feature information in the generated
network.

B. GAN-BASED METHODS
The GAN-based methods train the generator and discrimi-
nator through adversarial learning. Following the initial pro-
posal by Goodfellow et al. [16] on GAN-based image style
transfer, a considerable number of image-to-image transla-
tion models [17], [19]–[21], [25]–[28] based on GANs have
been proposed.

Isola et al. [25] proposed the pix2pix method, in which
the generator adopted an encoder-decoder structure for image
conversion. However, capturing the style of just one or a few
images did not adequately capture the full range of an artistic
style. To solve this limitation, learning an artist’s style from
a collection of images became crucial. Therefore, Zhu et al.
[17] proposed a network for unsupervised artistic style image
transfer and used cycle consistency loss to facilitate the trans-
fer between the source and target domains. This loss function
quantified the differences between the mapped images and
the original images in the RGB space, thereby preserving the
content characteristics of the original images. However, the
CycleGAN method frequently encountered challenges, such
as the presence of texture noise and colour inconsistency
in the generated outcomes. According to Liu et al. [21], it
was observed that in the CycleGAN model, input images
were mapped onto separate latent spaces. In response to this
finding, they proposed the UNIT framework, which assumed
a shared latent space such that corresponding images in
two domains were mapped to the shared latent space. In
addition, Huang et al. [19] proposed the MUNIT model as
an extension of the UNIT model, which assumed that the
latent space of images could be decomposed into content
space and style space. The content encoding encoded the
information that should be preserved during the translation
process. By sampling different style codes, diverse and multi-
modal outputs could be achieved in image generation.

Recently, Junho Kim et al. [27] proposed a new method
called U-GAT-IT, which incorporated an Adaptive Layer-

Instance Normalization (AdaLIN) function and an attention
module based on Class Activation Mapping (CAM). This
approach enabled the model to prioritize important regions
and control the amount of change in shapes and textures
within the images, resulting in impressive visual effects in
terms of object transformations. Then, a compact network
structure NICE-GAN was proposed by Chen et al. [29],
which replaced the target domain image encoder by reusing
the initial layers of the target domain discriminator. They
also proposed a decoupled training paradigm for image con-
version, resulting in improved training speed and guaranteed
quality of the generated results.

III. THE PROPOSED METHOD
The proposed network AMS-CycleGAN is based on the
CycleGAN [17] model and aims to demonstrate semantic
stylization of content images with diverse themes, while ef-
fectively retaining the original content information of natural
images.

The proposed AMS-CycleGAN comprises two symmetri-
cal Generative Adversarial Networks designed for the source
domain X (scenic photographs) and the target domain Y
(artist paintings), respectively, as shown in Fig.2. Given
training samples {xi}Ni=1(xi ∈ X) and {yj}Mj=1(yj ∈ Y ) of
which the data distribution as x ∼ pdata(x) and y ∼ pdata(y)
are provided. The generator G is responsible for the transfor-
mation from domain X to domain Y , with the discriminator
Dy assessing the generated images. Conversely, the generator
F performs the reverse transformation from domain Y to do-
main X , with the discriminator Dx evaluating the generated
images. These operations aim to minimize the significant
overlap between the generated images and the target images,
while emphasizing the preservation of the original content
information of the source images. The discriminators assess
the authenticity of the generated images in conjunction with
real data, thereby enabling the generators to train towards the
intended objective.

FIGURE 2. The model architecture of AMS-CycleGAN.

A. GENERATOR
The structure of generators G and F are identical in the
proposed AMS-CycleGAN model, as shown in Fig.3, with
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TABLE 1. The internal structure of the generator

Part Layer Information

Encoder (Down-sampling)


ReflectionPad2d(3)
Conv2d(3, 64, k = 7, s = 1), IN,ReLU
Conv2d(64, 128, k = 3, s = 2, p = 1), PONO, IN,ReLu
Conv2d(128, 256, k = 3, s = 2, p = 1), PONO, IN,ReLU


Transformation (Resnet-Block*9)


ReflectionPad2d(1)
Conv2d(256, 256, k = 3), IN,ReLU
ReflectionPad2d(1)
Conv2d(256, 256, k = 3), IN



Decoder (Up-sampling)


MS,ConvTranspose2d(256, 128, k = 3, s = 2, p = 1), IN,ReLU
MS,ConvTranspose2d(128, 64, k = 3, s = 2, p = 1), IN,ReLU
ReflectionPad2d(3)
Conv2d(64, 3, k = 7, s = 1)
Tanh()



FIGURE 3. The architecture of AMS-CycleGAN generator. Operations in
a block are applied from left to right.

the internal composition shown in Table.1. The generator
consists of three parts: Encoder, Transformation and De-
coder. Firstly, the encoder extracts the feature information
of the input image x, by performing down-sampling using
three Conv-IN-ReLU convolutional layers. The input image
is mapped to a low-dimensional feature space for data clas-
sification and analysis, with the objective of capturing high-
dimensional semantic information. Next, inside the transfor-
mation module, the target image style is transferred using a
9-layer deep residual network, where each residual network
consists of two Conv-IN-ReLU layers with a kernel size of 3.
The residual network effectively preserves the content infor-

mation from source domain images in the generated images,
while alleviating the problem of error amplification asso-
ciated with increasing network depth. Furthermore, in the
decoder, two DeConv-IN-ReLU layers are used to restore the
low-level features of the input image and collect the semantic
information extracted by the encoder. The corresponding
feature information is mapped to the pixel locations of the
generated image. Finally, the generated image is outputted
through a Conv-Tanh layer.

The Encoder and Decoder are connected through a PONO-
MS [30] module, which enables the efficient transmission of
more pertinent style feature information to the subsequent
network layers. The PONO module is located in the down-
sampling layers of the Encoder, while the MS module is
positioned in the up-sampling layers of the Decoder and
receives the output of PONO. As PONO normalizes the
channels at fixed pixel locations, it effectively captures the
structural information present in the feature maps.

FIGURE 4. The schematic diagram of the PONO-MS module.

The schematic diagram of the PONO-MS module is shown
in Fig.4. Given an input batch x ∈ RB×C×H×W , the mean
(µ) and standard deviation (σ) information extracted from
previous layers are injected directly into the MS layer as the
scale (γ) and displacement (β) parameters, respectively. Then
the calculation of PONO and MS layer are as follows:

µb,h,w(x) =
1

C

C∑
c=1

xb,c,h,w (1)
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σ(x) =

√√√√ 1

C

C∑
c=1

(xb,c,h,w − µb,h,w(x))2 + ε (2)

PONO(x) =
(x− µ(x))

σ(x)
(3)

MS(x) = γF (x) + β (4)

where c is the number of channels, b denotes the batch
size, h is the height, and w is the width. In Eq.(2), ε is small
stability constant to avoid divisions by zero and imaginary
values due to numerical inaccuracies. F is modeled by the
intermediate layers. Also the µ and σ extracted from the input
x are directly mapped to β and γ.

B. DISCRIMINATOR
The discriminator network structure of AMS-CycleGAN is
based on the 70*70 PatchGAN [25] model and consists
of 6 convolutional layers, as shown in Fig.5. The internal
composition is described in Table.2. Firstly, the first to fourth
convolutional layers extract feature information from the
input image, resulting in 31*31*512 feature maps. Secondly,
an attention mechanism module is introduced between the
fourth and fifth convolutional layers. By enhancing the in-
terdependence between feature channels, the generator is
assisted in selectively focusing on key pixel locations in
the image, disregarding or directly filtering out irrelevant
parts to obtain the relevant information required for image
synthesis. Finally, the output is a matrix M of size N*N .
Each element M (i,j) of the matrix M corresponds to the
receptive field in the original image, and the value of M (i,j)
indicates the score of authenticity for the image block in
the input image. Additionally, to enhance training stability,
spectral normalization (SN) [31] is utilized on the first to
fourth convolutional layers of the discriminator.

Let F ∈ RC×H×W represent the intermediate feature map
from the fourth layer. Firstly, two distinct spatial feature maps
are generated by applying global average pooling and global
max pooling operations on F . Subsequently, these feature
maps are forwarded to a shared network, which comprises
a multi-layer perceptron with hidden layers. Following that,
weights are calculated along the channel dimension for both
the global max pooling feature map and the global average
pooling feature map. These weights are applied as activations
to the corresponding channels of the intermediate feature
map. In other words, the feature maps with weights are con-
catenated, resulting in a doubling of the number of channels.
Finally, a network layer with a 1*1 convolutional kernel is
utilized to reduce the channel dimension back to 512. The
formula for the shared multi-layer perceptron (MLP) [32]
network is as follows:

M(f) = concat(F ∗MLP (GlobalAvgPool(F )),

F ∗MLP (GlobalMaxPool(F )))

= concat(F ∗W1(W0(Fgap)), F ∗W1(W0(Fgmp)))
(5)

FIGURE 5. The discriminator of the proposed AMS-CycleGAN.

where Fgap and Fgmp represent the one-dimensional feature
maps obtained after applying global average pooling and
global max pooling operations, respectively. W0 and W1

denote the shared weights of the MLP.

IV. IMPLEMENTATION DETAILS OF THE EXPERIMENT
A. LOSS FUNCTION
The loss function consists of four parts: adversarial loss,
identity loss, cycle consistency loss [17], and MS-SSIM loss
[33].

1) Adversarial Loss

To address the problem of gradient vanishing in traditional
GAN, the Least Squares Generative Adversarial Network
(LSGAN) [34] approach is introduced, wherein the cross-
entropy loss function is replaced by a least squares loss func-
tion. LSGAN facilitates stable model training and effectively
mitigates mode collapse issues, leading to the generation of
more realistic and detailed images.

For the transformation from X to Y , the objective function
for the generator G and discriminator DY is:

min
DY

Llsgan(G,Dy, X, Y ) =
1

2
Ey∼data(y)

[(DY (y)− 1)2]

+
1

2
Ex∼data(x)

[(DY (G(x)))
2
]

(6)

min
G

Llsgan(G,Dy, X) =
1

2
Ex∼data(x)

[(DY (G(x))− 1)2]

(7)
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TABLE 2. The internal structure of the discriminator

Part Layer Information

The first to four
layers


Conv2d(3, 64, k = 4, s = 2), SN,LeakyReLU

Conv2d(64, 128, k = 4, s = 2), SN,LeakyReLU
Conv2d(128, 256, k = 4, s = 2), SN,LeakyReLU
Conv2d(256, 512, k = 4, s = 1), SN,LeakyReLU


Attention mechanism

module

{
GlobalAverage,MaxPooling(512, 1024)
MLP − (N1),MultiplyMLPweights

}
The last two

layers

{
Conv2d(1024, 512, k = 1, s = 1), SN,LeakyReLU
Conv2d(512, 1, k = 4, s = 1), SN,LeakyReLU

}

For the transformation from Y to X , the objective function
for the generator F and discriminator DX is:

min
DX

Llsgan(F,Dx, Y,X) =
1

2
Ex∼data(x)

[(DX(x)− 1)2]

+
1

2
Ey∼data(y)

[(DX(F (y)))
2
]

(8)

min
F

Llsgan(F,Dx, Y ) =
1

2
Ey∼data(y)

[(DX(F (y))− 1)2]

(9)
Therefore, the adversarial loss for generators (G and F )

and discriminators (Dy and Dx) can be defined as follows:

min
D(XY )

Llsgan =
1

2
Ex∼data(x)

[(DX(x)− 1)2]

+
1

2
Ey∼data(y)

[(DX(F (y)))
2
]

+
1

2
Ey∼data(y)

[(DY (y)− 1)2]

+
1

2
Ex∼data(x)

[(DY (G(x)))
2
]

(10)

min
F,G

Llsgan =
1

2
Ey∼data(y)

[(DX(F (y))− 1)2]

+
1

2
Ex∼data(x)

[(DY (G(x))− 1)2]

(11)

2) Identity Loss
To ensure consistency in color composition between input
and output images, the concept of identity loss is incorpo-
rated. By using the generator G to generate artistic style
images in the target domain Y , an image y from domain
Y is inputted into the generator G, and the generated result
should ideally be the same image y, that is G(y) ≈ y. This
demonstrates that the generator G is capable of generating
artistic style images with the target domain Y . The formula
for the identity loss is presented as follows:

Lidentity(G,F ) = Ey∼Pdata(y)
[∥ G(y)− y ∥1]

+Ex∼Pdata(x)
[∥ F (x)− x ∥1]

(12)

3) Cycle Consistency Loss
The cycle consistency loss is applied to the reconstruction
of images with the purpose of alleviating mode collapse
issues. By utilizing the generator G to convert images x from

domain X to domain Y , the image F (G(x)) generated by
the generator F can be transformed back to the original input
image x. The difference between the reconstructed image
and the actual image is computed using the L1 norm [35],
as shown in the following equation:

Lcycle(G,F,X, Y ) = Ey∼Pdata(y)
[∥ G(F (y))− y ∥1]

+Ex∼Pdata(x)
[∥ F (G(x))− x ∥1]

(13)

4) MS-SSIM Loss
To capture the details and structural information of images
and enhance the similarity of reconstructed images, the MS-
SSIM [33] loss function is introduced into the reconstruction
loss. MS-SSIM is an extension of SSIM [36] that incorpo-
rates the fusion of images at different resolutions to calibrate
the parameters between images of different scales. For two
images x and y, each with dimensions H and W , the means
(µx, µy) and variances (σ2

x, σ2
y) can be computed using the

following formulas:

µx =
1

HW

H∑
i=1

W∑
j=1

x(i,j) (14)

µy =
1

HW

H∑
i=1

W∑
j=1

y(i,j) (15)

σ2
x =

1

HW − 1

H∑
i=1

W∑
j=1

(x(i,j) − µx) (16)

σ2
y =

1

HW − 1

H∑
i=1

W∑
j=1

(y(i,j) − µy) (17)

then the covariance (σxy) of the two images is calculated as:

σxy =
1

HW − 1

H∑
i=1

W∑
j=1

(x(i,j) − µx)(y(i,j) − µy) (18)

the formulas for calculating the luminance (l), contrast (c)
and structure (s) information between image x and image y
are as follows:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(19)
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c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(20)

s(x,y) =
σxy + C3

σxσy + C3
(21)

and the SSIM loss is calculated as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (22)

Since MS-SSIM loss refers to the calculation of SSIM
values at multiple scales, the formula is expressed as follows:

MS-SSIM(x, y) = [lM (x, y)]αM ·
M∏
j=1

[cj(x, y)]
βj [sj(x, y)]

γj

(23)
The width and height of the generated images decrease by

a factor of 2(M−1) at different scales, where the value of M is
set to 5 in Eq.(23). The MS-SSIM loss function calculates the
contrast and structural similarities of the generated images
at dimensions 256 ∗ 256, 128 ∗ 128, 64 ∗ 64, 32 ∗ 32, and
16 ∗ 16, while the luminance contrast is only considered at
the dimension 16 ∗ 16. Therefore, the expression for the MS-
SSIM loss function is as follows:

LMS-SSIM (G,F ) = [1−MS-SSIM(x, F (G(x))]

+[1−MS-SSIM(y,G(F (y))]
(24)

Taking into account the aforementioned steps, the total loss
for training the entire network can be expressed as follows:

Ltotalgan
= λ1Llsgan + λ2Lidentity(G,F )

+λ3Lcycle(G,F,X, Y ) + λ4LMS-SSIM (G,F )
(25)

where the parameters λ1, λ2, λ3 and λ4 are used to control
the linear combination of these losses.

B. DATA PREPARATION AND TRAINING DETAILS
The style transfer capability of AMS-CycleGAN has been
demonstrated on two datasets proposed by Zhu et al. [17]
in the CycleGAN model: photo2monet and photo2vangogh.
The training dataset consists of 6,287 landscape photos,
learning from the artistic style images of VanGogh (400
images) and Monet (1,072 images) datasets. To conduct the
testing, there were 751 natural photos, 400 style photos of
VanGogh, and 121 style photos of Monet. All images were
resized to a dimension of 256*256.

During the training stage, the generator and discriminator
adopted the Adam optimization algorithm with (β1, β2) =
(0.5, 0.999). The batch size was set to 1, and the number of
epochs was set to 200. For the first 100 epochs, the initial
learning rate was set to 0.0002, and for the remaining 100
epochs, the learning rate was linearly decayed to 0. In the
linear combination of the total loss function, in Eq.(25), λ1

and λ4 were both set to 1.0, and λ2 and λ3 were set to 5.0
and 10.0, respectively.

The experiments were executed under Ubuntu 18.04.1
system, using Intel (R) Xeon (R) Platinum 8255C with 47 GB
of memory and 24GB NVIDIA GeForce RTX 3090 GPU.

V. THE EXPERIMENTAL RESULTS
A. QUALITATIVE COMPARISON
To validate the visual quality and style controllability of
the proposed network model, AMS-CycleGAN, a qualita-
tive comparison was conducted between AMS-CycleGAN
and other models on the photo2monet and photo2vangogh
datasets, as well as the monet2photo and vangogh2photo
datasets. The models compared include CycleGAN [17],
MUNIT [19], UNIT [21], U-GAT-IT [27], and NICE-GAN
[29]. CycleGAN [17] and AMS-CycleGAN were imple-
mented using the PyTorch version, with a training epoch
set to 200. And MUNIT [19], UNIT [21], U-GAT-IT [27],
and NICE-GAN [29] were implemented in the official Ten-
sorFlow version with a training iteration of 1,000,000. The
results demonstrated that the images generated by the AMS-
CycleGAN model effectively preserved the semantic layout
of the input images while imitating the specific styles of the
target artists.

The comparison of the aforementioned networks in trans-
forming natural photos into artistic images is illustrated in
Fig.6 and Fig.7. It can be observed that even under the
same style, the stylized images generated by different net-
work models exhibit distinct visual effects. The UNIT [21]
model produces images with transitional artifacts and colour
distortions. For instance, in the second row of generated
images in Fig.6(b), the color of the grass transitions from
green to orange. Additionally, in the red range of Fig.7(b),
the sky and city colors appear pale in the first and second
rows, while the third row images suffer from noise artifacts
around the grass. This limitation arises from the UNIT [21]
model’s assumption of a shared latent space for handling
image transformations, necessitating the consideration of the
suitability of the latent space and the similarity between
image domains. The MUNIT [19] model is an extension
of the UNIT [21] model, which improves the quality of
generated images to some extent. However, it encounters
issues such as the loss of low-level semantic information and
the presence of localized noisy textures. For example, in the
red-boxed regions in column (c) of Fig.7, the colors of the
tree trunk and roof appear as green, which do not correspond
to the colors in the original image. The MUNIT [19] model’s
process of decomposing the input image into content and
style codes, where the content code preserves the primary
content information while randomly sampling different style
codes, results in diverse and multi-modal images.

The CycleGAN [17] model, despite its constraint on the
identity mapping loss function, exhibits issues of noise tex-
tures and image over-transfer. In Fig.6(d), the first and sec-
ond rows show noise textures in the sky, while the third
row exhibits image over-transfer in the white clouds. Ad-
ditionally, Fig.7(d) shows blurry boundaries in the second
row of modern buildings. These limitations arise from the
excessive constraints imposed by the cyclic consistency loss
in CycleGAN [17], which directly measures the discrepancy
between the stylized output and the content image in the RGB
space, resulting in an overly strong constraint on any changes
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FIGURE 6. Comparison with the mentioned image style transfer methods on photo to VanGogh.

FIGURE 7. Comparison with the mentioned image style transfer methods on photo to Monet.
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in appearance or structure between the input and output.
However, it should be noted that the structural differences
between content and style images vary depending on the
style. Therefore, the influence of cyclic consistency loss on
the results varies for different styles.

The U-GAT-IT [27] and NICE-GAN [29] models generate
images with issues including noise artifacts, color distortions,
and blurred boundaries. These problems can be observed in
the surrounding areas of the grass and hills in the second row
of Fig.6(e), as well as in the image distortions in the first
and second rows of Fig.7(e). Also, in Fig.6 and Fig.7(f), the
buildings appear green while the sky appears blue. These
limitations can be attributed to the utilization of attention
maps in the U-GAT-IT [27] and NICE-GAN [29] models for
selecting features, which guide the models to learn relevant
parameters from the dataset to control variations in object
shapes and image textures. However, these models emphasize
object transformations, such as the conversion of a cat to
a dog. In contrast, the AMS-CycleGAN model produces
superior visual effects by generating retro-styled images that
mimic the styles of VanGogh and Monet, while preserving
the original content of the input images. This method sig-
nificantly alleviates the problem of noise textures and colour
distortions in the generated images. For instance, as shown
in Fig.6 and Fig.7(g), the textures of clouds and the sky in
the images are preserved intact. In Fig.7(g), the images in the
third row exhibit clear boundaries around the bushes.

VI. THE EXPERIMENTAL RESULTS
A. QUALITATIVE COMPARISON
Fig.8 and Fig.9 show the results of the monet2photo and
vangogh2photo datasets, which are natural photos converted
from artistic images. In the results of the UNIT [21] and MU-
NIT [19] model conversions, there are significant deviations
from the original natural images. The UNIT [21] model’s
transformed images exhibit problems such as the loss of high-
level semantic information, mismatched content compared
to the original images, and colour distortion. As shown in
Fig.8(b), the pile of haystacks is presented as green in the
second row, and the generated image in the third row omits
the display of houses. In Fig.9(b), the pale purple sky in
the second row is transformed into deep blue, and the visual
appearance of the images in the third row presents dull color
and low contrast. The transformed images by the MUNIT
[19] model, as demonstrated in the first row of Fig.8(c), result
in the conversion of bridges into trees, and the transformation
of the grass clumps into the ocean in the third row. In
Fig.9(c), the shrubs in the second row are transformed into
mounds, and the surroundings of the windmill in the third
row suffer from the loss of advanced semantic information.
The images generated by the CycleGAN [17] model exhibit
issues such as low-level semantic information loss and noise
textures. In Fig.8(d), the second row shows a conversion
where the color of the grassland is transformed into gray.

The U-GAT-IT [27] model’s generated images suffer from
semantic information loss. In Fig.8(e), the first row exhibits a

conversion where the background is transformed into black,
and the third row fails to include the flowers and houses
present in the input image. Additionally, in Fig.9(e), the
generated image in the first row lacks the content information
of the lighthouse. The NICE-GAN [29] model generates
images with color inconsistencies compared to the original
images, such as the bridge in the first row of Fig.8(f) and
the sky in the second row of Fig.9(f). The AMS-CycleGAN
model preserves the details in the original image as much
as possible and retains high-level semantic information. For
example, in the third row of Fig.8(g), the color of the red
flowers is preserved as red. In Fig.9(g), the background color
in the second row matches the pale purple of the original
image, and the semantic information of the vine branches is
well-preserved in the generated image.

B. QUANTITATIVE COMPARISON
For quantitative assessment, the Inception Score (IS) [37]
and Fréchet Inception Distance (FID) [38] were utilized as
evaluation metrics to quantify the image quality.

The Inception Score (IS) is a widely used evaluation metric
in image-to-image translation tasks. It leverages a pre-trained
image classifier (Inception Network V3 [39]) to evaluate
images based on the entropy of their class probability distri-
bution. A higher IS score indicates that the generated images
exhibit more diversity and cover a wider range. The definition
of IS is:

IS = exp(Ex∼pg
DKL(p(y | x))∥p(y))) (26)

where x denotes one generated image, and y is the label
predicted by the Inception model. p(y | x) represents the
probability distribution that the picture belongs to each cate-
gory.

TABLE 3. Quantitative evaluation and comparison with existing methods
in photo2monet and photo2vangogh datasets.

photo-monet photo-vangogh
Model IS FID IS FID
UNIT 5.01±0.43 154.39 5.18±0.58 101.72

MUNIT 4.73±0.43 109.31 5.10±0.70 97.63
CycleGAN 5.08±0.63 92.83 4.18±0.32 151.16

U-GAT-IT-light 3.72±0.23 127.85 4.33±0.31 187.52
NICE-GAN-light 3.73±0.31 117.98 3.43±0.19 199.70
AMS-CycleGAN 6.01±0.89 74.64 5.33±0.76 113.28

TABLE 4. Quantitative evaluation and comparison with existing methods
in monet2photo and vangogh2photo datasets.

monet-photo vangogh-photo
Model IS FID IS FID
UNIT 3.06±0.27 214.97 2.85±0.29 200.28

MUNIT 2.00±0.24 185.53 2.30±0.16 229.79
CycleGAN 3.42±0.37 118.35 4.36±0.28 168.30

U-GAT-IT-light 2.90±0.31 147.99 3.89±0.15 183.93
NICE-GAN-light 2.99±0.31 144.22 3.18±0.26 203.61
AMS-CycleGAN 3.46±0.35 112.90 4.95±0.49 149.68

The Fréchet Inception Distance (FID) serves to capture the
similarity between real and generated images. The Inception
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FIGURE 8. Comparison with the mentioned image style transfer methods on VanGogh to photo.

FIGURE 9. Comparison with the mentioned image style transfer methods on Monet to photo.
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Network V3 is utilized as a feature extractor for FID and
does not rely on it to determine the specific categories of the
images. A lower FID indicates a higher degree of shared vi-
sual attributes between the generated images and the original
images. FID is defined as follows:

FID = ∥µdata − µg∥2 + tr(Σdata +Σg − 2(ΣdataΣg)
1
2 )

(27)
where µdata, µg , Σdata, and Σg are the means and covari-
ances of the samples from the distribution of the source do-
main and the distribution of the generated data, respectively.

Tables 3 and 4 showcase the numerical results of the UNIT
[21], MUNIT [19], CycleGAN [17], U-GAT-IT-light [27],
NICE-GAN-light [29], and AMS-CycleGAN [17] models
in terms of the IS and FID evaluation metrics. The AMS-
CycleGAN model achieves higher IS scores than other mod-
els on the photo2vangogh and photo2monet datasets, as well
as the vangogh2photo and monet2photo datasets. Further-
more, it also achieves decent results in the FID test scores.
The quantitative evaluation results align with the qualitative
evaluation results, providing evidence that the inclusion of
the PONO-MS module, MS-SSIM loss, and attention mod-
ule in the AMS-CycleGAN model preserves more content
features and effectively showcases the style representation of
the images.

C. ABLATION STUDIES
The previous comparative experiments have validated the
effectiveness of the AMS-CycleGAN model in preserving
image textures during the mutual transformation of photos
and artistic images. In this section, the PONO-MS module,
MS-SSIM loss, and attention mechanism module are evalu-
ated for their constraining effects on the generated images.
Therefore, comparative experiments are conducted with the
addition of the PONO-MS module, the addition of MS-
SSIM loss + PONO-MS module, and the AMS-CycleGAN
model with all three components (PONO-MS module + MS-
SSIM loss + attention mechanism module). Fig.10 and Fig.11
showcase the qualitative results of the ablation experiments.

Fig.10 illustrates the generated results of transforming
natural photos into artistic images. In the results that only in-
volve the PONO-MS module, there are issues with excessive
color contrast and texture noise, as evidenced by the clouds in
Fig.10 (b). When incorporating both the PONO-MS module
and MS-SSIM loss, there is a problem with inconsistencies
between the generated brushstrokes and the input image. For
instance, in the first row of Fig.10 (c), the fur of the fox
is transformed into green. AMS-CycleGAN enhances the
image clarity of stylized images by effectively mitigating
noise problems, as observed around the mountains in Fig.10.
Fig.11 demonstrates the generated results of transforming
artistic images into natural photos. In the results that solely
incorporate the PONO-MS module, issues arise regarding
the loss of high-level semantic information, such as faces,
fruits, and cups. Likewise, the inclusion of both the PONO-
MS module and MS-SSIM loss fails to preserve the complete

FIGURE 10. Qualitative comparisons against ablations of the proposed
method. From left to right: (a) content images; (b) with PONO-MS

module; (c) with the MS-SSIM loss + PONO-MS module; (d)
AMS-CycleGAN (PONO-MS module + MS-SSIM loss + attention

mechanism module).

FIGURE 11. Qualitative comparisons against ablations of the proposed
method. From left to right: (a) artistic images; (b) with PONO-MS module;

(c) with the MS-SSIM loss + PONO-MS module; (d) AMS-CycleGAN
(PONO-MS module + MS-SSIM loss + attention mechanism module).

integrity of objects in the input image. In contrast, AMS-
CycleGAN retains the facial information of the characters
in the generated images, as demonstrated by the first row of
Fig.11 (d).

TABLE 5. Comparison with existing methods on IS and FID.

photo-vangogh vangogh-photo
Model IS FID IS FID

with PONO-MS
module 4.30±0.34 160.92 4.23±0.33 172.18

with the MS-SSIM
loss + PONO-MS

module
4.67±0.51 137.45 4.44±0.34 163.01

AMS-CycleGAN 5.33±0.76 113.28 4.95±0.49 149.68

Table 5 presents the quantitative comparison of the ab-
lation experiments for the AMS-CycleGAN model on the
photo2vangogh and vangogh2photo datasets. Compared to
other methods, the AMS-CycleGAN model exhibits the high-
est IS scores and the lowest FID scores, indicating superior
image generation capabilities. Considering both qualitative
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and quantitative results, the findings can be summarized as
follows: Firstly, the PONO-MS module complements the
style features in the generated images. Secondly, when only
the PONO-MS module + MS-SSIM loss is utilized, there
is a noticeable reduction in texture noise issues in the gen-
erated images. Thirdly, the attention mechanism assists the
generator in emphasizing the crucial content of the input
image, enabling the generated images to retain the content
information of the input image as much as possible. Each
component of the AMS-CycleGAN model plays a crucial
role in advancing the image quality to a higher level.

D. COMPREHENSIVE ANALYSIS
In this section, we demonstrate the generalization capability
of the AMS-CycleGAN model by conducting training on the
summer2winter, orange2apple, and photo2flower datasets,
as illustrated in Fig.12. During the image transformation
process, the network learns the correlations between the two
domains as well as the distinctive characteristics of each
domain. These results indicate that the generated images by
the AMS-CycleGAN model preserve the structural informa-
tion of the input images while also capturing the shapes and
characteristics of the target domain. For instance, in Fig.12
(a), the transformation from summer to winter results in the
green trees in the first row being converted into bare trees
covered with ice and snow. Additionally, in Fig.12 (b), the
oranges are transformed into apples while the background re-
mains unchanged. In the third row of Fig.12 (b), the presence
of leaves partially occludes the oranges, yet the generated
apples align with the expected output. Lastly, the ability of
the generated model to achieve image focusing is illustrated
in the third row of Fig.12 (c), as the flowers remain sharply
focused despite the blurred background.

FIGURE 12. Generalization experiments of our proposed method on different
datasets.

VII. CONCLUSION
In this paper, a novel network called AMS-CycleGAN was
proposed for style transfer. Firstly, the network incorporates
the PONO-MS module between the decoder and encoder
of the generator to preserve the structural information from
the input. Secondly, the MS-SSIM loss is introduced in the

reconstruction loss to strengthen the constraints on image
brightness, colour contrast, and structural aspects in the
generated images. Lastly, a channel-wise attention mech-
anism is added to the discriminator to guide the genera-
tor in emphasizing the crucial content of the input image.
The effectiveness of the AMS-CycleGAN network is further
confirmed through qualitative and quantitative experiments,
demonstrating that the generated images exhibit enhanced
perceptual visual quality and more comprehensive semantic
information. In conclusion, the improvements made to the
generator, discriminator, and loss functions bring meaningful
advancements to style transfer. In the future, we will focus on
generating high-quality images by lightweight networks.
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