
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Case Study: Optimization Methods with TVM
Hybrid-OP on RISC-V Packed SIMD
MENG-SHIUN YU1, CHUAN-YUE YUAN1, TAI-LIANG CHEN1, AND JENQ-KUEN LEE1
1Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan.

Corresponding author: Jenq-Kuen Lee (jklee@cs.nthu.edu.tw).

ABSTRACT
In recent years, considerable research has focused on the use of custom hardware to accelerate deep learning
on edge devices. However, the end-to-end flow of deep learning includes preprocessing and postprocessing.
Deep learning hardware accelerators cannot accelerate these operations, which consequently becomes a
performance bottleneck in the execution flow. In this study, we propose optimization methods to improve
preprocessing and postprocessing at the edge devices. For this purpose, we adopt Tensor Virtual Machine
(TVM), an end-to-end machine learning compiler framework. TVM provides hybrid script, which is a front-
end language that allows users to write programs for preprocessing and postprocessing.We propose rewriting
strategies to improve the performance of operators written in hybrid script through the RISC-V Packed SIMD
extension (P extension). RISC-V is an open instruction set architecture (ISA) that provides base instructions
and many extensions for different use cases. The P extension defines specific subword single-instruction
multiple-data (SIMD) instructions that allow complex computations to be efficiently performed on edge
devices. In this study, we design custom instructions based on the RISC-V P extension for rewriting strategies
to accelerate deep learning operations. Experimental results indicate that our methods improve performance
by a factor of 1.28 to 15.29.

INDEX TERMS TVM, Machine Learning Compiler, RISC-V, Custom Instruction

I. INTRODUCTION
Deep learning has achieved remarkable successes across var-
ious fields, particularly in tasks such as object detection in
computer vision [1] [2], keyword spotting in speech [3] [4],
natural language processing [5], [6] and industrial defect in-
spection [7]–[9]. However, as these models find applications
in real-world scenarios, such as on mobile and edge devices,
a new set of challenges is emerging. In these contexts, the
constraints on computing resources become pronounced, pre-
senting challenges for the effective execution of deep learning
algorithms. For instance, consider the domain of real-time
object detection on edge devices, in which stringent latency
requirements are imposed. Current approaches, such as Mo-
bileNet and SqueezeNet, have made progress in reducing
computational demands. Nevertheless, the end-to-end execu-
tion flow, which includes preprocessing and postprocessing,
remains a bottleneck. Preprocessing and postprocessing oper-
ations often cannot be accelerated by standard deep learning
accelerators, making optimization in these stages critical. In
light of these challenges, our motivation stems from the need
to address the limitations of existing solutions and to enhance
the overall efficiency of deep learning execution on resource-

constrained devices. This study focuses on proposing novel
methods to optimize both the preprocessing and postpro-
cessing stages by leveraging the rewriting of Tensor Virtual
Machine (TVM) hybrid script and the design of custom in-
structions based on the RISC-V Packed SIMD extension (P
extension).
TVM is an end-to-end deep learning compiler for machine

learningmodels, such as object detectionmodels and decision
trees [10]. TVM allows tensor operations to be optimized
through a tensor-level intermediate representation (TIR) and
provides hybrid script to describe how to complete oper-
ational calculations. TVM hybrid script is a programming
language based on Python syntax. Many operators use hy-
brid scripts to complete their operations. The hybrid script
provides four loop annotations: serial, unrolled, parallel, and
vectorized. In this paper, we rewrite these annotations to
improve the performance of the preprocessing and postpro-
cessing stages. RISC-V is a free and open instruction set
architecture (ISA) based on a reduced instruction set com-
puter (RISC) architecture with various optional extensions,
such as the packed SIMD (P) and vector (V) extensions, that
provide SIMD instructions with powerful features for parallel

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

computing for different use cases.
This study takes a comprehensive approach to optimiz-

ing nonmaximum suppression(NMS) computation, address-
ing both software and hardware aspects. In the software
domain, we propose rewriting strategies for hybrid scripts
to enhance their efficiency. Simultaneously, in the hardware
domain, we introduce custom instructions based on the RISC-
V P extension, aiming to reduce the instruction count and
enable simultaneous computations on multiple data elements.
Our methodology is specifically tailored for low-power em-
bedded systems, offering a holistic solution to improve NMS
performance. To implement these optimizations, we advo-
cate two key methods: the rewriting strategies for hybrid
scripts and the design of custom instructions. Additionally,
we enable the LLVM code generator to support RISC-V P
extension (RVP) instructions within TVM, ensuring the gen-
eration of RVP instructions and reinforcing our commitment
to an all-encompassing enhancement of NMS computation
performance.

To verify our proposedmethod, we use NMS as an example
and the Microsoft COCO [11] dataset as our test data. The
NMS algorithm is commonly used in the postprocessing step
for object detection models to eliminate redundant or over-
lapping bounding boxes. We take the original TVM version
of NMS as the baseline for comparison with our optimized
version, using the number of instructions and accuracy as
indicators. Regarding the number of instructions, we use
the RISC-V simulator Spike to accumulate the number of
instructions required to complete NMS on a test image, and
we calculate the accuracy by comparing the detection results
with the ground-truth annotation data provided in the dataset.
The experimental results indicate that our approach reduces
the number of assembly instructions by a factor of 1.28 to
15.29 while the average precision decreases by 0.002 - 0.03.
This research makes the following contributions:

1) We propose rewriting strategies for TVM hybrid script
to enhance the performance of pre- and postprocessing
operations.

2) We enable LLVM code generation for the RISC-V
Packed SIMD extension in TVM, allowing the end-to-
end deep learning flow to be executed efficiently on
low-power devices.

3) We design custom instructions based on the RISC-V
Packed SIMD extension to further enhance the perfor-
mance of NMS.

The remainder of this paper is organized as follows. In
Section II, we present the background TVM and RISC-V.
In Section III, we describe how to enable the RISC-V P
extension in TVM. In Section IV, we introduce our rewriting
strategies, and in Section V, we present custom instructions
based on the RISC-V P extension, along with a running
example. In Section VI, experimental results are reported.
Section VII, we present the previous work and compare it
with our research. Finally, we summarize our conclusions in
Section VIII.

FIGURE 1. Overview of TVM software architecture, from the neural
network model to the hardware target.

II. BACKGROUND
A. TVM AND HYBRID SCRIPT
TVM [12] is an end-to-end machine learning compiler frame-
work for CPUs, GPUs, and accelerators. It is an intermedi-
ary platform that can integrate various applications and sys-
tems, including blockly applications [13], runtime support for
Android NNAPI [14], compiler optimizations across many
machine learning computers [15] and underlying integration
with a GPU [16], [17]. Fig. 1 illustrates the entire software ar-
chitecture. The top layer is the Relay intermediate representa-
tion (IR), which describes the contents of the directed acyclic
graph (DAG) used to define many Ops. There are many opti-
mization methods for DAG. For example, [18] decomposed
a task into a decomposition-coordination DAG (DC-DAG)
to improve performance further. The optimizations provided
by TVM for the DAG of artificial intelligence (AI) models
include dead node elimination, constant folding, and operator
fusion, among others. The second layer is the TVM Operator
Inventory (TOPI), which implements each Op defined in Re-
lay. TOPI describes two types of implementations: one con-
sists of computations for tensor operations, and the other is
hybrid script, designed using a subset of the Python language,
which can be used to implement algorithms other than tensor
operations. The third layer is TIR, which provides a middle-
level expression describing low-level programs, including
loops, tensor data load/store operations, and built-in intrinsic
functions. It is typically used to present how the operator in
a model completes their calculation. The fourth layer is the
target and includes code generators for different backends,
such as LLVM [19] (for CPU), C code, OpenCL, and CUDA.
There are twomethods for describing how anOp completes

its calculation in TVM. The first one is the tensor expression,
which is suitable for tensor operations such as convolution
and elementwise addition and subtraction. The other method
is hybrid script, which is based on partial Python syntax; this
method offers a more flexible programming model than the

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 2. RISC-V instruction format related to custom instructions.

compute expressionmethod and is suitable for describing pre-
processing or postprocessing operations. In addition, hybrid
script provides loop annotations (unroll, parallel, vectorize,
and bind), loop manipulations (split and fuse), and reorder-
ing, allowing developers to schedule the execution order at
the source level and write more efficient programs. TVM
provides an autotuning module called AutoTVM, which can
generate more efficient TIR but does not support the more
flexible Python-based hybrid script. Taking vector addition as
an example, Listing III-A and Listing 2 use the tensor express
and hybrid script, respectively, to describe how to complete
the operation of adding two vectors. In line 3 of Listing 1,
the te.compute function takes the output shape (dshape) and
the lambda function as arguments. The number of arguments
of the lambda function depends on the shape of the output
tensor. Because the output tensor shape in this example is one-
dimensional, the lambda function takes only one argument,
denoted by i. The lambda function returns the value to be
input into the output tensor by the arguments and the value
of the axis. In Listing 2, an output tensor is first created based
on the data type and shape of the left-hand side input value
in lines 2 and 3. Following the conventions of hybrid script,
a loop is used to iterate over the data and add values to the
output in lines 6 and 7. Finally, the output tensor is returned.
Hybrid script is similar to the C and Python languages, and
the TVM computations are based on the output tensor shape
for programming.

1 def compute_vector_add_1d(lv, rv):
2 dshape = lv.shape
3 return tvm.te.compute(dshape, lambda i: lv[i

] + rv[i])

Listing 1. Tensor expression description of vector addition.

1 @hybrid.script
2 def hybrid_vector_add_1d(lv, rv):
3 length = lv.shape[0]
4 output = output_tensor((length,), lv.dtype)
5

6 for i in range(length):
7 output[i] = lv[i] + rv[i]
8

9 return output

Listing 2. Hybrid script description of vector addition.

B. RISC-V AND THE PACKED SIMD EXTENSION
RISC-V is an open ISA based on RISC architecture. The
instruction format is illustrated in Fig. 2. Different combi-

TABLE 1. Examples of SIMD instructions in the RISC-V P extension.

Instructions Description
KADD8 SIMD 8-bit signed saturating addition
KSUB8 SIMD 8-bit signed saturating subtraction
KHM8 SIMD 8-bit signed saturating Q7 multiply
SMAX8 SIMD 8-bit signed maximum
SMIN8 SIMD 8-bit signed minimum
UMIN8 SIMD 8-bit unsigned minimum
KSLL8 SIMD 8-bit saturating shift left logical
KSLRA8 SIMD 8-bit shift left logical with saturation

or shift right arithmetic
SCMPLT8 SIMD 8-bit signed compare less than
CMPEQ8 SIMD 8-bit integer compare equal
SCMPLE8 SIMD 8-bit signed compare less than equal

nations of opcode fields indicate different functions for each
set of instructions. The red words in Fig. 2 indicate fields
that RISC-V reserves for developers who want to design
custom instructions; we use these two fields in this work to
design and implement our custom instructions. RISC-V has
open-source licenses with many extensions for different use
cases [20], [21], and allows the addition of specific custom
instructions, as in [22]. Since 2010, five basic instruction
sets (RVWMO, RV32I, RV32E, RV64I, and RV128I) and
21 different feature extensions, including the V extension
[23] and the draft cryptography extension [24], have been
released. In addition to setting standard specifications, RISC-
V International and volunteers from various fields maintain
the software tools required for RISC-V development, such as
the compiler (LLVM/GNU toolchain) and simulators (Spike
and QEMU). In this study, we use these frameworks as the
basis for developing custom instructions and performance
enhancements.
The RISC-V P extension was contributed to RISC-V Inter-

national by Andes Technology in 20191. The architecture of
the P extension instruction set defines many subword SIMD
instructions, including add, subtract, bit shift, compare, and
multiply. In contrast to the V extension, which is also a SIMD
instruction set, the P extension uses general-purpose registers
to complete operations without additional vector registers.
The P extension supports saturation and rounding. The possi-
ble data types for operations include integers and fixed-point
numbers, and the supported element sizes are 8, 16, and 32
bits. The latest version is V0.9.11 (20211209), which defines
112 instructions 2. This extension enables relatively low-level
devices to efficiently complete complex operations, such as
audio/speech decoding and processing and Internet of Things
(IoT) sensor data fusion. Table 1 lists examples of instructions
from the RISC-V P extension that are used in this study. In the
case of these SIMD instructions, each element contains eight
bits. KADD8, KSUB8, KHM8 perform saturating arithmetic
operations; SLL8 and KSLRA8 perform saturating logical

1http://www.andestech.com/en/2019/12/31/
a-look-back-at-the-achievements-andes-made-in-2019/

2https://github.com/riscv/riscv-p-spec/commit/
5a12c90b2c206c501a4489eb79e5d4d46afa1014

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

operations; and SCMPLT8, CMPEQ8, and SCMPLE8 per-
form comparison operations.

C. LLVM
LLVM [19] is a modular compiler infrastructure that can
compile multiple high-level programming languages into its
LLVM IR. There aremany IR transformations between differ-
ent IRs; the transformation fromTVMTIR to LLVM IR is one
example. In practice, LLVM optimization functions [19] can
be further utilized for compiler optimization with advanced
architectures [25] [26]. After optimizing the IR, users can
choose different backend targets to generate target-dependent
code. Our work extends the LLVM with RISC-V P extension
and custom instructions for conducting experiments.

III. OUR ENHANCED COMPILATION FLOW IN TVM BASED
ON THE RISC-V P SIMD EXTENSION
A. ENABLING THE RISC-V P SIMD EXTENSION IN TVM
The process of generating assembly code from Ops written in
the TVMhybrid script is divided into four phases, as shown in
Fig. 3, where we consider the maximumOp as an example. In
the hybrid script shown in Fig. 3, the value of the output tensor
is based on themaximumvalue between the two input tensors.
Once the behavior of this Op has been described in hybrid
script, it is converted into TIR by TVM, which then generates
corresponding code by the backend specified by the user.
Because we have chosen the RISC-V 64-bit architecture as
our backend, in this example, TVM uses the TIR to generate
an LLVM IR for the RISC-V backend. When generating the
LLVM IR code, TVM provides a well-designed interface that
allows users to choose whether to generate the default LLVM
IR code or to implement a specific class for code generation.

In our research, we have developed the RISC-V Code-
Gen class, which is utilized in the transformation of a TIR
MaxNode into an LLVM IR intrinsic function. We illustrate
this process in Algorithm 1. Here, we outline the key steps
involved in Algorithm 1 that enable the lowering of TVM into
LLVM with the RISC-V P extension. When the TIR visitor
encounters a TIR MaxNode, the VisitMaxNode function is
invoked in line 7. To generate the LLVM IR intrinsic, we first
check whether the MaxNode corresponds to the SIMD type,
which consists of eight lanes and eight bits in a 64-bit RISC-
V target (line 8). If it is a SIMD-type MaxNode, we convert
it into a TIR CallNode by utilizing the CreateVectorMax
function (line 9), as defined in line 1. This function employs
the MaxNode to obtain the LLVM intrinsic ID. Subsequently,
the TIR CallNode is created with the right-hand side (RHS)
and left-hand side (LHS) parameters (lines 3-5). Finally, the
CreateLLVMIntrinsic function (line 10) generates the LLVM
IR intrinsic. Additionally, we need to implement the Code-
Gen rules for generating RISC-V instructions from LLVM
IR in the target assembly language in LLVM. This involves
defining the LLVM IR intrinsics and employing LLVM’s
TableGen to define the RISC-V instructions. In our study,
each phase described above incorporates a specific amount

of implementation code, making model execution from TVM
to RISC-V feasible.

Algorithm 1 CodeGen: RVP LLVM IR from TVM SIMD
TIR.

Input : SIMD TIR
Output: RVP LLVM IR

1: procedure RISCV::CreateVectorMax(MaxOp)
2: ID = ::llvm::Intrinsic::riscv_simd_smax
3: LHSExpr = MaxOp.lhs()
4: RHSExpr = MaxOp.rhs()
5: return tir::Call(ID, LHSExpr, RHSExpr)
6: end procedure
7: procedure RISCV::VisitMaxNode(MaxOp)
8: if IsSIMDType(MaxOp) then
9: CallNode = CreateVectorMax(MaxOp)
10: return tir::CreateLLVMIntrisic(CallNode)
11: else
12: return tvm::llvm::VisitMaxNode(MaxOp)
13: end if
14: end procedure

B. ADDING CUSTOM INSTRUCTIONS TO THE RISC-V GNU
TOOLCHAIN
To add custom instructions in the RISC-V GNU toolchain for
the RISC-V architecture, certain modifications are necessary.
First, the format of the custom instructions needs to be de-
fined in the "riscv-opc.h"3 file, specifying the opcode, encod-
ing, and other relevant information. Second, corresponding
modifications are needed in the "riscv-opc.c"4 file, which
handles the decoding and encoding of RISC-V instructions.
These modifications ensure that the custom instructions will
be properly recognized and processed by the RISC-V GCC
compiler during compilation. Additionally, adjustments are
required in the instruction selection logic, instruction selec-
tion table, and target description file of GCC to fully support
and generate code for the custom instructions. With these
modifications, GCC can be used to effectively incorporate
and optimize custom instructions within the RISC-V archi-
tecture.

IV. STRATEGIES FOR REWRITING TVM HYBRID SCRIPT
This section presents the rewriting strategies proposed in this
study. As shown in Fig. 1, hybrid script is a Python-based
subgrammar in the TVM architecture that is a description
language suitable for optimizing preprocessing and postpro-
cessing operations. This hybrid script supports a flexible
programming model and provides various optimizations for
application programming interfaces (APIs), including loop
annotations (unroll, parallel, vectorize, and bind), loop ma-
nipulations (split and fuse), and reordering. This allows de-
velopers to schedule execution sequences at the source level
and write more efficient programs.

3riscv-gnu-toolchain/binutils/include/opcode/riscv-opc.h
4riscv-gnu-toolchain/binutils/opcodes/riscv-opc.c

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 3. TVM compilation flow: taking the maximum Op as an example, from hybrid script to RISC-V assembly.

1 # Original
2 for i in range(len):
3 output[i] = lv[i] + rv[i]
4

5

6 # After Rewrite
7 XLEN = 8 #v8i8
8 for i in range(len/XLEN):
9 for j in vectorize(XLEN):

10 output[i * XLEN + j] = lv[i * XLEN + j] +
rv[i * XLEN + j]

Listing 3. Rewriting strategy with subword SIMD vectorization: if the
data type of input and output data is int8 or int16, then we can tile
the for loop and use the subword SIMD instruction KADD8 or
KADD16 to improve performance.

A. SUBWORD SIMD VECTORIZATION
In AI and deep learning computations, for loop is frequently
utilized to execute identical operations on each element of a
tensor. However, conventional for loop is typically designed
to process one data element at a time, resulting in suboptimal
computational efficiency. To address this issue, we propose
an approach that enhances performance by reconfiguring a
for loop using hybrid script and generating RISC-V subword
SIMD instructions. For example, consider the operation of

vector addition. To optimize its execution, we split the for
loop into inner and outer loops. The inner loop uses the
vectorize syntax and the vector size of the subword SIMD
instruction, and the outer loop controls the number of times
the inner loop is executed. In the subsequent compilation
process, the TIR will be converted into an LLVM IR. Dur-
ing this stage, different subword SIMD instructions will be
chosen based on the data type. For signed 8-bit data, the
KADD8 instruction will be used; for unsigned 8-bit data, the
UKADD8 instruction will be used. Similarly, for signed or
unsigned 16-bit data, the TIR description will be converted
into KADD16 or UKADD16 instructions, respectively.

For a for loop to be amenable to vectorization, the fol-
lowing conditions need to be met. 1. The body of the for
loop must not contain other nested loops. 2. The number of
iterations of the loop should exceed the vector size. 3. Each
operation within the loop body must have a corresponding
SIMD instruction. 4. Each iteration must have no dependency
on any other iteration. If the conditions for loop vectorization
are satisfied, then the for loop can be split into outer and inner
loops. The body of the inner loop is represented using "for j
in vectorize(XLEN)" notation, enabling acceleration through
SIMD instructions. Here, XLEN represents the number of

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

data elements that can be processed in a single SIMD instruc-
tion. Conversely, the outer loop is a conventional sequentially
executed for loop. The difference is that the iteration count of
this loop is divided by XLEN. This is expressed as "for i in
range(len/XLEN)" to ensure optimal utilization of hardware
resources.

Listing 3 shows an example of this strategy. The original
version has a loop structure that contains descriptions of
the initialization, conditions, and advancement to the next
iteration. After applying the proposed strategy, an additional
loop is added as the outer loop, and the iteration count is
divided by XLEN. The inner loop runs over the index value
from zero to XLEN - 1, and we can vectorize it with the
KADD8 SIMD instruction. Thus, rewriting the for loop in this
way allows us to improve the performance.

B. TERNARY OPERATION
In general, if-else statements make conditional decisions
based on specific criteria. However, this approach may in-
troduce branching, which can adversely affect performance
due to potential pipeline stalls and mispredictions. To solve
this problem, we propose replacing the if-else construction
with a ternary operation. This strategy is accomplished by
combining the select function of TIR in TVM with the in-
structions of the RISC-V P extension. Two instructions are
used to complete the ternary operation. The first is a com-
parison instruction CMPEQ8, which performs elementwise
equality comparisons of 8-bit integers in parallel for use in if
statements. The other is the BPICK instruction, which selects
from two source operands by a bitmask in the third operand
for the expression after if or else statements are found to be
true.

For this strategy to be applicable, the following conditions
must be met: 1. The conditions evaluated by the if statements
must be equality, greater-than, or less-than comparisons. Such
operations are well-suited for vectorized execution. 2. The
data types of the variables being compared in the if-else
statements and being assigned should all be int8. This aligns
with the capabilities of the RISC-V P extension for efficient
parallel integer operations. 3. Both the if and else branches
should declare and assign values to the same variable. This is
essential for ensuring consistent results when utilizing ternary
operations. If the conditions for the ternary operation strategy
are satisfied, then we can apply the following form:

result = true value if conditions else false value

Listing 4 illustrates an example of this strategy. The orig-
inal version presents a program description using if-else
statements. Upon applying the proposed strategy, the pro-
gram description transforms into a ternary operation. This
operation involves three operands: the expression executed
if the condition is true (is_valid = 1), followed by another
expression specifying the condition to be checked (if area >0),
and finally, a value determining the alternative expression
(is_valid = 0) to be executed if the condition is false.

1 # Original
2 if area > 0:
3 is_valid = 1;
4 else:
5 is_valid = 0;
6

7

8 # After Rewrite
9 is_valid = 1 if area > 0 else 0

Listing 4. Rewriting Strategy Based on Ternary Operation: If the sole
operations within an if-else construct are assignment operations, the
construct can be refactored using ternary syntax. Additionally,
performance improvement can be achieved by leveraging subword
SIMD instructions, specifically CMPEQ8 and BPICK.

1 # Original
2 area = area_a + area_b - area_intersection
3

4 # After Rewrite
5 area = area_b - area_intersection
6 area = area + area_a

Listing 5. Rewriting Strategy Considering Saturation Arithmetic: Due
to the utilization of subword SIMD instructions, there is a reduction
in the value range. Consequently, the order of operations needs to be
adjusted to prevent saturation without compromising the integrity of
the results.

C. SATURATION ARITHMETIC
Quantization is a common technique for optimizing the com-
putations of AI models. Performance can be improved by
reducing the bit width of the data to minimize the amount of
data transferred and the number of computing cycles needed.
However, reducing the bit width also reduces the range of
representable values. For example, for an int8 variable (an
8-bit integer), the representable value range is -128 to +127.
Saturation occurs when the result of an arithmetic operation
exceeds this range, causing apparent incorrect. For example,
if we use KADD8 to add 200 + 100 since the result exceeds
the representable range, the final result will be 127 instead
of 300. To avoid this situation, we can rearrange the order of
operations to keep the results within the representable range.
For this rewriting strategy, to be applicable the following
conditions need to be met: 1. Consistency of data types: all
variables involved in the operations, including the input and
outputs, should share the same data type. 2. Use of test data to
determine value ranges: test data should be used to evaluate
the possibility of saturation or underflow.
If the above conditions are met, we can rearrange the

order of operations to avoid saturation or underflow. If the
analysis indicates that some operations may be saturated,
the data range can be reduced by performing subtraction or
division first. This helps prevent saturation. Conversely, if the
analysis indicates that there is a risk of underflow, addition or
multiplication can be performed first to expand the range of
the data.
Listing 5 shows an example of this strategy, where the data

type is int8. The original version is a program describing
the process of adding area_a and area_b and then subtract-
ing area_intersection. After the proposed strategy is applied,
area_intersection is first subtracted from area_b, and area_a

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

is then added to obtain the final value. This strategy can
reduce the occurrence of saturation beyond the numerical
range during runtime execution.

D. QUANTIZED INTEGER DIVISION

Among general arithmetic operations, the division operation
involves floating-point calculations. When both the input and
output values are int8 type, the typical process is to first
convert the inputs into floating-point numbers for division
and then convert the result back to an integer; however, this
process incurs additional computational overhead due to these
conversions and the floating-point division operation itself.
Python provides two forms of division, namely, standard
floating-point division ’/’ and floor division ’//’, where the
latter returns the integer quotient. Therefore, when all vari-
ables involved in an operation are integers, leveraging floor
division can be advantageous. By combining this operation
with low-level code generation to utilize hardware instruc-
tions specifically designed for integer division, the need for
intermediate floating-point conversions can be mitigated.

For this rewriting strategy to be applicable, only one con-
dition needs to be satisfied: all variables involved in the
operations, including the inputs and outputs, should share the
same int8 data type. When this condition is met, the original
floating-point division operation can be transformed into an
integer division operation to obtain the integer quotient di-
rectly.

1

2 #Original
3 quotient_float = dividend/divisor
4

5

6 #After Rewrite, if the data types of the
dividend and divisor are int8, we use a
custom instruction, quot8, to return the
integer quotient.

7

8 quotient_int = dividend // divisor

Listing 6. Rewriting strategy for quantized integer division: if the
value range is from -128 to 127 or from 0 to 255, then we can rewrite
the integer division operation in hybrid script syntax and use a
custom SIMD instruction QUOT8 to improve performance.

Listing 6 demonstrates the application of this strategy.
In the provided example, both the dividend and divisor in
the original version are typed as floating-point data. Con-
sequently, when performing an int8 division operation, the
dividend and divisor must undergo forced conversion into
floating-point numbers for the division, followed by conver-
sion back to int8 to obtain the final result. The proposed strat-
egy introduces an additional step using a division instruction,
’div,’ which eliminates the need for reverting to a floating-
point representation. This step facilitates direct SIMD integer
division, denoted by the double slash (//). Within a 64-bit sys-
tem architecture, SIMD vectorization can be leveraged for the
custom hardware instruction ’div,’ dividing the elements into
eight components, each comprising an 8-bit integer (int8). As
the int8 data type cannot represent decimal places, the result

is an integer division outcome, yielding a quotient value of
QUOT8 (refer to Section V-B4 for more details).

Algorithm 2 CodeGen custom instruction LLVM IR from
TVM TIR.

Input : TIR
Output: LLVM IR with custom instruction

1: procedure RISCV::CreateStrideLoad(LoadOp)
2: ID = ::llvm::Intrinsic::riscv_custom_plse8
3: BasePtr = tvm::CreateBufferPtr(LoadOp)
4: Stride = LoadOp.stride
5: return tir::Call(ID, BasePtr, Stride)
6: end procedure
7: procedure RISCV::VisitLoadNode(LoadOp)
8: if IsSIMDType(LoadOp) and LoadOp.stride > 1 then
9: CallNode = CreateStrideLoad(LoadOp)
10: return tir::CreateLLVMIntrisic(CallNode)
11: else
12: return tvm::llvm::VisitLoadNode(Op)
13: end if
14: end procedure

V. DESIGN OF CUSTOM INSTRUCTIONS BASED ON THE
RISC-V P EXTENSION
A. CUSTOM INSTRUCTION FLOW
In addition to the original RVP instructions, we propose cus-
tom instructions to improve the preprocessing and postpro-
cessing performance. Additional steps were needed to enable
these custom instructions in TVM. The first step was to define
the instruction format and opcode. The second step was to add
the new custom instructions to the RISC-V GNU toolchain.
As a third step, we also needed to define the instruction
behavior in the RISC-V simulator Spike because we used the
Spike to conduct our experiments. Once the behavior of a
custom instruction had been defined in the simulator and the
RISC-V GNU toolchain, TVM implementation was needed.
Fig. 4 shows the process of generating custom instructions
from hybrid script to RISC-V assembly. We use the custom
instruction PLSE8 as an example. PLSE8 is the memory
stride load instruction, which can load data from memory
to registers at given distances. To generate the PLSE8 in-
struction, we obtain data for every six elements from an 8x6
tensor, as described in the hybrid script shown in Fig. 4. To
utilize the PLSE8 instruction, a TIR with the corresponding
pattern generated from the hybrid script, is needed; then, the
TIR can be transformed through CodeGen into LLVM IR,
which includes the intrinsics corresponding to the custom
instruction. The stride memory load instruction plse8 will be
briefly introduced in a later subsection. Algorithm 2 shows
how CodeGen processes for this custom instruction using
TIR. The algorithm starts by visiting the TIR LoadOp in line
7 and checking whether this LoadOp is of the SIMD type and
whether its stride is greater than that in line 8. If this condition
is true, then the algorithm proceeds to line 1 to create the
TIR CallNode by the LLVM intrinsic ID, the base pointer,

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 4. Enabling RISC-V custom instructions. We take PLSE8 as an example to show how we enable the transformation of custom instructions from
TVM to RISC-V assembly language.

FIGURE 5. Custom instruction format proposed to improve preprocessing and postprocessing.

and the stride value from lines 2 to 5. After creating the TIR
CallNode, the algorithm proceeds to line 10 to generate the
LLVM intrinsic. Finally, we use the corresponding LLVM IR
to generate the RISC-V assembly.

B. CUSTOM INSTRUCTIONS
RISC-V, an open Instruction Set Architecture (ISA), com-
prises base instruction sets and various extensions, among
which the P extension is utilized in our experiments. In addi-
tion to the originally defined instruction set, RISC-V allows

for user-defined instructions. Instruction opcode is specif-
ically reserved for these instructions in defined positions,
distinct from the standard instruction set. Notably, RISC-V al-
locates a custom 4-cluster instruction type with an instruction
length of 32 bits. In this study, we have devised six custom
instructions featuring unique 0/1 opcodes to augment the P-
extension set. These instructions encompass four memory
load and store instructions, one for broadcasting, and another
for integer division.

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

1) plu32 and psu32
General load/store instructions involve reading or writing a
single data element from or to a given memory address. We
design two custom instructions plu32 and psu32, to not only
read andwrite multiple data elements at one time but also read
and write by a given index.

plu32 is the memory index load instruction. In this in-
struction, a base register (rs1) stores the base address, and
a general-purpose register (rs2) contains two 32-bit integers
(offsets), which are added to the base register, to obtain the
memory location from which to fetch the data. The fetched
data are then converted into two 32-bit data elements to be
stored in the destination register(rd), a 64-bit general-purpose
register that can hold two 32-bit integers.

psu32 is the memory index store instruction. In this in-
struction, rd stores the base address, rs1 contains two 32-bit
integers (offsets), rs2 also contains two 32-bit integers (data),
and two memory locations are obtained by adding the two
offsets to the base store. Then, the two int32 data values in
rs2 are stored in these two memory locations. The instruction
format is shown in Fig. 5.

Listings 7 to 9 compare the differences between baseline
and custom instructions corresponding to the same hybrid
script. In the baseline version(Listing 8), out[indices[i]] and
updates[i] need to be loaded into registers a4 and a5, respec-
tively, through two load instructions and one add instruction.
Then, the addition is completed through the add instruction,
and the result needs to be written back to the memory through
one addi instruction and one load instruction. In contrast to
the baseline version, only 10 instructions are needed when
using our custom instructions. First, out[indices[i]] is loaded
into register a2 via the custom instruction plu32, and then the
addition operation is completed through kadd32. Finally, the
result is written back to the memory through psu32.

The pattern of the hybrid script used to generate the plu32
and psu32 instructions is shown in line 2 of Listing 7. On the
LHS of the plus-equal Op, the output tensor takes the indices
indicated by the tensor of the other indices. Once the TIR
description corresponding to this pattern is obtained, in this
example, we can reduce the number of instructions by seven
by using our custom instructions plu32 and psu32.

2) plse8 and psse8
General load/store instructions involve reading or writing a
single data element from or to a given memory address. We
design plse8 and psse8 to not only read and write multiple
data elements at one time but also read and write by a given
stride.

plse8 is the memory stride load instruction. In this instruc-
tion, rs1 is the base register, which immediately records the
value of the stride. This instruction grabs a byte from each
of eight memory locations by the base address and stride
and stores these eight pieces of data in the 64-bit destination
register rd.

psse8 is the memory stride store instruction. In this instruc-
tion, rd stores the base address and immediately records the

1 for i in range(indices.shape[0]):
2 out[indices[i]] += updates[i]

Listing 7. Hybrid script for index load and store.� �
1 .LBB1_1:
2 slli a3, a3, 32
3 srai a3, a3, 32
4 slli a3, a3, 2
5 add a3, s2, a3
6 lw a4, 0(s0)
7 lw a5, 0(a3)
8 add a4, a5, a4
9 sw a4, 0(a3)

10 addi s1, s1, 4
11 addi s0, s0, 4
12 addi a0, a0, -1
13 beqz a0, .LBB1_4
14 lw a3, 0(s1)
15 blt a2, a3, .LBB1_1
16 .LBB1_3:
17 add a3, a3, a1
18 j .LBB1_1� �

Listing 8. Baseline version of index load.� �
1 .LBB1_1:
2 ld a1, 0(s1)
3 plu32 a2, s2, a1
4 ld a3, 0(s0)
5 kadd32 a2, a2, a3
6 psu32 s2, a1, a2
7 addi s1, s1, 8
8 addi s0, s0, 8
9 addi a0, a0, -1

10 bnez a0, .LBB1_1� �
Listing 9. Optimized version of index load.

value of the stride, and rs1 holds the eight-byte data that are to
be stored in the memory. This instruction stores the eight data
elements in rs1 into eight memory locations by to the base
address and stride. The instruction format is shown in Fig. 5.
Listings 10 to 12 compare the differences between baseline

and custom instructions corresponding to the same hybrid
script. In the baseline version, 32 instructions are needed to
complete the addition of the eight int8 elements of two arrays.
For each element, two lb instructions are needed to load the
data from the LHS and RHS arrays into registers a3 and a4.
Then, the contents of registers a3 and a4 are added, the result
is stored back into a3, and finally, the result from register a3
is stored back into the memory through the store instruction.
In contrast, only four instructions are needed when using our
custom instructions. The first and second instructions load the
eight elements of the first and second arrays with a stride of 6
into a2 and a1, respectively; for this, the custom instruction is
used plse8. Then, using the SIMD add instruction kadd8, the
eight elements in each register are added and the results are
stored in register a1; then the results are stored back intomem-
ory with stride 8 through the psse8 instruction. In this way,
the number of instructions can be reduced by twenty-eight
through the use of our custom instructions. The pattern of the

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

1 //In NMS the shapes of the LHS and RHS are both N
x 6, where N is the number of bounding boxes,
and each bounding box has 6 data elements.

2 for i in vectorize(8):
3 output[i, 0] = lhs[i, 0] + rhs[i, 0]

Listing 10. Hybrid script for stride load and store.� �
1 lb a3, 0(a2)
2 lb a4, 0(a1)
3 add a3, a4, a3
4 sb a3, 0(a0)
5 lb a3, 6(a2)
6 lb a4, 6(a1)
7 add a3, a4, a3
8 sb a3, 6(a0)
9 lb a3, 12(a2)
10 lb a4, 12(a1)
11 add a3, a4, a3
12 sb a3, 12(a0)
13 lb a3, 18(a2)
14 lb a4, 18(a1)
15 add a3, a4, a3
16 sb a3, 18(a0)
17 lb a3, 24(a2)
18 lb a4, 24(a1)
19 add a3, a4, a3
20 sb a3, 24(a0)
21 lb a3, 30(a2)
22 lb a4, 30(a1)
23 add a3, a4, a3
24 sb a3, 30(a0)
25 lb a3, 36(a2)
26 lb a4, 36(a1)
27 add a3, a4, a3
28 sb a3, 36(a0)
29 lb a2, 42(a2)
30 lb a1, 42(a1)
31 add a1, a1, a2
32 sb a1, 42(a0)� �

Listing 11. Baseline version of stride load and store.� �
1 plse8 a2, a2, 6
2 plse8 a1, a1, 6
3 kadd8 a1, a1, a2
4 psse8 a0, a1, 6� �

Listing 12. Optimized version of stride load and store.

hybrid script used to generate plse8 and psse8 instructions
is shown in line 2 of Listing 10. Because the hybrid script
is row-major, annotating the column loop with the vectorize
keyword, then will access the memory with a fixed-length
offset, referred to as the stride. Once the TIR corresponding
to this pattern is obtained, we can generate the corresponding
LLVM Intrinsics.

3) pcsv8
Typically, addi (addition of a constant value) is used to set
a register to a given value. We design a custom instruction
pcsv8, which copies an immediate value to each element of
rd, with an element size of eight bits. There are eight elements
in the RV64 architecture. The instruction format is shown in
Fig. 5.

Listings 13 to 15 compare the differences between baseline
and custom instructions corresponding to the same hybrid
script. In the baseline version, 24 instructions are needed to
complete the operation on an eight-element array, adding a
constant value to each element. In each iteration, the LHS
element needs to be loaded into register a2 through the load
instruction (ld). Then, a constant value of 3 is added to a2
through the addi instruction, and the result stored in register
a2 is subsequently written back to the memory through the
store instruction. In contrast, only 4 instructions are needed
when our custom instruction is used. First, the ld instruction
is used to load the continuous data of the HLS array into a1;
then the constant value of 3 is copied to each element in a2
through the pcsv8 instruction. Subsequently, a1 and a2 are
added through kadd8 and the result is written back to a1.
Finally, the result stored in a1 is written back to the memory
using the store instruction.
The pattern of the hybrid script used to generate the pcsv8

instruction is shown in line 2 of Listing 13. In this case, we
annotate a loop with the vectorize keyword, and the loop
involves a binary Op with one tensor and one constant scalar.
Once the TIR corresponding to this pattern is obtained, we can
generate the corresponding LLVM Intrinsics. In this example,
we reduce the number of instructions by 20 by using the
custom instruction pcsv8.

4) quot8
In the RISC-V basic instruction set, an instruction for integer
division (div) is provided. Here we further extend it to a SIMD
version, by designing quot8, which is an integer division
instruction that performs elementwise division on rs1 and
rs2 and returns the quotients to rd. The element size is eight
bits. There are eight elements in the RV64 architecture. The
instruction format is shown in Fig. 5.
Listings 16, 17 and 18 compare the differences between

baseline and custom instructions corresponding to the same
hybrid script. In the baseline version, 32 instructions are
needed to complete the division of eight pairs of int8 ele-
ments. For each data pair, two load instructions are needed
to load the data from the memory to register a3 and a4. Then,
integer division is performed, and the results are stored back
to a3. Subsequently, the contents of a3 are written back to
the memory through the store instruction. In contrast, only
four instructions are needed when our custom instruction is
used. First, two load instructions(ld) are used to load two
sets of eight consecutive int8 data elements into registers a2
and a1 from the memory. Then, the integer division and quo-
tient operations are performed through the custom instruction
quot8, and the results are written back to register a1. Finally,
the results are written back to the memory through the store
instruction. The pattern of the hybrid script used to generate
the quot8 instruction is shown in line 2 of Listing 16. In this
case, the div function, which represents our integer quotient
function, is used. Once the TIR corresponds to this pattern,
we can generate the corresponding LLVM intrinsics. In this
example, we reduce the number of instructions by 26 by using

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

1 for i in vectorize(8):
2 output[i] = lhs[i] + int8(3)

Listing 13. Hybrid script for constant add.� �
1 lb a2, 0(a1)
2 addi a2, a2, 3
3 sb a2, 0(a0)
4 lb a2, 1(a1)
5 addi a2, a2, 3
6 sb a2, 1(a0)
7 lb a2, 2(a1)
8 addi a2, a2, 3
9 sb a2, 2(a0)
10 lb a2, 3(a1)
11 addi a2, a2, 3
12 sb a2, 3(a0)
13 lb a2, 4(a1)
14 addi a2, a2, 3
15 sb a2, 4(a0)
16 lb a2, 5(a1)
17 addi a2, a2, 3
18 sb a2, 5(a0)
19 lb a2, 6(a1)
20 addi a2, a2, 3
21 sb a2, 6(a0)
22 lb a1, 7(a1)
23 addi a1, a1, 3
24 sb a1, 7(a0)� �

Listing 14. Baseline version of constant add.� �
1 ld a1, 0(a1)
2 pcsv8 a2, 3
3 kadd8 a1, a1, a2
4 sd a1, 0(a0)� �

Listing 15. Optimized version of constant add.

our custom instruction quot8.

C. RUNNING EXAMPLE: NONMAXIMUM SUPPRESSION
(NMS)
NMS is widely used for object detection in computer vision
and deep learning applications to retain the bounding boxes
that are most likely to correspond to objects of interest. Here,
we use NMS as an example to illustrate the performance
improvement archived with our rewriting strategies and cus-
tom instructions. The input for NMS is a set of sorted object
data, where each object has six pieces of associated infor-
mation: the confidence of the object, the class of the object,
and the coordinate information of the upper left and lower
right corners. All the candidate objects are sorted by their
confidence; the higher the confidence value is, the higher the
ranking. Fig. 6 shows the flow of NMS. In the first step, the
first element is selected as the candidate, and it is assumed
that this candidate indeed contains an object. Second, other
bounding boxes are suppressed if they are too close. Out of
the remaining bounding boxes, the next top-scoring box is
then selected, and the first and second steps are repeated until
no more bounding boxes remain. Third, all bounding boxes
that have not been suppressed are returned as results.

1 for i in vectorize(8):
2 output[i] = lhs[i] / / rhs[i]

Listing 16. Hybrid script for division.� �
1 lb a3, 0(a2)
2 lb a4, 0(a1)
3 div a3, a4, a3
4 sb a3, 0(a1)
5 lb a3, 1(a2)
6 lb a4, 1(a1)
7 div a3, a4, a3
8 sb a3, 1(a0)
9 lb a3, 2(a2)

10 lb a4, 2(a1)
11 div a3, a4, a3
12 sb a3, 2(a0)
13 lb a3, 3(a2)
14 lb a4, 3(a1)
15 div a3, a4, a3
16 sb a3, 3(a0)
17 lb a3, 4(a2)
18 lb a4, 4(a1)
19 div a3, a4, a3
20 sb a3, 4(a0)
21 lb a3, 5(a2)
22 lb a4, 5(a1)
23 div a3, a4, a3
24 sb a3, 5(a0)
25 lb a3, 6(a2)
26 lb a4, 6(a1)
27 div a3, a4, a3
28 sb a3, 6(a0)
29 lb a2, 7(a2)
30 lb a1, 7(a1)
31 div a1, a1, a2
32 sb a1, 7(a0)� �

Listing 17. Baseline version of division.� �
1 ld a2, 0(a2)
2 ld a1, 0(a1)
3 quot8 a1, a1,a2
4 sd a1, 0(a0)� �

Listing 18. Optimized version of division.

Listing 19 shows the baseline version of NMS, in which we
cannot vectorize if-else statements, normin, max add, or other
operations. We apply our rewriting rules for a RISC-V 64-bit
hardware target with the P extension; accordingly, the vector
size is eight and each element is of the int8 type. Listing 20
shows the optimized version of the NMS algorithm, which
we flatten into two loops. The number of iterations of the
inner loop is equal to the vector size, while for the outer loop,
the number of iterations is the original range divided by 8.
The main difference between Listings 19 and 20 is that the
code of the latter is vectorizable, whereas that of the former
is not because of the if-else construction from Lines 11 to
14 in Listing 19, which cannot be vectorized. In Listing 20,
we rewrite the if-else construction using the ternary operation
strategy described in Section IV-B to make it vectorizable.
Once the hybrid script is vectorizable, we divide the axis

with iterator j in line 3 of Listing 19 by XLEN, resulting

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

1 for i in range(valid_count):
2 bbox_a t/b/l/r
3 for j in range(i, valid_count):
4 bbx_b t/b/l/r
5 # calculate overlap width and height
6 w = max(zero, min(a_r, b_r) - max(a_l, b_l))
7 h = max(zero, min(a_b, b_b) - max(a_t, b_t))
8 overlap_area = h * w
9 union_area = (a_r - a_l) * (a_b - a_t) + (b_r

- b_l) * (b_b - b_t) - overlap_area
10 iou = zero if union_area <= zero else

overlap_area / union_area
11 if iou >= iou_threshold:
12 is_valid_box = 0
13 else
14 is_valid_box = 1

Listing 19. Baseline version of the NMS algorithm.

1 XLEN = 8 #V8I8
2 iou_threshold_invs = int8(1/iou_threshold)
3 for i in range(valid_count):
4 for j in range(i, valid_count/ XLEN):
5 for k in vectorize(XLEN):
6 max_l = max(bbox_a_l, bbox_b_l)
7 min_r = min(bbox_a_r, bbox_b_r)
8 max_t = max(bbox_a_t, bbox_b_t)
9 min_b = min(bbox_b_b, bbox_b_b)

10 w = min_r - max_l if min_r > max_l else 0
11 h = min_b - max_t if min_t > max_t else 0
12 overlap_area = h * w
13 overlap_area = 1 if overlap_area == 0 else

overlap_area
14 u = area_bbox_a - overlap_area
15 u = u + area_bbox_b
16 iou = union_area / / overlap_area
17 is_valid_box = 0 if iou <=

iou_threshold_invs else 1

Listing 20. Optimized version of the NMS algorithm.

in lines 4 and 5 of Listing 20, using the strategy described
in Section IV-A. Notably, we use the vectorize annotation in
line 5 to tell TVM that the instructions in this loop should be
generated into SIMD instructions. Lines 6 to 9 in Listing 19
compute the areas of the intersection. and union between two
boxes. To maintain the accuracy of the data type of int8, it
is necessary to check whether the width and height of the
intersection area are greater than zero in lines 10 and 11 of
Listing 20. To compute the area of the union of the two boxes
under the constraints on the value range for the int8 type, it is
necessary to first subtract the intersection area from the area
of one box and then add the area of the other box to ensure
that the value of the union area will be as precise as possible,
as shown in lines 14 and 15 of Listing 20 and described in
Section IV-C. line 10 in Listing 19 computes the intersection
over union (IoU) value. Because the area of intersection of
two boxes is always smaller than the area of their union, area
of their union, the corresponding integer division operation
cannot be directly applied in the int8 version of NMS, as the
calculated IoU value would always be zero. Therefore, we
modify the algorithm to calculate the union divided by the
intersection and check the result against the inverse of the IoU

threshold, as expressed in lines 16 and 17 of Listing 20. Thus,
the rewriting of the entire NMS algorithm is completed.

VI. EXPERIMENTS
To evaluate the performance of the proposed method, we use
NMS as an example and compare the baselineNMS algorithm
with the version optimized using our hybrid script rewriting
strategies and the RISC-V P extension with our proposed
custom instructions.We use theMicrosoft COCO [11] dataset
as the input data for testing and the Single Shot MultiBox
detector(SSD) [27] as the neural network model for object
detection.

A. EXPERIMENTAL FLOW AND ENVIRONMENTS
Our experimental flow is divided into three major steps: com-
piling the compute graph through TVM, using the LLVM and
GNU toolchains to compile the kernel code and TVM runtime
into RISC-V ELF, and running the compiled RISC-V ELF
executable on the RISC-V simulator Spike with test data to
obtain the final results. Taking NMS as an example, the exper-
imental flow is shown in Fig. 7. The first step is to compile the
NMS algorithm through TVM,which generates a kernel code,
execution graph, and set of parameters (Param). The kernel
code is in the LLVM IR format and is the implementation of
theNMS algorithm. The execution graph is a file in JavaScript
Object Notation (JSON) format that describes the operation
execution sequence. Param contains the pre-trained weights
or constant data used in neural network model inference.
There is no weight information in NMS; therefore, there are
no parameters in our experiments. The RISC-V assembly
code is generated as part of the LLVM tool. The host code is
the main program that drives the entire NMS execution flow,
which includes topological sorting of the execution graph to
obtain the operation process, adding parameters to the neural
network model, performing inference, and generating results.
The RISC-V ELF file is a RISC-V executable file compiled
via the RISC-V GNU toolchain. The input bounding boxes
are the data generated by the object detection model. We use
TVM to produce a model containing the NMS operator and
other transformed operators; thus, TVM generates the kernel
code, execution graph, and parameters. To run on the RISC-
V simulator, a RISC-V executable must be compiled using
the GNU toolchain with objects generated by TVM and our
host code, which is also the reason why we use LLVM tools
to compile the kernel code into assembly code. Fig. 8 shows
the object detection flow from the input image to the SSD
model for object detection and finally to the NMS algorithm
for postprocessing. We run this flow based on TVM.

B. EXPERIMENTAL RESULTS
The Microsoft COCO [11] dataset is used to evaluate the per-
formance and accuracy of the baseline and optimized NMS
algorithms. There are 287k images in the COCO2017 dataset,
including 118k for model training, 41k for the testing trained
model, 5k for validation, and 123k unlabeled images. We use
the 5k validation images as the input data to evaluate the

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 6. Flow of the nonmaximum suppression(NMS) algorithm. In this example, the input consists of five candidate bounding boxes. After the NMS
operation, three are excluded and the remaining two represent the ranges of the detected objects.

instruction count and accuracy Fig. 9 shows the experimental
results for two example test images from the COCO dataset.
Panels (a) to (d) correspond to the image with ID 281553,
which contains five labeled objects, and panels (e) to (h)
correspond to the image with ID 465404, which contains 54
labeled objects. Panels (a) and (e) show the original images,
panels (b) and (f) show the ground-truth labeled data, panels
(c) and (g) show the objects detected with the baseline version
of NMS, and (d) and (h) show the objects detected with the
optimized version of NMS.

We use the instruction count as a performance indicator.We
measured the number of instructions required to executeNMS
in Spike. Fig. 10 shows the speedup results for the 5,000 val-
idation images. The results show that with our optimizations
the performance is improved by factor of 1.28 to 15.29 on the
COCO dataset. We find that when there are more objects in
the image, the speedup will be greater; thus in Fig. 11, we
also present the number of objects in comparison with the
speedup results. We take images 255664 and 498919 from
the COCO dataset as specific examples. For image 255664
which contains two objects, the baseline version requires
228,201,029 instructions to perform the NMS operations;
in the optimized version, only 176,912,542 instructions are
needed, corresponding to a speedup of 1.28. For comparison,
in image 498919, there are 23 labeled objects; in this case, the
baseline version requires 9,775,751,198 instructions, whereas
the optimized version requires only 639,265,800 instructions,
corresponding to a speedup of 15.29. This is mainly because

TABLE 2. Instruction count reduction rate for the top ten instructions in
the baseline version of the NMS algorithm.

Instruction Reduction Rate Instruction Count
bne 98.48% 1379438049
c.slli 98.83% 948394138
flw 100.00% 917879562
c.addi 98.65% 890761084
c.srli 99.42% 877753370
c.add 100.00% 755816377
slli 98.91% 684818484
xori 100.00% 673417622
fle.s 100.00% 592662150
mul 98.31% 549143792

in the NMS algorithm, if there are more objects, more loops
must be executed, and the optimized version uses SIMD
instructions to process multiple data elements simultaneously
to improve performance. We further analyze the distributions
of the instructions before and after optimization, as illustrated
in Fig. 12 and Fig. 13. Before optimization, the top 10 most
frequently occurring instructions account for 66% of the total;
after optimization, our analysis reveals reductions ranging
from 98.48% to 100% for these instructions, as shown in
Table 2. Additionally, the top 10 SIMD instructions after
optimization are presented in Table 3.
In the baseline version, themost frequently used instruction

is "bne". This is because the NMS algorithm involves numer-
ous conditional operations, including checking for a nonzero
intersection between two bounding boxes before calculating

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 7. Compilation and execution flow with TVM on RISC-V.

FIGURE 8. Object detection flow with the Single Shot MultiBox Detector (SSD) neural network model.

TABLE 3. Top 10 subword SIMD instructions utilized in the optimized
version of the NMS.

Instruction Instruction Count Description
umin8 21,331,848 unsigned minimum
plse8 18,593,968 memory stride load
cmpeq8 10,790,904 integer compare equal
scmplt8 11,290,824 signed compare less than
psse8 1,499,760 memory stride store
ksub8 758,128 signed saturating subtraction
smin8 508,168 signed minimum
smax8 508,168 signed maximum
ksll8 508,168 saturating shift left logical
khm8 254,084 signed saturating Q7 multiply

the IoU and evaluating whether the computed IoU exceeds
a specified threshold. In the optimized version, we employ
the ternary operation based on rewriting strategy and replace
"bne" with "CMPEQ8" and "BPICK". This modification not
only enables simultaneous data comparisons through SIMD
instructions but also helps avoid potential performance losses
associated with branch misprediction. Reducing the instruc-
tion count is believed to offer various benefits, although
empirical verification is challenging. It has been suggested
that such optimizations may enhance performance by stream-
lining program execution, potentially expediting task com-
pletion and improving overall system efficiency. Lowering
CPU power consumption also seems plausible, especially in

energy-sensitive environments such as mobile devices and
embedded systems. The assumption is that fewer instructions
may contribute to increased resource utilization efficiency
by minimizing memory access and register usage demands.
Another potential outcome could bemore compact executable
code, which might help address storage space limitations,
particularly for systems with restricted memory. In addition
to the mentioned advantages, our analysis reveals significant
reductions in the number of load and store instructions, reduc-
ing the number of read and write operations to memory. A de-
crease in the quantity of these instructions alleviates pressure
on the memory system, potentially resulting in faster access.
This is crucial for enhancing the overall system efficiency,
especially in applications where high efficiency is essential.
In addition to the number of instructions affecting perfor-

mance, the cycle ofmemory load/store instructionsmay be in-
fluenced by differences in the microarchitecture and memory
hierarchy. To further analyze the impact of various hardware
implementations, we multiplied the instruction counts for the
custommemory load/stores (plse8, psse8) by factors of 1, 2, 4,
and 8 in the optimized version. We observed a speedup across
all images, as shown in Fig. 14 The results indicate that even
with the highest weight (8x), the speedup factor can still reach
12.219.
We additionally selected 5000 images from the unlabeled

category in COCO 2017 and 5000 images from the validation
category in the COCO 2014 dataset to validate the speedup

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 9. Test images from the COCO dataset and corresponding detection results. The colored boxes mark the locations of the detected objects. Upper
row: test image 281533. Lower row: test image 465404.

FIGURE 10. Results obtained when using the 5000 validation images in
the Microsoft COCO 2017 dataset as test data to compare the numbers of
instructions used in the baseline and optimized versions.

results on different datasets, as illustrated in Fig. 15 and
Fig. 16. Here, the performance improvement factors range
from 1.27 to 13.2 and from 2.45 to 16.07, respectively.

We used the API provided for the Microsoft COCO dataset
to obtain the ground-truth labels for the test images and calcu-
late the mean average precision. Fig. 17 compares the results
for the 5,000 test images between the baseline and optimized
versions. In Fig. 17, IoU denotes the IoU threshold, and
0.50:0.95 denotes a range of IoU thresholds from 0.5 to 0.95
in increments of 0.05, corresponding to a total of 10 different
IoU threshold; "area" is used to indicate the scales across
which the average precision is calculated, with "small" scales
corresponding to area <322 pixels, "medium" scales corre-
sponding to 322 <area <962 pixels, and "large" scales corre-
sponding to area >962 pixels. The notation "maxDets" indi-
cates the maximum number of detected objects. For example,
the first column represents the average precision achieved
across all 10 IoU thresholds and all different scales, where the
maximum number of detected objects is 100. Our experimen-
tal results show that the optimized version exhibits a loss in

FIGURE 11. Results obtained when using 5000 validation images from the
Microsoft COCO 2017 dataset as test data, to compare the numbers of
instructions in the baseline and optimized versions. This figure shows the
speedup and the number of objects for each test image in the Microsoft
COCO dataset

average precision that ranges from 0.002(@[IoU=0.50:0.95
| area=small | maxDets=100]) to 0.03(@[IoU=0.50:0.95 |
area=large | maxDets=100]). The main reason for this is that
for the IoU computation, it is necessary to compute the areas
of two bounding boxes, which requires multiple instructions,
and the value range of int8 may not be sufficient to hold the
area value, which may cause a box with a lower score to be
suppressed when two objects of the same class overlap.

VII. RELATED WORKS AND DISCUSSION
The end-to-end deep learning flow includes preprocessing,
model inference, and postprocessing steps. Previous research
aiming to enhance the performance of preprocessing and
postprocessing has focused on two aspects: software and
hardware. Liang et al. [28] proposed a customized hardware
accelerator specifically designed for deep learning algorithm
preprocessing and postprocessing. However, while custom
hardware can be effective at accelerating specific algorithms,
its applicability is limited to optimizations tailored for those

VOLUME 11, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 12. Statistics for the number of instructions used and executed in
the baseline version of the NMS algorithm.

FIGURE 13. Statistics for the number of instructions used and executed in
the optimized version of the NMS algorithm.

algorithms. Due to these constraints, achieving hardware ac-
celeration across different algorithms is challenging. Hence,
the present study proposes custom instructions that integrate
software and hardware design aspects. This approach en-
ables the potential of customized hardware to be exploited
for various algorithms, thereby improving program execution
performance. On the software side, Kim et al. [29] introduced
task-level pipeline parallelism to maximize CPU and GPU
resource utilization, consequently improving object detection
performance. However, acceleration relying solely on soft-
ware also has limitations. In our research, we introduce new
instructions for calculations commonly used in algorithms
and integrate software and hardware design to maximize
performance.

Nonmaximum suppression (NMS) is widely used as a post-
processing technique for object detection models and com-
puter vision tasks. The goal is to select themost representative
targets from among overlapping candidate detection boxes
to eliminate redundant detections. The NMS algorithm sorts
candidate boxes based on their predicted confidence scores
and gradually adds the highest-scoring boxes to the final de-
tection results while removing any boxes with overlap above
a specified threshold. However, NMS faces performance
challenges, particularly in terms of computational cost. The

FIGURE 14. Comparison of the results obtained when multiplying the
instruction counts for the custom load/store instructions by factors of 1,
2, 4, and 8 to analyze the potential speedup under different
microarchitectures and memory hierarchies.

FIGURE 15. Results obtained when using 5000 images from the unlabeled
category of the Microsoft COCO 2017 dataset as test data to compare the
numbers of instructions used in the baseline and optimized versions.

computational expense of pairwise comparisons with many
candidate boxes, and overlap calculations can significantly
affect the processing speed. Additionally, determining an ap-
propriate overlap threshold is crucial, as an excessively high
or low threshold can result in missed targets or improper
box selection. In the realm of NMS optimization, Bolya et
al. [30] analyzed the operational characteristics of NMS and
reported that the computation time can be effectively reduced
by representing the intersection-over-union (IoU) operation
between bounding boxes as a symmetric matrix and utilizing
GPUs. However, this method sacrifices a small amount of
accuracy due to redundant suppression. Building upon this
concept, Zheng et al. [31] further modified their research to
maintain the mean average precision(mAP). However, these
methods primarily rely on GPU acceleration, which may not
be suitable for low-power embedded systems.
In recent years, many applications have begun to leverage

the advantages of RISC-V for optimization and acceleration
in lower-power embedded systems. For example, in [32], the
utilization of the P extension of RISC-V led to accelerated
model execution based on TVM. The acceleration achieved
through the P-extension enables faster inference computa-
tions. [33] used the RISC-V vector extension to accelerate

16 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 16. Results obtained when using 5000 images from the validation
category of the Microsoft COCO 2014 dataset as test data to compare the
numbers of instructions used in the baseline and optimized versions.

FIGURE 17. Average precision of the baseline and optimized NMS
algorithms on the Microsoft COCO 2017 dataset.

commonly used scan operations in recurrent neural networks
(RNNs), which are crucial for processing sequential data in
applications such as natural language processing and speech
recognition. [34] and [35] focused on accelerating computa-
tions for convolutional neural networks (CNNs) and the k-
nearest neighbors (k-NN) algorithm, respectively, through the
introduction of custom instructions. However, these research
endeavors primarily concentrated on accelerating model in-
ference without addressing acceleration during the prepro-
cessing and postprocessing stages. In our research, we use
NMS, a commonly used postprocessing step in object detec-
tion, as a case study. We design custom instructions specif-
ically to accelerate NMS computations, contributing to the
broader improvement of essential tasks in the object detection
pipeline.

The choice of using the instruction count as a metric is
constrained by the current limitations of our experimental
environment. Currently, only Spike supports the simulation
of RVP instructions. Future research could explore more ac-
curate performance metrics, such as execution time, memory
behavior, and power consumption analysis. Such exploration
is contingent upon the future support of gem5 [36] or a RISC-
V performance model (Olympia) [37]. Contingent on this
support integrating these advanced simulation environments

would enable a more comprehensive and precise analysis of
our proposed optimizations.

VIII. CONCLUSIONS
In this research, we propose optimization methods for TVM
hybrid script, employing rewriting strategies and custom
RISC-V instructions. Our experiments demonstrate a notable
reduction in instruction count by a factor of approximately
1.28 to 15.29, with a minimal decrease in average precision
(0.002 to 0.03). In the particular example of the NMS algo-
rithm, the reduction in instructions correlates with the number
of objects in the target image. Experiments were conducted on
a single CPU core utilizing the RISC-V P extension with our
custom instructions, oriented toward low-power embedded
systems.

REFERENCES
[1] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, ‘‘Object Detection With Deep

Learning: A Review,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 11, pp. 3212–3232, 2019.

[2] M. T. Chiu, H. Y. Cheng, C. Y. Wang, and S. H. Lai, ‘‘High-accuracy rgb-d
face recognition via segmentation-aware face depth estimation and mask-
guided attention network,’’ in Proc. FG. IEEE, 2021, pp. 1–8.

[3] Y. Zhang, N. Suda, L. Lai, and V. Chandra, ‘‘Hello edge: Keyword spotting
on microcontrollers,’’ arXiv preprint arXiv:1711.07128, 2017.

[4] D. Seo, H. S. Oh, and Y. Jung, ‘‘Wav2kws: Transfer learning from speech
representations for keyword spotting,’’ IEEE Access, vol. 9, pp. 80 682–
80 691, 2021.

[5] U. Kamath, J. Liu, and J. Whitaker, Deep Learning for NLP and Speech
Recognition, 1st ed. Springer, 2019.

[6] I. Fursov, A. Zaytsev, P. Burnyshev, E. Dmitrieva, N. Klyuchnikov,
A. Kravchenko, E. Artemova, E. Komleva, and E. Burnaev, ‘‘A differen-
tiable language model adversarial attack on text classifiers,’’ IEEE Access,
vol. 10, pp. 17 966–17 976, 2022.

[7] M. Abdelaty, R. Doriguzzi Corin, and D. Siracusa, ‘‘Daics: A deep learning
solution for anomaly detection in industrial control systems,’’ IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 2, pp. 1117–1129, 2021.

[8] K.-J. Wang and Y.-C. Qiu, ‘‘A system deployment model of multi-ccd
automatic optical inspection for economical operations,’’ IEEE Access,
vol. 10, pp. 58 040–58 049, 2022.

[9] Y. Deng, X. Pan, X.Wang, and X. Zhong, ‘‘Vison-based 3d shape measure-
ment system for transparent microdefect characterization,’’ IEEE Access,
vol. 7, pp. 105 721–105 733, 2019.

[10] K.-H. Chen, C. Su, C. Hakert, S. Buschjäger, C. L. Lee, J. K. Lee, K.Morik,
and J. J. Chen, ‘‘Efficient realization of decision trees for real-time infer-
ence,’’ ACM Trans. Embed. Comput. Syst., 2022.

[11] T. Y. Lin, M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common Objects in Context,’’ in
European conference on computer vision. Springer, 2014, pp. 740–755.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, ‘‘TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning,’’ in Proc.
OSDI. Carlsbad, CA, USA: USENIX Association, 2018, p. 579–594.

[13] T. L. Chen, Y. R. Chen, M. S. Yu, and J. K. Lee, ‘‘NNBlocks: a Blockly
framework for AI computing,’’ J. Supercomput., vol. 77, no. 8, pp. 8622–
8652, 2021.

[14] M. Y. Lai, C. Y. Sung, J. K. Lee, and M. Y. Hung, ‘‘Enabling Android
NNAPI Flow for TVMRuntime,’’ inProc. ICPP. Edmonton, AB, Canada:
ACM, 2020, pp. 1–8.

[15] Y. Wen, Q. Guo, Z. Du, J. Xu, Z. Zhang, X. Hu, W. Li, R. Zhang, C. Wang,
X. Zhou, and T. Chen, ‘‘Enabling one-size-fits-all compilation optimiza-
tion for inference across machine learning computers,’’ IEEE Transactions
on Computers, vol. 71, no. 9, pp. 2313–2326, 2022.

[16] L. Zheng and T. Chen, ‘‘Optimizing deep learning workloads on arm gpu
with tvm,’’ in Proc. ReQuEST. Williamsburg, VA, USA: ACM, 2018, p.
1–9.

[17] P. Y. Chang, T. L. Chen, Y. T. Huang, M. S. Yu, and J. K. Lee,
‘‘C++OpenCL4TVM: Support C++OpenCL Kernel for TVM NN Oper-
ators,’’ in Proc. IWOCL. Bristol, United Kingdom: ACM, 2022, pp. 1–2.

VOLUME 11, 2023 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MS Yu et al.: Case Study: Optimization Methods with TVM Hybrid-OP on RISC-V Packed SIMD

[18] T. Yang, X. Han, H. Li, W. Li, and A. Y. Zomaya, ‘‘Parallel scientific power
calculations in cloud data center based on decomposition-coordination
directed acyclic graph,’’ IEEE Transactions on Cloud Computing, pp. 1–
12, 2022.

[19] C. Lattner and V. Adve, ‘‘Llvm: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. CGO. IEEE, 2004, pp.
75–86.

[20] E. Cui, T. Li, and Q. Wei, ‘‘Risc-v instruction set architecture extensions:
A survey,’’ IEEE Access, vol. 11, pp. 24 696–24 711, 2023.

[21] E. Cheshmikhani, B. Peccerillo, A. Mondelli, and S. Bartolini, ‘‘A general
framework for accelerator management based on isa extension,’’ IEEE
Access, vol. 10, pp. 120 702–120 713, 2022.

[22] C. C. Lin, C. L. Lee, J. K. Lee, H. Wang, and M. Y. Hung, ‘‘Accelerate
Binarized Neural Networks with Processing-in-Memory Enabled by RISC-
V Custom Instructions,’’ in Proc. ICPP. Lemont, IL, USA: ACM, 2021,
pp. 1–8.

[23] H. Lin, P. Chen, Y. S. Hwang, and J. K. Lee, ‘‘Devise Rust Compiler
Optimizations on RISC-VArchitectures with SIMD Instructions,’’ in Proc.
ICPP. Kyoto, Japan: ACM, 2019, pp. 1–7.

[24] B. Marshall, D. Page, and T. Pham, ‘‘Implementing the draft risc-v scalar
cryptography extensions,’’ in Proc. HASP. Virtual, Greece: ACM, 2020,
p. 1–8.

[25] S. C. Wang, L. Y. Yu, L. A. Her, Y. S. Hwang, and J. K. Lee, ‘‘Pointer-
based divergence analysis for opencl 2.0 programs,’’ ACM Trans. Parallel
Comput., vol. 8, no. 4, pp. 1–23, 2021.

[26] S. C.Wang, L. C. Kan, C. L. Lee, Y. S. Hwang, and J. K. Lee, ‘‘Architecture
and compiler support for gpus using energy-efficient affine register files,’’
ACM Trans. Des. Autom. Electron. Syst., vol. 23, no. 2, pp. 1–25, 2017.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C.
Berg, ‘‘Ssd: Single shot multibox detector,’’ in Proc. ECCV. Springer,
2016, pp. 21–37.

[28] S. Liang, C. Tang, X. Ning, S. Zeng, J. Yu, Y.Wang, K. Guo, D. Yang, T. Lu,
and H. Yang, ‘‘Efficient Computing Platform Design for Autonomous
Driving Systems,’’ in Proc. ASPDAC. Tokyo, Japan: ACM, 2021, p.
734–741.

[29] R. Kim, G. Kim, H. Kim, G. Yoon, and H. Yoo, ‘‘AMethod for Optimizing
Deep Learning Object Detection in Edge Computing,’’ in Proc. ICTC.
Jeju, Korea (South): IEEE, 2020, pp. 1164–1167.

[30] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT++ Better Real-Time
Instance Segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 2, pp. 1108–1121, 2022.

[31] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, andW. Zuo, ‘‘Enhancing
geometric factors in model learning and inference for object detection and
instance segmentation,’’ Trans. Cyber., vol. 52, no. 8, pp. 8574–8586, 2021.

[32] Y.-R. Chen, H.-H. Liao, C.-H. Chang, C.-C. Lin, C.-L. Lee, Y.-M. Chang,
C.-C. Yang, and J.-K. Lee, ‘‘Experiments and optimizations for tvm on
risc-v architectures with p extension,’’ in 2020 International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), 2020, pp. 1–4.

[33] H.-M. Lai and J.-K. Lee, ‘‘Efficient support of the scan vector model
for risc-v vector extension,’’ in Workshop Proceedings of the 51st
International Conference on Parallel Processing, ser. ICPP Workshops
’22. New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3547276.3548518

[34] N. Wu, T. Jiang, L. Zhang, F. Zhou, and F. Ge, ‘‘A reconfigurable convolu-
tional neural network-accelerated coprocessor based on risc-v instruction
set,’’ Electronics, vol. 9, no. 6, p. 1005, 2020.

[35] H. W. Oh and S. E. Lee, ‘‘The design of optimized risc processor for edge
artificial intelligence based on custom instruction set extension,’’ IEEE
Access, 2023.

[36] ‘‘Gem5,’’ http://www.gem5.org.
[37] ‘‘Risc-v performance model,’’ https://github.com/riscv-software-src/riscv-

perf-model.

MENG-SHIUN YU is a Ph.D. student in the De-
partment of Computer Science at National Ts-
inghua University, Taiwan. His research interests
include compiler optimization for deep neural net-
works and computer vision and compiler construc-
tion for hardware accelerators. He received a B.S.
in electrical engineering from the National Chin
Yi University of Technology, and an M.S. degree
in electrical engineering from the National Chung
Cheng University.

CHUAN-YUE YUAN is a graduate student in
the Department of Computer Science, National
Tsing-Hua University, Taiwan. His thesis advisor
is Prof. Jenq-Kuen, Lee. His research interests
include compiler optimizations on RISC-V with
SIMD computations, AI compiler optimizations,
and compiler analysis for program reliability.

TAI-LIANG CHEN received a B.S. degree in in-
formation management from Shih Chien Univer-
sity, Taipei, Taiwan, in 2002 and an M.S. degree
in computer science and information engineering
from Asia University, Taichung, Taiwan, in 2005.
He received a Ph.D. degree in computer science
fromNational Tsing Hua University, Hsinchu, Tai-
wan, in 2022. His research interests include visual
programming language, parallel computing, and
compiler design and optimizations.

JENQ-KUEN LEE received M.S. and Ph.D. de-
grees in computer science in 1991 and 1992, re-
spectively, from Indiana University, IN, USA. He
is now a professor in the Department of Com-
puter Science at National Tsing Hua University,
Taiwan, which he joined in 1992. He received the
Google Research Award in 2009. In addition, he
was a recipient of the Taiwan MOEA Economic
Contribution Award (Deep Plow Award) in 2010.
From 2015 to 2018, he participated in the new

version of the OpenCL proposals with the Khronos OpenCL DSP Feature
Set. Currently, he leads a research team in the effort to develop AI compilers
using RISC-V with SIMD computations. He has given presentations on his
research at the TVM Conference in 2018, 2019, 2020, and 2021. His current
research interests include optimizing compilers, AI framework compilers,
embedded multicore compilers and systems, and computer architectures.

18 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3397195

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

