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ABSTRACT In this study, we explore a hybrid non-orthogonal multiple access and time division multiple
access (NOMA-TDMA) approach designed to maximize sum throughput in a wireless powered Internet
of Things (IoT) network (WPIN). Hybrid access points send energy signals to users on downlink, and
users in various groups utilize that harvested energy to transmit information on uplink. This process is
facilitated by the NOMA-TDMA scheme wherein users of the same group use NOMA for simultaneous
transmissions, and separate time slots are assigned to each group through TDMA. Under this hybrid NOMA-
TDMA scheme, the main objective is to enhance the network’s sum throughput by jointly optimizing both
the allocation of time for downlink and uplink and the downlink beamforming vectors. Given the complex
interdependence of variables, the problem is inherently non-convex, making it difficult to solve numerically.
Therefore, we reformulate the problem as a bi-level programming problem—the outer-level sub-problem
addresses beamforming vectors using a genetic algorithm while the inner-level sub-problem deals with the
allocation of downlink and uplink time through the Lagrange multiplier method. Numerical results show
that the proposed hybrid NOMA-TDMA scheme outperforms baseline schemes like orthogonal multiple
access and equal time allocation, in terms of the sum throughput of the WPIN.

INDEX TERMS Internet of Things (IoT), wireless powered IoT network (WPIN), multiple input single
output (MISO), wireless energy transfer (WET), wireless information transfer (WIT), energy harvesting,
non-orthogonal multiple access (NOMA), orthogonal multiple access (OMA), genetic algorithm (GA),
Lagrange multiplier (LM).

I. INTRODUCTION

THE The Internet of Things (IoT) represents an inte-
grated network of intelligent devices capable of in-

teracting and collaborating through the Internet with each
other, with humans, and with the environment. This con-
vergence facilitates a seamless bridge between the physical
and digital realms, empowering objects with capabilities to
execute complex tasks independently. A crucial aspect of
the IoT is its inherent autonomy, which requires minimal
to no human intervention for operational functionality [1].
The IoT has significantly enhanced the scope of application

domains like transportation, smart grids, security, public
safety, agriculture, logistics, and e-health with its distinctive
and unparalleled features [2].

The IoT holds the potential to profoundly impact various
aspects of our daily lives, offering significant advantages to
businesses through the automation of processes and enhanced
management of environmental factors [3]. Conventionally,
sensor networks and other low-energy wireless networks
are powered by fixed energy sources like batteries, which
have finite operating times [4]. Even though changing or
recharging the batteries might prolong the network’s lifespan,
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doing so can be difficult, expensive, risky (e.g., in harmful en-
vironments), or nearly impossible (e.g., sensors inserted into
human bodies) [5]. In addition, widespread implementation
of the IoT presents considerable challenges, such as security
vulnerabilities, data privacy concerns, and scalability. Among
these, energy limitations are one of the main challenges to its
acceptance.

Wireless power transfer (WPT) has been considered an im-
portant technology in recent years, not only due to its ease of
use and enhanced security but also because of its continually
evolving renewable features. WPT has become integral to
various applications, including mobile charging, electric ve-
hicles, IoT networks and implantable medical devices [6]. To
overcome the energy limitation on IoT networks, harvesting
energy from the environment has attracted a lot of attention
lately as a viable alternative for extending the lifespan of
wireless networks [7] [8]. Since radio frequency (RF) signals
can be obtained from specialized transmitters that already
meet the requirements for far-field wireless power transfer,
they are drawing greater attention than other energy sources
[9], [10], [11].

In recent years, wireless powered IoT networks (WPINs)
have surfaced as a significant advancement for battery-life-
constrained mobile and communications devices [9]. This
technology has been identified as a crucial solution for sev-
eral low-power scenarios, including wireless powered com-
munication networks (WPCNs) and radio frequency identifi-
cation (RFID) networks [12]. Typically, WPINs consist of a
hybrid access point (H-AP) that coordinates multiple wireless
devices for wireless energy transfer on downlink and wireless
information transfer on uplink. Furthermore, in WPINs, the
harvest-then-transmit (HTT) protocol is considered wherein
wireless devices operate without battery power. Instead, they
harvest energy from the H-AP and utilize this energy to
send information [9] [13].To ensure effective operation and
performance of a network, WPINs require cooperative design
in information and energy transmissions. In WPINs where
the H-AP is equipped with multi-antenna configurations, the
technique of energy beamforming—concentrating RF signals
into a focused beam—significantly enhances the efficiency
of energy transmissions [14]. In addition, WPINs can benefit
from energy beamforming at the H-AP since a multi-antenna
H-AP can manage the transmit beamforming vectors, im-
proving energy transmission efficiency. Moreover, through
the strategic design of energy beams, it is possible to improve
the uplink throughput for each user. This enhancement stems
from the increased energy harvested on downlink, which in
turn permits higher transmit power on uplink [15].

Alongside this, non-orthogonal multiple access (NOMA)
has been introduced as a strategy to facilitate connectivity of
a massive number of devices within IoT networks. NOMA
allows numerous users to share a single (frequency, time,
coding, or spatial) channel at the same time, resulting in
improved spectrum efficiency and energy efficiency [16].
From the perspective of IoT networks, the spectral efficiency
holds considerable importance in the 6G wireless networks.

In the absence of efficient spectrum allocation schemes,
the densification of devices would ultimately saturate the
spectral resources of 6G networks, leading to network-wide
disruptions [17]. NOMA is considered a promising resources
allocation scheme in IoT networks, [18], [19]. According to a
study by Ding et al. [20], NOMA can obtain a higher uplink
sum rate than orthogonal multiple access (OMA). However,
compared to OMA, NOMA requires substantially greater
receiver complexity when employing successive interference
cancellation (SIC) [21]. Additionally, the involvement of
a large number of users in the SIC process introduces a
performance-limiting factor attributed to error propagation
resulting from the removal of prior users’ signals. Although
NOMA may not consistently exceed the performance of
OMA, like time division multiple access (TDMA) in cer-
tain scenarios, OMA can exhibit superior energy efficiency
compared to NOMA in WPCNs [22]. Consequently, finding
a trade-off between complexity and performance in WPINs
is still a challenge.

A. RELATED WORKS
The literature features a wide range of studies that have
explored Wireless Powered IoT Networks (WPINs), [9],
[23], [24], [25], [26], [27], [28], NOMA based WPINs [29],
[30], [31], [32], [33], [34] and hybrid NOMA-TDMA based
WPINs [35], [36], [37], [38].

In the study by Ju and Zhang [23], the authors delved into
throughput maximization in wireless powered communica-
tion networks by utilizing the HTT protocol. They proposed
an optimal solution aimed at enhancing throughput by strate-
gically allocating time to wireless users. Furthermore, they
addressed (and proposed a solution for) the doubly near-
far problem by optimizing common throughput, offering
significant insights into improving network efficiency.

Asiedu et al. provided a study on beamforming and alloca-
tion of resources for multi-user full duplex wireless powered
communications in IoT networks [24]. This research ex-
plored a MISO system configuration where the AP functions
in full duplex mode with the users in half duplex mode. Op-
timization of channel assignment, time resources, and power
allocation is undertaken to improve the uplink weighted sum
rate.

Zheng et al. addressed maximizing throughput based on
data packets in their study [26]. They proposed both short-
and long-term throughput maximization in mobile WPINs.
They segmented the short-term problem based on data
packet generation, and introduced a generated-data-packets
throughput-maximization algorithm. For long-term maxi-
mization, they demonstrated its equivalence to the integer
knapsack problem, and developed a deep deterministic policy
gradient (DDPG) multi-node resource allocation (DMRA)
algorithm to determine optimal times, power allocations, and
channel assignments among IoT users.

In [9], the authors focused on simultaneously optimizing
transmission time and packet error rate for each user to
either maximize total effective throughput or minimize over-
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all transmission time, subject to users’ individual effective-
amount-of-information requirements.

Yang et al. proposed a study on maximizing minimum
throughput in wirelessly powered IoT systems assisted by
backscatter technology [28]. The objective of this research
was to establish a transmission schedule for all devices
that would maximize the system’s minimum throughput. In
[29], Zewde and Gursoy provided a study on the efficacy
of NOMA in wireless powered communications. Their aim
was to enhance a system’s energy efficiency when using
NOMA for uplink information transfer. The investigation
focused on numerous energy-harvesting UEs operating under
the HTT protocol. For uplink information transfer, power-
domain multiplexing was employed, and the receiver was
designed to decode each UE’s information in a way that
allows the UE with the highest channel gain to be decoded
without interference.

Zhai et al. investigated the non-orthogonality of NOMA
in intracell interference [30]. To coordinate intracell interfer-
ence, they proposed a solution to dynamic user scheduling
and the power allocation problem with the objective being
to minimize total power consumption of the whole network
under constraints on all users’ long-term requirements.

In [31], Rauniyar et al. explored the dynamics of radio
frequency energy harvesting and information transfer by
leveraging time switching relaying (TSR), power splitting
relaying (PSR), and NOMA with the objective of optimizing
sum throughput. The study describes a process where a
power-limited IoT relay node initially harvests energy from
the RF signal of a source node through either TSR or PSR.
Subsequently, it transmits information from the source node
together with its own data to the designated destination nodes
using the NOMA protocol.

Wang et el. proposed a study on throughput maximization
for peer-assisted wireless powered IoT NOMA networks
[32]. The objective of this research was to maximize the sum-
throughput of each proposed model, while considering the
combination of TDMA and NOMA, under the assumption
that the power of active UEs is fixed. This study states
different transmission modes (non-stand-alone/stand-alone)
and different operations (NOMA/NOMA-plus-TDMA) and
re-investigate the above schemes in the scenario where active
UEs’ energy is limited, i.e., the power of active UEs is not
fixed and is affected by time allocation.

In the study by Sotiris A. et al. [33], they explored two
random access (RA) protocols that enhance the traditional
slotted ALOHA (SA) by integrating it with uplink NOMA.
Compared to other RA protocols, SA is favored for its low
complexity and its ability to eliminate partially overlapping
transmissions, thereby reducing collisions. However, SA can
become inefficient under conditions of high traffic load and
increased device numbers, leading to congestion. To address
these issues, this study introduces two detection techniques
aimed at mitigating interference when two sources transmit
simultaneously in the same time slot. These techniques SIC
with an optimal decoding order policy and joint decoding

(JD) are designed to decrease the number of collisions and
enhance the throughput of SA while maintaining system
simplicity.

Manzoor et al. investigated the combination of NOMA
using power-domain with backscatter communication (BC)
[34]. The goal of this work was to maximize the total energy
efficiency (EE) of the IoT network, subject to the quality
of services of each IoT device. This study introduced a
BC in a multicell IoT network, where a source in each
cell transmits a superimposed signal to its associated IoT
devices using NOMA. The backscatter sensor tag (BST) also
transmits data to IoT devices by reflecting and modulating
the superimposed signal of the source. The proposed work
simultaneously optimizes the total power of each source,
power allocation coefficient of IoT devices, and RC of BST
under imperfect SIC decoding.

The authors in [36] discussed maximization of the
weighted sum rate for TDMA and NOMA by optimizing
harvesting time and transmission time variables. In [37],
a hybrid approach combining NOMA and TDMA for in-
telligent reflecting surface (IRS)-assisted wireless powered
communications was studied. Users were organized into
various clusters to harvest energy on downlink, followed
by transmission of information to the base station (BS) by
utilizing a combined NOMA and TDMA strategy on uplink.

B. MOTIVATION AND CONTRIBUTIONS
Motivated by the aforementioned research, we studied the
sum-throughput problem for wireless powered IoT networks.
We studied the efficiency and the diverse applications of
NOMA in WPINs; however, studies on hybrid NOMA-
TDMA schemes were not found in the literature review. The
primary motivation for selecting TDMA alongside NOMA in
this study is due to TDMA’s simplicity and its proven effec-
tiveness in managing interference between users in wireless
networks [39]. TDMA organizes transmission times into dis-
tinct slots for different user groups [40]. This clear structure
simplifies scheduling and reduces the complexity of system
design, which is particularly beneficial when combined with
NOMA’s power-domain multiplexing [41]. As a generaliza-
tion of both NOMA and TDMA systems, hybrid NOMA-
TDMA reduces the complexity of SIC implementation while
simultaneously providing more degrees of freedom to en-
hance performance. Additionally, TDMA is well-suited for
situations where it’s important to synchronize user transmis-
sions and minimize system overhead [42]. Its straightforward
implementation, supported by well-established technologies
and infrastructure, makes TDMA a practical choice for both
theoretical research and real-world applications. To solve this
non-convex problem, we converted the optimization problem
of hybrid NOMA-TDMA to a bi-level programming problem
with outer and inner sub-problems. The non-convex problem
is complex due to coupling of highly optimal variables. We
solve the outer problem using a genetic algorithm, and solve
the inner problem by means of the Lagrangian method.

The main contributions of our paper are as follows.
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TABLE 1. Notations used for mathematical expressions

Symbols Definitions
(b)H The conjugate transpose of complex-valued vector b
Cm×n The space of m× n complex-valued matrices
i An imaginary unit, i.e., i2 = −1
|β| The absolute value of complex-valued scalar β
Tr(B) The trace of matrix B
diag(b) The diagonal matrix of vector b
rank(B) The rank of matrix B
x ∈ B x is an element in set B
B ⪰ 0 Positive semidefinite matrix B
[B]m,n The element in matrix B at the mth row and nth column

• We propose a hybrid NOMA-TDMA MISO system
for sum-throughput maximization in WPINs by jointly
optimizing the downlink beamforming vectors and up-
link and downlink time, subject to minimum harvested
energy.

• To solve the non-convex problem, we propose trans-
forming it into a bi-level programming problem that
consists of an outer problem and an inner problem.
Hence, the main problem turns into sub-problems, and
we solve the outer sub-problem for beamforming vec-
tors with a genetic algorithm and solve the inner prob-
lem for downlink and uplink time allocation by using
the Lagrange multiplier method to find the near-optimal
solution.

• As a comparative scheme, we consider OMA and
equal time allocation (ETA) techniques and evaluate the
performance of the proposed scheme via simulations
that demonstrate the proposed hybrid NOMA-TDMA
scheme has better performance than other conventional
scenarios and OMA techniques.

This paper’s remaining sections are arranged as follows:
In Section II, we discuss the system model and problem
formulation for sum-throughput maximization. Section III
describes the proposed solution for bi-level programming,
which consists of genetic algorithm (GA) and the Lagrange
multiplier method. Section IV explains the numerical results
and discussion for evaluation and comparison purposes. Fi-
nally, conclusions are discussed in Section V.
Table 1 provides a list of important notations and their
definitions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a multiple input single output transmission sys-
tem that consists of a hybrid access point and N distributed
IoT users in K groups, as shown in Fig. 1. The H-AP is
equipped with multiple antennae, M > 1, and users are
equipped with a single antenna each. H1,H2,H3, . . . ,HK

represent channel conditions between the H-AP and each
user group. These coefficients characterize the quality of the
channel, including aspects like path loss and fading, which
affect both energy transfer and data transmission processes.
The users’ grouping strategy involves arranging them as
U1, . . . , UN such that ∥h1∥ ≥ ∥h2∥ ≥ · · · ≥ ∥hN∥, where

hn denotes the channel coefficient from nth user to the H-
AP, for n = 1, 2, . . . , N . This method of grouping is re-
ferred to as large-channel-strength difference (LCSD), which
lets the user—H-AP channel strength differences among
users in the same group stay as large as possible [37] [43].
User groups under this scheme can be {U1, U4, U7, U10},
{U2, U5, U8, U11}, and {U3, U6, U9, U12}. The H-AP sends
energy to users on downlink by using beamforming, whereas
users transmit information to the H-AP on uplink by utilizing
the harvested energy. We have N distributed users and K
groups where n = {1, 2, . . . , |N |} and k = {1, 2, .., |K|}.
The hybrid NOMA-TDMA scheme switches to TDMA when
K = N , and uses NOMA when K=1 [37].

We also assume that channel state information is known
at the H-AP. The time frame is divided such that the first
part is τ0 where (0 < τ0 < 1) where the H-AP broadcasts
wireless energy on downlink to all users. All users have initial
power (Pi = 0), recharging themselves with the energy from
the H-AP to transmit information under the HTT protocol.
Uplink time is further divided using TDMA to assign a
time slot to each group, in which all users of that group
transmit information simultaneously on uplink to the H-AP.
The amount of time assigned to the kth group on uplink is
denoted τk (0 < τk < 1), as shown in Fig. 2.

Nevertheless, the perfect channel estimation is challenging
but there are some preliminary studies have been done on
channel estimation of IoT networks. In [44], the author pro-
posed two models relevant to low powered LP-IoT communi-
cation in IoT networks. The first model provided a theoretical
representation of the wireless channel for the LP-IoT network
while the second model was the channel estimation model,
where they applied the least squares (LSE) and maximum
likelihood (MLE) techniques to estimate the LP-IoT wireless
channel. Reference [45] investigated the channel estima-
tion performance of massive multiple-input-multiple-output
(MIMO) IoT systems with Rician fading. This framework
utilized the LS and minimum mean squared error (MMSE)
estimation methods and considered the relative channel es-
timation error (RCEE) between the IoT device and base-
station, and provide the approximations of the expectation
of RCEE. In a study [46], the author proposed a model-
driven deep learning algorithm for joint activity detection
and channel estimation based on the principle of approximate
massage passing (AMP) which does not require the prior
information about active probabilities and channel variance,
and can significantly improve the performance with a finite
number of training data.

A. DOWNLINK TRANSMISSION
During the downlink phase, the H-AP transmits an arbitrary
energy signal in the form of beams directed towards users
with beamforming vector w at time τ0. Since a distant user
from the H-AP receives less power on downlink and suffers
from throughput degradation on uplink compared to a nearby
user, the H-AP applies different energy beamforming weights
to control power allocation. We denote the downlink energy
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FIGURE 1. The wireless powered IoT network with WET on downlink to all
users and WIT on uplink using the proposed hybrid NOMA-TDMA

signal as sdl = ws0, where s0 is an independent and
identically distributed random signal with zero mean and unit
variance, and w ∈ CM×1 denotes the energy beamformers
for the transmitter. The transmit power of the H-AP on
downlink can be expressed as E[|sdl|2] = |w|2. The H-AP
has a transmit sum-power constraint, Pmax; thus, we have
|w|2 ≤ Pmax. The signal received from the H-AP by the nth
user in the kth group is represented as follows:

y(k,n) = hH(k,n)ws0 + zn (1)

where hk,n ∈ CM×1 is the link from the H-AP (M antennae)
to the nth user in the kth group; zn is noise from the nth user,
whereas w ∈ CM×1 denotes the energy beamforming vector
at the H-AP.

We assume that the energy harvested from the receiver’s
noise is negligible in comparison to the energy harvested
from the energy signal, so we ignore receiver noise in further
problem formulations. Then, the amount of energy harvested
by the nth user in the kth group is

*Ek,n = ξk,n|hHk,nw|2τ0 (2)

where 0 < ξk,n < 1 is the energy-harvesting efficiency
of the nth user in the kth group, and τ0 is the time taken for
downlink energy transfer.

B. UPLINK TRANSMISSION
After harvesting energy during the downlink phase, users
send information during the uplink phase by using the har-
vested energy. We consider a hybrid scheme for information
transfer on uplink where different groups transmit at different
times using TDMA, while users in the same group transmit

*We assume linear energy harvesting model as it represents an upper
bound scenario which simplifies the mathematical modeling and facilitates
the derivation of more tractable analytical results. However, non-linear
energy harvesting model has also been extensively studied [47], [48].

FIGURE 2. Time-frame divisions for downlink energy transfer and uplink
information transfer

at the same time using NOMA. For users under NOMA,
we assume effective channel gain for users in the kth group
is denoted in descending order: ||hk,1||2 > ||hk,2||2 >
||hk,3||2 > . . . ||hk,n||2. Using TDMA, each group is allo-
cated a single time slot for uplink transmission. Then, the
available average power of the nth user in the kth group to
transmit on uplink can be expressed as

Pk,n =
Ek,n
τk

=
ξk,n|hHk,n|2τ0

τk
(3)

We assume users have no other energy source or battery to
store harvested energy, and hence, all energy must be used
for transmission [49], [50]. The signal received at the H-AP
from the nth user in the kth group can be written as follows:

rk,n = vHn hk,nsul + z (4)

where vn ∈ CM×1 denotes the receiver beamforming vec-
tor that is used to decode the information of the nth user;
sul =

√
pk,nsk,n denotes the information signal on uplink,

and z is noise at the H-AP. According to NOMA principles,
for uplink employing SIC at the H-AP, the decoding process
is executed in descending order. In this decoding order, the
first user needs to endure all in-group interference from the
other users, but a user later in the decoding order can benefit
from the throughput by cancelling the interference, and the
weakest user’s message is decoded without interference. The
signal-to-interference-plus-noise ratio is then calculated as
the ratio of the desired signal power to the total interference
plus noise, which is expressed as

γk,n =
pk,n|vHn hk,n|2∑N

i=n+1 pk,i|vHi hk,i|2 + σ2
, 1 ≤ n ≤ N − 1 (5)

so the signal-to-noise ratio for the Nth user can be written as

γk,n =
pk,n|vHn hk,n|2

σ2
, Nth user (6)

We adopt maximal ratio combining (MRC) beamforming at
the receiver as described in [51], where beamforming vector
vn is defined as vn =

hk,n

∥hk,n∥ . Furthermore, acknowledging
that all harvested energy is utilized for uplink transmission,
we adjust uplink transmit power to reflect the harvested
energy. Consequently, equation (5) can be reformulated as
follows:

γk,n =

τ0
τk
ξk,n|hHk,nw|2||hk,n||2∑N

i=n+1 pk,i|vHi hk,i|2 + σ2
, 1 ≤ n ≤ N − 1 (7)
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Equation (6) is also updated under MRC as

γk,n =

τ0
τk
ξk,n|hHk,nw|2||hk,n||2

σ2
, Nth user (8)

Using Shannon’s capacity formula, the throughput of the nth
user in the kth group can be written as

Rk,n = (τk) log2(1 + γk,n) (9)

Hence, the sum throughput for the kth group can be written
as expressed in [52]:

Rk = (τk) log2(1 +

N∑
n=1

τ0
τk
ξk,n|hHk,nw|2||hk,n||2

σ2
) (10)

In this problem, to maximize the sum throughput of all
users while jointly optimizing downlink beamforming vector
w and allocation of time τ for downlink and uplink, we
formulate the optimization problem as follows:

(P1) : max
w,τ

K∑
k=1

Rk (11a)

s.t.

C1 : ξk,n|hHk,nw|2τ0 ≥ emin (11b)

C2 : ||w||2 ≤ Pmax (11c)

C3 : 0 ≤
K∑
k=0

τk ≤ 1 (11d)

where emin is the minimum threshold for harvested en-
ergy, and w is the beamforming vector. ConstraintC1 ensures
quality of service for users in order to satisfy the mini-
mum criteria for harvested energy in the downlink phase.
Moreover, constraint C2 guarantees that the H-AP’s trans-
mit power does not exceed the maximum available power,
and constraint C3 fulfills time-frame normalization for time
allocation.

Since P1 is non-convex and highly complex because of
the coupling of optimal variables aimed at maximizing sum
throughput, finding a feasible solution analytically is diffi-
cult. In this paper, we convert P1 into a bi-level programming
problem consisting of outer-level variables and inner-level
variables in order to get a tractable solution.

III. PROPOSED SOLUTION OF BI-LEVEL
PROGRAMMING PROBLEM
Based on problem P1, we can see that it is extremely intri-
cate and challenging to solve because of the highly coupled
variables and non-convexity of the objective functions and
constraints. Therefore, to solve P1, we convert it to a bi-level
programming problem comprising outer-level and inner-level
variables, {w} and τ , respectively.

1) Outer-level variable

(P2) : max
w

K∑
k=1

Rk (12a)

s.t.

C1 : ξk,n|hHk,nw|2τ0 ≥ emin (12b)

C2 : ||w||2 ≤ Pmax (12c)

Problem P2 describes the outer-level problem, which deals
with downlink beamforming vectors {w0}. We consider a
scheme based on a genetic algorithm (GA) to ascertain the
outer-level variable values. The GA is recognized for its
efficacy in solving linear and non-linear problems, and excels
at avoiding local minima to attain solutions that are close to
optimal through the utilization of selection, crossover, and
mutation techniques.

2) Inner-level variable

(P3) : max
τ

K∑
k=1

Rk (13a)

s.t.

C1 :

K∑
k=0

τk ≤ 1, τk > 0, k = 0, 1, · · · ,K. (13b)

where Problem P3 corresponds to an inner-optimization
problem with respect to variable τ , which shows the time
for downlink and uplink transmissions. In addition, the con-
straint ensures that the downlink and uplink times must be
less than or equal to 1. Since Problem P3 is convex, we
propose a Lagrange multiplier algorithm to determine the
optimal value of the inner-level variable.

The methodology proposed in this study employs a cycli-
cal optimization process for both the upper-level variables
{w} and the inner-level variables {τ}. Initially, a GA-based
framework is introduced to determine the values of outer-
level variables {w}. After that, the Lagrange multiplier
method is applied to the inner optimization problem using
the values of {w} to achieve close to optimal solutions
for the inner-level variable represented by {τ}. Objective
function (10a) is then evaluated, and the GA uses the result
to further refine variable set {w}. The process iterates with
the updated {w} values informing the Lagrange multiplier’s
adjustment of the {τ} variables, continuing until convergence
is achieved. The GA framework is described in Section III-A,
while implementation of the Lagrange multiplier technique
is explained in Section III-B and Section III-C describes the
complexity analysis.

A. OUTER-LEVEL SUB-PROBLEM SOLUTION USING A
GENETIC ALGORITHM
In this subsection, we solve the outer sub-problem of the
bi-level programming problem to find the optimal values
for beamforming vector w by fixing another variable, like
time allocations {τ0, τ1, τ2, · · · , τk}. To solve Problem P2,
we use a genetic algorithm. The GA represents a class of
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optimization methodologies derived from the principles of
natural selection and genetics. The genetic algorithm begins
with an initial population where individual solutions evolve
through selection and mutation processes. The aim is to
evolve into a solution that optimally satisfies the cost function
[53]. Broadly, GAs are categorized into two types: binary
and continuous. The binary GA operates on binary strings,
encoding the problem’s variables into binary format and
optimizing the objective function in this discrete space. On
the other hand, the continuous GA, also referred to as a real-
coded GA, works directly with continuous variables, thus
offering a more direct approach to optimizing the objective
function. Due to the absence of a decoding step for chro-
mosome evaluation, the continuous GA typically exhibits
higher efficiency than its binary counterpart. In the context of
our study, particularly in addressing beamforming problems,
we adopt the continuous GA approach. This decision stems
from the increased efficiency gained by operating directly on
real-valued variables, bypassing the need for encoding and
decoding inherent in the binary GA.

In a GA, the population comprises Npop chromosomes
where each nth chromosome, denoted as crn, contains Nvar
variables. Therefore, a chromosome can be articulated as
crn = [w1, . . . , wNvar ] for n = 1, . . . , Npop. The efficacy
of each chromosome is quantified through a cost function,
which is defined by objective function (12a). The process
initiates with a natural selection phase, during which chro-
mosomes are ranked in descending order based on their cost,
represented as f(crn). Following this ranking, only a portion
of the population, predetermined by selection rate {SelRate},
is preserved for subsequent generations. The retained chro-
mosomes will be used as parents for crossover and mutation
operations in the genetic algorithm:

Nkeep = ⌊SelRateNpop⌋ , (14)

where Nkeep denotes the quantity of chromosomes retained
for generating new offspring, and Npop − Nkeep determines
the chromosomes that are eliminated. Following this, the
pairing procedure entails selection of chromosomes from the
conserved pool of Nkeep chromosomes, with the aim of form-
ing MatP =

Npop−Nkeep

2 mating pairs. The selection process
employs a rank weighting method wherein the probability for
the nth chromosome is determined as follows:

Pbn =
Nkeep − n+ 1∑Nkeep

n=1 n
, n = 1, . . . , Nkeep. (15)

Considering that probability, the initial step involves ar-
ranging the chromosomes in a descending sequence based
on their cost, thereby positioning the chromosome with the
highest cost at the top. Following this, we proceed to as-
certain the cumulative probabilities for each chromosome,
denoted by CPbn =

∑n
i=1 Probi. To select the first par-

ent, parentx1
, for each mating pair indexed by x (where

x = 1, . . . ,MatP ), a uniformly distributed random value,
randx1

within [0, 1], is generated. Initiating from n = 1

Algorithm 1 Genetic Algorithm-based Solution for Problem
P2

1: inputs: Npop, I , SelRate, MutR,τ ,{Rk,min}.
2: Initialize iteration index i = 1.
3: Initialize the chromosomes, crn, in the population and

solve equation (12a) to get f (crn).
4: Calculate Nkeep, MatP , and Nmut, and sort the chro-

mosomes in descending order according to cost f (crn).
5: while i ≤ I do
6: Discard Npop −Nkeep chromosomes.
7: Create the mating pool to get CPbn, n = 1, ..., Nkeep.
8: for x = 1, ...,MatP do
9: Select parentx1 and parentx2 for xth mating pair.

10: Execute the mating process to generate two off-
spring, offspx1 and offspx2 , by using (16), (17a),
(17b), (18a), and (18b).

11: end for
12: Replace the discarded Npop − Nkeep chromosomes

with the newly generated offspring from the MatP
mating pairs.

13: Mutate the Nmut selected variables of the chromo-
somes using (19).

14: Evaluate updated population using objective function
(12a) and re-sort chromosomes by cost.

15: Update iteration index: i← i+ 1.
16: end while
17: output: The best chromosome is cr1 with beamform

vector f(cr1) and near-optimal values for the variables
of problem (12a).

within the assortment of the mating pool, we select the
earliest chromosome where the cumulative probability,CPn,
is greater than randx1

, appointing it as parentx1
for the xth

mating pair. Subsequently, a second random value, randx2,
is generated to determine the second parent, parentx2, for
the xth mating pair. This selection mechanism is iteratively
performed to establish a total of MatP mating pairs.

As we select the parents, the generation of two offspring
per mating pair is obtained through the mating procedure,
which is predicated on the crossover strategy [54], [55]. For
every xth mating pair, the crossover point, denoted as {ψx},
is ascertained by randomly selecting one of the variables
from the parents within the xth mating pair. The crossover
point is determined as follows:

ψx = ⌈randx,mat ×Nvar⌉ , (16)

This ensures the crossover point is within the range of
the chromosome’s variables, and we define randx,mat as a
random number between [0, 1]. Then, new variables are
created in the following manner for the two offspring of
the xth mating pair by combining variables for ψx from the
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parents:

vnew1,x
ψx

= v
parentx1
ψx

− εx
(
v

parentx1
ψx

− vparentx2
ψx

)
, (17a)

vnew2,x
ψx

= v
parentx2
ψx

+ εx

(
v

parentx1
ψx

− vparentx2
ψx

)
, (17b)

where v
parentxj
ψx

represents the value of variable ψx associated
with the jth parent, while εx denotes a random number
selected from the interval [0,1], as illustrated in [56]. Con-
sequently, offspring from the xth mating pair are produced
through the following procedure:

offspx1 =
[
v

parentx1
1 , . . . , vnew1,x

ψx
, . . . , v

parentx2
ψx+1 , . . . , v

parentx2
Nvar

]
,

(18a)

offspx2 =
[
v

parentx2
1 , . . . , vnew2,x

ψx
, . . . , v

parentx1
ψx+1 , . . . , v

parentx1
Nvar

]
.

(18b)

where offspx1 and offspx2 denote the pair of progeny derived
from the xth mating pair. Consequently, this methodology
facilitates the generation of Npop −Nkeep offspring, designed
to replace the same number of chromosomes eliminated
during the initial selection phase.

To this end, an elitism strategy is implemented, ensuring
that the best solutions found in the population are retained
unaltered. Specifically, the top two chromosomes, denoted as
Nelt = 2, are preserved without modification, thereby pre-
venting their loss through mutation or crossover operations.
The adaptive mutation mechanism is applied to the remaining
chromosomes, with the exception of the elite ones. This
equation determines the total number of mutations carried
out:

Nmut = round ((Npop −Nelt)NvarMutR) (19)

where (Npop −Nelt)Nvar denotes the variables that can un-
dergo mutation throughout the population, and MutR is
the predetermined mutation rate. This formula calculates the
aggregate mutations across the population, factoring in the
number of mutable genes post-elitism. During the mutation,
a chromosome and a specific gene within it are randomly
selected. Mutation involves modifying the gene’s value by
incorporating a Gaussian noise component, which is given as

v
′

n,i = vn,i +∆(generation, σ) (20)

where v
′

n,i denotes the mutated value of gene i in chro-
mosome n, with vn,i being its original value. The term
∆(generation, σ) represents Gaussian noise with standard
deviation σ, which diminishes as the generation number
increases. The magnitude of this noise is calculated as
σ = 0.2+ adaptiveMutationFactor

generation . This adaptive approach ensures
that mutations are more prominent in initial generations to
facilitate exploration, and they gradually decrease to promote
exploitation as the algorithm approaches convergence.

Algorithm 2 Lagrange optimization and the Newton-
Raphson-based algorithm to solve Problem P3

1: Initialize λ, τ0, τk, and w0.
2: repeat
3: Solve Problem P3 using (26) & (27) and find optimal

values for {τ∗0 , {τ∗k}}.
4: Compute D(λ) using (21) and check for the feasible

solution.
5: ComputeD(λ) as the minimum ofLsum(τ , λ) over the

feasible set S according to (22).
6: Update λ using the sub-gradient method
7: if |λ− λold| < ϵ then
8: Convergence achieved, exit loop.
9: end if

10: Set λold = λ
11: until Stopping criterion is met
12: output: Optimal time allocations τ∗0 , τ

∗
k and optimal

Lagrange multiplier λ∗.

B. THE INNER-LEVEL SUB-PROBLEM SOLUTION
USING A LAGRANGIAN METHOD
In this sub-problem, we address the optimization of downlink
and uplink time allocations τ = {τ0, τ1, τ2, · · · , τk} in Prob-
lem P3 while keeping beamforming vector w constant. Given
that Problem P3 is characterized as a convex optimization
problem that can be solved using convex optimization, we
consider the Lagrange multiplier technique to solve it. The
Lagrange multiplier method finds the local maxima and min-
ima of a function while satisfying equality constraints. The
formulation of the Lagrangian function for solving Problem
P3 is as follows:

Lsum(τ , λ) =

K∑
k=1

τk log2

(
1 + Ck

τ0
τk

)
+λ

(
1−

K∑
k=1

τk

)
,

(21)

where, Ck =
∑N

n=1 ξk,n|hH
k,nw|2∥hk,n∥2

σ2 .

After formulating the Lagrangian for the primal problem,
where λ ≥ 0 represents the Lagrange multiplier associated
with constraint (13b). The dual function for Problem P3 is

D(λ) = min
τ∈S
Lsum(τ, ν), (22)

where S is the feasible set of τ as seen in (13b), which shows
that τ ∈ S with τk > 0, k = 0, 1, · · · ,K. Given that Problem
P3 is a convex optimization problem where strong duality
holds, the Karush-Kuhn-Tucker (KKT) conditions serve as
necessary and sufficient criteria for its global optimality,
which are given by

K∑
k=0

τ∗k ≤ 1, (23)

λ∗

(
K∑
k=0

τ∗k − 1

)
= 0, (24)
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∂

∂τk
Rsum(τ∗)− λ∗ = 0, k = 0, 1, 2, · · · ,K. (25)

Let τ∗k and λ∗ denote the optimal primal and dual solu-
tions, respectively, of Problem P3. Therefore, without loss
of generality, we assume λ∗ > 0. Hence, optimal time
allocation solution {τ∗0 , {τk}∗} is given by

τ∗0 =
1

1 +
K∑
k=1

η∗k

(26)

τ∗i =
η∗k

1 +
K∑
k=1

η∗k

,∀k (27)

where η∗k can be found by solving the KKT conditions of
the Lagrangian function in (21), as described in [57]. With
feasible optimal solution {τ∗0 , {τk}∗}, we update λ using
the sub-gradient method and iteratively solve for λ∗ when
convergence is achieved. To find η∗k, we use the Newton-
Raphson method, which is known for its efficiency in solving
non-linear equations. The time allocation procedure is sum-
marized in Algorithm 2.

Hence, the complete algorithm for solving Problem P1 is
presented in Algorithm 3, and a flow chart for its graphical
representation is Fig. 3.

Algorithm 3 The genetic algorithm and Lagrangian opti-
mization to solve Problem P1

1: Initialization: Set initial values for w0, τ0, and {τk}.
2: Set I = 0 and R(0) = f(w0, τ0, {τk}).
3: repeat
4: Set I = I + 1
5: Under given τ0 and {τk}, update w0 by solving prob-

lem (P2).
6: Under given w0, update τ0 and {τk} by solving prob-

lem (P3).
7: Set R(I) = f(w0, τ0, {τk})
8: until |R(I)−R(I−1)|

R(I) < ϵ

C. COMLEXITY ANALYSIS
This study examined the computational complexity of Algo-
rithm 3. Problem P1 was solved using a Bi-level program-
ming method, where GA used to optimize the beamforming
vectors in the outer problem, with an inner problem solved
via Lagrangian method. The computational complexity is
expressed as:

O((Npop −Nelt) · I · Clgr)

where Npop represents the total number of population, Nelt
denotes the elitism, which are carried over to the next genera-
tion without undergoing genetic operations such as crossover
or mutation. I is the number of iterations the GA performs

throughout the optimization process. Clgr denotes the com-
putational complexity associated with solving the inner prob-
lem using Lagrangian relaxation for each individual solution
during each iteration. This complexity formula reflects the
worst-case scenario, where every non-elite individual in each
generation requires a full computation of the inner problem
using Lagrangian methods, compounded over all iterations of
the GA.

IV. NUMERICAL RESULTS AND DISCUSSION
To evaluate the performance of the proposed hybrid NOMA-
TDMA approach in WPINs, simulations were conducted
using MATLAB R2022b by running approximately 100 iter-
ations on a computer with an AMD Ryzen 5 5600X processor
at 3.70 GHz with six cores and 12 threads. The experiments
considered a distance-dependent path loss channel model
expressed as H = 10−3d−α where α is the path loss
exponent. We chose α = 3 for our simulations. Other key
parameters included the total transmit power budget at the
hybrid access point, set to Pmax = 30dBm, efficiency of
energy harvesting set at ζn = ζ = 0.8, and noise variance
set at σ2 = −70dBm/Hz. Additionally, IoT users were
assumed to be uniformly distributed at one to two meters
from the BS.

In this paper, we considered baseline schemes for opti-
mized OMA (i.e., TDMA) and for fixed time with optimal
w0 and ETA (i.e., a fixed time and a random w0). Fig.
4 provides a convergence analysis of the proposed genetic
algorithm showing an upward trend corresponding to the
increase in the number of iterations. Moreover, an increasing
trend is observed in the value for best costs as the number of
transmit antennae (M) increases. The GA parameters were
set as follows: population size Npop = 20, selection rate
SelRate = 0.2, mutation rate MutR = 0.5, maximum
iterations at Imax = 100, and adaptive mutation control
factor adpt = 0.001. From Fig. 4, observe that with those
specified settings, the GA effectively converges to near-
optimal values. This convergence analysis validates the effec-
tiveness and efficiency of our proposed method in achieving
near-optimal solutions for the hybrid NOMA-TDMA-based
wireless powered IoT network, and helped improve network
performance.

Fig. 5 shows the relationship between sum throughput and
the number of antennae (M) at the H-AP. This graph shows
that as the number of antennae at the H-AP increases, a
more efficient beamforming design can be achieved, thereby
increasing the sum throughput. Moreover, observe from the
figure that the proposed scheme with optimal time allocation
τ and beamforming vectors w0 performed better than the
other schemes, i.e., optimized orthogonal multiple access
(OMA) throughput, with a fixed τ with optimal w0, and with
a fixed τ with random w0 employing equal time allocation.
Our proposed scheme with optimal τ and w0 consistently
achieved the highest sum throughput across all antennae
counts, demonstrating superior performance relative to other
methods. The OMA throughput and scenario with fixed τ
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FIGURE 3. The flowchart for solving Problem P1
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FIGURE 4. Convergence of the genetic algorithm for different values of M

and optimal beamforming vector w0 showed throughput im-
provement with increases in the number of transmit antennae,
but it could not surpass the proposed method’s performance.
In addition, the scenario with ETA was consistently the
least effective, demonstrating the lowest throughput across
the different values for M. Overall, the graph suggests the
effectiveness of transmit antennae at the H-AP for sum
throughput.

Fig. 6 illustrates sum throughput as a function of the num-
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FIGURE 5. Sum throughput for different numbers of H-AP antennae (M)

ber of user groups (K) in a hybrid NOMA-TDMA system.
This system configuration involves random distribution of a
total of Nt = 12 users with K = 2, 3, 4, and 6, resulting in
N = Nt/K users in each group and transmit antennae M=4.
We see that for more groups of users, higher throughput can
be achieved. This is because with more groups there are more
degrees of freedom for both beamforming and time allocation
optimization, which results in higher sum throughput. The
proposed scheme, employing optimal time allocation τ and
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beamforming vectors w0 provided a notable enhancement
in system throughput as the number of groups increased.
In contrast, the fixed-time techniques, with both optimal
and random beamforming vectors, displayed throughput im-
provements but did not achieve performance levels superior
to the proposed adaptive strategy.

Fig. 7 shows the relationship between sum throughput and
the number of users, N , confirming a direct relationship
between throughput and users across various operational sce-
narios, because individual user rates are cumulatively added
to system throughput. We considered N = 2,4,6, and 8, with
the number of transmit antennae at M=4. Notably, implemen-
tation of the proposed method, which optimizes both time
allocation τ and beamforming vectors w0, achieved superior
sum throughput, reinforcing a positive link between user
density and system performance. In comparison, throughput
performance via OMA was worse than under the proposed
method. Despite this, the trend remained upward, indicating
that traditional access methods similarly benefit from an
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FIGURE 8. Sum throughput from differing maximum available power for
transmission

increase in the number of users. The fixed τ strategy with
optimized w0 exhibited a similar upward trend at consis-
tently lower throughput than the proposed approach, which
underscores the value added by dynamic optimization. The
strategy employing ETA illustrated the least improvement
in throughput, with only a slight increase as the number of
users increased. This underscores the inherent constraints of
static strategies in dynamic user environments, emphasizing
the necessity for adaptive optimization to achieve efficient
system throughput.

Variations in sum throughput from increasing maximum
available transmit power in decibel milliwatts at the H-AP
is shown in Fig. 8. The graph illustrates that more available
transmit power increases sum throughput because of the
freedom in algorithm convergence to find optimal values. In
addition, the proposed method outperformed optimal time τ
and optimal beamforming vectors w0, in contrast with the
other scenarios.

V. CONCLUSION
In this paper, we explored a hybrid NOMA-TDMA-based
WPIN to enhance sum throughput. We considered bi-level
programming to solve the problem. In particular, NOMA and
TDMA are used to reduce the complexity of the system,
whereas time allocations for downlink and uplink transmis-
sions and downlink beamforming vectors are jointly opti-
mized to maximize the sum throughput of the network. We
employ a genetic algorithm and a Lagrangian method to iden-
tify an optimal solution characterized by rapid convergence.
Subsequent evaluation of simulations revealed that the hybrid
approach outperformed alternative scenarios and strategies,
improving the system’s sum throughput.
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