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ABSTRACT Remote Patient Monitoring (RPM), which leverages the Internet of Medical Things (IoMT) and autonomous 

systems, has grown in popularity recently. In RPM, the IoMT sense a patient's biophysical data and transmits it in real time 

while the autonomous system processes the data for clinical notifications and storage. However, RPM deployments face two 

diverse challenges: how to present continuous data so that healthcare professionals can quickly interpret data streams and how 

to manage a great deal of missing data that occurs in RPM. Several studies suggested techniques for imputing missing data in 

static databases, which are unsuitable for RPM. A method for constantly streaming healthcare data to medical experts involves 

summarizing vital signs information into a numerical score, such as the Modified Early Warning Score (MEWS), which may 

be visually displayed to highlight MEWS patterns over a certain period. However, a MEWS chart is simplistic and more 

sophisticated ways to present data visually for straightforward interpretation are needed. This research proposes a solution for 

the visualization and missing data challenges by identifying patterns in the RPM data. First, a pattern-matching technique is 

proposed to address the missing data by considering the correlation and variability of the vital signs, resulting in a comparable 

correct match rate. Second, we transform the observed raw physiological vital signs data into concepts we call trust, frequency, 

trend, and slope parameters for visualization and automated alerts. The proposed approach can better support clinical decision-

making than the MEWS. Comprehensive visualization approaches and missing data solutions can improve the quality and 

dependability of patient risk assessments. 

INDEX TERMS Pattern Imputation, Data Integrity, Visualized Remote patient monitoring (VRPM), Clinical Decision 

Support, Wearable technology.

I. INTRODUCTION 

The Internet of Things (IoT) has revolutionized how we 

interact with the environment by integrating into various 

sectors. The healthcare sector is seeing a promising paradigm 

change with the introduction of the IoT into RPM. IoT makes 

monitoring patients in RPM with real-time data collection, 

processing and transfer possible. IoT enables seamless 

communication across various wearable sensors and medical 

equipment.  

RPM enables ongoing patient monitoring and remote 

patient data access, improves patient outcomes, encourages 

patient participation, and adds more effective and personalized 

healthcare management [1].  RPM comprises three primary 

components: a wireless body area network (WBAN), a wide 

area network (WAN), and remote access. WBAN comprises 

wireless sensors to track physiological indicators, edge 

devices on wide area networks (WAN) mediate data transfer 

to the cloud, and real-time cloud process provides remote 

access.  

As shown in Figure (1), the proposed cloud-based RPM 

system will enable the physician to monitor patients and 

automatically rank alarms using data mining on long-term 

health data. This system has significant data acquisition, pre-

processing, and visualization components. For data 

acquisition, the patient is equipped with wearable sensors 

capable of monitoring physiological signs such as heart rate 

(HR), oxygen saturation (SpO2), blood pressure (BP), 

respiratory rate (R), and temperature (T) [2]. After gathering 

the patient's health data, sensors send the health data via 

Bluetooth or ZigBee to the iPad/tablet or smartphone. The 

health data is pre-processed on the smartphone/tablet and in 

the cloud using algorithms to raise alarms for significant 

medical conditions. Healthcare professionals with remote 

cloud access to health applications can access data analytics, 

visualization, and other helpful information [3, 4]. 

In conventional hospital wards, vital signs such as BP, 

SpO2, T, HR, and R are typically taken every 4-6 hours to 

check for patient deterioration [5]. In numerous healthcare 
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settings worldwide, nurses routinely use Modified Early 

Warning Scores (MEWS) to trigger warnings for patient 

deterioration [6]. Individual parameters receive scores ranging 

from 0 to 3 based on a pre-defined threshold in raw data, 

illustrated in Table (1) [7, 8]. The Modified Early Warning 

Score (MEWS) is calculated by adding these scores. For 

patients with various illnesses, these default threshold general 

values could change [6]. Clinically, MEWS helps identify 

patient deterioration [8, 9]. 

 

FIGURE 1. RPM System Architecture 

 

TABLE 1: MODIFIED EARLY WARNING SCORE [3, 7, 10] 

 

Vital Sign 3 2 1 0 1 2 3 

Blood 

Pressure 

(BP) 
(mmHg) 

<70 71-

80 

81-

100 

101-

199 

- >=200 - 

Heart Rate 

(HR)(bpm) 

- <40 41-

50 

51-

100 

101-

110 

111-

129 

>=1

30 
Respiratory 

Rate(R) 

(bpm) 

- <9 - 9-14 15-

20 

21-29 >=3

0 

Temperature 

(T)               

(degree C) 

- <35 - 35-

38.4 

- >=38.5 - 

Oxygen 
Saturation 

(SpO2) 

<85 85-
89 

90-
93 

>94 - - - 

 

MEWS risk assessment procedures are used to analyze the 

possibility of the patient's health decline. These solutions 

include various track and trigger systems [11], including a 

multi-parameter approach to detect one or more abnormal 

changes in vital signs. One of the criteria implemented in this 

scenario is the "Patient at-risk team." (PART). In contrast, the 

aggregate scoring system attributes scores to vital signs. The 

early warning score (EWS) metric is used for this. MEWS is 

one of the variations of EWS [11]. The combination system 

combines single and multiple parameters with the aggregation 

system [11]. 

The wearable sensors used in remote monitoring allow for 

continuous surveillance of vital signs, providing a greater 

frequency of data beyond the traditional 4-6 hour intervals. 

Consistent monitoring of vital signs is critical for early 

diagnosis of patient deterioration, contributing to higher 

survival rates [12]. However, difficulties such as patient 

mobility, sensor failures, low battery levels, and 

electromagnetic interference might cause inconsistencies in 

the gathered data [13]. A few challenges of aberrant data are a 

problematic interpretation of MEWS and missing data, which 

causes reliability issues in clinical decisions. MEWS scores 

are often displayed in tabular format, making fast analysis of 

the information a time-consuming and effort-intensive task. 

Missing data leads to biased and unreliable results, affecting 

the accuracy of medical diagnoses and delaying treatment 

decisions [14]. There are three types of missing data [15, 16]: 

• Missing Completely at Random (MCAR) is a condition 

where the likelihood of missing data is unrelated to 

observable and unseen factors. This type of missing 

data is avoidable. An example is when sensors have no 

power or low power while monitoring, no data gets 

recorded. 

• Missing at Random (MAR) data signifies that the 

observable factors impact the likelihood of data 

missing. This type of data is recoverable. An example 

is monitoring the patient's vitals for heart monitoring 

after surgery but without assessing the patient's heart 

or respiratory rate. 

• Missing not at Random (MNAR) occurs when the 

likelihood of missing data depends on the missing 

data's attributes. This type of data is not easily 

recoverable.  

A. MOTIVATION AND CONTRIBUTION 

Extensive work exists on analyzing clinical abnormalities 

[17] and missing data in the literature [15, 18]. Understanding 

the cause and pattern of missing or erroneous data is critical 

for selecting a practical analytics approach, especially when 

the degree of missing data is unknown. Analyzing data in 

Remote Patient Monitoring (RPM) becomes difficult due to 

variations in the recorded data, as machine learning algorithms 

require a large quantity of data for proper training [19]. Using 

data-mining methods can significantly reduce false alarms 

[20-22]. However, in the context of vital signs under RPM, 

most techniques do not prioritize pre-processing, correlation, 

and data transformations. In this research, we report on our 

attempt to impute the missing vital values by finding co-

relationships among the vitals. The suggested technique in this 

research utilizes the principles of MAR and MCAR to 

represent the ratios of aberrant data. The accuracy of our 

missing pattern-match data method is validated against actual 

data without reduction using a matching strategy for 

comparable patterns. Another notable addition is the 

visualization of vital signs in RPM using MEWS. 

Visualization is accomplished by adding data modifications 

known as trend, trust, slope, and frequency. For our 

visualization, our output is compared against the MEWS 

tabular format. 

The following are some of the study's main contributions: 

 

• Missing Data Imputation: We suggested an 

approach for dealing with missing data that 

considers the co-relationships between vital signs 

and patterns obtained from MEWS values. We 

demonstrated the effectiveness of the suggested 

matching of similar patterns by independently 

verifying the accuracy of the missing pattern-
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match data method's accuracy against actual data 

without any reduction. 

• Visualization of Vital Signs in RPM: We 

suggested novel data transformations (trend, 

frequency, trust, and slope) for RPM vital sign 

data visualization. These transformations were 

implemented with the MEWS to improve data 

representation in RPM settings. We demonstrated 

the method's effectiveness in enhancing data 

interpretation by contrasting the visualization 

output with the traditional MEWS tabular format. 

 

This paper is structured as follows: We discuss related work 

in Section 2, our data analysis in Section 3, and our suggested 

pattern-matching strategy for handling missing values in 

Section 4. Section 5 investigates the semantic aspects of vital 

indicators, Section 6 describes pattern prioritization, Section 7 

summarizes our findings, and Section 8 provides the paper's 

conclusion. 

 
II. Related Work 

Analyzing patients' vital signs and additional health records 

enables physicians to provide decision and knowledge-based 

support. In several investigations, MEWS has been a helpful 

method in predicting in-hospital mortality [23, 24]. MEWS 

may not be reliable for forecasting in-hospital mortality or 

health decline based on studies from diverse demographics 

or fields [25, 26]. For COVID-19 patients, MEWS forecasts 

intensive care unit admission and mortality incorrectly [23]. 

Data must also be synchronized, formatted, and normalized 

[21]. Finding the relationships between the various vitals has 

been the subject of several investigations [25, 26]. 

Normalizing the variables in the obtained data is critical due 

to the varied frequency with which multiple scoring systems, 

including MEWS and the Sequential Organ Failure 

Assessment (SOFA), were recorded [27]. 

 The research [28] established the Mayo Clinical Early 

Warning Score (MC-EWS), which combines gradient-

boosting techniques with feature engineering methodologies. 

The MC-EWS showed a 73% sensitivity. Notably, the MC-

EWS generated 0.7 daily warnings per 10 patients at this 

sensitivity level, representing a 45% decrease in alert 

frequency compared to the National Early Warning Score. 

Another study [29] presented the MEWS++ model, which 

included three machine learning algorithms: RF, Linear 

Support Vector Machine, and Logistic Regression. These 

models were compared to the traditional MEWS in terms of 

performance. The MEWS++ model demonstrates predictive 

skills by correctly forecasting clinical deterioration or fatality 

using clinical data collected 6 hours before the occurrence. 

Many early warning scores focus solely on a patient's vital 

signs and ignore how these vital signs change over time. 

However, the vital signs trend increased the accuracy of these 

scores in predicting severe disease in hospital patients [30]. 

New algorithms for patient monitoring extract many aspects 

of physiological information. Five hospitals in three European 

nations have installed remote wireless vital sign monitoring 

systems in their medical and surgical wards. This case series 

demonstrates how such a new method might shorten the time 

required to identify patients at risk of deterioration, enhancing 

timely intervention and improving outcomes [31]. A new 

study describes a unique method for anticipating patient 

deterioration using Long Short-Term Memory Recurrent 

Neural Networks in critical care units. The programme 

outperforms traditional approaches EWS by reliably 

forecasting patient deterioration up to one hour in advance 

[32].  

A study has shown that their developed Artificial 

Intelligence (AI) model performs better in foretelling cardiac 

arrest and respiratory failure [33]. Clinical abnormalities and 

accompanying symptoms have been identified using various 

Machine Learning (ML) methods [17], such as Support Vector 

Machine (SVM) [34], Artificial Neural Networks (ANN) [35, 

36] and the Hidden Markov Model [37] [38].  

These ML models, including ANN and SVM, are classified as 

black-box models. This implies they can't explain their 

predictions or prove cause-and-effect links between input 

factors and projected outcomes [39]. AI and ML models can 

only be useful in healthcare if they produce interpretable 

structures and outcomes that healthcare workers can 

comprehend and apply successfully [40].  

One disadvantage of using machine learning methods is the 

possible loss of interpretability compared to linear models, 

making identifying and contributing to positive outcomes 

challenging [41]. Implementing the MEWS in RPM presents 

issues due to big data [42], demanding visualization for better 

decision-making.  Monitoring continuous interval visual 

trends of vital signs without alarms proved feasible within the 

general ward environment [43]. Research [44] found that basic 

statistical learning approaches paired with feature engineering, 

particularly those requiring considerable human learning 

through data visualization and exploration, outperformed 

more complex methods.  

     To address this research gap, techniques for healthcare 

applications must be accessible and interpretable. These EWS 

systems may be effectively used by emphasizing the 

development of models that provide insights into the decision-

making process. These activities are critical for closing the gap 

between cutting-edge technology solutions and the actual 

deployment of MEWS in RPM. 

A systematic review of EWS has advised that each study 

should detail the methods employed for managing missing 

data [45]. To substitute missing data values, imputation 

techniques such as single mean imputation, last observation 

carried forward (LOCF), conditional mean imputation, full 

information maximum likelihood (FIML), and multiple 

imputations (MI) are used [46]. Missing data are commonly 

imputed using mean, median, last observation imputation, or 

multiple imputations. These imputation algorithms, however, 
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may need to be revised when dealing with missing data classed 

as MNAR. In the literature for clinical research, a few 

straightforward and numerous imputation techniques are 

included in Table 2 [47]. Iterative imputation is performed 

using the random forest-based method Miss Forest. Random 

Forest, as an intrinsically multiple imputation approach, 

computes the mean of the data by examining numerous 

untrimmed classes or regression trees in the Miss Forest 

framework [48]. The probability distribution is used in 

constructing linear regression for missing data management, 

allowing a self-acting procedure to be included via Bayesian 

ridge regression [49]. The hot/cold deck imputes the missing 

values using the mean or mode of the cluster's variable [50]. 

By substituting missing data using comparable values, the K-

nearest neighbour approach assesses the similarity between 

two variables using Euclidean distance [50]. The literature 

explores several machine learning strategies for dealing with 

missing data, including but not limited to ANN, SVM, Long 

Short-Term Memory (LSTM), and generic algorithms. [51]. 

Long processing times, single-parameter imputation, and 

biased results are some downsides of these machine-learning 

techniques.  

 
TABLE 2: MULTIPLE AND SINGLE IMPUTATION APPROACHES. 

 
Single Imputation Multiple Imputation 

Mean/Median Predictive Mean Matching 

Combination of Imputations Miss Forest 
Regression Bayesian Ridge Regression 

Last Observation Carries 

Forward 

 

Hot/Cold Deck  

K-Nearest-Neighbours  

 

The RPM collected data is extensive, and handling missing 

values for continuous data in real time is challenging. Existing 

methods have good imputation accuracy, but they could be 

more efficient due to complexity, computational time, and 

parameter correlation, among other things. Our suggested 

pattern-matching imputation technique considers elements 

like the correlation of the parameters, which reduces biased 

imputation. Additionally, computational time may be 

regulated utilizing the sliding window. 

The conventional MEWS method is susceptible to 

corruption due to unforeseen occurrences like patient 

movement and noise as a single score at one moment. To make 

various MEWS computations in an ongoing RPM scenario 

easier, we introduce characteristics for data mining, which we 

refer to as trust, trend, slope and frequency. These functions 

will aid in handling noise, pointless spikes, and missing values 

in pre-processing the physiological vitals data. The suggested 

cloud-based approach also enables medical professionals to 

see the patient's critical conditions in ranked priority order. 

The identified illnesses of the patient are prioritized by 

employing a majority voting rule.   

The following section discusses the analysis of RPM data 

using the suggested modifications, known as the Patterned 

Modified Early Warning Score (PMEWS). 

 
III.  Analysis of RPM Data 

Data pre-processing is a critical phase in our technique. Data 

pre-processing involves the utilization of the MEWS [26]. 

The relevance of pre-processing data stems from potential 

noise, motion, vibrations, and sensor mistakes during patient 

observation. Pre-processing of collected data allows for an 

accurate evaluation. The crucial pre-processing step includes 

removing duplicated data, incorrect information, and high-

frequency noises [52]. The data for the current study was 

collected from a trial conducted in India involving patients 

in a general ward at a private hospital [53]. Their vital signs 

were measured using wearable sensors for five vitals (BP, T, 

SpO2, R, and HR) and captured data discretely at regular 

intervals. The snippets of our dataset are shown in Table (3). 

Table (3) includes the following variables: time, PR (pulse 

rate), T, BP, R, and SpO2. Our data collection has been 

cleaned of erroneous values produced by sensor errors, 

motion artefacts, and noise. Temperature and blood pressure 

were recorded less often than the other vital indicators. The 

frequency of vital sign data collected, including missing 

values, varied from minute to minute during our pre-

processing. To maintain the authenticity of the simulated 

data and avoid any evaluation, we deliberately refrained 

from using publicly accessible datasets. 

 
TABLE 3: RAW DATA SUMMARY FOR 10 MINUTES 

 

 

 Our suggested method accepts sliding window as a pre-

defined parameter. The sliding window is used to evaluate 

each data point individually and predict the values of the 

missing data points using the values inside the frame. The 

observed vitals are combined in a sliding window for data 

analysis. A sliding window is a helpful method for forecasting 

a specific data segment [54, 55]. As with RPM, the sliding 

window may be continually applied to new inbound data. 

Prompt diagnosis of alterations in the patient's state is crucial 

for effective medical intervention. The overall observation 

duration during RPM is the set length of the process window. 

When analyzing a subset of data within the processing 

Time PR T BP R SpO2 

1122 108 - - 34 97 

1123 111 - - 37 98 

1124 106 - - 33 99 
1125 106 - - 25 99 

1126 108 - - 25 99 

1127 113 - - 41 97 
1128 113 - - 38 97 

1129 113 - - 40 98 

1130 114 - - 38 97 
1131 109 - - 39 98 

1132 110 - - 29 98 
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window, a sliding window with a minimum overlap of one 

point is used. The alteration is dependent on the window 

increment time inside the processing window. The imputation 

approach considers the data's temporal context, which uses a 

sliding window to forecast the missing values more precisely. 

According to equation (1), the sliding window 

𝑠𝑤𝛿
𝑖  comprises various time slots 𝑡(𝛿+𝑛)

𝑖 . The physician's 

discretion determines the process window length (L) and 

sliding window increment (δ). According to the literature, a 

six-hour forecast window for clinical decline is best [29]. The 

illustration of the overlap in the process window and sliding 

window increment is shown in Figure 2 with respective time 

points. Equation (1) specifies the 𝑠𝑤𝛿
𝑖 , which comprises 

various time slots 𝑡(𝛿+𝑛)
𝑖 . 

For computation throughout the remainder of the article, the 

notation (𝑡(𝛿+𝑛)
𝑖 ) will be written as TS, as seen in equation (2). 

𝑠𝑤𝛿
𝑖  = (𝑡(𝛿+0)

𝑖 , 𝑡(𝛿+1),
𝑖 𝑡(𝛿+2)

𝑖 … … … … … 𝑡(𝛿+𝑛)
𝑖 )           (1) 

(𝑡(𝛿+𝑛)
𝑖 )   =  TS                                                  (2) 

 

 

 

 

FIGURE 2. Sliding window. 

 

Following the sliding window process, the organization of 

MEWS scores for each parameter gives rise to the Patterned 

Modified Early Warning Score (PMEWS), discussed in the 

subsequent section. The PMEWS architecture is the 

foundation for our proposed pattern-matching approach and 

semantic features (trend, trust, slope, and frequency).  

B. Patterned MEWS 

Many algorithms that lower false alarms fail to improve 

patient condition forecasting because they ignore 

distinguishing patterns in the data. Research [56] claimed that 

the temporal relationship among alert warning patterns 

switching categories might be utilized to lessen alarms. Our 

approach to addressing the missing values in our data set is to 

recreate the pattern from the observed patient data by 

substituting characters or symbols. Another advantage of 

using patterns with characters is that no reliance on thresholds 

or previously documented values is required, which might 

alter the forecast of the patient's state. Our approach allows for 

the recording of patterns in any format. Table (3) displays our 

snippet's dataset, and Table 4 shows the formation of patterns 

from raw vital sign values in a sliding window. 

 
TABLE 4. PATTERN IDENTIFIED 

 

 HR BP SpO2 R T Pattern 

Vitals 99 - 96 22 -  
MEWS 0 N 0 2 N 0N02N 

 

An arranged sequence of MEWS values that shape the 

pattern is saved and specified as PMEWS, as shown in Table 

(4). The pattern array 𝑃[𝑇𝑆] , which consists of time slots TS, is 

compatible with handling differences in sensor signals due to 

null values (N) and the distinct time for data compilation from 

various sensors seen in Equation (3). 

𝑃[𝑇𝑆] =   [MHR, MR, MBP, MSPO2, MT]             (3) 

Possible unique patterns (PV) Where P = 5, and V = (0, 1, 

2,3, null). Our algorithm performance investigation found that 

the computational complexity is O(n²). This quadratic 

complexity is caused by the algorithm's nested iterative 

operations over the input data set, demonstrating that 

processing time increases quadratically with input data size.  

 

Despite its O(n²) complexity, the suggested approach has 

significant advantages for Remote Patient Monitoring (RPM). 

One significant benefit is using a sliding window and pattern 

recognition technique. The system uses these approaches to 

effectively record temporal patterns and fluctuations in patient 

data, allowing for early detection of abnormalities and 

potential health problems. The pattern-matching algorithm for 

missing vital values is described in the next section. 

 
IV. Pattern-Matching for Missing Vital Values 

The fundamental goal of this approach is to compare the 

pattern to the closest matching pattern observed within the 

sliding window. Once a match is found, the approach replaces 

the missing value with the found matching values. The 

snippets of raw data (Table 5) show HR, T, BP, SpO2, R and 

patterns. At minute four, HR is missing. At minute one, the 

pattern will be matched and imputed to match the maximum 

number of characters. 

 
TABLE 5: PATTERN FORMATION AND CHARACTER MATCH UP 

 

The first step (line 1) for the pattern-matching algorithm is 

to set start time (T), L, number of vitals recorded (TMV), δ, 

sliding window time (t), where sliding window and time slots 

are as shown in equations (1) and (2). A loop is started until 

Time

(minu

tes) HR T BP R SpO2 Pattern 

Character 

match up 

1 99 - - 22 96 0NN20 4 

2 97 - 141 25 99 0N020 3 

3 102 - - 34 99 1NN30 2 

4 * - - 28 99 

NNN2

0 
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(TS) is less than (L) for pattern-matching (line 2). Pattern 

P[TS] is recorded for raw, vital values. Then, recorded patterns 

(lines 3-5) are copied into the string pattern array SP [ ], and 

the loop to transverse the SP[ ] is set (line 6). For no null values, 

the counter is increased by one (line 7). The inner loop ensures 

that every pattern is considered. str1 and str2 are allocated to 

SP[j] and SP[i+1] (line 8). The count function (line 9 and lines 

17-20) checks if the str1 matches str2, and then the character 

count is stored in CSP[k] (lines 10-12). The CSP[k] is checked 

for the patterns with the highest match of characters, and then 

the relative pattern is displayed as the closest match (lines 13-

15). Timeslot (TS) and window increments (δ) are updated to 

transverse the whole window (line 16). The pattern-matching 

algorithm is shown next: 

 

 

1  Input variables start time (T), (TMV), (δ), 

        sliding window time (t) 

2      While (TS<=L) do 

3      Record vitals (HR, T, BP, R, and SpO2) 

4      Set MEWS for vitals and save in pattern at time TS.  

        P[TS] =["MHR","MR","MBP"," MSPO2","MT"] 

5      Copy recorded patterns in SP[ ] 

6       for each pattern P[TS] in SP[ ] from i=T to i<=TS 

do 

7      Check if the values at [i+1] index 

        In the string pattern array is 'N' then check 

the next index. 

8              Else  

for each pattern in SP[ ] from  j=T to j<=I   

                do   

     assign str1 to SP[j] and str2 to SP[i+1] 

9       Call count (str1, str2) 

10      for each count c for pattern in array CSP[k] 

          from j = T to TS      do 

11      Assign CSP[k]= c, end for 

12      for each count in CSP[k] from j = T to TS do 

13      If (CSP[k] is the highest match parameter count) 

then 

14           print relevant pattern P[TS]  

              and count from CSP[k]  

15          Else print no suitable match found. 

16      Increment time slot TS = t + δ, 

17      function count (string str1, string str2)  

18      Initialize counter c = 0, index j = 0 

19     For each i in str1.length( ) do 

20      If str1 matches str2, then for each matching 

character, increment c, j and return c. 

 

The following section explores the semantic features of 

vital indicators used for data visualization. 

 

V. SEMANTIC FEATURES OF VITAL SIGNS 

The feature extraction process significantly reduces the 

volume of sensor data input. Given the timely monitoring of 

patient's vital signs, the majority of the attributes under 

consideration for this study are connected with time domain 

characteristics [57]. This study considers both spectral and 

temporal domains for feature extraction from data. Details 

regarding features are provided in the following section. 

A. Trust 

Trust signifies the certainty level that the PMEWS provides. 

The proportion of vitals participating in the PMEWS is 

operationalized as trust. Trust is at its lowest if all crucial 

indications are negative. In a medical environment, four to 

six vital signs can be monitored. Every necessity is treated 

equally by us.  

The Trust percentage is computed according to equation 

(4).  For each non-null value in the observed pattern, the 

counter of the pattern 𝐶𝑃[𝑇𝑆] is increased by one. 

θP[TS]  =  
(CP[TS])

TMV
                                                    (4) 

B. Frequency 

Frequency aids in locating spikes resulting from movement, 

vibration, improper gadget handling, etc. According to 

equation (5), the percentage frequency 𝐹𝑃[𝑇𝑆]  is determined. 

The frequency counter is represented as 𝐹𝐶𝑃[𝑇𝑆]  and is 

increased by one each time. 

𝐹𝑃[𝑇𝑆]  =  
(FCP[TS])

L
                                                      (5) 

C. Trend 

The trend offers data on the typical time a specific pattern 

appears in L. When a pattern match is discovered by linear 

search [58] in 𝑠𝑤𝛿
𝑖 , record the index number for the first 

appearance in the PF variable and PL for the last appearance . 

Equation (6) calculates the trend TP[49]. Where the number 

of unique pattern occurrences is denoted by (n). 

𝑇𝑃[𝑇𝑆]  =  
𝑃𝐿−𝑃𝐹

(𝑛)
                                                 (6) 

D.  Slope 

Slope measurement aids in predicting how the pattern will 

change throughout the process window. The dispersed chart 

𝑠𝑤𝛿
𝑖  with TS is produced by the count of patterns, which varies 

with time. Linear regression calculates the slope of the 

dispersed chart [59]. To observe the behaviour of the pattern's 

emergence 𝑠𝑤𝛿
𝑖  partitioned into M parts. The slope 𝑏𝑃[𝑇𝑆] is 

represented in Equation (7). Where the frequency counter is 

 𝐹𝐶𝑃[𝑇𝑆]. 

(𝑏𝑃[𝑇𝑆]) =  
∑((

𝑇𝑆

𝑀
 – 

𝑇𝑆

𝑀

̅̅̅̅
)(𝐹𝐶𝑃[𝑇𝑆] –  𝐹𝐶𝑝[TS̅̅ ̅̅ ] ))

∑(
𝑇𝑆

𝑀
 − 

𝑇𝑆

𝑀

̅̅̅̅
)

2

  

                  (7) 
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VI. Prioritization of Patterns 

Understanding the patient's urgent medical condition requires 

the prioritization of patterns. Deciding priority patterns 

employs the majority voting rule [60], if each semantic feature 

holds equal significance. In Table 2, for n number of patterns, 

the semantic characteristics are displayed together with the 

prioritization criteria based on mean values. 

According to the criterion for prioritizing the semantic 

characteristics of trust, trend, and slope, the rank 𝑅𝑃[𝑇𝑆] the 

feature's calculated value will increase if it is more significant 

than their mean values. The slope simultaneously receives 

values of zero, positive and negative. Therefore, the slope's 

prioritization guideline considers patterns with positive 

values, which indicates that the number of patterns is growing 

with time. Then, the patterns' rank 𝑅𝑃[𝑇𝑆] values are ranked. 

Emphasizing prioritization directs the doctor's attention to 

ranked patterns, leading to an earlier cure for the patient and 

preserving valuable time. 

 
TABLE 6: PRIORITIZATION LAWS 

 

 

The algorithm for data visualization using the semantic 

features of data is shown below. This algorithm first 

calculates the semantic features of data for various recorded 

unique patterns and applies the prioritization rule to 

determine the rank of the different patterns. First, input the 

variables (line 1). Then, start a loop until the length of the 

process window (line 2). Retrieve the vitals and record the 

patterns and corresponding MEWS values according to 

equations (4-7) (lines 3-5). Calculate the trust, frequency, 

trend, slope, and mean values (lines 6-8). If the calculated 

MEWS value for the pattern is greater than four, then apply 

the prioritization rule provided in Table 6, increment the 

rank, and print the relevant pattern and its rank (lines 6-12). 

Increment the time slot TS and reset the rank value (lines 13-

14). 

 

1 Input (T), (L), (TMV), (δ), (t) 

2 While (L) do 

3 Retrieve vitals (HR, T, BP, R, and Spo2)  

4 Retrieve unique patterns P[TS] 

5 Record the MEWS sum for every pattern in      

MP[TS] = [MHR+MBP+MT+MSPO2 +MR]  

6 Compute trust, frequency, trend and slope 

according to equations (4 -7). 

7 For each T in TS, do 

8 Compute the mean value of trust, frequency and 

slope  

according to equations presented in Table (6) 

9 If MEWS sum (MP[TS]) is bigger than four, then 

10 Increment rank  𝑅𝑃[𝑇𝑆] 

If the trust and frequency values are greater than 

mean, trust and frequency values.  

and if the slope is positive, Table (6). 

11 Increment rank  𝑅𝑃[𝑇𝑆] If the trend value is less 

than the mean value of the trend Table (6). 

12 Print the relevant rank and pattern 

13 Increment time slot TS for δ 

14 Reset the rank to zero. 

 

VII. Results 

Data requested from the trial [53] is used for experimental 

findings, and Table 3 shows a snippet of data. Table (7) 

displays the results of implementing the missing pattern-match 

(PM) algorithm from four distinct datasets using various 

imputation techniques and the root mean square error (RMSE) 

to determine the precision. Tables (7) and (8) list the HR and 

SpO2 values observed for imputation in the four datasets. The 

dataset was divided into additional sets with different record 

durations. Our suggested technique is contrasted with MI and 

Expectation Maximization (EM)[61], two extensively used 

methods to impute missing data. Normalization is a crucial 

stage in our approach since it scales the records and improves 

their suitability for analysis by minimizing biased results. The 

MEWS is used for normalization. To check the accuracy of 

our method, we started with the whole set of measurements 

and subtracted various percentages from the SpO2 and HR. 

Subsequently, MI and EM are applied to impute the values of 

the missing parameter. Our method chooses the parameter 

imputation that has the best match. The RMSE for imputed 

values was calculated by comparing them to the initial values 

throughout the full dataset. 

Figures 3 and 4 display the variance in RMSE for the SpO2 

and HR, two of the measures we used. Both the sliding 

window method and the PMEWS have shown to be quite 

helpful when dealing with missing data. Every pattern that 

appears is considered in the algorithm, which then utilizes 

these patterns to look for a close match. When all the patterns 

that arose within that time have been covered, the window is 

moved across the process window.  
 

 

Semantic 
traits 

      Mean Prioritization LAWS 

Frequency 
𝑭𝑴𝑷[𝑻𝑺] =  P TS

F

n

  
(𝑭𝑷[𝑻𝑺] ≥ 𝑭𝑴𝑷[𝑻𝑺]) 

Trust 

 
 

 
     

P TS

P TS
M

n


 =

  
( 𝜽𝑷[𝑻𝑺]   ≥  𝜽𝑴𝑷[𝑻𝑺] ) 

   

Trend 
𝑻𝑴𝑷[𝑻𝑺] =  P TS

T

n

  
 (𝑻𝑷[𝑻𝑺] ≤ 𝑻𝑴𝑷[𝑻𝑺]) 

Slope -    𝒃𝑷[𝑻𝑺] ≥ 𝟎  
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FIGURE 3. RMSE for SpO2 

FIGURE 4. RMSE for HR 

 

TABLE 9: MEWS COMPUTATION 

 

 

Understanding the pattern or the correlation among the 

numerous vital sign data that have been recorded may be done 

through data visualization. In contrast to a graphical report, 

which emphasizes spatial information, MEWS provides 

tabular information that emphasizes symbolic information, as 

shown in Table (9). A significant amount of data is generated 

while monitoring the patients; tabular, unrefined information 

is not an excellent match for the RPM. Enormous volumes of 

data are challenging to examine and may influence clinical 

judgment. 

 

TABLE 7: RMES(%) FOR SPO2 

 

DataSet Records 

Observed 

Records Approach RMSE(%) 

DS1 756 45 

PM 0.82 

EM 2.01 

MI 2.52 

DS2 1000 88 

PM 2.03 

EM 2.1 

MI 2.94 

DS3 490 25 

PM 2.4 

EM 1.2 

MI 2.04 

DS4 932 84 

PM 2.5 

EM 1.39 

MI 2.06 

 

 

 
TABLE 8: RMES(BPM) FOR HR 

 

Dataset Records 
Observed 
Records Approach RMSE(bpm) 

DS1 756 27 

PM 3.9 

EM 9.6 

MI 10.2 

DS2 1000 26 

PM 13.9 

EM 20.6 

MI 24.3 

DS3 490 HR 

20 PM 

EM EM 

MI MI 

DS4 932 HR 

28 PM 

EM EM 

MI MI 

 
 

 

The rank of various prioritized patterns at the 30th minute 

is shown in the column graph in Figure (5) and tabular format 

in Table (10). Discovered patterns are displayed along the x-

axis, and the importance of the pattern is displayed as rank one 

to four on the y-axis. The visualization shows the degree of 

risk associated with each pattern, which ranges from 

extremely high to extremely low. Because the semantic traits 

comply with the majority vote norm, rank 1 signifies the 

highest relevance. Information about the conditions that need 

urgent attention will be easy to observe in the visual form for 

the clinician and will be helpful in decision-making. 

 

 

Time PR_

Val 

Temp_

Val 

Sys_

Val 

Resp_

Val 

SpO2 MEWS 

1122 108 - - 34 97 4 

1123 111 - - 37 98 5 

1124 106 - - 33 99 4 

1125 106 - - 25 99 3 

1126 108 - - 25 99 3 
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FIGURE 5. Pattern Rank at 30th minute 

 

 

TABLE 10: PATTERN RANK (TABULAR FORMAT) 

 

 

 

 

 

 

 

 

The conventional MEWS is inappropriate in RPM due to a 

large amount of continuous and missing data. This problem 

results in inadequate clinical decision-making regarding the 

significant conditions of the patient. It is essential to prioritize 

the patient's condition from those that arise due to various 

deviations of the surroundings, such as noise, vibration, and 

motion. Pattern-specific algorithms can be used for these 

deviations to handle the issues of missing values and to 

provide visualization. The suggested approach addresses the 

missing data issues in RPM using a sliding window and 

pattern match algorithm with PMEWS, considering the 

temporal context of the missing data, leading to a more 

accurate medical data analysis and decision-making. The 

proposed method also uses the semantic features of the vital 

signs and introduces a new parameter, PMEWS, to prioritize 

patterns based on their clinical significance. The result shows 

that the proposed method provides better visualization and a 

practical imputation approach than the traditional MEWS. The 

proposed method can lead to more competent healthcare by 

transforming RPM data management and examination. 

 
VIII. Conclusion and Future Research 

In conclusion, this study fills in essential gaps in the 

healthcare field, particularly in evaluating the MEWS and 

RPM. The study offers creative solutions by recognizing and 

addressing missing values and inadequate data visualization. 

The pattern-matching strategy in patient monitoring 

effectively handles missing data. The proposed data-mining 

visualization method improves the interpretation of MEWS 

and presents a thorough brief of patient information to support 

well-informed decision-making.  

Despite these advancements, we must consider the 

complexity of healthcare facilities, which can incorporate 

various systems and procedures. To achieve seamless 

integration in such situations, several aspects must be carefully 

considered, including interoperability standards, data 

protection requirements, and the varying demands of 

healthcare professionals and patients. Furthermore, the 

effective deployment of our algorithm depends not only on its 

technical capabilities but also on its usability and acceptability 

by end users. As a result, user acceptability testing and 

stakeholder input are critical elements in fine-tuning our 

solution to suit healthcare practitioners' and patients' 

requirements and expectations. Furthermore, as the healthcare 

landscape develops, it becomes increasingly important to 

remain current on emerging technology, regulatory changes, 

and best practices. To maintain our algorithm's relevance and 

efficacy in tackling emerging healthcare concerns, we must 

analyze and update it continuously. By recognizing and 

proactively addressing these limits, obstacles, and continuing 

considerations, we may boost our algorithm's robustness and 

efficacy, eventually increasing its ability to improve patient 

care and healthcare outcomes. 

Looking forward, we may pursue various fascinating areas 

for future study. One such potential is understanding how 

patterns change in response to illness progression or therapy 

treatments. By closely studying these changes, we can get 

significant insights into how health issues evolve and optimize 

treatment tactics accordingly. Including contextual data in 

visualizations can improve our knowledge of health trends and 

patterns. We may develop complete and meaningful 

representations of population health dynamics by including 

demographic data, environmental variables, and 

socioeconomic indicators. Healthcare constantly evolves; we 

must be informed about new technology, policies, and best 

practices. We must continue to ensure that our algorithm 

functions appropriately and make improvements as necessary. 
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