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ABSTRACT Active studies have been conducted on video saliency prediction, which predicts human visual
attention toward videos. Most deep learning-based video saliency prediction models implicitly learn features
that contribute to video saliency prediction, greatly improving accuracy. This study proposes a model called
optical flow-based feature warping ViNet (OFF-ViNet). This model explicitly adds aWarpingmodule, which
is a mechanism that considers future predictions based on object motion in addition to implicitly learned
features. The Warping module spatially warps the hierarchical features extracted by the 3D convolutional
backbone based on the optical flow to obtain a feature representation that predicts the future. Compared
with exisiting models, OFF-ViNet achieves better and competitive accuracy with state-of-the-art models on
video saliency prediction datasets, particularly on UCF-Sports, which contains several videos with moving
objects.

INDEX TERMS Video saliency prediction, Optical flow, 3D convolutional neural network

I. INTRODUCTION

HUMAN visual attention selectively processes infor-
mation in regions of high visual importance. Conse-

quently, humans process a vast amount of complex informa-
tion through vision and quickly recognize the external world.
Therefore, certain characteristic areas in the human visual
field tend to be focused on. Visual saliency is defined as the
degree to which gaze tends to be concentrated, and a saliency
map is an image that emphasizes visual saliency. Fig. 1 shows
the video frames and overlay saliency maps corresponding to
the video frames.

Since the model was proposed by Itti et al. in 1998 [1],
various methods [2]–[12] have been proposed for saliency
prediction, which predicts the visual saliency of an image.
Saliency prediction includes image and video saliency predic-
tions. Video saliency prediction has been applied in various
areas of computer vision, such as robot camera control [13],
video subtitling [14], video compression [15], [16], and video
segmentation [17], [18].

Much research has been conducted on deep learning-based
saliency prediction [19]–[52]. Spatial features such as color,
brightness, orientation, and object-like features are impor-
tant for image saliency prediction [53], [54]. Video saliency
prediction is based on temporal features, such as motion, in

FIGURE 1. Examples of video frames and saliency maps. Saliency maps
are overlaid on the frame, with red and blue regions being more salient
and less salient, respectively.

addition to the aforementioned spatial features [53]. However,
cases in which the gaze is directed ahead of the moving
target rather than on the target itself have been reported [55].
This is achieved by predicting future motions based on past
object motions. Deep learning-based video saliency predic-
tion models train models to extract spatiotemporal features
from large datasets. The authors confirmed that the observer’s
prediction of the target’s future motion increases the saliency
that appears ahead of the target, which existing video saliency
prediction models cannot accurately predict [56]. This sug-
gests that in video saliency prediction, an effective way to
properly predict the saliency that appears in the targets is
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to predict the current location of the target based on its past
location and movement.

This study proposes an optical flow-based feature warping
ViNet (OFF-Net), a video saliency prediction model that
explicitly considers future predictions based on optical flow.
A Warping module is introduced into the 3D convolution-
based model that achieved high accuracy with existing video
sailency prediction models.

The main contributions of this study are as follows:

1) An optical flow-based feature warping ViNet (OFF-
ViNet), which adds a new module, namely, Warping
module to the video saliency prediction model as a
mechanism to obtain feature representations that pre-
dict the future. OFF-ViNet explicitly predicts the future
using an optical flow.

2) OFF-ViNet achieves a competitive performance with
the state-of-the-art models on multiple benchmark
datasets for video saliency prediction. In particular,
OFF-ViNet outperforms the state-of-the-art models on
the UCF-Sports dataset, which contains many videos
with moving targets.

3) Feature representations that predict the future are effec-
tive for predicting video saliency.

II. RELATED WORK
Saliency prediction includes image and video saliency pre-
dictions.

A. IMAGE SALIENCY PREDICTION
In 1998, Itti et al. [1] proposed a model that integrates color,
intensity, and orientation features and models the human
visual system of images. Since then, numerous handcrafted
feature-based methods have been proposed [2]–[12]. Re-
cently, with the development of deep learning, various models
such as eDN [19], and DeepGaze IIE [20], which apply
deep learning to saliency map prediction, have been proposed
[19]–[23]. In static scenes, the saliency maps predicted by
deep models are close to those created by multiple observer
fixations. However, in dynamic scenes, the image saliency
prediction model does not consider temporal information
such as object motion, making proper prediction difficult.

B. VIDEO SALIENCY PREDICTION
Similar to image saliency prediction, amethod based on hand-
crafted features has been proposed for video saliency pre-
diction [57]–[70]. However, it is difficult to represent video
saliency, which is dominated by various factors, in terms of
handcrafted features. Therefore, deep learning-based models
have been proposed for video saliency prediction [24]–[52].
In addition to spatial features, it is necessary to consider
temporal features in video saliency prediction. Four structures
were developed to capture spatiotemporal features for video
saliency predictions. The first is a two-stream model that
represents spatiotemporal information in two streams [24]–
[28]. The second is a recurrent neural network (RNN)-based

model, in which spatial features are accumulated by a con-
volutional neural network (CNN) and temporal features are
extracted by an RNN, such as a convolutional long short-
term memory (ConvLSTM) or convolutional gated recurrent
unit (ConvGRU) [29]–[37]. The third is a 3D convolution-
based model that enables simultaneous processing of spa-
tiotemporal information using 3D convolution [38]–[49]. The
last is a transformer-based model that processes long-range
spatiotemporal features [50]–[52].

1) Two-stream model
Bak et al. proposed a two-stream network [24] to apply deep
models to video saliency prediction. Two-stream networks
fuse the outputs of the two CNNs, each with five layers. One
network uses red, green, and blue (RGB) images, the other
network uses optical flows as input, and the spatiotemporal
features extracted from each are fused and used for prediction.
Zhang et al. [25], Wu et al. [26], and Kocak et al. [27] studied
how to fuse spatiotemporal information to improve the perfor-
mance of a video saliency prediction model consisting of two
streams. Fu et al. [28] proposed UVANet which merges two
streams through transfer learning. UVANet is fast because
it uses a student network based on knowledge distillation.
However, it is difficult for the two-stream model to consider
a long-time context because it uses optical flow to capture the
motion between adjacent frames and a short-time sequence of
RGB images as input.

2) RNN-based model
RNN-based models have been proposed to consider long-
term temporal relationships. Bazzani et al. [29] proposed a
method that inputs 16-frame clips into a 3D convolution,
aggregates clip-level features using LSTM, a type of RNN,
and outputs parameters for a mixed Gaussian model. Wang
et al. proposed ACLNet [37], which introduced convLSTM
into a CNN to account for long-term temporal relationships.
ACLNet learns spatial saliency using the CNN and temporal
features between frames using convLSTM. Droste et al. pro-
posed UNISAL [36], which utilizes the features aggregated
by MobileNetV2 [71] to predict saliency in a unified model
for images and videos. UNISAL uses domain adaptation tech-
niques, such as Domain-Adaptive Priors, Domain-Adaptive
Fusion, Domain-Adaptive Smoothing and Bypass-RNN, to
achieve highly accurate predictions for different datasets con-
taining images and videos. UNISAL’s Bypass-RNN models
temporal features using convGRU, a type of RNN, when
predicting saliency maps for videos. However, these models
using RNNs cannot simultaneously process spatiotemporal
information.

3) 3D convolution-based model
Models based on 3D convolution, which simultaneously pro-
cess spatiotemporal information, exhibit high performance. In
particular, methods using S3D [72] as the backbone, which
have been pretrained on the Kinetics [73] dataset for action
classification, have achieved high accuracy [40]–[46], [48],
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FIGURE 2. Structure of OFF-ViNet, which comprises S3D, an encoder of 3D convolution, a Warping module based on optical flow, and a decoder of 3D
convolution. The Warping module acquires feature representations that predict the future.

[49]. Min et al. proposed TASED-Net, which uses pretrained
S3D on the Kinetics dataset to simultaneously use spatiotem-
poral features [41]. Jain et al. proposed ViNet [42], which
fuses features extracted by S3D with 3D convolution and
trilinear interpolation in a U-Net-like manner [74]. Wang et
al. proposed STSANet, which uses self-attention to consider
long-range spatiotemporal features extracted by S3D [45].
STSANet connects a spatiotemporal self-attention (STSA)
module to each of the four low to high-order blocks of S3D
that have been pretrained on the Kinetics dataset and upsam-
ples and integrates the features to output a final saliency map.
The STSA module captures long-range spatiotemporal fea-
tures by aggregating global relationships from local features
accumulated by the 3D convolutional neural network.

4) Transformer-based model
Recently, transformers that efficiently compute long-range
dependencies have been presented in the area of image recog-
nition [75], [76]. In video recognition, various video trans-
formers [77]–[79] inspired by the success of image trans-
formers have been proposed. In video saliency prediction,
attempts have been made to capture long-range spatiotem-
poral features using a transformer as the backbone, instead
of a 3D convolution-based backbone with a local receptive
field [50]–[52]. Ma et al. proposed a pure transformer-based
VSFT that uses blocks from a Video Swin Transformer [78]
as the backbone of the model [50]. Zhou et al. proposed
TMFI-Net [51] that decodes multiscale features captured by
the backbone Video Swin Transformer [78]. The abovemodel
achieves an accurate prediction by implicitly learning feature
representations that are useful for video saliency prediction
from a large dataset in a data-drivenmanner. The video frames
switch to the next frame in a very small amount of time per
frame. Therefore, it is assumed that a human gazing at a video
frame determines the current gaze position based on the past
frames. Thus, it is useful to explicitly introduce feature repre-
sentations that predict the future of video saliency prediction.

III. PROPOSED MODEL
This section describes the proposed OFF-ViNet method in
detail. OFF-ViNet is based into ViNet [42], which is a state-

of-the-art model for video saliency prediction. First, ViNet
is modified to incorporate a Warping module. OFF-ViNet
introduces Warping modules to the modified ViNet to ex-
plicitly obtain feature representations that predict the future.
It then provides appropriate video saliency prediction for
videos with moving objects. Sections III-A, III-B and III-C
present an overview of the architecture, Warping module, and
implementation details, respectively.

A. ARCHITECTURE OVERVIEW
Fig. 2 shows the OFF-ViNet architecture. OFF-ViNet takes a
sequence of frames Xin ∈ R3×Tin×H×W from time t to time
t − Tin + 1, where Tin = 32 and predicts the saliency of the
frame at time t . A modified ViNet is used as the baseline.
ViNet [42] uses S3D as the backbone, which has been pre-
trained on the Kinetics dataset, as in existing 3D convolution-
based models [40]–[46], [48]. Low- to high-order features
extracted from the four blocks in the backbone are skip-
connected in a U-Net-like manner and used for decoding. The
ViNet decoder uses a concatenation method along the time
dimensionwith some parameters to fuse hierarchical features.
However, OFF-ViNet uses feature representations that predict
the future; therefore, it changes to concatenation along the
channel dimension, preserving the temporal relationships and
fusing the hierarchical features.
AWarpingmodule based on optical flow is used as a mech-

anism to obtain feature representations that predict the future
of OFF-ViNet. The prediction mechanism is incorporated
in the skip connection part of the encoder-decoder structure
and applies each of the multi-time optical flows flow ∈
R2×T×H×W to the hierarchical features F1,F2,F3,F4 ∈
RC×T×H×W extracted from S3D to obtain a feature represen-
tation that predicts the future, where C , T , H , and W denote
the number of channels, temporal length, height, and width,
respectively. RAFT [80] is used as the optical flow model.

B. WARPING MODULE
Fig. 3 shows the structure of the Warping module. The Warp-
ing module obtains a feature representation that predicts the
future from time tw (t−Tin < tw ≤ t)when themodel predicts
the saliency at time t . The Warping module applies pointwise
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FIGURE 3. Structure of Warping module. A Warping module warps the
features with half the channel dimensionality by 3D pointwise
convolution based on the optical flow.

convolution to the feature Fi ∈ RC i×T i×H i×W i
(1 ≤ i ≤ 4)

to obtain Fi′ ∈ R Ci
2 ×T i×H i×W i

, where C i, T i, H i, and W i

denote the number of channels, temporal length, height, and
width in Fi, respectively. Ft iw ∈ R Ci

2 ×T i×H i×W i
is used to

obtain the feature Fi′ ∈ R Ci
2 ×T i×H i×W i

that predicts the
future, where Ft iw is the element in Fi′ at temporal position
t iw = ⌊(t − tw) × T i/Tin⌋(0 ≤ t iw < T i) corresponding to
tw, which is the time to predict the future. The feature Ft iw is
warped by the multi-time optical flow flow ∈ R2×T i×H i×W i

to obtain a featureFi′ that predicts the future. Finally,Fi′ and
F̂i

′
are concatenated over the channel dimension.
Fig. 4 shows as overview of the warp. Warp is an operation

that determines the value of each pixel at Ftw from the pixel
value at the end of the optical flow at that pixel. Forward-
warping [81] is performed to obtain a feature representation
that predicts the feature. Forward-warping is an operation to
warp from the optical flow of the frame at time tw and time
tw − n to the optical flow of the frame at time tw + n and
time tw, from the optical flow of frames at time tw and time
tw − n. Let flowtw→tw−n(x) be the optical flow at position x
from time tw to time tw−n. The optical flow for forward-warp
ˆflowtw+n→tw(x) follows the following equation:

ˆflowtw+n→tw(x−round(flowtw→tw−n(x))) = flowtw→tw−n(x)
(1)

The feature Ftw→tw+n(x) at tw+n predicted in the future then
obeys the following equation:

Ftw→tw+n(x) = Ft iw(x+ ˆflowtw+n→tw(x)) (2)

where Ft iw is the feature of F̂
i
′
at position x at any time tw− i.

The features Ftw→tw+1(x), Ftw→tw+2(x),. . ., Ftw→tw+T i(x) ∈
R Ci

2 ×1×H i×W i
obtained by varying n(1 ≤ n ≤ T i) by one in

the above warp are concatenated over the time dimension to
obtain Fi′ ∈ R Ci

2 ×T i×H i×W i
.

A multiscale optical flow is needed to apply the warp
to multiscale features Fi ∈ R Ci

2 ×T i×H i×W i
. Therefore, the

optical flow flowH estimated at the same scale as the input

FIGURE 4. Overview of warping. Forward-warping is performed on
features to obtain a feature representation that predicts the future.

Xin is downsampled to obtain an optical flow flowL(x) with
the same spatial resolution as the featureFi to be warped. The
downsampling of the optical flow by a factor of 1/k follows
the following equation:

flowL(x) = flowH ( argmax
m∈Rk×k

(∥flowH (kx+m)∥) ) (3)

where ∥ · ∥ denotes the Euclidean norm.

C. IMPLEMENTATION DETAILS
OFF-ViNet uses 32 consecutive Tin = 32 frames as input se-
quences. The temporal dimensions of the feature output from
the four blocks are 16, 16, 8, and 4, respectively, since the
temporal dimensions is compressed by half in S3D block1,
block3, and block4 of the backbone. The time tw is set to 3,
corresponding to 0.1s in a 30 fps video. Therefore, the fea-
tures to be warped in each block are t iw(1 ≤ i ≤ 4) = 1, 1, 0
and 0 from the beginning.

In the video, the number of input pictures Tin = 32 is ≤
32 when t ≤ 31. In DHF1K, which is a typical dataset for
video saliency prediction, a black screen was presented to the
observer before starting the videowhen collecting the fixation
points. In OFF-ViNet, when the number of input images is
≤ Tin = 32, the zero padding constructs the input sequence in
the temporal direction, which is equivalent to inputting black
frames, according to the DHF1K data collection conditions.
The loss function used in training is the same as that in
STSANet [45] and TMFI-Net [51], using Kullback-Leibler
(KL) Divergence and Pearson’s correlation coefficient (CC),
and is expressed as follows:

Loss(P,Q) = KL(P,Q)− CC(P,Q) (4)

where P is the predicted saliency map, Q is the ground truth,
and KL is the dissimilarity between the two distributions,
calculated as follows:

KL(P,Q) =
∑
i

Qi log(ϵ+
Qi

ϵ+ Pi
) (5)

where ϵ is the regularization constant. CC represents the
correlation between the two distributions and is calculated as
follows:

CC(P,Q) =
cov(P,Q)

sd(P)× sd(Q)
(6)

where sd and cov are the standard deviation and the covari-
ance, respectively.
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IV. EXPERIMENT
This section presents the experimental results and analysis of
the proposed OFF-ViNet. Sections IV-A, IV-B, IV-C, IV-D,
IV-E, and IV-F present the dataset used in the experiments,
experimental conditions, metrics used to evaluate the per-
formance of the model, the comparison of the experimental
results with other state-of-the-art models, ablation studies,
and the discussion, respectively.

A. DATASETS
This section presents the following representative datasets
for video saliency prediction: DHF1K, Hollywood-2, and
UCF-Sports. These datasets include a video, the positions of
multiple observer fixations on the video, and the ground truth
of the saliency map created from the fixations.

1) DHF1K [37]
This dataset consists of 1000 videos with various scenes,
movements, and objects provided by Wang et al. and the
fixation points of 17 observers on the videos. The dataset is
divided into 600, 100, and 300 training, validation, and test
dataset, respectively. No ground truth is provided for the test
data and prediction results are submitted to the benchmark
website for evaluation.

2) Hollywood-2 [82]
This dataset contains videos and gazing points created from
1707 movies provided by Mathe et al. Videos with multiple
resolutions are presented to the observer and resized to fit
the display while maintaining the aspect ratio of the video.
Similar to Wang et al. [37], 823 and 884 movies are used in
this study for training and testing, respectively.

3) UCF-Sports [82]
This dataset contains 150 videos and gazing point data pro-
vided by Mathe et al. The videos were extracted from sports
videos of nine different actions, many of which have moving
objects. Similar to Wang et al. [37], 103 and 47 videos are
used in this study for training and testing, respectively.

B. EXPERIMENTAL SETUP
The proposed model was implemented on an NVIDIA A100
using PyTorch [83]. The S3D of the backbone was pretrained
on the Kinetics dataset. The RAFT for the optical flow esti-
mation model was a pretrained model provided by PyTorch.
Default PyTorch settings were used to initialize the weights
of the other parameters. The Adam optimizer [84] was used
as the optimization function, with an initial learning rate of
1.0 × 10−3. In the case of training stagnation, the proposed
model was optimized by reducing the learning rate 0.1 times.
All input videos were resized to resolution of 224× 384, and
the batch size was 8.

C. METRICS
There are several methods for evaluating saliency, depending
on the format of the ground truth data and treatment of the

negative sample [85]. This experiment used the similarity
(SIM), Pearson’s correlation coefficient (CC), which uses
the ground truth as the saliency map, and the Normalized
Scanpath Saliency (NSS), and two types of area under the
curve (AUC), i. e., AUC-Judd (AUC-J) and shuffled AUC
(sAUC), which use the ground truth as the location of the
fixations of the observer.

D. COMPARISON RESULTS
OFF-ViNet was comparedwith state-of-the-art video saliency
prediction models, such as DeepVS [32], ACLNet [37],
STRANet [34], SalEMA [33], TASED-Net [41], Chen et al
[31]. SalSAC [35], UNISAL [36], ECANet [46], HD2S [43],
ViNet [42], TSFP-Net [44], STSANet [45], TinyHD [47],
HFTR-Net [48], TMFI-Net [51], UniST [52], and MSFF-
Net [49]. Table 1 presents quantitative evaluations on the test
datasets of DHF1K, Hollywood-2, and UCF-Sports.
On the DHF1K column, the proposed model achieved an

accuracy second only to TMFI-Net in AUC-J, CC, and NSS
and surpassed TMFI-Net in SIM, placing it second overall,
after SalEMA. SalEMA, achieving the highest accuracy in
SIM, is less accurate than the other state-of-the-art models in
terms of the other four metrics. On the Hollywood-2 column,
the proposed model achieved the second-best accuracy in
AUC-J, following UniST, and the third-best accuracy in SIM,
CC, and NSS, following UniST and TMFI-Net. In the UCF-
Sports column, the proposedmodel achieved the highest over-
all accuracy in the SIM, CC, and NSS evaluation metrics and
the third-best accuracy in AUC-J. The UCF-Sports dataset
contains many videos with moving objects, which are consid-
ered easy to predict byOFF-ViNet. Table 2 shows quantitative
comparison of our model with SalEMA [33], TASED-Net
[41], Chen et al [31]. SalSAC [35], UNISAL [36], ECANet
[46], HD2S [43], ViNet [42], TSFP-Net [44], STSANet [45],
TinyHD [47], HFTR-Net [48], TMFI-Net [51], and UniST
[52], andMSFF-Net [49] on the validation dataset of DHF1K.
The proposed model achieved the second-best accuracy in
AUC-J and NSS. Fig. 5 shows a qualitative comparison of
proposed OFF-ViNet and the code-available, state-of-the-art
STSANet [45], ViNet [42], TASED-Net [41], UNISAL [36]
and OFF-ViNet in terms of video saliency prediction. OFF-
ViNet predicts saliency in appropriate regions, particularly in
videos with moving objects.

E. ABLATION STUDIES
This section verifies the effectiveness of the proposed OFF-
ViNet component, that is, the Warping module, on the
DHF1K dataset. The training and validation data of the
DHF1K dataset were used for the training and evaluation,
respectively. Fig. 6 shows the structure of OFF-ViNet with-
out the Warping module, and this model is referred to as
w/o Warping module. The Warping module uses pointwise
convolution to obtain a feature representation that predicts
the future from half of the dimensions of the channel. The
dimensions of the features that are skip-connected from the
encoder to the decoder do not change between the input
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TABLE 1. Quantitative comparison of various models of video saliency prediction results on the test datasets of DHF1K, Hollywood-2, and UCF-Sports.

DHF1K Hollywood-2 UCF-Sports
model AUC-J SIM sAUC CC NSS AUC-J SIM CC NSS AUC-J SIM CC NSS

DeepVS [32] 0.856 0.256 0.583 0.344 1.911 0.887 0.356 0.446 2.313 0.870 0.321 0.405 2.089
ACLNet [37] 0.890 0.315 0.601 0.434 2.354 0.886 0.542 0.623 3.086 0.897 0.406 0.510 2.567
STRANet [34] 0.895 0.355 0.663 0.458 2.558 0.923 0.536 0.662 3.478 0.910 0.479 0.593 3.018
SalEMA [33] 0.890 0.466 0.667 0.449 2.574 0.919 0.487 0.613 3.186 0.906 0.431 0.544 2.638

TASED-Net [41] 0.895 0.361 0.712 0.470 2.667 0.918 0.507 0.646 3.302 0.899 0.469 0.582 2.920
Chen et al. [31] 0.900 0.353 0.680 0.476 2.685 0.928 0.537 0.661 3.804 0.917 0.494 0.599 3.406
SalSAC [35] 0.896 0.357 0.697 0.479 2.673 0.931 0.529 0.670 3.356 0.926 0.534 0.671 3.523
UNISAL [36] 0.901 0.390 0.691 0.490 2.776 0.934 0.542 0.673 3.901 0.918 0.523 0.644 3.381
ViNet [42] 0.908 0.381 0.729 0.511 2.872 0.930 0.550 0.693 3.730 0.924 0.522 0.673 3.620
HD2S [43] 0.908 0.406 0.700 0.503 2.812 0.936 0.551 0.670 3.352 0.904 0.507 0.604 3.114
STA3D [39] 0.908 0.390 0.721 0.515 2.877 0.927 0.534 0.659 3.329 0.900 0.465 0.560 2.754
ECANet [46] 0.903 0.385 0.717 0.500 2.814 0.929 0.526 0.673 3.380 0.917 0.498 0.636 3.189
TSFP-Net [44] 0.912 0.392 0.723 0.517 2.966 0.936 0.571 0.711 3.910 0.923 0.561 0.685 3.698
STSANet [45] 0.913 0.383 0.723 0.529 3.010 0.938 0.579 0.721 3.927 0.936 0.560 0.705 3.908
VSFT [50] 0.911 0.411 0.720 0.519 2.977 0.936 0.577 0.703 3.916 - - - -
GFNet [40] 0.913 0.379 0.724 0.526 2.995 0.938 0.585 0.719 3.952 0.933 0.544 0.694 3.723
TinyHD [47] 0.909 0.396 0.714 0.505 2.921 0.935 0.561 0.690 3.815 0.918 0.510 0.624 3.280

HFTR-Net [48] 0.914 0.391 0.731 0.536 3.086 0.940 0.572 0.724 3.930 0.939 0.563 0.702 3.910
TMFI-Net [51] 0.915 0.407 0.731 0.546 3.146 0.940 0.607 0.739 4.095 0.936 0.565 0.707 3.863
UniST [52] - - - - - 0.951 0.632 0.777 4.397 0.932 0.576 0.706 3.718

MSFF-Net [49] 0.913 0.392 0.728 0.534 3.066 0.940 0.574 0.723 3.930 0.939 0.563 0.710 3.913
OFF-ViNet 0.914 0.419 0.726 0.538 3.089 0.942 0.594 0.737 4.051 0.936 0.589 0.730 4.180

The best and second-best scores are marked by red and blue respectively.

TABLE 2. Quantitative comparison of various models of video saliency
prediction results on the validation dataset of DHF1K.

DHF1K
model AUC-J SIM sAUC CC NSS

SalEMA [33] 0.886 0.360 0.690 0.450 2.495
TASED-Net [41] 0.894 0.362 0.718 0.481 2.706
Chen et al. [31] 0.905 0.358 0.689 0.467 2.651
SalSAC [35] 0.898 0.364 0.729 0.480 2.624
UNISAL [36] 0.907 0.381 0.691 0.487 2.755
ViNet [42] - 0.388 - 0.521 2.957
HD2S [43] 0.904 0.403 0.705 0.489 2.806
STA3D [39] 0.911 0.385 0.624 0.516 2.877
ECANet [46] 0.910 0.394 0.725 0.515 2.877
TSFP-Net [44] 0.919 0.398 - 0.529 3.009
STSANet [45] 0.920 0.411 - 0.539 3.082
VSFT [50] 0.909 0.409 0.721 0.522 2.992
GFNet [40] 0.920 0.402 - 0.542 3.088
TinyHD [47] 0.908 0.389 - 0.495 2.874

HFTR-Net [48] - 0.425 - 0.559 2.901
TMFI-Net [51] 0.924 0.428 - 0.554 3.201
UniST [52] 0.920 0.423 - 0.541 3.113

MSFF-Net [49] - 0.421 - 0.557 2.885
OFF-ViNet 0.922 0.418 0.734 0.548 3.143

The best and second-best scores are marked by red and blue
respectively.

and output of the Warping module. Therefore, the number
of encoder and decoder parameters is the same for the w/o
Warping module and OFF-ViNet.

Table 3 presents a quantitative comparison of OFF-ViNet
and the w/o Warping module. OFF-ViNet showed the highest
accuracy for all evaluation metrics. This experiment shows
that the features obtained from the Warping module are more
effective for video saliency prediction than those obtained
using implicit learning from the data.

F. DISCUSSION
This section presents failure cases of OFF-ViNet and analyzes
the limitations of the proposed model. Fig. 7 shows the failure
cases of OFF-ViNet. Fig. 7 (a) shows no specific object of
interest and where the camera zooms to the center of the
frame. The w/o Warping module performs relatively well,
whereas OFF-ViNet predicts saliency not only in the center
of the image but also over a wide area on the bottom and right
sides of the image. When the camera zooms, the optical flow
is directed outward from the image. Therefore, the warped
features in the Warping module using optical flow are spread
out in concentric circles. This study suggests that regions
of high saliency appear in a wide range of regions. This
indicates that the proposed Warping module is ineffective for
videos with intense camera motion and no specific salient
objects. Although a feature representation that predicts the
future using optical flow was explicitly obtained, this study
expects that the performance of video saliency prediction can
be improved by using a feature representation that predicts
the future and is more suitable for video saliency prediction
without relying on optical flow.
Fig. 7 (b) shows a scene with multiple objects. Both OFF-

ViNet and the w/o Warping module predict saliency over
a wide range but not properly for the ground truth. In the
ground truth, saliency is scattered over various regions within
the frame. Fig. 8 shows the relationship between the sum
of the pixel values of the normalized ground truth saliency
maps averaged for each video and the average OFF-ViNet
evaluation value over each video in the DHF1K validation
dataset. The sum of the pixel values in the normalized ground
truth saliency map represents the size of the salient regions.
Moreover, the larger the value, the more salient the regions
that appear in various areas of the frame. As shown in Fig. 8,
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FIGURE 5. Qualitative comparison of various video saliency prediction models. A comparison with ground truth (GT), OFF-ViNet, STSANet, ViNet,
TASED-Net, and UNISAL is shown for each scene, sampling three frames per scene. We used the source code published by the authors of TMFI-Net for
training and prediction, and did not obtain valid results due to insufficient convergence of the loss during training. Therefore, the results are not shown
here.

a negative correlation exists between the CC of OFF-ViNet
and the size of the salient regions. Therefore, OFF-ViNet has

difficulty predicting video saliency for videos in which salient
objects are in a large area within the frame. However, it is
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FIGURE 6. Structure of the w/o Warping module, which consists of an
encoder and a decoder with the same parameters as OFF-ViNet.

TABLE 3. Ablation study on Warping module

model AUC-J SIM sAUC CC NSS
w/o Warping module 0.920 0.414 0.730 0.542 3.111

OFF-ViNet 0.922 0.418 0.734 0.548 3.143
Ablation study on the validation set of DHF1K.

possible that video saliency prediction is difficult for these
videos. When there are many salient objects in a frame, it is
difficult for the observer and model to allocate attention ap-
propriately, making video saliency prediction difficult. These
videos are also likely to be insufficiently annotated in the
dataset. Fig. 7 (b) shows an image from a video with the
widest area of saliency in the DHF1K validation data. When
saliency is sparsely distributed, as in this video, the number
of observers may not be sufficient to determine the size of the
salient regions in the frame. In this case, there is a risk that the
ground truth of the dataset may diverge from the true ground
truth.

V. CONCLUSION
This study proposes OFF-ViNet, which is based on ViNet,
a state-of-the-art video saliency prediction model, with the
addition of a Warping module, a mechanism to explicitly
predict future features. The results of quantitative and qual-
itative experiments on a representative video saliency predic-
tion dataset show that OFF-ViNet is competitive with exist-
ing state-of-the-art models. In particular, OFF-ViNet outper-
forms the existing models in the evaluation metrics SIM, CC,
and NSS on the UCF-Sports dataset, which contains several
videos with moving objects. The ablation study shows the
usefulness of the Warping module for video saliency predic-
tion and that feature representation predicting the future is
effective for video saliency prediction.
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