
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Data-Driven Support Infrastructure for
Iterative Team-Based Learning
CHANGHAO LIANG1, RWITAJIT MAJUMDAR2,(Senior Member, IEEE), IZUMI HORIKOSHI1,
and HIROAKI OGATA1, (Senior Member, IEEE)
1Academic Center for Media and Computing Studies, Kyoto University, Kyoto, Japan (e-mail: liang.changhao.8h@kyoto-u.ac.jp)
2Research and Educational Institute for Semiconductors and Informatics, Kumamoto University, Kumamoto, Japan

Corresponding author: Hiroaki Ogata (e-mail: ogata.hiroaki.3e@kyoto-u.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 22H03902 and
Industrial Technology Development Organization (NEDO) under Grant JPNP20006 and JST under Grant 23814782.

ABSTRACT Iterative team-based learning (TBL) is a common educational strategy for collaborative
learning that involves sequential phases of individual and group learning activities. The advent of digital
learning platforms, with the accumulation of learning log data, presents an opportunity to leverage data-
driven techniques to enhance TBL practices. However, applying data-driven approaches in iterative TBL
scenarios has received limited exploration in existing literature. Through a review of initial studies in
this domain, data-driven iterative TBL emerges as a promising area. To explore this topic, we introduce
a novel framework, drawing from the GLOBE framework for group learning, aimed at integrating data-
driven designs into iterative TBL settings. This framework is proposed to guide data and activity design
within iterative TBL, comprising four phases of group learning activity workflow and three essential steps
of data flow. Additionally, we present two authentic instances supported by empirical evidence, offering
insights into how educators can implement data-driven designs across different phases of TBL. Within the
data-driven environment, we also uncover potential impacts and challenges of data-driven iterative TBL,
to identify avenues for future research that can further expand our understanding of the possibilities in this
domain.

INDEX TERMS Team-based learning (TBL) ; Collaborative learning; Group formation ; Peer evaluation;
Rater reliability; Data-driven support; Computer-Supported Collaborative Learning (CSCL) ; Learning
Analytics (LA)

INTRODUCTION
Collaborative Learning is widely embraced in contemporary
education due to its emphasis on the social-emotional as-
pects of learning [1] and the value placed on interpersonal
skills in modern society [2]. One specific implementation
of group learning is Team-Based Learning (TBL), an edu-
cational strategy comprising sequential phases of individual
and group learning activities, as well as peer evaluation. This
approach often spans multiple rounds and encompasses an
entire semester, functioning as an iterative process [3].

ITERATIVE TEAM-BASED LEARNING

TBL was initially introduced in medical education [4] and re-
volves around flipped learning practice within small groups,
departing from traditional lecture-driven instruction. As a
typical form of flipped learning, learners utilize class time
for in-depth discussions, problem-solving, and application

of concepts initially acquired through individual learning
assignments [5]. The process commences with individual
learning based on provided materials, followed by group
discussions and activities designed to foster critical thinking,
problem-solving, and decision-making. The former steps can
recur iteratively, enabling learners to reflect on their progress
and enhance their skills through formative feedback in each
iteration [3]. In this paper, we focus on this type of design as
iterative TBL. Extensive studies have examined the dynamics
of teamwork within this context, exploring various facets
such as transition processes, action dynamics, and interper-
sonal relationships [6].

TBL can also adapt to hybrid learning contexts through
computer-mediated support, known as computer-supported
team-based learning (CS-TBL) [5]. As a sub-field of
Computer-Supported Collaborative Learning (CSCL) [2],
CS-TBL leverages communication tools such as online fo-
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rums and hybrid meeting rooms, enabling asynchronous
learning and overcoming the constraints of physical space
and time. This flexibility is valuable during recent global
pandemics, as it offers convenience and expanded opportuni-
ties for interaction in hybrid learning environments. Existing
studies have shown that CS-TBL is effective in improving
learner motivation, engagement, and overall learning out-
comes.

DATA-DRIVEN SUPPORT FOR EDUCATION
In the meantime, the promotion of educational ICT envi-
ronments and the installation of computer-based learning
systems have generated a substantial amount of educational
data pertaining to student learning behavior [7]. This data
holds great promise for learning analytics (LA), which in-
volves measuring, collecting, analyzing, and reporting data
about learners and their contexts with the aim of improving
the learning environment [8], [9] and, in turn, influencing
their learning behaviors and improving outcomes through
appropriate remedial actions [10]–[12]. In various educa-
tional settings, including TBL, predictive analytics can be
conducted using learning log data previously generated by
students [9], [11].

Teacher concerns regarding using computers in teaching
primarily revolve around time-saving, personalization, and
assessment [13]. To orchestrate a successful TBL, teachers
must carefully plan the lesson, facilitate collaboration, mo-
tivate students, ensure learning, and evaluate achievements.
However, this process can be time-consuming. For example,
teachers often spend considerable time aligning students
based on different learning contexts [14]. In online environ-
ments like MOOCs (Massive Open Online Courses), the lack
of information about students can make it challenging to
create appropriate groups [15]. Furthermore, due to limited
workload capacity, teachers struggle to provide personalized
and accurate interventions and feedback to every student
or group [16]–[18]. Therefore, addressing these concerns
by incorporating data-driven design using learning logs and
prediction models from LA holds significant promise. For
example, automated group formation with data can save time,
enabling personalization using various indicators. Addition-
ally, a peer evaluation system can assist in assessing group
work and collecting data for subsequent formation.

Many studies in collaborative learning field have primarily
focused on utilizing learner attribute data to predict perfor-
mance [19], aid decision-making for incident detection [20],
and to provide formative feedback through data visualization
[21], [22]. For instance, the significance of domain knowl-
edge has been emphasized in problem-solving tasks that
require high knowledge construction [23], [24]. As a result,
learners’ prior knowledge and skills is taken into consider-
ation when assigning them to appropriate group members
[25]–[27]. Additionally, personality traits from the Big Five
models, particularly the aspect of externality that reflects
collaborative tendencies, have been examined to enhance col-
laboration and improve learning outcomes [28]. Furthermore,

TABLE 1. Comparative table of main bibliographic references on TBL
and data-driven studies

References Contributions Limitations
[3]–[6] TBL conceptualization and

CS-TBL advancement.
Despite the facilitation of
ICT in CS-TBL, data-
driven design is limited.

[9]–[12] Data-driven support and LA
studies for educational prac-
tice.

Not specified in and CS-
TBL field.

[19], [20],
[23]–[30]

Group formation and per-
formance prediction before
group learning.

Concentrate on data usage
within a single TBL
episode, while overlook the
potential for reusing data in
long-term scenarios with
multiple (iterative) TBL
activities.

[31]–[34] Group dynamics modeling
during group learning.

[21], [22],
[35], [36]

Group awareness support for
group learning.

group-level indicators, such as group size, cohesion and
intimacy among members, have been investigated in various
studies for its impact on group performance and production
[27], [29], [30]. In addition to performance prediction, behav-
ior models from sequence analysis and network analysis are
widely used to examine group dynamics during the learning
process [31]–[34]. Moreover, researchers have attempted to
provide group awareness information by focusing on key
factors of learning activities, enabling timely scaffolding of
learners during group learning. This computational artifact
can mediate collaboration and unveil CSCL processes [35].
Examples include customized instructions based on equal
contributions in collaborative wikis [21] and the visualization
of group knowledge maps in collaborative search [36].

CONTRIBUTIONS AND INNOVATION OF THIS WORK
Table 1 summarizes the aforementioned studies on TBL and
data-driven implementations. On the one hand, conventional
TBL studies derive from classroom-based scenarios. Despite
advancements in scaffolding services with computers for
online environments, data-driven design is less addressed.
On the other hand, LA studies utilize educational big data to
enhance educational practice. They have focused on learner
attribute data, depicting and scaffolding manifold aspects of
group learning. However, their data usage is often confined to
a single TBL episode, overlooking the potential for reusing
data in long-term scenarios with multiple times of TBL
activities.

Iterative TBL, which involves consecutive group works,
is a typical context where the data cycle of reuse is crucial.
By accumulating learning evidence from outside and within
the group learning context, a more flexible framework can be
developed to support iterative TBL designs in various learn-
ing contexts. Through a review of the aforementioned initial
studies, data-driven iterative TBL emerges as a promising
area to explore further.

Accordingly, to enhance iterative TBL processes with
data support and address the limitations of existing data-
driven studies, this topical review proposes a data-driven
framework, which covers three steps of data-driven design
in four phases of CSCL [37]. The proposed framework

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3393421

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



aims to integrate various data sources, including learning log
behaviors such as e-book reading logs, to support all phases
of group learning. By incorporating data accumulated from
multiple rounds of TBL implementations, the framework
levels a playground for data-driven services and predictive
models that contribute to developing optimal group learning
environments.

PAPER STRUCTURE
In the subsequent sections, we will commence by introducing
the data-driven design framework, focusing on the activity
workflow of team-based learning, which encompasses indi-
vidual learning and group learning phases. Next, we will
delve into the potential and issues of data-driven support
in each phase, drawing on recent studies. Following this,
we will outline our data-driven support design, comprising
three key steps: data synthesis, data utilization, and data
analysis. To provide concrete insights into the framework’s
application within authentic scenarios, we will furnish ex-
amples of two enabling tasks. These examples also elicit
the promising prospects of data-driven design across vari-
ous group learning scenarios. In the subsequent discussion
section, we will debrief several pertinent issues that may
arise when implementing data-driven support in authentic
learning contexts as the results of the topical review. These
include considerations related to evaluation design, ethics,
and the challenges encountered in the implementation pro-
cess. Finally, in the conclusion section, we will summarize
the main contributions of this topical review and discuss
potential future directions.

ITERATIVE TBL WORKFLOW IN DATA-RICH
ENVIRONMENT
In a typical TBL workflow, students usually start by indi-
vidually exploring the learning topic as a pre-group activity
before transitioning to the group learning phase [3]. Some
assessments are also included in this phase to gauge the
readiness for group learning. Subsequently, group learning
activities commence, encompassing various tasks such as
discussions, presentations, and other collaborative work. The
former steps can recur several times iteratively, and finally,
the TBL concludes with peer evaluations. Figure 1 below
illustrates the generic workflow for TBL according to [3].

When implemented in a data-driven environment, the
learning log data from previous rounds empowers teachers
to deliver targeted interventions [20]. With the increasing
accumulation of learning log data, recent CSCL studies have
opened avenues for supporting collaborative learning with
state-of-the-art technical frameworks and data-rich environ-
ments [2]. Group Learning Orchestration Based on Evidence
(GLOBE) [37] outlines four phases of collaborative learning
for data-driven support: group formation, orchestration, eval-
uation, and reflection. Compared to the original TBL design,
the framework incorporated the peer evaluation phase into
the recurring steps, wherein students can assess the products
or outcomes of their peers’ learning experiences, engaging

in a formative reflection process [38]. Digital systems such
as group formation and peer evaluation modules within the
GLOBE framework facilitated the data flow with AI scaffold-
ings. As the GLOBE infrastructure matures, LA for group
learning, such as algorithmic group formation, can become
increasingly automated with the growth of data on group
learning performance.

Given this background, we will now introduce data collec-
tion opportunities in each phase of iterative TBL throughout
the workflow (refer to Figure 2). During the individual learn-
ing phase, behavior logs and readiness test scores are col-
lected for each learner. These data can be computed as learner
model attributes that depict students’ learning characteristics
and can be utilized for optimized group formation. In the
group orchestration phase, interactions and engagement can
also be logged, contributing to group awareness for formative
feedback and reflection. Furthermore, teacher and peer rat-
ings and comments are incorporated into the group learning
process, serving as evidence of group learning performance.
The following section will provide a detailed breakdown of
the activity flow within one round of iterative TBL.

INDIVIDUAL LEARNING PHASE
As an indispensable preparation phase in flipped learning
design, individual preparation holds paramount importance.
[39] has pointed out that the individual ideation phase before
the group learning starts is significant and can improve the
quality of subsequent collaboration. In the team-based learn-
ing design, individual learning activities cover pre-reading
the learning materials, and pre-test for readiness [5]. During
these individual learning activities, learner attributes can be
modeled from learning logs and test scores. In a broader view
from a data-driven perspective, the data covered in this stage
is not confined to cognitive skills but also covers general
attributes such as personalities and demographic information
from online surveys.

According to research from [40] on cognitive load theory
in collaborative learning, antecedents describing all attributes
available before the group learning starts can pose an effect
on the subsequent phases of collaboration processes and
consequences. Therefore, they can be utilized for data-driven
support in the group learning phase such as optimized group
formation and early detection and intervention for left-behind
students.

Moreover, as there are recurring steps as a cycle, the
experience gained in group learning during the previous TBL
round can significantly contribute to subsequent individual
learning rounds. When reflecting on the prior TBL round,
learners have the opportunity to recap their group learning
experiences, draw lessons from peer evaluations, set goals,
and make revisions for improved performance in subsequent
TBL iterations. For instance, collaborative writing tasks and
intra-group feedback enhance report writing through effec-
tive TBL applications. The collaborative problem-solving
approach, where challenging problems are addressed with
peer assistance during each group learning round, can sup-
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FIGURE 1. Generic workflow for TBL reproduced from [3]

FIGURE 2. Workflow of iterative TBL with GLOBE

port successful problem solving on similar topics during the
individual learning phase.

FOUR PHASES OF DATA-DRIVEN GROUP LEARNING
When it comes to the group learning phase, Group Learning
Orchestration Based on Evidence (GLOBE) [37] presents a
framework for AI-based collaborative learning support with
data-driven approaches in an LA-enhanced environment.
There are four phases of collaborative learning: group for-
mation, orchestration, evaluation, and reflection, where data
flow and AI scaffold are empowered by the group formation
and peer evaluation modules (see Figure 2). The following
sections will further introduce four phases of GLOBE with
the continuous data flows among the GLOBE modules.

Formation
In the broader scope of Computer Supported Cooperative
Work (CSCW), research related to group formation revolves
around the concept of “studying and designing technologies
that bring people together in partnerships, teams, crowds,
communities, and other collectives" [41]. In the realm of
group learning design, group formation assumes a funda-
mental role [42]. Traditional grouping strategies like seating
students next to each other or spontaneously forming groups

have limitations when devoid of data, potentially leading to
issues such as excessive homogeneity [43].

Collaborative learning within properly constituted groups
surpasses conventional teaching methods [44]. Numerous
factors, including the characteristics of group members, the
context of the grouping process, and the techniques used
to create groups, can influence group learning processes
[45]. Among these factors, knowledge holds a prominent
position and can be assessed through knowledge test scores
and graph-based knowledge models. Nevertheless, beyond
ordinal scores, the interrelationships between individuals and
their personalities also play a pivotal role in group formation.
In data-rich environments, student model data from learning
logs allow for the incorporation of student characteristics
when forming groups [46]. In Figure 2 of the data flow
model, LA for group learning, such as algorithmic group
formation, can become increasingly automated as more data
from previous group work experiences accumulates.

As per the theory of proximal development (ZPD) [47], it
is recommended to compose groups with varying abilities,
especially in contexts where mutual assistance is encouraged
[48]. Hence heterogeneity often manifests in distinct levels of
prior knowledge and cognitive skills. Conversely, fostering
homogeneous engagement in learning enhances the quality
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of group tasks, as well as the interaction and self-efficacy
among learners [49], [50]. Homogeneity in this context often
pertains to non-cognitive aspects, such as personality and
interests.

Manifold techniques are employed for creating learning
groups or teams, contingent on different student model data
and objectives. One approach for forming groups with dis-
parate abilities involves ranking students based on specific
indicators and selecting students from various parts of the
distribution [51]. Homogeneous groups are created using
clustering techniques founded on distance measurements. For
example, the K-means algorithm clusters students with sim-
ilar attributes [52], [53], while hierarchical clustering aids in
group recommendations based on collaborative filtering [54].
In scenarios where students generate substantial learner-
created content, semantic methods are utilized to group
students based on textual features, considering knowledge
diversity, textual similarity, and a semantic network of learn-
ers’ interaction texts [55]–[57]. However, quantifying group
heterogeneity with comparable values remains challenging
when employing semantic matchmakers [58].

Orchestration

The orchestration phase reflects the process of group learn-
ing, which can include assorted activities such as discussions,
collaborative working (e.g. programming, knowledge map
generation), and presentations. The process data incorporates
textual or voice data that depict discussions, video data,
and behavior logs in group learning platforms. Effective
communication is essential for reflecting interactions among
participants, and these interactions can be effectively cap-
tured by instrumenting relevant mediums. In the context
of online education, online forum discussions have been
analyzed using social network analysis techniques [32]–[34].
Currently, AI is widely employed to analyze the interactions
during collaborative learning. This includes voice process-
ing coupled with semantic analysis, sentiment recognition
[37], and the capture and coding of gestures from video
data collected during collaborative sessions [59]. Beyond
the conventional indicators, behavior logs in group learning
platforms open an avenue for interactive logs in computer-
supported collaborative learning contexts.

The outcomes of these analyses, often used as indicators of
learning performance, can be presented in ways that provide
group awareness information on the collaborative process for
learners, offering valuable formative feedback [38]. These
insights offer transparency, enabling teachers to intervene
promptly [60].

Moreover, the data derived from group learning processes
can be further leveraged in subsequent phases and rounds
within the GLOBE ecosystem. It’s important to note that
team-based learning encompasses not only group discussions
but also programming, workshops, and other collaborative
activities, and different kinds of process data can be collected
via xAPI statements [61].

Evaluation

The group learning evaluation phase serves a dual purpose,
as it can not only assign course grades but also enhance the
quality of group learning while motivating individual learners
[62]. The evaluation methods can be broadly categorized
as summative and formative assessments [63]. Though the
original TBL paradigm put peer evaluation as a summative
step in the workflow [3], formative assessment has been
proven to be highly beneficial for stimulating reflection and
immediate corrections [64], [65]. Thus, in data-rich environ-
ments, adopting instant feedback [21] and enriched group
awareness information [22] is prevalent to support the group
learning process.

To bolster peer evaluation with data-driven support, group
awareness information is generated based on accumulated
learning logs, including forum engagement and knowledge
contributions [21]. This information equips raters with more
reliable decision-making capabilities. The reliability of peer
evaluation can be quantified by estimating peer rating po-
tentials, utilizing student model data from previous group
learning experiences, which assigns different weights to rat-
ings based on the reliability of the raters [66]. Furthermore,
behavior pattern analysis based on web survey theory can
describe the rating behavior patterns [67]. Additionally, nat-
ural language AI conversation analysis plays a crucial role in
interpreting the quality of written feedback [68].

In parallel, online evaluation systems enable participants
to provide feedback to their partners, thus contributing to the
modeling of their group work and task experiences [40]. The
anonymity offered by online evaluation collectors enhances
the reliability of the feedback provided by participants [69].
With the increasing adoption of self-reported evaluation and
immediate feedback from actual participants in TBL con-
texts, coupled with attributes of the group learning process
from the previous phase, all this evaluation and feedback data
can be synchronized with the student model and subsequently
used for various algorithmic grouping purposes within LA
[70].

Reflection

After each round of group learning activities, the data col-
lected during group learning can be organized, structured,
and presented to both learners and instructors for reflective
purposes. This data encompasses information from the or-
chestration and evaluation phases, serving to foster social
learning among students and provide teachers with valuable
insights through simple LA [71].

For instructors, the analysis and visualization of classroom
activities are crucial for their professional development [72].
Through data reflection, teachers can access a dashboard that
highlights how the class progressed, whether it deviated from
the lesson plan during the actual activity, and whether the
students were able to follow the TBL activity design [73].
Accordingly, teachers can refine the learning design based
on the reflection as professional training.
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Additionally, this data can serve as a foundation for cre-
ating more advanced evaluation metrics tailored for process-
based competency assessments [74]. Reflecting on these per-
formance indicators can motivate students to develop strate-
gies for addressing their weaknesses, actively contributing
to their self-directed learning [75]. In TBL, this implemen-
tation of formative learning encourages students to apply
their acquired knowledge and enhance areas where they
may have identified deficiencies during the current round
of group learning. This iterative process fosters continuous
improvement.

Moreover, the insights from LA research can be harnessed
for student modeling, leading to advanced service innova-
tions like AI recommendations to identify determinants of
desirable learning performance [19]. This concept can also
be seamlessly integrated into the realm of TBL, providing
valuable support and guidance to students.

STEPS FOR CONDUCTING ITERATIVE TBL WITH
DATA-DRIVEN SUPPORT
This section will introduce the iterative TBL framework in a
data-oriented perspective. We proposed three major steps of
data-driven design of TBL scaffold applications (see Figure
3). It begins with synthesize data created in individual learn-
ing activities, collect and utilize log data during the group
learning, and analyze data to create intelligent models for LA
researches.

SYNTHESIZE: INTEGRATE MULTIPLE DATA SOURCES
FROM INDIVIDUAL LEARNING
The initial stage of data-driven design involves integrating
various data sources. The data covers not only traditional test
scores but also learning behavior logs from assorted digital
platforms. The scope extends beyond learner-knowledge con-
nections, such as the proficiency of each knowledge unit, to
include knowledge-knowledge connections, like precedence
in the learning order. Meanwhile, the data is not restricted
to numerical variables; it includes relationship graphs and
interactions in reading activities, like overlaps of annota-
tions. The diverse data sources can be interconnected through
Learning Tools Interoperability (LTI) protocols, and learning
logs from different platforms can be formatted into xAPI
statements. Leveraging the integrated data, learner models
can be constructed to depict student characteristics based
on their learning behaviors. This integration also facilitates
vector-based input for LA algorithms.

UTILIZE: COLLECT GROUP LEARNING EVIDENCE FOR
THE SUBSEQUENT ACTIVITIES
To overcome cold start problems arising from limited data
on learner attributes when a teacher launches a iterative TBL
design, especially in offline school contexts, the framework
should incorporate the accumulation and re-use of data dur-
ing TBL. This aspect is often neglected in current CSCL
research. Therefore, it is essential that each technical inter-
vention tool employed in the TBL design not only consumes

data but also serves as a sensor of meaningful learning
behaviors. Within the aforementioned data-driven iterative
TBL framework, the framework not only leverages learning
log data from other platforms but also actively collects data
during the group learning phases. These data offer insights
into group learning performance, enhancing the modeling
of collaborative skills among learners. For instance, engage-
ment data, such as the number of utterances and meaningful
tokens, and the equivalence of participation, can reflect a
learner’s collaborative skills. Through multiple rounds of
group learning in iterative TBL, learner model attributes
related to group learning can be constructed for subsequent
group learning tasks and other LA applications.

ANALYZE: DISCOVER NEW PROSPECT IN GROUP
LEARNING
Over multiple TBL rounds, data can be collected and sub-
jected to analysis within an analytics engine for model
creation. Identifying struggling students from learning logs
and recognizing behavior patterns for targeted interventions
are frequent in LA studies. For instance, evidence from a
sufficient volume of training data can be harnessed to predict
successful group work and enable early identification of at-
risk students, particularly within flipped learning contexts.
Moreover, if the process of extracting models from evidence
can be automated, the dynamic recommendations for optimal
group formation settings for specific contexts or purposes,
based on continually updated data, become a promising
prospect. Guided by analysis outcomes, context-based group
formation with less parameter setting work can alleviate
teachers from the trivial task of manually creating groups,
empowering them to focus on other aspects of instruction.

EXAMPLES OF ITERATIVE TBL WITH DATA SUPPORT
In this section, we illustrate two typical tasks that underscore
the significance of data-driven support in iterative TBL.
These cases specifically center on the group formation and
group work evaluation phase, two aspects that have received
less attention in related studies on CS-TBL. One of the
goals of presenting these studies is to prompt research on
phases before and after the ongoing orchestration phase of
teamwork, which also deserves data-driven attention. The
first task involves algorithmic group formation using learning
log data, and the second task pertains to the early detection
of peer evaluation reliability.

OPTIMIZED GROUP FORMATION
In this case, learning log data from the individual learning
phase of TBL are integrated to create groups, and the group
learning process and outcome of the current activity will
be collected and re-used for group creation in the subse-
quent rounds. Meanwhile, indications with colors based on
previous round performance are shown to teachers for the
intervention of endangered students and groups. Finally, the
accumulated evidence can be used for data analysis to create
prediction models of successful TBL.
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FIGURE 3. Data flow of iterative TBL with GLOBE

The data-driven implementation of algorithmic group for-
mation follows three steps of synthesizing, utilizing, and
analyzing data, following the data flow in Figure 3. Firstly,
a system using genetic algorithms is designed and imple-
mented to form groups using learning log data from various
data sources. In terms of data synthesis, the presented group
formation system enables student models from different data
sources underpinned by genetic algorithms and LEAF infras-
tructure that aggregates multiple learning logs [76]. These
logs cover online reading logs for engagement and annota-
tion behaviors, quiz scores from the LMS, uploaded offline
test scores (performance data), survey responses (perception
data), and so on. They are synthesized into a comprehensive
platform and standardized for group formation. Meanwhile,
previous forum engagement data and peer rating data indi-
cating the group work experience are collected and can be
leveraged for subsequent rounds as well, which happens in
the utilization step.

To represent a group formation, one combination of stu-
dents constructs a candidate individual (G) as a set of
randomly-ordered students (s) partitioned by groups (Figure
4(b)). To synthesize multiple data sources, there is a cor-
responding vector covering different characteristics of each
student for the calculation of fitness value (Figure 4(a)).
Each dimension of a student vector is represented by a
certain variable selected by the user. Figure 4(a) illustrates
an example of metrics representation where each student (s)
is represented by a column vector with a characteristic (c)
as a dimension. Students are allocated into groups through
iterative processes from the first candidate individual (G)
with a genetic algorithm [77]. Beyond rankable scores, the
algorithm can consider relationship data describing positive
or negative connections between participants and annotation
data of common markers.

Secondly, As for data utilization, the continuous data-
driven support provided throughout the two phases of
GLOBE is summarized in Figure 5. A simple randomized

grouping followed by using evaluation scores for subse-
quent grouping provides a feasible solution to the cold start
problem in data-driven research [78]. As shown in the fig-
ure, the peer and teacher evaluations are logged into the
learning record store as part of the student model (orange
circles) and can be reused as input to the algorithm in the
following group formations (orange triangles). These inputs
can also identify students who may need special attention
in the current group learning beforehand [79] in the detail
panel. At-risk students and groups can be alerted in the
instructor’s panel, indicating that they need more attention
from the instructor. Furthermore, by utilizing accumulated
group learning evidence in the GLOBE ecosystem, predictive
group formation indicators were explored that can enable
automatic group formation based on teachers’ objectives in
different contexts for desirable performance in subsequent
group learning activities.

Further, the former two steps of data synthesis and utiliza-
tion have been implemented in authentic classes. These stud-
ies encompass a range of learning contexts, spanning from
primary school to higher education levels. Take an academic
reading course in higher education as an instance. In this
course, TBL design was conducted several times from week 3
to week 11 across the 15-week semester [80]. Following the
iterative TBL framework, students went through the work-
flow of the weekly activity shown in Figure 6. In individual
learning, students read several articles on BookRoll, an e-
book reading system that can automatically collect learning
data. Then, in the group learning phase, they should share and
discuss their reading progress with their group members in
the Moodle forum and prepare a brief presentation as a group
for the next offline class. During the class, each group made
presentations, which were peer-evaluated by the audience
(both the instructor and students) in the classroom in the
evaluation systems. In the meantime, they made peer ratings
on the initiative and communication of their group mates in
the peer evaluation system for each week as well. They can
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FIGURE 4. Algorithmic group formation based on multiple learning log data

check the forum engagement dashboard and feedback from
classmates for reflection, which can help them improve for
the subsequent round.

Building upon the accumulated evidence, data analysis
was conducted to investigate predictive indicators of group
formation in specific contexts. From a preliminary correla-
tion analysis within a reading-based group learning environ-
ment. The results revealed that individual achievement in
group work can be inferred from reading engagement and
previous peer ratings. Moreover, a homogeneous grouping
strategy based on reading annotations and prior group work
experience can forecast favorable group performance in this
particular learning context.

RATER RELIABILITY IN PEER EVALUATION
To evaluate TBL, teacher evaluation is typically summative,
while it has limitations since one teacher cannot monitor all
group activities simultaneously [16], [18]. Moreover, issues
like social loafing and free-riding pose significant challenges
to effective TBL [63]. Thus, peer evaluation becomes crucial
to alleviate the teacher’s workload and provide real-time
insight into the group learning process [81]. Considering the
developmental stage, cognitive abilities, and social dynamics
of learners [82], peer evaluation activities are more suitable
for higher education settings. Nevertheless, implemented in
younger learners in junior high school [83], with the na-
tional guidelines encouraging interaction among learners in

K12 education [84]. However, it’s essential to provide clear
rubrics and articulate evaluation criteria in an understandable
manner for the target learners to enable broader implementa-
tion [85], [86].

In peer evaluation, students provide ratings and feedback
on each other’s work, which is formative and can enhance
their performance in subsequent tasks [38]. However, peer
evaluation reliability is a significant concern, as the quality of
peer evaluation remains promising [65]. Recent studies have
introduced strategies to enhance the reliability of peer assess-
ment. These strategies include focusing on privacy protection
[69], providing group awareness support as decision-making
assistance [18], [21], and implementing interactive peer eval-
uation platforms with backward feedback mechanisms [87].

Nonetheless, issues of unbalanced grader reliability due
to individual differences among learners persist, leading to
less accurate evaluation results in practice. Some students
do not take the task of evaluating others’ work seriously,
rushing through the rating process and providing uniform
scores. This phenomenon is problematic, as obtaining fair
and constructive feedback is crucial in collaborative learning.
To address this problem, researchers have attempted to adjust
the final rating values based on grader-specific variables, such
as previous rating tendencies [88] and previous grades for
relevant tasks [66], [89]. However, the potential of using
learning data in digital systems has been underutilized, lim-
iting the comprehensive consideration of these variables in
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FIGURE 5. Continuous data feedforward for group formation function

existing peer evaluation designs.

To address the issue of rater reliability in peer evaluation,
data-driven support for the peer evaluation phase of TBL can
follow three steps mentioned in the previous section. Figure
7 illustrates the data-driven design of peer evaluation studies.
Learner model attributes, which encompass all data collected
during the individual learning phase and depict learner char-
acteristics, have the potential to improve rater reliability in
peer assessments [66]. Therefore, this data is synthesized
into rating potential indicators, with specific weights fine-
tuned for each learner model attribute. During the group
learning phase, this case places a focus on the dynamics of
the evaluation phase, examining peer evaluation behaviors
in online systems. Concurrently, consistency measures for
each rater are implemented, indicating the deviation between
rating scores from experts (instructors) and from the average
level. The data gained from the peer evaluation activity
are then re-utilized in the next round of TBL for analysis.
Potential topics for data analysis include the early detection
of unserious raters before the peer evaluation activity and the
calibration of final scores received by each learner.

Consider the case of early detection of unserious raters,
as introduced in [90]. This study takes place in a higher
education design course implementing a team-based learning
design. The peer evaluation activity entails rating group pre-
sentations, focusing on interpretations of “good and bad de-
sign" using knowledge from weekly lectures on concepts in
interaction design. Throughout each week of the experiment,
a new-topic lecture was provided through an e-book platform
before class. Individual learning included reviewing lectures,
participating in forum discussions, and summarizing assign-
ments. Within the group learning activities, students engaged
in group sharing of the previous week’s assignments. They

presented outcomes from their forum discussions in jigsaw
groups. In these jigsaw groups, peer ratings were assigned
to individual presentations, facilitated by the peer evaluation
system. In the final week, students worked in groups to pre-
pare a final presentation summarizing their learning, which
they delivered in class. The behavioral pattern analysis in
this study is rooted in the peer evaluation of these concluding
presentations.

Drawing from an earlier model of evaluation behaviors
[91], six feature variables were proposed to identify indi-
cators of poor feedback quality. These variables encompass
two constructs: time features and scoring features. Principal
Component Analysis (PCA) was employed to distill these
constructs from the original dataset, capturing the nuances
of rating behaviors. The subsequent cluster analysis revealed
that unserious evaluators tended to rate quickly and assign
uniformly high scores. The study’s second objective was to
explore whether cases of unserious ratings could be detected
before the final evaluation round. Several classification meth-
ods were compared in how well they could predict whether a
student would end up in the serious or unserious rater cluster.
The predictor variables were taken from previous evaluation
rounds and incorporated data related to individual learning,
including reading engagement and forum participation. The
results demonstrated that using five or more predictors and
applying logistic regression or a neural network analysis
led to classifications that were approximately 70% accurate.
Within this learning scenario, the evaluation behavior in the
preceding rating round and reading engagement appeared to
provide significant information gain. In contrast, rating be-
havior in the initial round and forum participation exhibited
weaker predictive power.
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FIGURE 6. Workflow of iterative TBL implemented in the academic reading course

FIGURE 7. Data-driven design of peer evaluation studies

DISCUSSION
By addressing the broader discussions on data-driven itera-
tive TBL designs, we identify several key areas for future
investigation based on the results of the topical review. These
include the development of data infrastructure, addressing
privacy concerns, assessing the applicability across educa-
tional contexts, facilitating field implementation, evaluating
the effectiveness, and ensuring explainability.

DATA-DRIVEN INFRASTRUCTURE
The diversity of data available throughout TBL underscores
the significance of a data-driven infrastructure. However,
not all regions possess existing infrastructure with multiple
learning log data available for analysis [92]. Some issues may

stem from policy constraints related to strict privacy laws,
while others could be attributed to cold start problems. In the
latter case, the importance of launching data sensors is vital to
initiate data-driven circulation. As suggested in the previous
discussions, LTI and xAPI provide a technical grounding for
data collection and a pipeline for cross-system exchange in
digital educational environments.

ETHICAL ISSUES AND PRIVACY

Challenges related to data usage, particularly ethical con-
cerns, data privacy, and policies on personal data, should be
addressed when designing data-driven services [93], not only
for TBL but for all practices concerning educational data. For
example, GDPR in Europe calls for a high level of personal
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data protection, increasing the difficulty of learning data
aggregation in the synthesis phase. Therefore, data-driven
services need to align with the policies of different regions
to uphold human rights. To obtain full ethical approval,
explanations to the involved students and parents regarding
the research purpose, data collection, and utilization are
indispensable to follow the ethical committee’s rules. Mean-
while, the database design and pipeline should prioritize
concerns related to anonymity, where only the anonymized
data omitting the personal information can be extracted from
researchers [94]. This is equally crucial for user-end services
that contain sensitive personal data, such as peer evaluation
systems, where the visibility of peer rating scores requires
careful consultation with teachers based on educational sce-
narios [95].

IMPLEMENTATION OF DATA-DRIVEN SERVICES
Implementing data-driven support for authentic teachers and
students in real classrooms poses challenges, necessitating
attention to the curriculum design of TBL and the unfamil-
iarity of school teachers with digital systems. Hence, it is
a prerequisite to understand the teacher’s needs and educa-
tional gaps. For instance, in group formation, creating groups
with learners who share similar strengths and weaknesses en-
ables focused attention on common challenging areas or en-
hancement of proficiency in specific domains. However, the
traditional practice of creating such groups in everyday class-
rooms involves time-consuming tasks like administering pre-
tests and aggregating data. Here, data-driven services prove
pivotal. Notably, positive feedback from teachers underscores
significant time savings in the streamlined group formation
process, reducing it from 1 to 1.5 hours to approximately 30
minutes [37], thereby reducing the barrier to incorporating
group learning into everyday classroom activities.

Moreover, in practical curriculum design, the workflow
of data-driven iterative TBL exhibits flexibility to adapt to
various learning scenarios. The order of individual learning
and group learning phases is not strictly divided and can be
intertwined in each round of implementation, as the key issue
remains to address the real needs of educational practitioners
through appropriate data support.

As contexts affect activities, the application of iterative
TBL should also adjust depending on the developmental
stage and cognitive capability of the target learners. For ex-
ample, as peer evaluation activities are typically implemented
in higher education [82], applying them in primary education
may require more effort in clarifying rubrics and criteria
to help students understand their responsibilities, potentially
encountering more obstacles. To enable flexibility across
different contexts, data-driven services can not only offer
advantages over laborious manual processes but also provide
an intelligent platform for effortless manipulation by recom-
mending settings, as seen in the group formation case [80].
This capability allows educators to experiment with diverse
grouping conditions based on data-driven recommendations
aligned with their objectives.

EVALUATION OF DATA-DRIVEN INTERVENTIONS
Understanding educational contexts is also crucial for data-
driven designers evaluating TBL. Solely assessing perfor-
mance from an algorithmic perspective may lack pedagogical
foundations. When evaluating a group formation system,
considerations should go beyond achieving accurate figures
and the best-optimized solution, and factors like time sacri-
fice matter. In educational implementations, relatively opti-
mized output can be acceptable, especially considering the
importance of speed highlighted by frontline teachers [13].
Consequently, co-designing with educational practitioners is
crucial to understanding actual demands and what should
be considered in empirical studies. The evaluation indicator
design should based on the educational purpose [74].

Designing the evaluation approach is also a promising
task. Although traditional approaches like grading from
teachers and peer evaluations can reflect the performance
and effectiveness of TBL, they tend to be subjective and
summative. Hence the accuracy of the evaluation indicator
is another concern, as peer evaluations can be deliberately
crafted or influenced by unserious raters. As discussed in
the aforementioned case, data support, such as using learner
model attributes to predict those prone to free-riding with
social loafing, enhances the grounding of the evaluation
ecosystem in data-driven TBL.

EXPLAINABILITY OF TECHNIQUES
When evaluating TBL through objective behavior logs, like
group work dynamics and social network graphs, it becomes
evident that these logs can effectively depict learning pat-
terns and provide formative group awareness information.
However, a significant challenge lies in the explainability of
data-driven AI tools, especially in emerging AI areas. From
an algorithmic perspective, it is crucial to enable teachers
to understand the output of data-driven tools with clear
justifications for AI-generated outcomes [96], an aspect that
is not extensively discussed in existing studies. In contem-
porary applications, there is a growing reliance on “vector
embeddings" (of texts, graphs, images, etc.) in combination
with neural networks and deep learning techniques, replacing
original data structures. While vector embeddings may not be
lossless, the hope is that they preserve structural properties
essential for interpretation, bringing this aspect back into the
educational discourse. In the example of group formation, a
detailed dashboard is provided for teachers, illustrating the
distributions of each learner’s model attributes from individ-
ual learning. This feature enables teachers to easily grasp the
heterogeneity in group formation inputs within each group.
This case exemplifies efforts toward the explainability of
data-driven developments involving complex algorithms.

CONCLUSION
In conclusion, our topical review contributes to advancing
the understanding and utilization of data-driven approaches
in iterative TBL scenarios. To overcome challenges such
as cold start and data re-usage in current data-driven TBL
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implementations, we propose a data-driven iterative TBL
framework, rooted in the GLOBE framework for data-driven
group learning. This framework incorporates all phases of
TBL, comprising four distinct phases of group learning activ-
ity workflow and three essential steps of data flow. It serves as
a guideline for implementing data-driven support in iterative
TBL contexts and also contributes to a taxonomy for existing
literature in this field for a better understanding of its current
status.

Through the examination of two instances—algorithmic
group formation and peer evaluation reliability assess-
ment—we demonstrate the potential efficacy and authentic-
ity of data-driven approaches in improving TBL outcomes.
These instances also highlight research opportunities in
phases preceding and succeeding the ongoing orchestration
phase of group learning, which deserve further exploration
in future studies. Moreover, these cases not only demonstrate
the application of our framework but also offer valuable in-
sights for future research and development, including sample
workflows for activity and technical designs.

Moving forward, our paper aims to establish an ecosystem
conducive to data-driven collaborative learning. This ecosys-
tem seeks to empower both educators and learners with ac-
tionable insights derived from data-driven interventions, fos-
tering effective collaborative learning designs, and ultimately
optimizing collaborative learning experiences through data-
driven services.
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