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ABSTRACT One of the best ways to handle the ambiguity and unpredictable nature of decision-making is 

through fuzzy logic, and one of the most recent developments in this area is the concept of spherical fuzzy 

sets. Since the squared total of membership, non-membership, and hesitation degrees should be between 0 

and 1, and each degree should be defined in [0, 1], the hesitation of the decision-maker(s) about an attribute 

can be conveyed more thoroughly. The ambiguity of a fuzzy set is computed with the help of an entropy 

measure, and the available entropy measures for spherical fuzzy sets have various limitations. So, in this 

study, we suggest an innovative entropy measurement for spherical fuzzy sets and demonstrate its capacity 

to satisfy the axiomatic requirements. We compared the proposed entropy metric and all currently available 

spherical fuzzy entropy metrics, considering different factors, including attribute weight computation, 

linguistic hedges, and ambiguity computation. With the help of the proposed entropy metric, we introduce 

the Complex Proportional Assessment method for spherical fuzzy sets and illustrate it with a numerical 

example. 

INDEX TERMS Ambiguity, entropy measure, fuzzy set, linguistic hedges, multi-attribute decision-

making, spherical fuzzy set. 

I. INTRODUCTION 

By proposing the concept of fuzzy sets (FSs), Zadeh [1] 

awarded membership grades to elements of a set in the 

range [0, 1]. Zadeh's work in this area is noteworthy since it 

defines many of the set-theoretic features of crisp cases for 

FSs. Researchers became interested in FSs, and they found 

their use in ―computer sciences‖, ―communications‖, 

―intelligence sciences‖, ―decision sciences‖, and 

―engineering‖. There are some recent studies on FSs and 

their many applications in the literature [2]–[5].   

Atanassov [6] proposed the concept of intuitionistic fuzzy 

sets (IFSs) to generalize FSs. An intuitionistic fuzzy set (IFS) 

gives each of its elements a membership level ( ) and a non-

membership level ( ) such that                . 

Various researchers have studied IFSs and applied them in 

many areas [7]–[11]; however, due to the constraint      
 , IFSs are unable to handle situations in which       . 

So, the concept of Pythagorean fuzzy sets (PYFSs) was 

developed by Yager [12] to answer the problems where 

      . A Pythagorean fuzzy set (PYFS) gives each of 

its elements a membership level ( ) and a non-membership 

level ( ) such that                 . To give more 

flexibility in assigning the membership levels, Yager [13] 

introduced the generalized version of IFSs and called them as 

q-rung orthopair fuzzy sets (q-ROPFSs). A q-rung orthopair 

fuzzy set (q-ROPFS) gives to each of its elements a 

membership level ( ) and a non-membership level ( ) such 

that                     . Many studies related 

to PYFSs and their extensions are available in the literature 

[14]–[22]. 

 The FSs and IFSs cannot handle situations involving the 

concept of neutrality. For example, human voting, machine 

vision, feature selection, medical diagnosis, etc. To answer 

these issues, the idea of a picture fuzzy set (PIFS) was 

framed by Cuong and Kreinvoch [23].  A PIFS gives each of 

its elements a satisfaction level ( ), a non-satisfaction level 

( ), and a neutrality level ( ) such that           
       . This new concept is very closer to human nature 

than the existing ones and is currently a trending research 

area now because of its applicability in image processing, 

decision-making, classification, etc. Some pioneer studies 

concerning PIFSs and their numerous applications are given 

in [24]–[31]. 

The PIFSs suggested by Cuong and Kreinvoch [23] are 

more efficient and reliable than the FSs and IFSs but, their 
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scope is limited due to the constraint          So, the 

PIFSs were generalized, and a new concept known as 

spherical fuzzy sets (SFSs) was introduced by Ashraf et al. 

[32] . An spherical fuzzy set (SFS) gives each of its elements 

a satisfaction level ( ), a non-satisfaction level ( ), and a 

neutrality level ( ) such that               
       . This means that FSs, IFSs, PYFSs, q-ROPFSs, 

and PIFSs are a part of the space of SFSs. So, SFSs are more 

robust and effective than all of these types of FSs. Some 

basic operations of SFSs were given by Mahmood et al. [33]. 

Kutlu and Kahraman [34] extended the TOPSIS method to 

the spherical fuzzy (SF) environment. The classical analytic 

hierarchy process (AHP) was extended to the SF area by 

Kutlu and Kahraman [35]. Integration of AHP and TOPSIS 

(the technique for order performance by similarity to ideal 

solution) in the SF environment with its applicability in 

manufacturing system selection was studied by Mathew et al. 

[36]. Shishavan et al. [37] proposed some novel SF similarity 

functions with their use in green supplier selection. Rafiq et 

al. [38] suggested some SF cosine similarity functions and 

applied them in decision-making. The SF VIKOR 

(Viekriterijumsko Kompromisno Rangiranje) method and its 

use in warehouse selection were given by Kutlu and 

Kahraman [39]. Wei et al. [40] developed some cosine 

function-based SF similarity metrics and their applications. 

Some SF metrics of similarity and distance with their use in 

the selection of mega projects were given by Khan et al. [41]. 
Jawad et al. [42] suggested a decision-making approach for 

portfolio selection in the SF environment. An integrated 

decision-making approach in the SF area was developed by 

Hoang et al.  [43]. In the SF environment, Zhu et al. [44] 

combined the two decision-making techniques, namely 

DEMATEL (decision-making trial and evaluation laboratory) 

and MABAC (multi-attributive border approximation area 

comparison). The PROMETHEE (Preference Ranking 

Organization Method for Enrichment Evaluation) method in 

the SF area was put forward by Akram et al. [45]. Pirbalouti 

et al. [46] suggested a new decision-making framework for 

interval-valued SFSs. Fetanat et al. [47] extended the 

TOPSIS method to a complex SF environment.   Some other 

studies concerning SFSs and their diverse applications are 

given in [35], [46], [48]–[51]. There are many decision-

making methods like RANCOM (RANking COMparison) 

[52], SPOTIS (Stable Preference Ordering Towards Ideal 

Solution) [53], COMET Characteristic Objects Method) [54], 

SIMUS (Sequential Interactive Method for Urban Systems) 

[55], etc. Some recent studies concerning the decision-

making in the SF environment are available in the literature 

[56]–[59]. 

A fascinating question is how to calculate FS's level of 

uncertainty. The entropy measures the quantity of 

information produced by a random process. A higher entropy 

value indicates more information (uncertainty) in the process. 

Shannon [60] defines entropy as a theoretical assessment of 

the inherent uncertainty in information, which can be divided 

into three categories: fuzzy, non-specific, and contradictory. 

De Luca and Termini [61] established an axiomatic 

framework to define a measure of fuzzy entropy based on the 

concept of Shannon’s [60] entropy, and Ebank [62] came up 

with a characterization outcome. Burillo and Bustince [63] 

suggested the first entropy measure for IFSs. Szmidt and 

Kacprzyk [64] proposed a non-probabilistic entropy measure 

for IFSs. A new entropy measure for IFSs known as ―IF 

entropy of order   and type  ‖ was developed by Verma and 
Merigo [65]. An entropy measure for PIFSs with its 

application in decision-making was proposed by Arya and 

Kumar [66]. Some other studies concerning the information 

measures for FSs and their extensions are available in the 

literature [2], [7], [16], [20], [67]–[72], [73]–[76], [77]–[85]. 

SFSs are an extension of PIFSs, and they also get over their 

drawbacks. Barukab et al. [86] proposed an SF entropy 

metric with its utility in group decision-making. Aydogdu 

and Gul [87] introduced an entropy metric for SFSs and 

utilized it for computing attribute weights in the SF-

WASPAS (weighted aggregated sum product assessment) 

method. Li et al. [88] suggested a knowledge-based SF 

entropy metric with its applicability in the determination of 

expert weights in decision-making problems. However, these 

SF entropy metrics give unreasonable results in many 

situations; therefore, a new SF entropy metric is desirable. 

The main motivating factors for this study are as follows: 

 The existing SF entropy metric due to Barukab et 

al. [86] gives ―0.5‖ as the ambiguity content for all 

those spherical fuzzy numbers in which 

membership and non-membership are equal i.e. 

   . This is not reasonable for computing the 

amount of uncertainty. 

 The SF entropy metric due to Aydogdu and Gul 

[87] gives  (  )   , when    (       )   

   . This means that for different values of  , 

we get different SFSs but all have entropy equal to 

―1‖, which is totally irrational. 

 All existing SF entropy metrics [86]–[88] lead to 

unreasonable results in the computation of 

ambiguity of different SFSs and the attribute 

weight computation. 

 All of the available SF entropy metrics [86]–[88] 

are unable to handle the linguistic hedges properly. 

So, because of the above factors, we introduce a novel 

SF entropy measure in this paper. The following are the 

study's main contributions: 

 We offer a novel SF entropy metric based on all 

four membership levels and establish its validity. 

 We contrast the offered SF entropy metric with all 

available SF entropy metrics through various 

examples related to ambiguity computation and 

attribute weight computation in the SF 

environment. 
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 We establish its superiority over the available SF 

entropy metrics through linguistic hedges. 

 We use the proposed SF entropy metric to present 

the novel COPRAS method in the SF area. 

The manuscript is organized as Section 2 is preliminary. 

A novel SF entropy metric with its properties is discussed 

in Section 3. Section 4 illustrates how the recommended SF 

entropy function compares numerically to the available SF 

entropy measurements in various ways. Section 5 

introduces the novel Complex Proportional Assessment 

(COPRAS) method based on the developed SF entropy 

metric in the SF environment. Finally, the conclusion and 

future studies are discussed in Section 6.  

II. PRELIMINARY 

Here    ( ) denote the collection of all SFSs in the 

universe   {          }. 

Definition 2.1 [1] A fuzzy set    in   is given by 

   {.      (  )/      }  

where      (  )    is the grade of satisfaction of 

     in the set   . 

Definition 2.2 [6] An intuitionistic fuzzy set    in   is 

given by 

   {.      (  )    (  )/      }  

where      (  )    and      (  )    are the grades 

of satisfaction and non-satisfaction respectively of      

in the set    such that      (  )     (  )   .  

Definition 2.3 [23] A picture fuzzy set    in   is given by 

   {.      (  )    (  )    (  )/      }  

where      (  )   ,      (  )   , and   

   (  )    are the grades of satisfaction, non-satisfaction, 

and neutrality respectively of      in the set    such that 

     (  )     (  )     (  )   . Also,    
(  )  

     (  )     (  )     (  ) is the refusal degree for 

the element      in the set   . 

Definition 2.4 [33] A spherical fuzzy set    in   is given by 

   {.      (  )    (  )    (  )/      }  

where      (  )   ,      (  )   , and   

   (  )    are the grades of satisfaction, non-satisfaction, 

and neutrality respectively of      in the set    such that 

     
 (  )     

 (  )     
 (  )   . Also,    

(  )  

√     
 (  )     

 (  )     
 (  ) is the refusal degree for 

the element      in the set   . 

Definition 2.5 [32] For          ( ), some operations 

are given below: 

(1)       iff    (  )     (  )    (  )  

   (  )        (  )     (  )     . 

(2)        iff       and      . 

(3)       

{
 
 

 
 

(

 
 
 

   

    .   (  )    (  )/  

   .   (  )    (  )/  

    .   (  )    (  )/ )

 
 
 
    

 

}
 
 

 
 

.   
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(4)       

{
 
 

 
 

(

 
 
 

   

    .   (  )    (  )/  

    .   (  )    (  )/  

    .   (  )    (  )/ )

 
 
 
    

 

}
 
 

 
 

    

(5) (  )
  {.      (  )    (  )    (  )/      }, 

where   represents the compliment. 

 The following section suggests a novel SF entropy metric 

and its properties.  

III. A NEW SPHERICAL FUZZY ENTROPY MEASURE 

The SFS concept expands upon the intuitionistic fuzzy set 

notion. An SFN    is a quadruple (               
) such 

that                     and    
     

     
  

   
    is true. Entropy measurements should be greatest 

at one point, the same as probability measurements, when 

all member functions of the SFS are equal .   
     

  

   
     

  
 

 
 /, and should be   when    is a crisp set. 

So, considering these facts, we introduce the axiomatic 

definition of an SF entropy measure. 

Definition 3.1 A function      ( )  ,   - is called an 

SF entropy metric if 

(i)  (  )    if and only if    is a crisp set. 

(ii)  (  ) attains its unique maximum when 

   (  )     (  )     (  )      
(  )  

 

 
       . 

(iii)  (  )   (  ) when    is crisper than    i.e., 

                        for 

   {           }  
 

 
 or             

            for    {           }  
 

 
. 

(iv)  (  )   ((  )
 ), where   represents the 

complement. 

Now, we offer a novel SF entropy measure as given 

below. 

   (  )  

{
 
 
 
 
 
 

 
 
 
 
 
 

 

  
∑

 

   

[
 
 
 
 
 
 

  

(

 
 
 
 

.   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

)

 
 
 
 

]
 
 
 
 
 
 

 
           

 

  
∑  

[
 
 
 
 
   
 (  )      

 (  )

    
 (  )      

 (  )

    
 (  )      

 (  )

    
 (  )      

 (  )]
 
 
 
 

 
       

  

 (1) 

Theorem 3.1 The function     is an SF entropy metric. 

Proof. We will establish that     has the properties (i)-(iv) 

of Definition 3.1. 

(i) Let     (  )   , then 

 
 

  
∑

 

   
*  (

.   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+
 
     , 

  

.   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

  . 

Since    , so for the above equation to be true, we have 

the following four possibilities. 

(a)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(b)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(c)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(d)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

All of these possibilities indicate that    is a crisp set. 

Conversely, suppose that    is a crisp set, we have four 

possibilities. 

(a)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(b)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(c)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

(d)    
 (  )       

 (  )     
 (  )     

 (  )  

     . 

All of these possibilities lead us to    (  )   . 

(ii) To show the property (ii) of Definition 3.1, we use 

Langrage’s multipliers for    (  ) with 
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 (   
     

     
     

 )  

 

  
∑

 

   
*  (

.   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+
 
    

 ∑   
 
   (   

 (  )     
 (  )     

 (  )     
 (  )   ).  

Differentiate   w.r.t.    
 (  )    

 (  )    
 (  )    

 (  ), and 

  , we obtain 
  

    
 (  )

  
 

  (   )
.   

 (  )/
   

    

  

    
 (  )

  
 

  (   )
.   

 (  )/
   

    

  

    
 (  )

  
 

  (   )
.   

 (  )/
   

    

  

    
 (  )

  
 

  (   )
.   

 (  )/
   

    

  

   
    

 (  )     
 (  )     

 (  )     
 (  )     

Setting all these derivatives equal to zero and solving them, 

we get 

   
 (  )  .

    (   )

 
/

 

   
    
 (  )  .

    (   )

 
/

 

   
    

   
 (  )  .

    (   )

 
/

 

   
    

 (  )  .
    (   )

 
/

 

   
, and  

   
 (  )     

 (  )     
 (  )     

 (  )     

So, 

 .
    (   )

 
/

 

   
 .

    (   )

 
/

 

   
 .

    (   )

 
/

 

   
 

.
    (   )

 
/

 

   
  . 

  .
    (   )

 
/

 

   
 

 

 
 or    

 

  (   )
.
 

 
/
   

. 

Thus    
 (  )  (

  

  (   )
.
 

 
/
   

 (   )

 
+

 

   

 
 

 
 or    (  )  

 

 
. 

Similarly, we get 

    (  )  
 

 
    (  )  

 

 
  and    (  )  

 

 
. 

 
Hence the required stationary point is    (  )     (  )  

   (  )     (  )  
 

 
. Similarly, we can show that 

   (  )     (  )     (  )     
(  )  

 

 
 is also a 

stationary point when    . 

Now, we will establish that the function     is a concave 

function. For this, we consider the function 

 ( )  {

 

   
(    )        

          
  

Since   ( )  
 

   
(       ) and    ( )           

for        . Thus  ( ) is a strictly concave function 

of  . 

Also, when  ( )        , then   ( )          and 

   ( )   
 

 
  . So,  ( ) is a strictly concave function of 

  for     as well. 

Since  

   (  )  
 

 
∑ *

 .   
 (  )/   .   

 (  )/

  .   
 (  )/   .   

 (  )/
+

 
   .  

So    (  ) is a concave function on the set 

{(               )                        
     

  

   
     

   }. 

Now, to show that the concave function    (  ) attains its 

maximum at    (  )     (  )     (  )     (  )  
 

 
, 

we will show that its Hessian matrix (HM) is negative semi-

definite at the required stationary point. 

The Hessian matrix of a function   of four variables 

        , and    is computed as  

  ( )  

[
 
 
 
 
 
 
 
 
 
   

   
 

   

     

   

     

   

     
   

     

   

   
 

   

     

   

     
   

     

   

     

   

   
 

   

     
   

     

   

     

   

     

   

   
 ]
 
 
 
 
 
 
 
 
 

  

So,  

  (   (  ))    

[
 
 
 
 
 
 
  

 

  
.   

 (  )/
   

   

  
 

  
.   

 (  )/
   

  

   
 

  
.   

 (  )/
   

 

    
 

  
.   

 (  )/
   

]
 
 
 
 
 
 
 

  

 
 

     
[

     
     
     
     

]   

      (  )     (  )     (  )     (  )  
 

 
    

which is negative semi-definite for all        . 

Similarly, we can show that for    ,   (   (  )) is 

also negative semi-definite at    (  )     (  )  

   (  )     (  )  
 

 
 . 

Thus    (  ) attains its unique maximum at    (  )  

   (  )     (  )     
(  )  

 

 
    . 

(iii) Let    be crisper than    i.e.,             

            for    {           }  
 

 
 or     

                    for    {           }  
 

 
. 

Now, when                         for 

{           }  
 

 
 , then 
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Also,  

    
 

 
     

 

 
       

 

 
     

 

 
           

 

 
     

 

 
  . 

So,  

.    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

 .    

 

 
/
 

 .    
 

 
/
 

    .    
 

 
/
 

 .    
 

 
/
 

   

Thus, 

 .    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

 

.    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

 .    
 

 
/
 

  

This indicates that    is far away from .
 

 
 
 

 
 
 

 
 
 

 
/ compared 

to   . Since    (  ) is a strictly concave function and 

attains its unique maximum at                 
 

 
. 

So, it follows that    (  )     (  ). Similarly, for the 

other case i.e.,                         for 

   {           }  
 

 
, we can show that    (  )  

   (  ). 
(iv)    ((  )

 )     (  ) follows from the expression of 

   (  ). 
Hence    (  ) is a measure of entropy for SFSs.    

The valuation characteristic of the proposed SF entropy 

metric is now discussed. 

Theorem 3.2 For any          ( ), we have 

   (     )     (     )     (  )     (  )  
where   and   denote respectively the union and 

intersection of the SFSs. 

Proof 3.2 Let us divide the set   into two sets    and    

such that    *          + and    *        
  + . 
Thus        , we have    (  )     (  )    (  )  

   (  )    (  )     (  ), and        , we have 

   (  )     (  )    (  )     (  )    (  )     (  ). 

So,   

   (     )  

 

  
∑

 

   
*  (

.      
 (  )/

 

 .      
 (  )/

 

 .      
 (  )/

 

 .      
 (  )/

 )+
 
     

                         

 
 

  
∑

 

     *  (
.   

 (  )/
 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+  

                                  

 
 

  
∑

 

     *  (
.   

 (  )/
 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+. 

   (     )  

 

  
∑

 

   
*  (

.      
 (  )/

 

 .      
 (  )/

 

 .      
 (  )/

 

 .      
 (  )/

 )+
 
     

                         

 
 

  
∑

 

     *  (
.   

 (  )/
 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+  

                                  

 
 

  
∑

 

     *  (
.   

 (  )/
 

 .   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 )+. 

Thus   

   (     )     (     )     (  )     (  ). 

IV. COMPARATIVE ANALYSIS AND MONOTONIC 
BEHAVIOR 

Here, we compare how the proposed SF entropy metric 

performs against the existing information metrics through 

various aspects such as ambiguity computation, linguistic 

hedges, and attribute weight computation. We begin by 

listing the SF entropy measurements that are currently used 

in the literature. 

Aydogdu and Gul [87] 

   (  )  
 

 
∑ (  

 

 
*
|   
 (  )     

 (  )|

 |   
 (  )      |

+)
 
      

Barukab et al. [86]  

      (  )  
 

  
∑ (

(  |   
 (  )     

 (  )|)

 (
     

 (  )  

   
 (  )     

 (  )
)
,

 
        

Li et al. [88]  

     (  )  
 

 
∑

(

 
 
 
 
 

  
 

√ 

√
  
  
  
  
  
  
 
 

.   
 (  )/

 

 .   
 (  )/

 

 .   
 (  )/

 

 (   
 (  )   )

 

)

 
 
 
 
 

 
   .  

A. AMBIGUITY COMPUTATION 

Here, we use the suggested SF entropy metric for 

determining the ambiguity content of SFSs and will contrast 

the results with the existing SF entropy metrics. After 

computing the ambiguity, we will compute the accuracy of 

the SF entropy metrics by using the following formula due 

to Zhang et al. [89]. 

         
                                      

                     
     .  

An entropy metric with higher precision accuracy is better 

and more reliable.  

Example 4.1 Consider five SFSs              and    in 

  *        + as shown below 

   {
(              ) (              ) 

 (            )
}  
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   {
(                 ) (              ) 

(              )
}  

   *(              ) (              ) (            )+  

   {
(            ) (              ) 

(                )
}  

   *(            ) (              ) (              )+  
The ambiguous content of these five SFSs is given in Table. 

 

Table 1 Ambiguity content of different SFSs concerning 

Example 4.1 

                Accuracy (%) 

   (  )  -0.0507 0.1354 0.0293 0.0815 -0.0507 60 

      (  ) 0.5102 0.6315 0.6315 0.6477 0.5836 60 

     (  )  0.4911 0.5833 0.5958 0.5958 0.5501 60 

   (  )  0.1576 0.1749 0.1773 0.1757 0.1406 100 

(Bold values denote irrational results.     in    ). 

 
Table 1 provides the following observations: 

(1) The SF entropy function     gives the ambiguous 

content of the two SFSs    and    to be negative, 

which is not rational. 

(2) The SF entropy measure        gives the 

ambiguous content of two different SFSs    and 

   to be the same i.e. 0.6315, which is not 

satisfactory. 

(3) The SF entropy measure       gives the 

ambiguous content of two different SFSs    and 

   to be the same i.e. 0.5958, which is 

unreasonable. 

(4) The suggested SF entropy measure     computes 

the ambiguous content of all five SFSs without 

any counterintuitive results. Also its accuracy is 

higher than the existing ones. 

Example 4.2 Consider five SFSs              and    in 

  *        + as shown below 

   {
(                 ) (                ) 

(              )
}  

   {
(            ) (                 ) 

(              )
}  

   {
(                ) (            ) 

(              )
}  

   {
(                 ) (                 ) 

(              )
}  

   {
(              ) (             ) 

 (              )
}  

Table 2 shows the ambiguous content of these five SFSs. 

 

Table 2 Ambiguity content of distinct SFSs concerning 

Example 4.2 

                Accuracy 

(%) 

   (  )  0.0514 0.0958 0.0015 0.0548 0.0958 60 

      (  ) 0.6065 0.6126 0.5965 0.5499 0.5499 60 

     (  ) 0.5628 0.4773 0.5628 0.4747 0.4855 60 

   (  ) 0.1757 0.1919 0.1718 0.1876 0.1934 100 

(Bold values denote irrational results.     in    ). 

Table 2 provides the following observations: 

(1) The SF entropy measure     gives the ambiguous 

content of the two different SFSs    and    to be 

0.0958, which is not rational. 

(2) The SF entropy measure        gives 0.5499 as 

the ambiguity content of the two different SFSs    

and   , thereby considering them to be the same, 

which is not satisfactory. 

(3) The SF entropy measure       gives the 

ambiguous content of two different SFSs    and 

   to be the same i.e. 0.5628, which is 

unreasonable. 

(4) The suggested SF entropy measure     computes 

the ambiguous content of all five SFSs without 

any counterintuitive results. Also its accuracy is 

higher than the existing ones. 

Example 4.3 Consider five SFSs              and    in 

  *        + as shown below 

   {
(                 ) (              ) 

 (              )
}  

   {
(                 ) (              ) 

(              )
}  

   {
(               ) (            ) 

(               )
}  

   {
(            ) (              ) 

 (              )
}  

   {
(            ) (              ) 

(                )
}  

The ambiguous content of these five SFSs is given in Table 

3. 

Table 3 Ambiguity content of different SFSs concerning 

Example 4.3 

                Accuracy 

(%) 

   (  ) 0.0076 0.1903 0.1045 0.1253 0.0076 60 

      (  ) 0.5718 0.6372 0.5969 0.5718 0.5758 60 

     (  ) 0.5370 0.5370 0.5049 0.4551 0.5251 60 

   (  ) 0.1810 0.1890 0.1843 0.1987 0.1723 100 

(Bold values denote irrational results.     in    ). 

From Table 3, we have 

(1) The ambiguous content of two different SFSs    

and    computed by the SF entropy metric     is 

the same i.e. 0.0076, which is unreasonable. 

(2) The SF entropy metric        gives 0.5718 as the 

ambiguity content for two distinct SFSs    and   , 

thereby leading to a counterintuitive situation. 

(3)  For two distinct SFSs    and   , the ambiguity 

content present in them is 0.5370 as shown by the 

SF entropy metric      , which is also not 

rational. 

(4) The suggested SF entropy measure     computes 

the ambiguous content of all five SFSs without any 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3392352

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

counterintuitive results. Also its accuracy is higher 

than the existing ones. 

As a result of Examples 4.1–4.3, we conclude that the 

suggested entropy metric is superior to the current SF 

entropy measures reported in the literature regarding the 

ambiguous content of various SFSs. 

 
B. LINGUISTIC HEDGES 

Here, we give an example to show the behavior of the 

suggested SF entropy measure. We offer an example 

incorporating linguistic hedges to make it mathematically 

sound and practically acceptable. By using a linguistic 

example, we will choose the best entropy in the SF 

environment by using several linguistic variables such as 

―LARGE‖, ―quite LARGE‖, ―very LARGE‖, ―quite very 

LARGE‖, ―very very LARGE‖, etc. First, we recall the 

definition of the modifier   
  of an SFS   . 

Definition 4.1 [33] For any 

   {.      (  )    (  )    (  )/       }  

   ( )   
       is defined as 

  
  

{
 
 

 
 

(

 
 
   .   (  )     (  )/

 

 .   (  )/
 

 

 √  (  .   (  )/
 

*
 

 .   (  )/
 

)

 
 
     

 

}
 
 

 
 

                            

We provide an example using structured linguistic data to 

analyze and compare the suggested SF entropy.  

Example 4.4 Consider an SFS       ( )   
*              + given as 

    {
(          ) (            ) (            ) 

 (              ) (        )
}. 

With the help of Definition 4.1, we define the SFSs as More 

or less LARGE    

 

 , LARGE    , quite LARGE    

 

 , 

very LARGE    
 , quite very LARGE    

 

 , very very 

LARGE    
  as below: 

  

 
  ,

(             ) (                  ) 

 (                  ) 
(                       ) (        )

-  

  

 
  ,

(             ) (                  ) 

 (                  ) 

 (                       ) (        )
-  

  
  ,

(             ) (                  ) 

 (                  ) 
(                       ) (        )

-  

  

 
  ,

(             ) (                  ) 
(                  ) 

(                       ) (        )
-  

  
  ,

(             ) (                  ) 

 (                  ) 
(                       ) (        )

-  

We compare our suggested SF entropy function with the 

existing SF entropy functions for estimating the ambiguity 

content of these SFSs. After computing the ambiguity, we 

will compute the accuracy of the SF entropy metrics by 

using the following formula due to Zhang et al. [89]. 

         
     (                 (  ))

                   
     .  

An entropy metric with higher precision accuracy is better 

and more reliable. Fig. 1 and Table 4 show the results. 

  
Table 4 Ambiguity content of SFS regarding Example 4.4 

                      

  

 

   
-0.3634 0.7910 0.7599 0.1140 

    -0.3242 0.8134 0.8282 0.0778 

  

 

   
-0.3162 0.7783 0.7993 0.0753 

  
   -0.3166 0.7403 0.7632 0.0752 

  

 

   
-0.3088 0.7109 0.7320 0.0729 

  
   -0.2099 0.6878 0.7064 0.0691 

Right or 

wrong 

Wrong Wrong Wrong Right 

No. of 

wrongs 

4 1 1 0 

Accuracy 

(%) 

33.3 83.3 83.3 100 

(    in    ). 

 

 
Figure 1 Behavior of various SF entropy metrics concerning 

linguistic hedges 

SF entropy metric   should satisfy the following condition 

because of the linguistic hedges characterization. 

 (  

 
 )   (  )   (  

 
 )   (  

 )   (  

 
 )   (  

 )  
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(2)                                                                 

Table 4 provides the following observations: 

(1)    (  

 

 )     (  )     (  

 

 )     (  
 )  

   (  

 

 )     (  
 ). 

(2)       (  

 

 )        (  )        (  

 

 )  

      (  
 )        (  

 

 )        (  
 )   

(3)      (  

 

 )       (  )       (  

 

 )  

     (  
 )       (  

 

 )       (  
 )   

(4)    (  

 

 )     (  )     (  

 

 )     (  
 )  

   (  

 

 )     (  
 )   

Thus, we conclude that the suggested SF entropy function is 

more reasonable regarding linguistic variables because none 

of the existing SF entropy metrics exhibit the condition 

given in Eq. (2). Also, its accuracy is higher than the 

existing ones. 

 
C. ATTRIBUTE WEIGHT COMPUTATION 

In multi-attribute decision-making (MADM) problems, the 

computation of attribute weights is a big issue. The attribute 

weights have a key role in selecting the best alternative. 

Here, we establish the utility of the suggested SF entropy 

metric in the computation of weights of attributes and also 

compare the outcome with the available SF entropy metrics. 

After computing the attribute weights, we will compute the 

accuracy of the SF entropy metrics by using the following 

formula due to Zhang et al. [89]. 

         
                                          

                          
     .  

An entropy metric with higher precision accuracy is better 

and more reliable. 

Example 4.5 Consider a MADM problem based on three 

alternatives             and five attributes      
          in the form of an SF decision matrix as shown 

below. 
    

*

(           ) (              ) (           ) (         ) (         )

(           ) (           ) (           ) (           ) (           )

(         ) (           ) (         ) (             ) (           )
+  

Now, we compute the weight of the attributes with the 

following entropy-based method. 

     (  )  
   (  )

∑ (     (  ))
 
   

 ,                          (3)                                                         

Here   is an SF entropy measure. The attribute weights 

computed by utilizing the available SF entropy metrics are 

presented in Table 5. 

 

Table 5 Values of attribute weights concerning Example 4.5 

                      

    0.2164 0.2455 0.2335 0.2018 

    0.1781 0.1847 0.1889 0.1977 

    0.1999 0.1847 0.1855 0.1971 

    0.1892 0.1765 0.1855 0.1975 

    0.2164 0.2087 0.2065 0.2059 
Accuracy (%) 60 60 60 100 

(Bold values denote irrational results.     in    ). 

From Table 5, we observe that the SF entropy metrics  
            and       give the same weight to two 

distinct attributes, which is not reasonable. However, the 

suggested entropy metric     gives proper attribute weights 

without unreasonable results and is highly accurate. 

Example 4.6 Consider a MADM problem based on three 

alternatives             and five attributes      
          in the form of an SF decision matrix as shown 

below. 

    

*

(              ) (         ) (             ) (              ) (           )

(             ) (              ) (         ) (              ) (          )

(           ) (           ) (           ) (           ) (           )
+  

The attribute weights computed by utilizing the available 

SF entropy metrics and Eq. (3) are presented in Table 6. 

 

Table 6 Values of attribute weights concerning Example 4.6 

                      

    0.2018 0.1888 0.1794 0.2021 

    0.1924 0.1858 0.2145 0.1981 

    0.2124 0.1936 0.1794 0.2030 

    0.2011 0.2159 0.2156 0.1991 

    0.1924 0.2159 0.2111 0.1977 
Accuracy (%) 60 60 60 100 

(Bold values denote irrational results.       in    ). 

We see from Table 6 that the existing SF entropy metrics 

   ,        , and       give the same weight to two 

distinct attributes, which is not reasonable. However, the 

suggested SF entropy metric     gives proper attribute 

weights without unreasonable results and is highly accurate. 

Example 4.7 Consider a MADM problem based on three 

alternatives             and five attributes      
          in the form of an SF decision matrix as shown 

below. 

    

*

(              ) (              ) (            ) (         ) (           )
(           ) (           ) (         ) (           ) (           )
(           ) (           ) (            ) (           ) (             )

+  

The attribute weights computed by utilizing the available 

SF entropy metrics and Eq. (3)  are presented in Table 7. 

 

Table 7 Values of attribute weights concerning Example 4.7 
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    0.2174 0.2092 01897 0.2010 

    0.1774 0.1773 0.1897 0.1990 

    0.1962 0.1970 0.2028 0.2002 

    0.1916 0.2092 0.2233 0.1967 

    0.2174 0.2073 0.1946 0.2031 
Accuracy (%) 60 60 60 100 

(Bold values denote irrational results.     in    ). 

From Table 7, we observe that the existing SF entropy 

metrics    ,        , and       give the same weight to 

two distinct attributes, which is not reasonable. However, 

the suggested SF entropy metric     gives proper attribute 

weights without unreasonable results and is highly accurate. 

Thus, from Examples 4.5-4.7, we conclude that the 

suggested SF entropy metric is more robust and reasonable 

than the existing metrics regarding attribute weight 

computation. 

 
D. MONOTONIC BEHAVIOR 

Here we study the monotonic behavior of the suggested 

entropy measure for various values of the parameter  . The 

ambiguity of a SFS is typically impacted by the effect of 

one or more external factors. Fuzzy entropy measures that 

exhibit a monotonic character with regard to parameters are 

useful for practical research including data mining or 

expert-based decision-making. 

We consider the three different SFSs        and    in 

  *        + as given below. 

   {
(              ) (              ) 

 (            )
}  

 

   {
(                 ) (              ) 

(              )
}  

   *(              ) (              ) (            )+  
 

The ambiguity of these three SFSs        and    for 

various values of the parameter   is shown in Fig. 2. 

 

 
FIGURE 2 Monotonic behavior of the proposed entropy metric. 

From Fig. 2, we observe that the suggested entropy metric 

is monotonically decreasing with respect to the parameter   

and is thus suitable for the situations where the external 

factors play a negative role. 

   

Next, we will introduce a new decision-making method, 

i.e., COPRAS, in the SF environment. 

V. SPHERICAL FUZZY DECISION-MAKING BASED ON 
COPRAS 

Here, we offer the COPRAS (Complex Proportional 

Assessment) method for SFSs, and this is based on the 

novel SF entropy function. Consider   {          } to 

be the set of alternatives and   {          } to be the 

set of attributes. We have to find out the most suitable 

alternative among all the alternatives              by 

looking into the set of attributes. The alternative’s 

information in accordance with attributes is given in the 

shape of SFNs in the decision matrix 

  [(           )]   . The main steps of this method are 

as: 

Step 1: Calculate the entropy of each attribute i.e., 

   (  )          . 

Step 2: Calculate the weight of each attribute      

        by the following formula 

     (  )  
     (  )

∑ (     (  ))
 
   

 ,            

Step 3: Formulate the weighted decision matrix   
,(   

     
     

 )-   , where (   
     

     
 )  

(                 ). 

Step 4:  Compute the score function  ((   
     

     
 )) for 

all           and           by using the 

following formula given by [90] 

 ((   
     

     
 ))  

 

 
(     

     
     

 )  

Step 5: Calculate    
 

    
∑  ((   

     
     

 ))     and 

   
 

    
∑  ((   

     
     

 ))    , where    denotes 

the set of benefit attributes and    indicates the set of 

cost attributes, for all          . 

Step 6: Calculate each alternative’s relative weight 

             by using the following formula 

      
∑    
 
   

   ∑
 
   

 
   

  

Step 7: Calculate the priority order              by 

the following expression: 

   
  

     
      

Step 8: Rank the alternatives in descending order of the 

values of priority order, and the alternative with the 

highest priority order value is the most suitable 

alternative. 

Example 5.1 We take the example from [36]. A 

manufacturer of tractor parts wants to update their 

production process. Using six evaluation criteria, (  ) 
Expandability, (  ) Adaptability, (  ) Competitiveness, 
(  ) Ease of use, (  ) Quality or results, (  ) Annual 

0
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depreciation and maintenance data, they have assessed four 

different FMS (flexible manufacturing systems)      
       . The information about the four FMS is expressed 

in SFNs in the decision matrix   below. 
   

[

(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )

] 

 

Using the offered entropy function    (   ), we 

compute the entropy of each attribute and obtain the 

following: 

   (  )            (  )           
   (  )            (  )           
   (  )            (  )          

Next, we form the weighted decision matrix by using (Step 

3) as shown below 

   

[

(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )
(              ) (              ) (              ) (              ) (              ) (              )

] 

 

Now, we compute the scores of all the SFNs given in the 

weighted decision matrix   by using (Step 4) and these 

values are presented in Table 8. 

Table 8 Scores of the SFNs 

Alternatives                   

   0.6249 0.6290 0.6398 0.6537 0.6537 0.6398 

   0.6336 0.6383 0.6398 0.6537 0.7155 0.6398 

   0.6181 0.6536 0.6398 0.6537 0.6537 0.6543 

   0.6664 0.7157 0.6543 0.7155 0.6537 0.6543 

 

Next, we compute      , relative weight    and    for all 

          (Table 9). Finally, the ranking of FMSs in 

decreasing order of the values of              is 

presented in Table 9. 

 

Table 9 Ranking of alternatives 

Alternatives             Ranking 

   0.6432 0.6249 3.8566 99.2397 2 

   0.6574 0.6336 3.8430 98.8900 3 

   0.6510 0.6181 3.8862 100 1 

   0.6787 0.6664 3.7614 96.7904 4 

 

From Table 9, we arrive at the result that the FMS    is the 

most desirable.  

We compare the outcomes of the offered decision-making 

technique with several available techniques, as shown in 

Table 10.  

 

Table 10 Ranking results by various available methods 

Method Ranking results 

Spherical fuzzy AHP-

TOPSIS [36] 
            

Interval-valued MCDM 

method [91] 
            

MACBETH [92]             

Preference selection index 

method [93] 
            

Combinatorial mathematics-

based decision-making 

method [94] 

            

COPRAS method (This 

paper) 
            

 

We observe that the best alternative is    as shown by all 

the methods including our suggested one. This establishes 

the validity and effectiveness of the suggested COPRAS 

method. 

 
E. ANALYSIS OF RANKING RESULTS 

A critical consideration revolves around comparing the 

accuracy of two rankings. A straightforward technique 

involves examining their consistency or inconsistency, 

albeit this method proves inadequate, primarily applicable 

to only two or three basic rankings [95]. A more prevalent 

approach entails employing coefficients of monotonic 

dependence between two variables. In this method, the 

rankings derived for a set of alternatives under 

consideration serve as our variables. Various coefficients 

are available in the literature to measure the similarity of 

the two rankings. Some of them are given below: 

 

Costa and Soares [96] 

     
 ∑ (     )

 ((      ) (      ))
 
   

 (         )
 . 

 

Salabun and Urbaniak [97] 

     ∑ .    
       

   *             +
/

 
    . 

 

Kizielewicz et al. [98] 

 

     
 ∑ (     )

  
   

 (    )
 . 

 

Blest [99] 

    
  ∑ (      )

     (   )
 (   )

 
   

 (   ) (   )
 . 

Here    denotes the mean position in reference ranking,    
denotes the mean position in other ranking, and   denotes 

the ranking length. 

  

Table 11 Correlations with reference ranking of  Preference 

selection index method 

Coefficient Spherical 

fuzzy 
AHP-

TOPSIS 

[36] 

Interval-

valued 
MCDM 

method 

[91] 

MACBETH 

[92] 

COPRAS 

method 
(This 

paper) 

   0.7200 0.7200 0.7200 0.8000 

   0.7083 0.7083 0.7083 0.4375 

   0.8000 0.8000 0.8000 0.8000 

  0.7200 0.7200 0.7200 0.8000 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3392352

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

 

Table 11 displays the computed correlation coefficients for 

the Spherical fuzzy AHP-TOPSIS [36], Interval-valued 

MCDM method [91], MACBETH [92], and  COPRAS 

method, along with the reference ranking for the Preference 

selection index method [93]. The suggested COPRAS 

method has high similarity values corresponding to the 

three coefficients         and a lower value corresponding 

to the coefficient   , whereas the existing three decision-

making methods have lower similarity values 

corresponding to the three coefficients         and a high 

value corresponding to the coefficient   .  

 
F. SENSITIVITY ANALYSIS  

Here we discuss the sensitivity analysis of the parameter   

on attribute weights and ranking of alternatives. For 

different values of  , we get different attribute weights 

(Example 5.1) as shown in Fig. 3. 

  

 
FIGURE 3 Effect of   on attribute weights 

From Fig. 2, we observe that for smaller values of  , the 

weights are more distinguishable and for large values of  , 

the weights are less distinguishable. 

 

For various values of the parameter  , we obtain the 

ranking results (Example 5.1) as shown in Fig. 4. 

 

 
FIGURE 4 Effect of   on ranking of alternatives  

From Fig. 3, we conclude that the ranking of alternatives is 

invariant with respect to the parameter  . 

VI. CONCLUSION 

Entropy measure in fuzzy/non-standard fuzzy environment 

is handy in the computation of ambiguity and mainly in 

attribute weight computation in a multi-attribute decision-

making problem. The main contributions and results of this 

study are given below. 

 A new set of fundamental conditions necessary for 

a function to be an SF entropy function has been 

given along with a novel SF entropy function. The 

suggested SF entropy metric has satisfied all the 

necessary axiomatic requirements. Furthermore, 

the valuation property of the proposed metric has 

also been discussed.  

 The limitations of all available SF entropy 

functions have been highlighted, particularly in 

ambiguity computation, attribute weight 

computation, and linguistic hedges. These 

limitations have all been addressed by the 

suggested entropy function without any counter-

intuitive results.  

 A multi-attribute decision-making technique 

known as COPRAS in the SF area has been 

proposed with the suggested entropy measure. The 

newly created SF entropy metric has computed the 

weights of attributes in the proposed COPRAS 

method. The ranking of the alternatives by the 

COPRAS method has been compared with several 

available methods, and the results are satisfactory.  

The main advantages of this study are given below. 

 The suggested entropy metric is able to handle all 

those SFSs in which the membership and non-

membership grades are equal. 

 The proposed entropy metric is more reasonable and 

effective in computing the ambiguity of different 

SFSs and also in the determination of attribute 

weights in MCDM problems. 

 The COPRAS method, proposed in this paper is 

more robust than some of the existing decision-

making methods due to the high similarity values 

corresponding to the three coefficients        . 

 Due to the presence of the parameter  , the 

proposed entropy metric can be applied to those 

complex uncertain situations, where the existing 

ones lead to counterintuitive results. 

 

One limitation of this study is that artificially generated data 

was used to calculate the numerical examples. Another 

limitation is that in some decision-making problems, the 

higher values of the parameter   may not give promising 

attribute weights.  

 

The impact of this study can be increased by analyzing the 

suggested measures using actual data. Furthermore, because 

of the current study, applying the suggested entropy measure 
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to obtain a class of similarity and dissimilarity measures 

between spherical fuzzy sets may be possible. Furthermore, 

future research may examine further theoretical relationships 

between different spherical fuzzy information measures. 

Also, the suggested method has promising future studies on 

different fuzzy sets. 
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