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ABSTRACT As the complexity of network end devices and applications grows, network managers
face increasing difficulty in meeting specific end user requirements, leading to reduced user experience
and inefficient resource management. This paper introduces a Quality of Experience (QoE)-oriented
routing strategy to enhance user experience by selecting routing paths based on application-specific QoE.
Application key performance indicators (KPIs) and dynamic link metrics are utilized to represent real-time
QoE and network state. This data builds QoE models for various applications such as video streaming, VoIP,
and web map, using four learning methods. The trained models are implemented in a software-defined
networking (SDN) controller for optimal QoE routing. Evaluations using the Mininet network simulator
reveal that the proposed QoE routing strategy can select the best path 78.4% of the time which is almost 20%
more than the top-performing state-of-the-art. This results in measurably higher application performance,
proving the efficiency of the proposed approach in improving the application’s QoE.

INDEX TERMS link metrics, machine learning, Quality of experience (QoE), routing, software-defined
networking (SDN).

I. INTRODUCTION
A. BACKGROUND
Recent substantial technological advancements have led to a
significant expansion in network services and applications.
This proliferation has given rise to a flexible and diverse
range of services, technologies, and connected devices, sub-
sequently increasing the complexity of network manage-
ment. Moreover, emerging applications, such as self-driving
vehicles, holographic meetings, and virtual reality gaming,
demand higher network capacities to ensure optimal func-
tionality. While these advanced network technologies have
unlocked a multitude of new application services, the sheer
scale and demand of these applications have correspond-
ingly escalated the requirements on network capacity. Conse-
quently, the marked increase in both network complexity and
capacity requirements has introduced severe challenges to
network resource management, especially in scenarios where
resources are constrained.

Traditional routing strategies, achieved through network
design [1], necessitate expert knowledge to determine effi-

cient paths across the network. Dynamic routing, using a
singular distributed metric, often results in either over or
under-provisioning of resources, failing to meet the nuanced
demands of application-specific resource allocation. Thus,
routing with a singular metric would often fail in specialized
application scenarios. For example, in a network serving both
delay-sensitive and bandwidth-sensitive applications, one
singular routing metric cannot cater to both needs, presenting
a problem of specificity. In addition, identifying the perfect
metric for each application adds another layer of complexity,
known as the problem of optimisation. A tailored routing
metric is required to enhance application performance rather
than network efficiency, aligning with the real demands of
users. The routing strategy must be specific, with a unique
metric for each application, and optimized, with each metric
carefully designed for the corresponding application.

Although QoS (Quality of Service) routing methods have
been popular, they fall short of improving the user experi-
ence, especially if service requirements are sensitive to the
application’s end goals. QoE (Quality of Experience) routing,
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which harnesses advancements in Machine Learning (ML)
and leverages available network data, delves deeper into
understanding the real end-user experience, further defining
the network’s role in shaping applications. As ML technolo-
gies mature, they foster more intelligent and adaptive net-
work management systems. By harnessing this network data,
we can further automate and refine network management.
Through these ML-driven QoE routing strategies, network
operators are better positioned to understand and enhance
user satisfaction, choosing paths that maximize application
performance within the current network landscape.

QoE routing appears promising. If QoE could be mea-
sured within the network, network operators would gain
better insights into how network performance affects overall
customer satisfaction. By exploiting this measurement for
routing decisions, network operators could implement QoE-
based routing using specific application QoE routing metrics.
A QoE routing strategy selects a path that optimizes QoE
metric, with unique QoE metrics to evaluate different ap-
plications or groups. Strategies for QoE routing have been
developed by quantifying the relationship between network
state metrics and target QoE metrics, applying heuristic, ex-
pert opinion, or ML approaches to create specific QoE rout-
ing models [2]–[4]. A QoE model integrates user perception
and network state, developing a tailored relationship for
each application [5]. This allows network managers to select
paths that enhance the performance of the application based
on the current network state.

B. RELATED WORK
QoS routing is one of the most widely used routing strategies
for improving network service. IETF has described QoS-
based routing issues and requirements [6]. Earlier routing
algorithms, such as Bellman Ford’s [7] and Dijkstra’s [8],
are used to find the shortest path for packet transmission.
Later, many QoS routing methods are achieved by involving
one set of constrained network metrics while optimizing
the others [9]–[11]. For example, the Widest-Shortest path
(WSP) algorithm [12], [13] determines the shortest paths first
and then selects the one with the most width, whereas the
Shortest-Widest path (SWP) algorithm [12], [14] considers
the widest bandwidth paths first and then selects the one
with the least hop count. Among these proposed routing algo-
rithms based on composite network metrics, the bandwidth-
delay-constrained routing problem is a focus in the litera-
ture [15], [16]. These QoS routing strategies, however, don’t
consider the user’s experience with the application. They
don’t test how well the application works. Therefore, there’s
a need to create better routing methods focused on user
experience, called QoE-driven routing.

The QoE strategy paradigm was introduced to directly
enhance application performance. It was tested and devel-
oped for application-specific gains, and has been applied to
improve 5G and beyond 5G, as mentioned in [17], [18].

For example, Nightingale et al. [18] have proposed a 5G-
QoE framework to address the QoE modeling for UHD video

flows in 5G networks. Lemeshko et al. [3] developed and
researched a model of adaptive routing with the provision of
QoE. In their work, the application’s QoE is calculated as
an R-factor from the E-model. Nam et al. [19] also used a
QoE-aware routing strategy for video streaming. These work
have all aim to improve the vatious application’s performance
applying the QoE strategy.

While several QoE routing strategies exist, not all use real
QoE metrics that genuinely reflect the user’s perspective. For
instance, Nam et al. [19] employ video streaming startup
latency, buffering rate, and playout buffer status as QoE
indicators. However, these metrics may not directly correlate
to human perceptual experiences. Similarly, Barakabitze et
al. [20] focus on minimizing video quality switches and
startup delays to enhance the end-users’ QoE, yet the direct
relevance of these metrics to a user’s real experience remains
unclear. A kind of QoE metrics that can represent the real
experience of users needs to be measured.

Aiming to capture real user experiences, some researchers
have turned to more direct QoE metrics. When deciding
on these metrics, there’s a distinction to be made between
subjective and objective QoE indicators [21]. X. Liu et al. [2]
use a human-centric scoring system for virtual reality video
QoE. These subjective QoE metrics, representing the user
experience rely on methods such as user testing and surveys.
But these methods can be logistically complex and challeng-
ing to quantify in real-time. To address these challenges,
machine-measurable QoE metrics have gained traction. Z.
Hu et al. [22] employed ML to associate network metrics
with PESQ, a VoIP KPI. They also explored the influence of
QoS attributes on PESQ. Similarly, T. Jie et al. [23] utilized
PSNR as a video quality KPI that signifies user QoE. These
application KPIs metrics are machine-measurable and can be
mapped to reflect the user’s perspective.

Efficiently measuring network state metrics is crucial for
QoE routing strategy as well. There are principally two
methods for this: End-to-End (E2E) metric and link metric.
E2E metrics evaluate selected pathways between two points,
let’s say A and B. A significant benefit of this approach is
that testing is initiated only when a specific path is requested,
ensuring that the assessed path precisely mirrors the antici-
pated available resources. E2E metrics have gained traction
in QoS routing [24], [25] as well as QoE routing [2], [3],
[22] to represent the network state. E2E test, faces challenges
as well. One major concern is the costly testing procedures
involved [26]. In addition, if a call must wait for the entire
E2E test to conclude before being routed, this can lead to
longer path setup times, thereby causing delays. Such delays
can be detrimental, especially when considering applications
like voice calls. The International Telecommunication Union
(ITU-T) G.114 states that for optimal voice quality, the one-
way delay should not exceed 150 ms [27]. Hence, meet-
ing such stringent delay requirements becomes challenging
with E2E tests. Another limitation with E2E testing is that
once a path is designated, it remains static unless retested.
Therefore, applying E2E metrics in routing strategy still faces
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challenges such as expense, time-consuming processes, stale
data, etc.

In contrast, link metric collection assesses individual links
or shares switch data, indicating the state of links to the net-
work manager. It quickly provides path information between
points A and B, offsetting E2E collection limitations. In the
field of network design, link metrics are gaining prominence.
Munaretto et al. [28] implemented a QoS-centric routing
method within the Optimized Link State Routing (OLSR)
protocol using link state metrics as an indicator for selecting
the best routing path. Similarly, Thorpe et al. [29] utilized
iMOS, an intermediate MoS link metric, to enhance VoIP
QoS monitoring at intermediate nodes in an OpenFlow SDN.
This method highlights the potential of SDN-derived link
metrics in offering efficient, real-time VoIP monitoring. It’s
evident from various researches that SDNs are frequently
leveraged to collect link metrics [4], [30], [31].

While link metrics have been incorporated into QoE rout-
ing in previous research [19], [20], these studies did not em-
ploy a learning approach to establish a connection between
the link metrics and genuine QoE metrics. Instead, they
continued using non-authentic QoE metrics. A comparison
between E2E and link metrics for modeling QoE in VoIP
and video applications was conducted in a previous study [4],
[30]. The findings from this research suggest that link metrics
offer comparable prediction accuracy to E2E metrics models
in QoE modeling. Consequently, link metrics present an
opportunity to serve as a viable alternative to E2E metrics.
This research allows individuals to choose between these two
network metrics based on their specific requirements. Given
the shortage of E2E metrics, the objective of this paper is to
assess the efficacy of using link metrics in QoE strategy.

To model QoE, ML methodologies can be employed to
establish the relationship between QoE and the network
state. ML-based approaches have a learning nature, and pre-
dicted QoE can always be used as feedback in ML process-
ing [32]. So far, ML has been extensively applied in modeling
QoE [33]. For instance, Hu et al. [22] tapped into ML to
correlate QoS metrics with PESQ, a prominent VoIP QoE
KPI, and to unearth the impact of various QoS attributes on
PESQ. In a different vein, Tasnim et al. [34] proposed a QoE
prediction model grounded in comprehensive parametric and
application metrics within SDN architectures. This predic-
tion model, derived from four unique learning algorithms,
is geared towards evaluating the QoE for video. Further, the
research by Wang et al. [4], [30] used ML to create QoE mod-
els for two applications and compared the efficacy of various
ML algorithms in QoE modeling. This work demonstrates the
efficacy of using ML techniques to analyse the relationship
between application QoE and network metrics.

A comparison of QoE routing strategies is detailed in
Table 1. This table emphasizes the QoE metrics and network
state metrics employed in QoE routing, categorizing them
based on two criteria: the utilization of real QoE metrics
and whether E2E metrics or link metrics are used to depict
the network state. Furthermore, the table shows the growing

TABLE 1. QoE Routing Strategies Comparison

Ref. Year
Metrics Modeling

ML SDN App
TypeReal

QoE
Network

State
[19] 2014 Link ✓ Video
[20] 2018 Link ✓ Video
[3] 2020 ✓ E2E ✓ VoIP
[22] 2020 ✓ E2E ✓ VoIP

[2] 2020 ✓ E2E ✓ ✓
Virtual
Reality

[23] 2022 ✓
Not
Specified ✓ Video

This
Work ✓ Link ✓ ✓

VoIP,
Video,
Web map

adoption of SDN and ML techniques in QoE routing as
new technologies and tools emerge. Given the challenges
of defining QoE metrics and the known limitations of E2E
metrics, as shown in the last row of the table, this paper needs
to explore the application of tailored QoE metrics that can
directly represent the user’s perspective and be measured by
machines. In addition, the focus will be on using efficient
network metrics, like link metrics. Building on this, the paper
plans to leverage the advantages of SDN and ML to conduct
experiments and model these metrics.

C. CHALLENGES AND MOTIVATION
Tailored QoE metrics are difficult to define: QoE routing
strategies aim to enhance the performance of individual ap-
plications by incorporating metrics that reflect the perceived
performance. However, a significant limitation of earlier QoE
routing approaches is their reliance on metrics that don’t
directly correspond to the user’s defined experience. While
numerous studies on QoE use metrics, they often lack a
clear link between these metrics and user perception indi-
cators, such as the Mean Opinion Score (MOS). Although
QoE metrics with a direct tie to MOS are available and
frequently used, measuring user experience currently relies
on methods like testing and polling, which are logistically
challenging and difficult to quantify in real-time. The chal-
lenge of pinpointing appropriate QoE metrics has made it
tough to expand the use of such methods in specialized QoE
routing plans. Thus, the task remains: how to define scalable,
machine-readable QoE metrics tied to MOS benchmarks for
effective QoE routing.

Recent studies have identified a correlation between ap-
plication QoE and real-time KPIs. Although these subjective
QoE metrics are produced by end-users and aren’t directly
accessible to network managers, KPIs metrics can be used as
machine-readable indicators of the QoE. It’s also important
to note that when applications measure their KPIs metrics,
they can send these metrics to the controller in real-time
using the SDN Northbound interface, thus making the ap-
plication KPIs accessible. Consequently, KPIs can function
as a proxy measurement for application QoE. The QoE and
networking community [35] has defined cost metrics for
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dynamic applications used in network management and QoE
measurement. This paper will evaluate the performance of
multiple applications across the network and compute their
respective QoE KPI metrics.

Efficient network state metrics: QoE routing strategies
necessitate current network state information to optimize
paths within the network. While E2E metrics metrics are
frequently used in network design, they come with limi-
tations. Drawbacks include extended time needed for path
setup during testing, costly testing procedures, static path
designation unless retested, and non-availability until the
entire test is completed. Therefore, a more efficient network
metric is sought.

Link metric collection periodically evaluates individual
links or shares switch counter information to reflect the state
of connected links with the network manager. This method
benefits from instant availability of path information, mitigat-
ing the disadvantages of E2E metric collection. A shortage to
note is that composite link metrics might not wholly represent
all network resources.

Compared to E2E metrics, network link metrics offer more
up-to-date data, faster testing, reduced overheads, and instant
data availability. Recognizing these advantages, this paper
leans towards link metrics. For gathering this data, SDN
tools are used. The controller ensures consistent data col-
lection and updating, sourcing information from OpenFlow
messages. Therefore, this paper finds it essential and valuable
to examine the efficacy of using link metrics in constructing
QoE models, subsequently influencing QoE routing deci-
sions.

QoE Modeling using application KPIs and Link met-
rics. A challenge still remains in effectively modeling QoE
using the existing, available metrics. For example, E-model
uses computational models to combine factors like network
delay, packet loss, and noise to predict VoIP quality. It
calculates the R-factor from these parameters, which can
then be mapped to the MOS, indicating user QoE. The E-
model does not collect subjective metrics within the network,
leading to a lack of real-time feedback and rendering the
model unsuitable for Reinforcement Learning (RL) in future.

ML-based approaches are designed to update when new
information is available allowing measured QoE/KPIs to
be used as feedback in ML processing if available. ML
can establish the relationship between application QoE (KPI
metrics) and network state (link metrics), thereby building
a QoE model. This model predicts the application KPI. In
future work, this prediction can be combined with feedback
from end users. Such collaboration could be employed in
RL to enhance model efficacy. Using ML can meet the
requirements of modeling QoE using KPIs and link metrics,
and is also well-suited for expansion into RL. Therefore,
employing ML in QoE modeling is essential for this study.

D. APPROACH AND CONTRIBUTIONS
The paper defines a QoE metric using application specific,
machine readable, application layer KPIs. The network state

FIGURE 1. QoE Routing Approach.

is updated in real-time by the network manager using link
metrics. Best routing paths between A to B are chosen by
highest predicted KPIs using composite link metrics between
the two. The proposed approach to achieve QoE routing
is illustrated in two distinct phases in Fig. 1: 1) QoE ML
Modeling, and 2) QoE-based Optimal Path Selection. First,
ML is applied to train the QoE model using application KPIs
and link metrics. Next, this model predicts the KPI for each
path, selecting the one with the highest KPI. The goals of
the approach are then to identify and define suitable KPIs
for a given application that have a tangible relationship with
QoE, and develop a model to predict the KPI score for a path
defined by composite link metrics.

The key contributions of this paper are as follows:
• Developing a novel QoE model that compounds applica-

tion KPIs with link metrics using ML techniques. In this
approach, application KPIs metrics are defined and mea-
sured as the QoE, and the link metrics are sourced from
an SDN testbed. The development of this QoE model is
facilitated using four ML algorithms. Subsequently, the
efficacy of this novel model is assessed across three key
Internet applications: VoIP, video streaming, and Web
map.

• Designing a two-stage QoE Routing Algorithm. In the
first stage, network with complex topology is broken
down into distinct paths using conventional routing
methods, such as the K shortest simple path. During the
second stage, the QoE model is utilized to estimate the
application KPI for a subset of selected paths, ultimately
choosing the route that delivers the highest QoE.

• Developing an SDN testbed using Mininet [36] to assess
the proposed QoE routing within an OpenFlow environ-
ment. This testbed operates on an open-source codec
available on GitHub [37]. The codec comprises key
functionalities including running Internet application
tests, gathering link metrics, integrating QoE models,
and executing the QoE routing algorithm.

• Experimental results:
– The results show that the proposed QoE routing

algorithm can select the best path with a probability
of 78.41% which is nearly 20% higher than the top-
performing state-of-the-art.

– Feature analysis indicates that different applica-
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FIGURE 2. Fundamental Approach of QoE Routing System Model.

tions respond uniquely to network QoS levels. This
underscores that a one-size-fits-all QoS strategy
cannot cater to diverse applications, highlighting
the need for tailored QoE models for specific ap-
plication.

– The efficacy of compound metrics, which combine
application KPIs and link metrics, is thoroughly
examined using four ML algorithms. Results reveal
that Random Forest (RF) achieves the best evalua-
tion value among them.

II. PROPOSED FRAMEWORK
Fig. 2 illustrates the fundamental approaches of the QoE
routing system model and explains how it operates. In the
beginning, link metrics such as delay, packet loss, and band-
width need to be generated. If the network manager can
gather these network metrics for a path, they can be used as
input in the QoE prediction model. The prediction model,
typically developed using ML, determines the relationship
between a QoE (KPI) metric and measurable network (Link)
metrics. This allows the network manager to evaluate any
given path and assign it a QoE metric, in this case, the
application KPI. This relationship (model) must be known
to the manager before path selection. Following that, a set
of predicted QoEs (application KPIs) is collected, and the
routing is determined by selecting the path(s) with the highest
QoE(s). This section will investigate the QoE routing system
and the methodology: a) The QoE routing implementation
framework; b) Application QoEs; c) Network State Metrics;
d) ML algorithms used in QoE modeling.

A. QOE ROUTING IMPLEMENTATION FRAMEWORK
Fig. 3 presents the framework of QoE routing implemen-
tation. This framework illustrates the QoE routing testbed
and the workflow. In the testbed, Various application servers
like VoIP, video, and VR gaming, all connected to an SDN
network. The SDN network is emulated using Mininet, sim-
ulating a realistic network environment with SDN switches,
controllers, and multiple path links. The Ryu functions as the
SDN controller. A user/client connected as a host receives
network packets from the other end of the network.

Before the real-time QoE routing process, there’s an offline
ML modeling phase using data collected from experiments.
As soon as the network starts, the Ryu controller begins

FIGURE 3. QoE Routing Framework

collecting link metrics from the SDN testbed. Once all the
packets are transmitted, the user’s end computes the QoE
(KPIs) metrics tailored for the various applications. Both
sets of metrics are compiled to form the training dataset for
buidling the QoE prediction models. Consequently, the QoE
prediction models are prepared and ready for use.

Fig. 3 also presents an run-time implementation of QoE
routing that aims to present the best path available to the
network manager. In this phase, the network manager collects
link metrics from SDN switches using Ryu. These metrics are
related to the Network Info block, which stores the network
graph as well as the network metrics associated with the
links in the graph, and is updated periodically. When a path
from A (application server) to B (user/client) is requested,
the network graph is consulted. In this context, a two-stage
routing algorithm is employed

1) A set of K shortest simple paths from A to B is derived
from the graph. The K shortest simple path problem
generates all simple paths from the source to the target
in the graph, starting with the shortest [38]. Notably, a
simple path is one that does not contain any repeated
nodes. Consequently, a set of paths (path1, path2,
...) are gathered from the network graph using the K
shortest path strategy;

2) The previously trained QoE model utilizes the link
metrics associated with each path from the aforemen-
tioned set. This utilization facilitates the prediction of
QoE for each individual path. It is expected that the
application type will be detected through application
identification, which is outside the scope of this paper.
The QoE ML model provides a predicted QoE (KPI)
for each path, generating a list of these KPIs (KPI1,
KPI2, ...) that is presented to the network manager.
These KPIs are then ranked to determine the best-
performing path. Subsequently, the manager can guide
the traffic flow onto the path with the highest QoE,
thereby implementing QoE routing.

B. APPLICATIONS QOES
QoE metrics can be classified into two types based on
the measurement mechanisms used: objective and subjective
metrics [39]. Subjective QoE is qualified and collected from
the end user, reflecting the user’s perspective and personal
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concept of "good quality." Due to its inherently subjective
nature, its assessment requires a controlled environment,
making it more dependent on context and often resulting
in high costs and extensive evaluation time. For example,
subjective tests may need numerous volunteers to score a
service, and scores can vary depending on factors such as
age, background noise, health status, etc. As subjective QoE
metrics are challenging to measure, researchers are modeling
QoE with service KPIs, bridging the gaps between subjective
and objective metrics. Objective quality metrics, such as
application KPIs, are more scalable and machine-measurable
than subjective metrics.

In this paper, objective QoE, application KPIs modeling is
applied for three applications:

1) VoIP KPI Measurement:
PESQ: Perceptual Evaluation of Speech Quality
(PESQ) is more practical, comparing the received and
original audio to create an objective indicator of quality
[40]. It is standardized as Recommendation ITU-T
P.862 and ranges from -0.5 to 4.5, with higher scores
indicating better quality.

2) Video KPI Measurement:
Traditional methods like Peak Signal-to-Noise Ratio
(PSNR) [41], Video Multi-Method Assessment Fusion
(VMAF) [42], Structural Similarity (SSIM) [43] often
fail in lossy networks.
APSNR: To tackle the inaccuracy caused by frame mis-
match in lossy networks, an optimized measurement
algorithm of video quality, Aligned-PSNR (APSNR),
is implemented [4], [44]. APSNR aligns frames be-
tween reference and received videos, making it effec-
tive for measuring quality in frame-loss transmissions.

3) Web KPI Measurement:
Web QoE refers to the quality of experience of web
services accessed via a web browser [45]. Map PLT:
In the context of Web map applications, Map Page
Load Time (PLT) is used as the QoE KPI metric. It
measures the time from when the user requests the map
service until the map tiles are completely loaded. This
objective Application-level Web QoE metric, like VoIP
and video QoE, can also be mapped to the MOS value
[46].

C. NETWORK STATE METRICS
1) E2E and link metrics
E2E metrics represent a type of network quality metrics
that have been widely utilized due to their close alignment
with the actual network QoS, providing reliable and accu-
rate network state information. As the name suggests, E2E
metrics are collected along a single path, tested between
the source and destination, as depicted in Fig. 4. These
metrics usually include latency, bandwidth, jitter, and packet
loss. Link metrics, on the other hand, utilize a composite of
network metrics for each link in the path, as shown in the
figure. Contrary to E2E metrics, link metrics offer a more dy-
namic approach to data collection and can provide real-time

FIGURE 4. E2E and Link Metrics

network information. This is in part due to the drawbacks
of E2E metrics, which can be time-consuming, expensive,
and result in stale information, as well as being unavailable
until the entire test is completed. With link metrics, the SDN
controller gathers data from each link and frequently updates
it. This method is not only faster but also avoids occupying
the main transmission route.

Previous work [4], [5], [30] presents arguments in fa-
vor of using link metrics in this context. They emphasize
the trade-off between efficiency and prediction performance
when choosing between E2E and link metrics. While link
metrics modeling benefits from efficient metric collection,
E2E metrics modeling may provide slightly better prediction
performance. Given these considerations and the inherent
advantage of real-time representation of network state, link
metrics have been chosen in this paper as the preferred
method for network data collection

2) Link metrics collection
The collection of link metrics is achieved by using
an SDN. Building on previous research [4], [30], link
metrics are calculated using information extracted from
OpenFlow messages. When connected to an SDN con-
troller, the OpenFlow switches communicate messages such
as Packet_in, Packet_out, STATISTICS_REQUEST, and
STATISTICS_REPLY. These messages provide information
that can be analyzed and used to calculate link metrics,
including link bandwidth, link delay, and link packet loss.
For example, link metrics are defined as the statistics on the
link between two switches, which can be named S1 and S2.
Link bandwidth is calculated as:
The equation(s) to calculate Link bandwidth

Bandwidthlink = BW1− tx_packets− rx_packets
duration_time

(1)
where, BW1 is the default bandwidth of the link, as given
in the assumption. The terms rx_packets and tx_packets
represent the amounts of received and transmitted packets,
respectively, and duration_time refers to the duration that the
packets pass through a switch.
Link delay is calculated as:
The equation(s) to calculate Link delay

T1 = time2− time1, T2 = time4− time3 (2a)
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Ta = RTTa, Tb = RTTb (2b)

Delaylink =
T1 + T2− Ta − Tb

2
(2c)

where, the parameters refer to the time recorded when:
time1: the controller sends a Packet_out message to S1
time2: the controller receives the Packet_in message sent by
S2
time3: the controller sends a Packet_out message to S2
time4: the controller receives the Packet_in message sent by
S1
Link packetloss is calculated by dividing the packets amount
difference between two switches by the transmitted packets
in (3):
The equation(s) to calculate Link packetloss

Packetlosslink =
tx_packets(S1)− rx_packets(S2)

tx_packets(S1)
(3)

where, tx_packets(S1) are the transmitted packets from S1
count and rx_packets(S2) are the received packets count at
the S2.

SDN monitors and updates the network information fre-
quently by sending OpenFlow messages. Periodic or event-
based messages are sent to the controller, providing the in-
formation needed to calculate the link metrics. The frequency
of these messages or events determines the freshness of the
network state. As these link metrics are derived from network
layer content and statistics, they are considered to represent
the network state in real-time for QoE prediction.

D. ML ALGORITHM USED IN QOE MODELING
Selecting suitable ML tools to model the relationship be-
tween network state (metrics) and QoE (metrics) is a signifi-
cant task. The choice of the appropriate learning method for
a project requires an understanding of the ML type, project
goal, data set size, required training time, feature/parameter
analysis, and availability of labeled data. Factors such as
data size and training time are particularly important when
considering the algorithm type. With small data sets and lim-
ited training time, the project may lean toward less complex
or ensemble learning processes, where over-fitting is less
likely to occur. In addition, a feature analysis, encompassing
aspects like dimensionality and feature type, is critical for
determining the appropriate learning method.

The expected output of the model is a predicted QoE value.
Since the target feature is available during testing in a testbed
or as application feedback in network learning, supervised
forecasting algorithms are deemed suitable. Given that the
data used for training is continuous and labeled, supervised
regression algorithms fit the requirement. The data set’s fea-
tures, such as link bandwidth, link delay, and link packet loss,
are of low dimensionality, and the data set size is expected to
be in the thousands of data points rather than millions. In

this context, Supervised Learning algorithms are considered
appropriate.

Various supervised regression algorithms are available:

• Multiple Linear Regression (MLR) models the linear
relationship between a quantitative dependent (target)
variable and two or more independent (descriptive) vari-
ables. It offers simplicity and less complexity, providing
a baseline result. Its main drawback is that it assumes
a linear relationship among variables, oversimplifying
real-world issues, and may thus be unsuitable for prac-
tical scenarios.

• Support Vector Regression (SVR) is robust to outliers
and typically has higher prediction accuracy than MLR,
especially for continuous data. While SVR struggles
with large and noisy data sets, this limitation is mit-
igated in the case as noise can be cleaned via pre-
processing.

• RF can handle large data sets and complex, non-linear
relationships. Its interoperability and performance with
large RF ensembles make RF suitable for training our
data set, which consists of approximately 76,000 sam-
ples.

• Gradient Boosted Regression (GBR), like RF, uses de-
cision trees and can even outperform RF if properly
tuned. It serves as another viable option for comparative
training.

To investigate the efficiency of learning the relationship
between network state and QoE, these four ML algorithms
will be applied in training the QoE prediction models. After
evaluating and comparing their performance, the best training
algorithm will be selected and used in building the QoE
prediction model. This thorough analysis will ensure that
the chosen methodology aligns with the specific needs and
characteristics of the data and project at hand.

III. PROPOSED ROUTING ALGORITHMS
A. QOE ROUTING ALGORITHM
QoE routing selects the path based on the QoE model’s pre-
diction of the QoE (application KPI) for each path. The pre-
diction models for each application and each path have been
trained and prepared offline. When the application’s traffic
arrives at the switch, the controller identifies the application’s
type based on the classification output from the Application
Identification API. The application-specific QoE models are
invoked according to this traffic type. Subsequently, using
the collected link metrics as input, ML models are applied
to predict the real-time QoE. Regular updates are necessary
to ensure that the input data remains fresh. Once the QoE
for each path has been predicted, a decision is made based
on these QoE values. Users can select their preferred path(s)
corresponding to specific QoE. Naturally, in most cases, the
path with the highest QoE will be chosen.

This QoE routing strategy is executed in two stages. We
use pseudo code to illustrate the process of implementing
the QoE routing strategy. In Algorithm 1, the inputs are
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the network topology/graph G, link metrics (link BandWidth
BWlink, link Delay Dlink, link PacketLoss PLlink), trained
prediction Models (ML_models) representing ML model
groups for multiple applications, and the application type
App_Type. The output is the best routing path, denoted as
Best_Path(s).

Stage 1: Before selecting the path, complex network
topologies, such as mesh, must be broken down into simple
paths using traditional routing algorithms. This is the first
step in the algorithm. The K shortest simple path policy,
provided by the NetworkX simple_path() function, can be
used to divide the network into several simple paths between
A and B stored in Paths. The src and dst represent the
source and destination nodes in the network. This process
of breaking down paths is also executed by the comparative
routing algorithms in Section III-B.

Stage 2: The specific QoE model will be selected and
saved as Smodel in Step 2, based on the application type
App_Type. This selected model will be invoked and used to
predict the corresponding QoE for each path in Step 3. The
link metrics are used as input, and the path QoE is output if
the ML models successfully produce a result. This QoE is
saved in a QoE list that will be ranked in the final step. Users
can select the path(s) based on the QoE values. They may
choose one path with the best QoE, or several paths whose
QoEs meet or exceed their requirements.

Algorithm 1: QoE Routing
Input : G, BWlink, Dlink, PLlink, ML_models,

App_Type
Output: Best_Path

1 STEP 1: Breaking the network paths
2 if src, dst in G then
3 Paths =

networkx.all_simple_paths(G, src, dst)

4 STEP 2: Select the ML models based on the
application type

5 Smodel = ML_models (App_Type)
6 STEP 3: Predict QoE on each path
7 for p in Paths do
8 call Smodel;
9 QoE (p) = Smodel (BWlink1, Dlink1, PLlink1,

BWlink2, Dlink2, PLlink2,
...BWlinkn, Dlinkn, PLlinkn)

10 if prediction success then
11 add QoE (p) to Paths_QoEs

12 STEP 4: Select the path
13 rank the Paths_QoEs;
14 Best_Path(s) = the satisfying path(s)

B. COMPARATIVE ROUTING ALGORITHMS
One widely used approach in QoS routing is Bandwidth-
Delay constrained routing, which provides a sound method-

ology for choosing a path based on the combined state
of multiple network features. The implementation of
Bandwidth-Delay constrained routing requires prior knowl-
edge of the bandwidth constraint, which represents the min-
imum bandwidth required to transmit the application data.
In the case of VoIP, this constraint depends on the type of
audio codec. For example, G.711 requires an IP bandwidth
of 80-90 Kbps, while an HD VoIP call typically uses 90-
100 kbps of bandwidth. Therefore, 100 Kbps of bandwidth
must be guaranteed to make a G.711 VoIP call. For video, the
constraint value is determined by factors like video size and
resolution. In [4], a significant inflection point of 1.25 Mbps
bandwidth is observed during the transmission of a Common
Intermediate Format (CIF) video. Below this inflection point,
the APSNR over the bandwidth range of 0.25 Mbps to 1.25
Mbps rises sharply, whereas afterward, it tends to stabilize.
Thus, 1.25 Mbps is the bandwidth constraint for CIF video.
In the case of web map loading, a different behavior is
observed. There is a steep decrease in loading time before
5 seconds, followed by a gradual slowdown. Consequently,
0.6 Mbps bandwidth is applied as the bandwidth constraint
for web map loading. By understanding and applying these
constraints, Bandwidth-Delay constrained routing is able to
effectively select paths that align with the specific require-
ments of various applications, enhancing overall network
performance.

The implementation of Bandwidth-Delay constrained
routing shares the same Step 1 as QoE routing’s, but with
different input parameters. In Step 2, the E2E bandwidth
(BWE2E) and E2E delay (DE2E) on each path are calculated
using the link metrics. Then in Step 3, the best path is selected
based on BWE2E and DE2E . There are three cases, divided
according to the relationship between BWE2E and threshold
BW_T .

• Case 1: If all the paths’ bandwidths meet the constraints
requirement, the best path will be selected from the
whole path list Paths, choosing the one with the mini-
mum delay.;

• Case 2: If only some of the paths’ bandwidths meet
the requirements, the guaranteed paths are all saved
in k_Paths. The best path will be the one with the
minimum delay, selected from this k_Paths list;

• Case 3: If none of the paths meet the bandwidth require-
ment, bandwidth is considered a priority, and the path
with the maximum bandwidth is chosen.

These three cases ensure that the selected path meets the re-
quirements for bandwidth and delay according to the specific
conditions and constraints of the network.

The mechanism to implement this algorithm can be easily
adapted for the Bandwidth-Packetloss constrained routing
by substituting the delay parameter with packet loss. In
addition to these multi-parameter-based routing approaches,
there have been past implementations that rely on single
network parameters, such as Bandwidth-only routing, Delay-
only routing, and Packet-loss-only routing.
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Algorithm 2: Bandwidth Delay Constrained Routing
Input : G, BWlink, Dlink, PLlink

Output: Best_Path

1 STEP 1: Breaking the network paths
2 if src, dst in G then
3 Paths =

networkx.all_simple_paths(G, src, dst)

4 STEP 2: Calculate the BWE2E and DE2E

5 for p in Paths do
6 p.BWE2E = min

(BWlink1, BWlink2, ...BWlinkn)
7 p.DE2E = sum (Dlink1, Dlink2, ...Dlinkn)

8 STEP 3: Select the best path
9 if all paths’ BWE2E ≥ BW_T then

10 Best_Path = Paths [path with min DE2E])
11 else if k paths’ BWE2E ≥ BW_T , and k <

len(Paths) then
12 for p in Paths do
13 if p.BWE2E ≥ BW_T then
14 add p to k_Paths

15 Best_Path = k_Paths [path with min DE2E]
16 else
17 Best_Path = Paths [path with max BWE2E]

FIGURE 5. Testbed Configuration

IV. EXPERIMENTATION AND RESULTS
A. TESTBED CONFIGURATION
The experiments will test three applications—VoIP, video,
and Web maps—using a configuration process detailed in
earlier works [4], [5] and [47]. As shown in Fig. 5, the testbed
includes three sections: Application server, SDN network,
and application user/client, each on distinct Virtual Machines
(VMs). Communication between the server and client uti-
lizes three applications: SIPp, VLC, and Web map based on
OpenstreetMap. Link conditions and routes can be adjusted
as needed.

VM1 Multi-applications’ Server: The multi-applications
server is in VM1 (Ubuntu 18.04 X86 64 bits, one CPU, 4.0
GB RAM). Three applications are integrated:

• VoIP Call: SIPp simulates VoIP calls, sending RTP
packets. A 33-second English voice speech is sent using
the G.711 codec;

• Video Streaming: VLC streams a 20-second clip from
“highway” video, with a resolution of 352 * 288 pixels;

• Web Map: Built using OpenStreetMap (OSM), Ireland’s
map is stored in PostgreSQL, with Apache serving and
rendering OSM tiles.

VM2 Multi-applications’ User/Client: The user/client
is on VM2 (Ubuntu 18.04 X86 64 bits, one CPU, 2.0 GB
RAM). SIPp and VLC receive VoIP and video, respectively.
For Web maps, a NodeJS-developed HTML page displays
on the Chromium browser, with a zoom level set to 10
and default latitude, longitude coordinates corresponding to
Ireland.

VM3 SDN Network Setup: In VM3 (Ubuntu 18.04 X86
64 bits, one CPU, 2.0 GB RAM), a 3-path network is built
using Mininet with Ryu as the controller. Fig. 5 shows 8
OpenFlow switches, forming a series of independent paths
connecting the client and server. Path lengths of 2-link, 3-
link, and 4-link can extend to n-links. Ryu monitors and
collects link metrics data.

B. FEATURE ANALYSIS
An analysis of the impact of network features such as Band-
width, Delay, and Packet Loss on the QoE of various appli-
cations is conducted using end-to-end (E2E) network QoS
metrics. These metrics are derived from link data collected
by the Ryu controller. The Pearson Coefficient Correlation
(PCC) is employed to gauge the relationship between these
features and the QoE for different applications (PESQ, AP-
SNR, Loading Time), as shown in Fig. 6. The PCC, ranging
from –1 to 1, reflects the strength and direction of the cor-
relation, with the absolute value indicating the robustness of
the relationship.

Figure 6 highlights how packet loss, bandwidth, and delay
as network features primarily influence the QoE of VoIP
(PESQ), video (APSNR), and Web maps (loading time),
respectively.

For VoIP, Fig. 6(a) reveals a strong negative correlation be-
tween packet loss and PESQ (-0.51) and a weaker correlation
with bandwidth (0.058). This makes sense, given that G.711
VoIP typically requires only about 100 Kbps of bandwidth,
which is sufficient in most cases. In contrast, packet loss can
severely degrade call quality by causing choppy audio and
dropped calls. Delay, often linked to long-distance transmis-
sion exacerbates these issues. Consequently, VoIP PESQ is
most sensitive to packet loss and delay, less so to bandwidth.

For video streaming, Fig. 6(b) shows significant impact
from bandwidth and packet loss on APSNR, with PCC values
of 0.5 and -0.45, respectively. High-resolution video requires
substantial bandwidth, and packet loss can cause pixelation,
content gaps, and playback failure, all lowering APSNR.
These factors explain why bandwidth and packet loss are
strongly connected to video APSNR.

For Web maps, Fig. 6(c) shows that delay, bandwidth,
and packet loss all affect loading time, though delay has
the highest PCC (0.49). Insufficient bandwidth can lead to
congestion and slow loading, while packet loss cause delays
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(a) VoIP PCC (b) Video PCC (c) Web Map PCC

FIGURE 6. Network Features Pearson Coefficient Correlation with QoEs of 3 Applications.

TABLE 2. P-values of Network Features

VoIP Video Web Map
PCC P-value PCC P-value PCC P-value

Bandwidth 0.058 0.0957
>0.005 0.5 9.206e-52

<0.005 -0.26 9.84e-14
<0.005

Delay -0.27 2.26e-15
<0.005 -0.1 0.003

<0.005 0.49 2.81e-49
<0.005

Packet
-loss -0.51 7.48e-56

<0.005 -0.45 1.11e-42
<0.005 0.35 5.02e-25

<0.005

through TCP retransmission. All three features impact the
Web map’s QoE, with delay having the most substantial
effect.

The significance of the correlation between network fea-
tures and applications’ QoE is evaluated using a hypothe-
sis test for the correlation coefficient. Utilizing a p-value,
which represents the level of statistical significance, results
are considered significant if the p-value is less than 0.05.
As shown in Table 2, most network features for the three
applications exhibit p-values smaller than 0.05, indicating
significant correlations between the network features and
application QoE.

C. QOE ML MODELING FOR 3 APPLICATIONS
1) Data collection/preparation
The data set is composed of descriptive features (link met-
rics) and a target feature (application QoE). The collection of
link metrics relies on the Ryu controller’s metrics collection
function model/API, as detailed in Section II-C2. The QoE
metrics for each application, including PESQ, APSNR, and
Loading time, will be measured and calculated according to
the methodology presented in Section II-B, serving as the raw
data.

Preprocessing Stage: Before training, the raw data must be
preprocessed to enhance its quality:
1. Handling Missing Values: Missing values may occur due
to data corruption or collection failure, such as when Ryu
fails to connect to switches. These values are removed.
2. Outlier Detection and Handling: Outliers can significantly
impact model accuracy and must be handled appropriately.
The outliers are detected and then removed before training.

3. Normalization: Given the large variance in feature scale
in the raw dataset, normalization using Z-Score transform
features to a similar scale, enhancing model performance and
training stability and reducing training time.

2) Dataset for QoE models Training
After preprocessing, the data contains approximately 76,000
prepared samples, with each sample consisting of network
metrics as descriptive features, and the corresponding appli-
cation’s QoE metrics, such as PESQ, APSNR, or Web map
PLT, as the target feature. Here is the descprition of each
dataset:
VoIP: The dataset consists of 8000 samples, with data fea-
tures including link metrics (Delay, bandwidth, packet loss),
and the target variable is PESQ.
Video streaming: The dataset comprises 32,000 samples,
with data features including link metrics (Delay, bandwidth,
packet loss). The target variable is APSNR.
Web map: The dataset comprises 36000 samples, with data
features including link metrics (Delay, bandwidth, packet
loss). The target variable is PLT.

3) Training
A QoE prediction model is required for each application and
each path length (2-link, 3-link, and 4-link). Four different
ML algorithms — RF, MLR, SVR, and GBR — are em-
ployed to train the QoE prediction models for the three appli-
cations of VoIP, video, and Web maps. The evaluation results
of the models after 5-fold cross-validation are presented in
Table 3 in the subsequent section.

4) Trained Models Evaluation
The Table 3 displays the performance of four ML algorithms
(RF, MLR, SVR, GBR) across three applications (VoIP,
Video, Web Map) using three metrics (MAE, RMSE, R2)
over 2-link, 3-link, and 4-link paths.
VoIP: RF and GBR excel with similar results, while MLR
lags significantly, and SVR offers intermediate performance.
Video: RF slightly outperforms GBR, MLR provides poor
results, and SVR demonstrates intermediate performance.
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Web Map: Again, RF and GBR lead, while MLR underper-
forms, and SVR offers an intermediate result.

In summary, RF and GBR consistently present better
performance than the other two algorithms, particularly in
building with non-linear relationships, as revealed in the
loading time of a web map. If packet loss is severe, the TCP
connection may fail, resulting in an automatic reconnection
and significantly increased loading time, deviating from a
linear relationship. MLR performs the worst, possibly due to
its inability to capture these non-linear relationships. Despite
its suitability for small data, SVR is not appropriate for large
data training (with over 10,000 samples in this case), result-
ing in suboptimal predictions. RF and GBR are somewhat
affected by outliers and extended training time, but all models
are trained under three minutes, with RF taking the longest.

Since real-time processing is not enforced, the offline
training model allows for flexibility in choosing between
RF and GBR, both of which provide the best prediction
results. By comparing the average values of these Evaluation
Metrics, RF presents a slightly better performance than the
GBR. For routing experiments, therefore, RF is selected as
the model used for QoE prediction when forecasting the QoE
of a path.

D. QOE AND OTHER ROUTING STRATEGIES’
PERFORMANCE ON SELECTING BEST PATH

A performance comparison was conducted between QoE
routing and five other routing strategies: Bandwidth-based
routing (BW_routing), delay-based routing (Delay_routing),
packet loss-based routing (PL_routing), Bandwidth De-
lay Constrained routing (BW-Delay_routing), and Band-
width Packetloss Constrained routing (BW-PL_routing).
BW_routing, Delay_routing, and PL_routing select paths
based on the highest bandwidth, shortest delay, or lowest
packet loss. The algorithms of BW-Delay_routing and BW-
PL_routing are presented in Section III-B.

Three hundred tests were conducted for each of the three
applications, employing the same six routing algorithms and
comparing all routing metrics under identical network link
conditions. To evaluate the success of a routing strategy, the
following process is presented:

1) Prior to implementing any routing strategy, route the
application traffic through all three available paths and
record the actual KPIs for each path. Identify the path
with the highest QoE (KPI) on actual KPIs and label it
as (path_hQoE);

2) Implement the routing strategies and calculate the pre-
dicted KPIs for each path. Compare the predicted KPIs
of all three paths and select the one with the highest
KPI as (path_selected), representing the path with the
predicted highest QoE;

3) If path_hQoE matched path_selected, the routing strat-
egy was deemed successful.

1) Best-path Selection Percentage Result
The percentage of cases where the selected path matched
the best path is calculated. Fig. 7 presents the Best-path
Selection Percentages for the three applications using the six
routing strategies. In Fig. 7, the y-axis indicates the best-
path selection percentage. The higher the best-path selection
percentage score, the more the selected path matches the
best path, indicating that the chosen path has the highest
QoE, referred to as the best-path. The figure reveals that
QoE routing outperforms the other five strategies across three
applications, showing the highest percentage of best paths
selected, with a notable value of 0.7841.

The results demonstrate significant improvements
achieved by the proposed QoE routing strategy in selecting
the best path, outperforming all six evaluated algorithms.
Specifically, QoE routing achieved the best path selection for
VoIP in 80.07% of cases, video in 77.49%, and Web map in
77.66%. These figures compare favorably to the second-best
routing strategy from existing techniques, which achieved
56.45%, 64.83%, and 58.6% respectively. On average, QoE
routing selected the optimal path 78.41% of the time, in
contrast to 58.6% by the next best strategy, BW-PL routing.

Furthermore, a close observation highlights that the other
five routing strategies are primarily influenced by the most
critical application-related network parameters, respectively.
This is related to the results in Fig. 6, presenting the most crit-
ical network parameter related to each application. For exam-
ple, VoIP is highly sensitive to packet loss, making it a crit-
ical network parameter. As illustrated in Fig. 7, packet loss
emerges as the key factor contributing to a higher selection
percentage for strategies like PL routing and BW-PL routing.
Therefore, for video streaming, routing strategies related to
bandwidth and packet loss (BW_routing, PL_routing, BW-
PL_routing, and BW-Delay_routing) perform well. On the
other hand, for web map routing, strategies related to delay
(Delay_routing and BW-Delay_routing) perform best. This
observation aligns with section IV-B, discussing the varied
impact of network parameters on different applications.

2) Best-path Selection CDF Result
To underscore a significant improvement in the QoE achieved
by the QoE routing compared to alternative approaches, Fig.
8 portrays a Cumulative Distribution Function (CDF) com-
parison of optimal path selections across multiple routing
strategies. CDF in Equation (4), where FX(x) represents the
probability that X falls within the interval [−∞, x], and R
represents the total range of x.
The equation to calculate CDF

FX(x) = P (X ≤ x), x ∈ R (4)

The X-axis in Fig. 8 represents the QoE values, while the
Y-axis indicates the probability that the QoE of the chosen
path is less than or equal to a given value. In Fig. 8(a), for
example, the black-circled point on the purple line indicates
that when the QoE routing strategy is applied to select the
best path, there is a probability of approximately 0.6 that the
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TABLE 3. Multiple ML Algorithms Trained QoE Models of 3 Applications

2-link Path 3-link Path 4-link Path Average
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

VoIP RF 0.3500 0.4808 0.7219 0.4538 0.5857 0.5377 0.5223 0.6819 0.5147 0.4421 0.5834 0.5914
MLR 0.6819 0.9248 0.1320 0.6730 0.8813 0.0201 0.6602 0.8898 0.1632 0.6717, 0.8986, 0.1051
SVR 0.5757 0.8205 0.3216 0.6140 0.8198 0.1720 0.6137 0.8452 0.2518 0.6123 0.8211 0.2456
GBR 0.3635 0.4855 0.7206 0.4616 0.5957 0.5225 0.5213 0.6760 0.5251 0.4533 0.5923 0.5874

Video RF 0.2468 0.4207 0.7936 0.2036 0.2963 0.8542 0.2293 0.3224 0.7833 0.2266 0.3465 0.8104
MLR 0.6074 0.7585 0.2375 0.6463 1.006 -0.6458 0.7373 0.9300 -0.5727 0.6637 0.8982 -0.3270
SVR 0.3086 0.4846 0.7226 0.2940 0.4274 0.7083 0.5978 0.8752 -0.2279 0.4001 0.5957 0.4010
GBR 0.2744 0.4445 0.7720 0.2286 0.3151 0.8373 0.2815 0.3602 0.7431 0.2615 0.3733 0.7841

Web Map RF 0.4854 0.6061 0.5008 0.4912 0.6402 0.6759 0.5268 0.4594 0.4124 0.5011 0.5686 0.5297
MLR 0.5604 0.7399 0.2560 0.5524 0.7813 0.1821 0.6343 0.8492 0.0707 0.5824 0.7901 0.1696
SVR 0.5272 0.6846 0.3631 0.5553 0.7879 0.1662 0.5911 0.7973 0.1775 0.5579 0.7566 0.2356
GBR 0.4803 0.5964 0.5168 0.4826 0.6240 0.4817 0.5065 0.6556 0.4503 0.4898 0.6252 0.4829

FIGURE 7. Best-path Selection Percentage of Multiple Routing Strategies

PESQ score achieved by this chosen path is less than 3.0.
In this context, CDF is employed to assess and compare the
QoE achieved by each selected path using various routing
strategies.

In Fig.8(a), six CDF lines represent different routing
strategies. The more the line is shifted to the right, it indicates
that the PESQ achieved by the corresponding routing is
distributed in a higher PESQ value range. Naturally, for VoIP,
higher PESQ values correspond to better performance. The
purple CDF line for QoE routing is shifted to the right,
indicating that it consistently achieves the highest PESQ
score for the selected path. This means that, given an equal
probability, the QoE routing (purple line) is more likely to
result in the highest PESQ path. For instance, at a probability
of 0.5, the QoE routing selects a path with a PESQ score
of < 2.9, while other routing strategies yield selects paths
with PESQ scores of 2.8, 2.8, 2.75, 2.75 and 2.6 respectively.
The order of shifting, from best to worst, is: QoE, BW-
PL/Packetloss, BW-Delay/Delay, BW routing.

Therefore, in the case of VoIP, at equivalent probability
levels, QoE routing consistently prioritizes the path with the
highest PESQ score when compared to other routing strate-

gies. This comparison extends to the other two applications,
where the CDF results indicate that, under the same proba-
bility conditions, the path selected by QoE routing attains the
highest KPIs score.

E. QOE AND OTHER ROUTING STRATEGIES
PERFORMANCE ON QOE DIFFERENCE

Selecting the best path based on percentage alone, however,
does not provide a comprehensive understanding of the effect
on routing decisions in the network. Often, two competing
paths may exhibit very similar KPIs and QoE scores, making
the choice between them less consequential. For instance, if
the video QoE APSNR on path 1 is 76, and path 2 is 75,
with path 3 at 40, path 1 will be chosen for its highest QoE.
However, the small APSNR difference between paths 1 and
2 implies that either would offer an almost identical user
experience.

In such scenarios, it’s more informative to examine the
QoE differences between the chosen path and the path with
the highest QoE, as defined in Equation (5). A smaller QoE
difference signifies that the selected routing’s QoE is closer
to the best possible, thus indicating a more optimal strat-
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(a) CDF of Best-path Selected for VoIP (b) CDF of Best-path Selected for Video (c) CDF of Best-path Selected for Web Map

FIGURE 8. CDF Analysis Comparing Best-path Selected across Various Routing Strategies.

egy. This relationship can be illustrated with a Cumulative
Distribution Function (CDF) in Equation (4), where FX(x)
represents the probability that X falls within the interval
[−∞, x], and R represents the total range of x. By applying
the CDF to the QoE differences (QoEdiff ), FQoEdiff

(x)
represents the probability that QoEdiff is smaller than the
value x.
QoE Difference

QoEdiff = QoEbest −QoEselectedPath (5)

In Fig. 9, the X-axis represents the value of the QoEdiff ,
and the Y-axis represents the probability that the QoEdiff

is less than or equal to that value. Taking Fig. 9(a) as an
example, where PESQdiff denotes the difference between
the highest and achieved PESQ, the point circled in black
represents that the probability of PESQdiff being less than
0.5 is approximately 0.65. In this context, CDF is used to
compare QoEdiff across routing strategies.

• VoIP: As illustrated in Fig. 9(a), six CDF lines represent
the PESQdiff for different routing strategies. QoE
routing (purple CDF) is left-shifted the furthest, indi-
cating the smallest PESQdiff . The order of shifting,
from best to worst, is: QoE, BW-PL/Packetloss, BW-
Delay/Delay, BW. The 75th percentiles corroborate this
order, with values of 0, 0.3, 0.6, and 0.75 respectively.
QoE routing consistently offers optimal performance for
VoIP;

• Video: In Fig. 9(b), QoE routing provides the smallest
APSNRdiff , followed by BW-PL, BW-Delay, Pack-
etloss, BW, and Delay routing. The 75th percentiles
further highlight QoE routing’s superior performance,
with values from 0 to 25. Again, QoE routing excels in
video, as observed in VoIP;

• Web map: In Fig. 9(c), the QoE routing’s superiority
continues, with a shift rate and slope scale order: QoE,
BW-Delay, Delay, BW-PL, and BW-routing. The 75th
percentile PLTdiff further supports this pattern, with
values of 0, 2500, 2510, 2500, 3000, and 5000 respec-
tively.

In Fig. 9, it is evident that the QoE difference exhibits the
smallest variation for QoE routing compared to the other

routing strategies. In the case of VoIP, the order of QoE
difference CDF lines precisely mirrors the reverse order
of the Best-path selection CDF (Fig.8). This indicates a
consistent performance ranking for all six routing strategies
across both evaluation aspects. Similar results are observed
for the other two applications, highlighting a consistent eval-
uation outcome. Consequently, the findings from both best-
path selection and QoE difference aspects align, ultimately
demonstrating that QoE routing outperforms the other five
routing strategies.

The results presented in IV-D and Section IV-E illuminate
the efficacy of different routing strategies concerning the
number of accurately selected paths and the QoE difference
away from the best path. Notably, QoE routing consistently
emerges as the optimal strategy, surpassing the others across
all tested applications.

V. CONCLUSION
This paper has explored the efficacy of a QoE-oriented rout-
ing strategy for various applications, leveraging network link
metrics. The framework, utilizing SDN tools, constructs a
relationship model between the network link and applica-
tion QoE through ML algorithms. Through rigorous testing
against five alternative strategies, the proposed QoE routing
strategy consistently outperforms, achieving the best path
selection in 80.07% of VoIP cases, 77.49% for video, and
77.66% for Web map applications, an average improvement
of 22% over the second-best method. An examination of
the QoE difference CDF further demonstrates that the QoE
routing chooses paths closer to the optimal QoE, providing
a nearly optimal performance. This research not only em-
phasizes the significance of QoE routing but also presents
a strategy that can notably elevate application performance,
opening doors for a responsive QoE feedback model.

The QoE routing methodology, initially validated in a
simulated Mininet network, holds promise for real-world
implementation in live networks featuring actual devices and
traffic, thereby enhancing its practical significance. Addition-
ally, the reliance on a ML-based QoE model suggests po-
tential for improvement through the integration of authentic
human feedback a consideration for future development. Our
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(a) VoIP CDF (b) Video CDF (c) Web Map CDF

FIGURE 9. Comparison of QoE difference for Multiple Routing Strategies

approach involves incorporating RL in the training process to
refine the model’s adaptability and precision. Real-time QoE
feedback from end-users is collected and compared to pre-
dicted KPIs. Higher rewards are assigned when user feedback
closely aligns with predicted KPIs, facilitating model fine-
tuning through RL algorithms and adaptive decision-making
based on user input. This dynamic process contributes to
improved overall performance and user satisfaction. Despite
the ongoing need for refinement, our QoE routing strategy
demonstrates noteworthy strengths by prioritizing user ex-
perience over conventional network service enhancements.
Its practical applicability extends beyond the current context,
making it suitable for diverse scenarios and establishing our
research as a fundamental contribution to the evolution of
QoE routing. Looking ahead, the findings from this study
provide a foundation for future endeavors aimed at develop-
ing an optimized and adaptive QoE routing system.
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