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ABSTRACT In this paper we delve into the properties of transformers, attained through self-supervision, in
the point cloud domain. Specifically, we evaluate the effectiveness of Masked Autoencoding as a pretraining
scheme, and explore Momentum Contrast as an alternative. In our study we investigate the impact of data
quantity on the learned features, and uncover similarities in the transformer’s behavior across domains.
Through comprehensive visualizations, we observe that the transformer learns to attend to semantically
meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry.
Moreover, we examine the finetuning process and its effect on the learned representations. Based on that,
we devise an unfreezing strategy which consistently outperforms our baseline without introducing any other
modifications to the model or the training pipeline, and achieve state-of-the-art results in the classification
task among transformer models.

INDEX TERMS Deep Learning, Explainability, Point Clouds, Self-Supervision, Transformers

I. INTRODUCTION
Deep learning models at large scale require adequately large
labeled datasets to be able to learn. This is clearly a limitation
for deep learning in general, since manual annotation is a
very time-consuming and costly task. As a result, it was a
great breakthrough when it was discovered that models can
actually benefit from unlabeled data, by using them to design
and solve pretext tasks, in which the sample itself is the label.

This concept appears to have features resembling a real-
world analog, that is, the training happening inside a small
child’s/infant’s brain. Supervision from experts (adults) is
actually responsible for a small percentage of knowledge
acquired throughout a human’s lifespan, and it mostly tailors
to specificmaterial rather than the perception of the real world
at large. Simply by observing the behavior of other people and
surrounding objects, they gain intuitive understanding of their
environment. While we have fairly successfully replicated
a form of supervised learning, self-supervision is an area
that still lags behind, despite theoretically offering the most
advantages.

Naturally, the data needs to be diverse and of sufficient size
for this process to actually yield any benefits. Fortunately, by
leveraging the ocean of unlabeled data that is freely available
on the web, researchers have managed to significantly boost
the performance of their models. Great examples of this
concept can be found in both language [1] and in image [2, 3]
domains, showing great promise for a variety of potential
applications in other domains.
The most intuitive and (arguably) popular pretext task

applied both in vision and language is the so-called “fill in
the gaps”. It refers to tasks where input samples are truncated
to occlude pieces of information or corrupted by applying
various types of perturbations and noise. The deep learning
model is given the damaged sample as input and is tasked
to reconstruct/complete the original. During this process, the
model learns features related to the sample’s class. These fea-
tures are incredibly useful and can be leveraged to improve the
performance of the model in downstream supervised tasks,
involving potentially much smaller datasets.
As this approach became more common, more sophisti-
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cated techniques of self-supervision were devised [4, 5, 6].
However, few studies have actually delved into what it is that
the models actually learn [7, 8, 9] and even fewer have exam-
ined point clouds in particular [10, 11]. Point Cloud models
differ significantly from image-based ones. As opposed to an
image’s canonical grid structure, uniform density and general
data availability, the point clouds are highly irregular, highly
inconsistent in terms of density, and are generally scarce com-
pared to images. Additionally, contrary to an image’s fixed
pixel position, point clouds are unordered, often different
in terms of cardinality, and require that their handling be
invariant to permutations. Due to these challenges that arise
in the domain shift from language/image to point clouds, we
find that this particular area is lacking.

In this study we adopt the standard transformer as our base-
line model. By "standard transformers" we refer to models
that follow the architecture presented in ViT [12], as opposed
to architectures that use transformer-like blocks. It is a highly
versatile, strong architecture that has demonstrated incredible
results in both language and vision, overtaking previous state-
of-the-art models [13]. However, transformer-based works
on point clouds do not reflect this success. In this work we
explore various aspects of this architecture, in order to better
understand its inner workings and find ways to improve its
performance. We argue that our findings will be of further
use in future works, since they are targeted at a widely used,
general-purpose architecture rather than a specialized one.

To summarize, our contributions are twofold:
• We propose strategic unfreezing, a finetuning strategy

that retains the properties of the backbone, learned
through pretraining, while increasing the accuracy of
our baseline both in ModelNet40 (+0.5%) and ScanOb-
jectNN (+0.86%, +1.73%, +0.07%), and achieving state-
of-the-art results among transformer models. (Sec. IV)

• We adjust explainability tools from the image and NLP
domain to work with point clouds, with the aim of under-
standing the inner workings of the transformer and the
effect of pretraining. Interestingly, we uncover that with
more data, the transformer seems to learn the inductive
bias of convolution, to attend locally. (Sec. V)

II. RELATED WORK
A. DEEP LEARNING ON POINT CLOUDS
The domain shift from 2D to 3D came with several extra
challenges, due to the lack of grid structure and uneven den-
sity of point clouds. Early attempts involved the application
of image methods as-is, using multi-view images [14, 15]
or voxels [16, 17]. Not long after that, specialized archi-
tectures emerged. PointNet [18] pioneered point-wise MLPs
and pooling for extracting global features. PointNet++ [19]
later followed a multi-scale approach by incorporating neigh-
borhood information. Following this paradigm, other works
create more complex kernels, taking advantage of geometric
priors [20, 21, 22, 23, 24].

More recently, transformer variants have been successfully
applied to the point cloud domain. Originally introduced

FIGURE 1. Graphical description of the two pretraining pipelines studied
in this paper, namely Masked-AutoEncoding (MAE) [25] and Momentum
Contrast (MoCo) [4]. In simple terms, MAE trains an autoencoder to
reconstruct a shape with missing parts, whereas MoCo trains two
networks (Student/Teacher) to generate approximately equal predictions
for different augmentations of a data sample.

in [26], transformers were quickly established as the go-
to choice in NLP. Dosovitskiy et al.[12], later introduced
the vision transformer, operating on image data. This was
accomplished by tokenizing the input into patches and incor-
porating spatial information through a positional embedding.
This approach also allowed data from different modalities to
be used jointly [27, 28], making the transformer the most
prominent architecture in that field. Point Transformer [29] is
among the first works to apply a transformer-like architecture
to point cloud data. They apply intra-neighborhood attention
to create a patch feature vector and use pooling operations to
downsample the point cloud.
In PCT [30], they extract point embeddings through a

downsampling network and apply a series of single attention
transformer layers to the remaining points. The feature maps
of these layers are concatenated, and global features are
extracted through mean and max pooling. In PVT [31], the
authors create specialized attention modules for both points
and voxels, utilizing the complementary information they
contain to extract better features.
Point-BERT [32] tries to generalize the plain transformer,

as used both in Image and NLP. They train a ’tokenizer’
autoencoding network, based on DGCNN [33], to map point
neighborhoods into feature vectors. During pretraining, a
transformer encoder-decoder architecture receives masked
point clouds as input and tries to reconstruct the embeddings
of the ’tokenizer’. Additionally, the classification token is
trained through a contrastive loss like in [4]. Point-MAE [25]
and Point-Multiscale MAE (M2AE) [34] both utilize masked
autoencoding to pretrain their transformer backbones, by
reconstructing the actual points of the masked neighbor-
hoods directly. Point-M2AE uses a pyramid-like backbone
that gradually downsamples the input point cloud, obtaining
multi-scale features. On the other hand, Point-MAE uses the
same architecture as Point-BERT, that is, the plain trans-
former.
While hierarchical architectures such as M2AE are typi-

cally associated with slightly better performance, they require
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parameter tuning when transferred to other domains or scaled
to larger datasets. Since the main scope of this work is ex-
plainability, the simplicity and cross-domain applicability of
MAE are more valuable. It can be trivially scaled by adding or
removing blocks and provides a fair ground for comparisons
with image and NLP. Therefore, for our baseline model, we
choose to adopt the transformer presented in Point-MAE [25].

B. SELF SUPERVISED LEARNING
The idea of making use of large amounts of unlabeled data to
improve a learning model is not new, rather it has been around
for decades [35, 36, 37, 38]. Its popularity did not surge until
the mid-2010s [2, 3, 39] however, when the availability of
unlabeled data at scale started to increase and the potency of
hardware could finally keep up to the challenge. Of particular
importance is masked autoencoding, pioneered by [1], which
revolutionized language modeling. This paradigm was later
followed by other works, such as [40, 41, 42], that further
scaled up in terms of parameter and dataset size, achieving
state-of-the-art results in the few-shot and zero-shot settings.
In [43] they experiment with pretraining by using synthetic
data, artificially injected with desirable properties.

Another line of work that has been amassing popularity
recently is contrastive learning [4, 5, 44, 45, 46, 47, 48]
as a way to learn meaningful data representations. It is ac-
complished by generating positive and negative sample pairs
and training the model to pull together or push them away,
respectively. The pairs are generated through data augmen-
tations; perturbations, crops, and transformations. A similar
idea, dubbed contrastive clustering, is applied to groups of
samples instead of pairs [6, 49]. [6] in particular, eases up the
computational load by introducing learnable cluster centers.
In [50], the authors eliminate the need for negative pairs by
training two networks to produce matching feature vectors for
two different views of the same sample.

Despite the scarcity of point cloud data compared to image
and language data, and the corresponding need for good self-
supervision techniques in this domain, the topic has only
recently begun attracting attention. [51] proposes to split
point clouds into parts and use these parts to parameterize
gaussian mixture models. The model is then trained by using
a loss that resembles likelihood maximization. In [52] the
authors perform patch-level contrastive learning. By rotating
a query patch they form positive pairs, while negative pairs
are formed by taking into account any other patch of the
shape. A similar approach is followed in [53], finding positive
and negative pairs by using an inductive model to perform
pseudolabeling. In [54], a similar approach to masked au-
toencoding is followed, that is, completion of occluded point
clouds acquired by taking custom viewpoints through virtual
cameras. [55] argues that performing pretext tasks on single
object point clouds might have limited benefits in real world
applications. They instead sample positive and negative pairs
from complex scene scans, hoping to get a better estimate of
the target distributions, and apply a contrastive loss to train
their model.

C. EXPLAINABILITY IN DEEP LEARNING
An extremely important field in deep learning research is
explainability. Deep models are generally seen as black boxes
and any attempt at designing new or improving existing mod-
els is usually empirical. Nevertheless, there are several tools
one can use in order to better understand a model’s behavior.
In [56, 57] the authors present CKA, a similarity measure
between feature representations of two arbitrary neural net-
works. [7] utilizes this tool and provides valuable insights into
the differences between how CNNs and transformers learn,
while [58] tries to compare the representations of networks
with different depths and feature map sizes. Other works
[9, 11] utilize gradient-basedmethods in order to visualize the
receptive fields or the relevancy of input patches towards the
model’s decision. We use a combination of all the above tools
to attain a complete picture of our model and accompanying
pretraining scheme.

III. BASELINE METHOD, TOOLS, AND DATASET
In this section, we briefly overview our baseline model and
pretraining setup. After training and finetuning, we assess the
quality of the learned features both qualitatively and quanti-
tatively by using explainability tools and measuring the ac-
curacy in the classification task. Further details regarding the
model and the training process can be found in the appendix.
We utilize pytorch lightning1 for our codebase, in favor of
clarity, transparency, and reproducibility. The code is publicly
available on github2.

A. MASKED AUTOENCODERS
For our baseline model, we adopt the vision transformer
trained with masked autoencoding, as presented by Pang et
al. [25], which we restate here for the sake of completeness.
The transformer is comprised of 12 blocks with 6 attention
heads per block. The input point cloud is split into N, possibly
overlapping patches, 60% of which are masked out. The re-
maining patches are embedded into feature space via a small
PointNet-like [18] network, and the patch centroids are used
to generate positional encodings. The two are added to form
the input to our transformer, which outputs a feature vector
for each patch. At this stage, masked patches are assigned a
mask token and a positional encoding and are concatenated
with the rest before being fed into the decoder. The decoder
reconstructs the masked patches and a reconstruction loss
based on Chamfer distance is applied patch-wise.

B. EXPLAINABILITY TOOLS
For explainability, one of the main points of interest in this
work, we utilize a variety of tools. The Centered Kernel
Alignment criterion offers a versatile way of comparing fea-
ture representations between two models across a dataset,
and its importance to our work cannot be overstated. It pro-
vides insights into the differences between models that have

1https://www.pytorchlightning.ai/
2https://github.com/VVRPanda/ExpPoint-MAE.git

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3388155

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Comparison of different unfreezing points for the backbone of
the transformer model. Unfreezing the model too early or too late can
result in suboptimal results, as the network may either ’forget’ the
features learned through pretraining or fail to acquire task-specific
knowledge, respectively.

been pretrained & finetuned vs just finetuned, as well as
models that have been pretrained using varying datasets and
or strategies. We omit the math behind CKA and refer the
interested reader to [56, 57]. Attention visualization is another
commonly used tool that helps to understand how the model
correlates the point patches based on the extracted geometric
features. Finally, we compute and visualize the receptive
fields to better understand the information flow within the
network.

C. DATASET

As opposed to their image counterparts, point cloud datasets
are generally fewer and significantly smaller in size. Addi-
tionally, there are a lot of impactful differences between point
cloud datasets, including sampling density, scanning device-
specific artifacts, and shape variations in general (real-world
objects, CAD models). As a result, a model trained on a
specific dataset may not generalize to other data distributions.
Our first goal towards explainability is to see how the amount
of training data might affect the network’s performance. To
this end, we concatenate the commonly used ShapeNet [59]
with the more obscure CC3D [60] (41k and 43k training sam-
ples, respectively). CC3D contains high resolution, single-
object, fine-grained CAD shapes from arbitrary categories. To
study the effects of the increased volume of data, we conduct
pretraining experiments using only ShapeNet (S) and the
concatenated dataset (C+S). We compare the two by finetun-
ing for classification in ModelNet40 [61] and ScanObjectNN
[62] and report the results in Tables 1, 2. In both cases, our
proposed dataset helps achieve better accuracy. For the rest
of the paper, we will be using C+S for pretraining, unless
otherwise specified.

IV. STRATEGIC UNFREEZING
There are several ways to approach the finetuning process of a
pretrainedmodel.Most commonly, the pretrained backbone is
frozen, that is, gradient propagation is allowed but no weight
updates happen, and a smaller classification (or other) head
is trained to map the learned features to logits. This method
is based on the assumption that the backbone has already
learned a robust representation of the data and is capable of
separating the class clusters effectively. However, the learned
data representation often differs significantly from the data
used in the downstream tasks. A great example of this is
pretraining on synthetic data and using the model in real-
world applications.
Another approach is to perform task-specific adjustments

to the model by training both the backbone and the added
head end-to-end using a small learning rate. However this
contains an important caveat, as the random initialization of
the classification head’s weights can cause the weights of the
backbone to be perturbed in an unintended direction, effec-
tively destroying the learned features and representations.
In order to properly evaluate these approaches we perform

comparative the following experiments.

• We test the first method by measuring the accuracies
in ModelNet40 classification (Figure 2). We see that
when keeping the backbone frozen and only relying on
the classification head, the accuracy is vastly inferior
compared to the backbone being unfrozen at various
intervals. This is because no task-specific knowledge has
been incorporated into the backbone.

• In Figure 3(a), we test the second method. We compare
the pretrained backbone that has been finetuned without
freezing and the pretrained backbonewithout finetuning.
It is evident that there is hardly any similarity between
them, except for the very early layers. This arguably
defeats the purpose of pretraining, since very few of
the valuable properties are retained in the final network.
This deficiency is also reflected in the final accuracy
score, as seen in Figure 2.

• Finally, in Figure 2 we note the accuracy of the model
that has not been pretrained. It exhibits the lowest ac-
curacy among all models that have been pretrained,
proving the effectiveness of pretraining.

Before diving into what the model actually learns (section
6), we first propose a two-stage training scheme that retains
the pretrained network’s characteristics and obtains superior
performance. First, we train the classification head for the
majority of epochs, ensuring that it has learned to separate
the clusters formed via the backbone. Finally, we jointly train
both of them for the remainder of the epochs. In order to
figure out the appropriate step to unfreeze the backbone,
we perform several experiments and compare the feature
representations with the pretrained network each time (Figure
3). Additionally, we measure the best and the convergence
accuracy for each of these models in the classification task
on ModelNet40 (Figure 2). It is evident that the earlier the
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FIGURE 3. CKA comparison of the pretrained backbone (y-axis) with versions that have been finetuned for 300 epochs, unfreezing the backbone on
various epochs (x-axis). The first and second blocks indicate the positional and feature embedding extractors, while the rest of the blocks correspond to
the outputs of the attention layers. High values indicate high similarity between feature representations. The later the network is unfrozen, the higher the
similarity with the pretrained backbone, retaining the properties learned through pretraining. In the case of (a), as done in [25], the final network has very
little similarity with the pretrained backbone, thereby nullifying the effectiveness of pretraining.

backbone is unfrozen, the more the pretrained backbone’s
features are distorted, and the final accuracy is compromised.

In order to identify the proper unfreezing epoch, one must
consider the data and the task. ForModelNet40 classification,
as a subset of ShapeNet, similar samples were seen by the
model during pretraining. As a result, unfreezing during the
late stages is appropriate. On the other hand, when finetuning
on ScanObjectNN, that consists of real scanned objects, it is
wiser to unfreeze earlier so that the backbone can become
accustomed to the new data distribution. Finally, when fine-
tuning on the hardest variant of the ScanObjectNN which
includes other modifications, such as rotations, we found
that the most effective way is to perform an extra domain
adapaptation pretraining step, before finetuning. The results
of this step can be seen in Table 2 in the SoNN entry. More
details are presented in the Appendix.

Designing and training a model is a difficult and iterative
process, that is based heavily on parameter tuning.We believe
that with our method researchers will be able to make more
informed decisions that will allow them to utilize their models
to their maximum capacity.

TABLE 1. Comparison of different transformer based models and
pretraining schemes with and without using voting on the ModelNet40
test set.

MODEL W/O VOTING VOTING
Point-BERT [32] 92.7 93.2
MaskPoint [63] - 93.8
Point-MAE [25] 93.2 93.8
PCT-2L [30] 93.2 -
PCT-3L [30] 93.4 -
Point-M2AE [64] 93.4 94.0
Ours (S) 93.6 -
Ours (C+S) 93.7 94.2
Blue and Cyan denote 1st and 2nd highest.

V. EXPLAINABILITY STUDY
A. ATTENTION VISUALIZATION
In this section, we will use the finetuned backbone, pretrained
with MAE, and finetuned with the strategy outlined in the
previous section. This is because it retains the useful prop-

TABLE 2. Classification results on ScanObjectNN. The HARD variant refers
to PB-T50-RS that is the most challenging one.

MODEL OBJ-BG OBJ-ONLY HARD
Point-BERT 87.43 88.12 83.07
MaskPoint 89.3 89.7 84.6
Point-MAE 90.02 88.29 85.18
Point-M2AE 91.22 88.81 86.43
Ours (unfr 200) 90.88 89.33 84.98
Ours (unfr 250) 87.44 90.02 83.80
Ours (SoNN1) 90.36 89.67 85.25
Blue and Cyan denote 1st and 2nd highest.
1: SoNN indicates that the model has been pretrained for a few
epochs in the ScanObjectNN-hard dataset.

erties acquired through pretraining, but also has a trained
classification token, as opposed to [25], which uses max-
average pooling. By visualizing the attention matrices at
each block we can obtain meaningful information regarding
how the model correlates various parts of the shape. This
information can help identify patterns that indicate whether
the pretraining procedure was successful, such as semantic
correlation, symmetry, and locality.

We observe that in all input shapes, the first attention block
is always global, while the rest gradually shift from attending
to specific regions to attending globally. Sharp geometric fea-
tures in particular attract high attention scores in most layers
(Figure 4). This behavior is quantitatively verified through
attention distances in the following section.

It is important to note that finetuned models that have not
been pretrained do not share this trait. As can be seen in figure
5, although the classification token attends to locations with
valid semantic meaning, the behavior is erradic, repetitive and
there is no clear transition from specific areas to the whole
shape.

B. ATTENTION DISTANCE

Following the paradigm of [7], we study the sorted attention
distance. The mean Attention Distance (mAD) of layer l for
a head h is calculated as follows:
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FIGURE 4. Attention Visualization of the classification token for each block (1-12), averaged across heads (brighter = higher score). Although the
classification token’s attention score towards itself cannot be visualized, it has the highest value in all cases. This score is included in the normalization
process, so that the relative scale between them is visible.

FIGURE 5. Attention Visualization of the classification token for each block (1-12), averaged across heads for a finetuned model without pretraining. It is
evident the locations it attends to do not follow any recognizable pattern. In each layer, the attention is focused on a specific location, which is often the
same between layers (e.g. head in layers 0,5,7,10).

mADl,h =
1

N 2

∑
ij

Al ⊙ D

Where AN×N
l is the attention matrix of layer i and DN×N

is the distance matrix, where each entry di,j is the Euclidean
distance between centers i and j and the ⊙ symbol denotes
the Hadamard product. The product is averaged across all
entries to obtain a mean attention-distance value, which is
also averaged across the validation set of ModelNet40.

Based on the graphs in Figure 6, it can be inferred that
with the increase in the amount of training data, the earlier
layers tend to focus more locally with certain attention heads,
while others still maintain a global focus. This observation
suggests that the transformer network may begin to learn
the inductive bias of the convolution, that is, attending to
local features, while still retaining the capability to aggregate
global information, thereby resulting in more comprehensive
representations. This mitigates the general struggle of self-
attention to model local relationships [65], without requiring
any modifications to the architecture.

Interestingly, our findings are consistent with those of
[7, 66, 67], indicating that transformers may exhibit akin
behaviors across domains. A noticeable difference is that in
the case of ShapeNet (Figure 6b) the first two layers seem
attend globally with all of their attention heads, whereas when
CC3D is added to the pretraining data, this phenomenon is
only observed in the first layer (Figure 6c). We assume that
the network requires a rough understanding of the entire shape
before opting to extract local features. This demeanor should
be studied further if point cloud datasets at large scale become
available in the future.

C. EFFECTIVE RECEPTIVE FIELDS
We have established that by using our unfreezing strategy,
the final network shares many similarities with the pretrained
network. In order to understand their differences (trained for
pretext versus downstream tasks), we visualize the effective
receptive fields [7]. We accomplish this by selecting a patch
and propagating the gradients backwards from its feature
vector to its embedding, including both feature and positional
information. We then visualize the norm of said gradients and
present the results in figure 7.
We notice that the pretrained model, trained explicitly

for reconstruction, looks strictly at neighboring as well as
semantically similar patches, since they contain the most
relevant information. These areas have the highest impact
on the finetuned model as well, but its receptive field is
noticeably wider. We believe this is because the classification
task requires global features.

VI. CONTRASTIVE LEARNING
Having delved into the inner workings of masked autoen-
coding and the properties associated with it as a pretraining
scheme, we need to evaluate its effectiveness against other
pretraining methods in the literature. We choose what we
believe to be the next most popular one, contrastive learning.
Impressed by its performance in the image domain, we follow
the approach of Momentum Contrast (MoCo) [4], which we
extend to work with 3D data.
In MoCo, two copies of the network are trained simulta-

neously, one through backpropagation and the other using a
momentum update rule. Positive pairs are created by feeding
crops of the same shape with different augmentations to
these networks, while previous activations of the momentum
network act as negative pairs.We follow the same strategy and
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FIGURE 6. Attention Distance of the attention heads (distances are sorted in ascending order for clarity). The distances are averaged across the entire
validation set of ModelNet40. We see that as the amount of data increases, early layers of the network begins to attend locally, while higher layers
incorporate global information, exhibiting similar behaviour to ViT in the image domain[12] Notably, a key difference is observed in the very first layer,
where all heads consistently attend globally.

FIGURE 7. Effective receptive fields of the patch of interest (colored in
red). We compute the gradient of the feature representations generated
by the last layer with respect to the input patches. Each point is colored
based on the magnitude of the gradient of its corresponding patch. In the
right variant, that is finetuned for classification, the model retrieves
infrormation from the entire shape, as it tries to incorporate class
information. Conversly, the left variant, that is the pretrained backbone,
focuses mostly to local and symmetric parts, aligning with the task it was
trained for, that is reconstruction.

create our crops by using a mix of gaussian noise, anisotropic
scaling, rotations, and random point dropouts.

By finetuning the models pretrained with MoCo, we ob-
serve that, although it improves the original model without
pretraining, there is a significant gap in accuracy compared to
its MAE counterpart (Table 3). This, however, does not rule
out the possibility that other variants of contrastive learning
might be more effective. Instead, it suggests that a well-
designed pretraining scheme will most likely offer a signif-
icant performance boost to any baseline model.

TABLE 3. Network Accuracy Achieved with different pretraining schemes

Model No Pre. MAE MoCo MAE & MoCo
Accuracy 91.1 93.7 92.2 91.8

As opposed to masked autoencoding, an interesting prop-
erty of contrastive learning is that it allows the classification
token to be trained during the pretraining stage. In fact, by ex-

FIGURE 8. Attention scores of the classification token, averaged across all
heads, pretrained using the MoCo pipeline. We visualize a subset of the
network layers, [1, 3, 7, 8] left to right. While in the early layers the CLS
token attends to meaningful parts of the shape, exhibiting a tendency to
attend at symmetric parts, from layer 8 and onwards it attends uniformly
to the whole shape.

FIGURE 9. Comparison of Attention Distances achieved through Masked
AutoEncoding (MAE) [25] and Momentum Contrast (MoCo) [4] pretraining
schemes. We observe that the setup of MoCo is insufficient to enable the
transformer to learn to attend locally. Layers 10 and 11 in MoCo have the
exact same attention distance.

amining the attention scores, we notice that the classification
token attends to characteristic areas of the input shape, and
exhibits symmetry, by attending to shape parts with similar
semantics (Figure 8). We also observe that from layers 8 and
onward, the CLS token attends uniformly to the whole shape.
This is verified by Figure 9b where layers 10 and 11 have the
exact same attention distance across all heads. Finally, we see
that through MoCo pretraining the backbone does not learn
to attend to neighboring patches, indicating that the training
scheme might require more data or alterations to converge.
For the sake of completeness, we also tested a MoCo and
MAE hybrid (details in the Appendix).
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FIGURE 10. CKA comparisons between the two pretrained backbones (MAE and MoCo pipelines) and themselves. The first two entries correspond to the
positional and feature embedding respectively while the rest to the outputs of the attention blocks. We observe little resemblance between the
representations learned through the different pretraining pipelines. Interestingly, the final feature representations obtained through the MAE pipeline
appear to rely more on the features learned within the layers of the network, showing little similarity with the positional embeddings. Conversely, the
MoCo pipeline demonstrates a higher reliance on the positional embedding.

Furthermore, useful insights can be extracted by comparing
the two pretraining schemes against each other, as well as
themselves, to get an idea of how the information is dis-
tributed throughout the layers. The results can be seen in
Figure 10.

We observe that middle layers in MAE seem to have
similar feature representations, while there is some similarity
between input and output layers. However, the same does not
seem to apply to MoCo, where each layer has common rep-
resentations only with a few of its preceding and succeeding
layers, creating a chain-like representation. Astoundingly, the
layers seem to gradually lose their similarity with the early
feature embedding and rely more and more on the positional
embedding, whereas in MAE, the feature embedding is the
most dominant in all layers. Naturally, MAE and Moco are
based on fundamentally different principles, so they bear very
little resemblance and only in the middle layers.

VII. ABLATION STUDIES
In the ablation study section we focus on two separate topics
that are themasking ratio and the intermediate representations
of the transformer layers.

Firstly, we focus of the reconstruction abilities of the back-
bone, trained through the MAE pipeline. Point-MAE has
already studied the effect of masking in the final accuracy,
concluding that a 60% masking is the optimal choice. In
our experiments we want to test the reconstruction ability of
the network when masking the input with a higher ratio. As
depicted in Figure 11, even in the extreme case when 90% of
the model is masked out, the network can provide a decent
reconstruction. We believe that this is because positional
embeddings of the masked patches are given to the decoder,
providing useful hints regarding the position of individual
parts.

The classification token in the transformer model progres-
sively accumulates information in order to get a high-level
understanding of the input shape. In our second experiment
we try to evaluate the representation attained through in-
termediate layers. In Figure 12 we use the same pretrained
backbone, but use only a subset of its transformer blocks.

Original 60% 80% 90% 95%

FIGURE 11. Reconstruction results using different masking ratios. The
network is pretrained, using MAE, with a 60% masking ratio. We test the
reconstruction ability of the system when we provide as input a point
cloud with higher masking ratios. Input and reconstructed patches are
shown in red and cyan, respectively.

TABLE 4. Classification results on ModelNet40 when using the CLS token
from previous layers as global descriptor of the 3D shapes. The network is
trained with our unfreezing strategy, that is training only the cls head for
the first 250 epochs.

Model Point-BERT Point-MAE Ours(full depth)
Acc. 92.70 93.19 93.70
Without Layers -5 -4 -3 -2 -1
Acc. 93.23 93.56 93.48 93.40 93.52

Numeric results are presented in Table 4 . When removing
up to 5 layers, the model manages to retrain an accuracy
above the baseline. Interestingly, that’s the same layer in
which the transition from location-specific to uniform at-
tention becomes clearer. This indicates that the class cluster
separation is possible even in earlier layers, and any additional
information simply contributes to refining these clusters.

VIII. DISCUSSION
Using our proposed unfreezing strategy, we manage to out-
perform our baseline model, as well as models that use
transformers in a similar way. We do not use voting unless
explicitly mentioned for fair comparisons, nor do we include
random transforms in the validation set. The method we
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FIGURE 12. Accuracy graph of truncated copies of the same model. Each
entry specifies the layer from which the feature vector is derived (all
succeeding layers are discarded for that run). We observe that the model
maintains higher accuracy than the baseline, even with a fraction of the
original model’s parameters.

suggest combined with our learning rate scheduling policy
yield stable training with very close convergence points and
weaker fluctuations.

Given sufficient training time, task-specific knowledge
must be incorporated into the backbone in order to improve
performance, but only when the head network has been
trained enough for the weights to move in the appropriate
direction. The specific intervals can vary depending on the
task and dataset. For instance, data with background obtained
from scans (in ScanObjectNN) require more train time for
the backbone, so the optimal unfreezing point is around 200
epochs instead of 250. We also find that when the data distri-
bution is fairly different from the pretraining data, it is more
beneficial to pretrain our network for a few epochs in the new
distribution instead of unfreezing the backbone earlier (Table
2).

In our explainability experiments, we observe that point
neighborhoods with sharp geometric features are generally
more likely to be attended to by the classification token. This
is an indicator of good pretraining, as sharp features are more
relevant descriptors of the sample’s class. We also notice that
the transition from local to global seems characteristic of
transformers. This property is experimentally backed in the
image domain [7], and our own experiments confirm that this
holds true in point clouds as well. An additional surprising
finding is the contrast between the behaviors of two finetuned
models, one that has been pretrained and one that has not. In
the first case the human eye can clearly capture a transition
from local to global, whereas in the second case the attention
scores are mostly random, containing no identifiable pattern.

Finally, we remark that doubling the volume of data causes
more attention heads to attend locally and introduces accuracy
boosts in the classification task, albeit small. In [7] they
observe similar behavior but with even greater impact, which
is likely attributed to the significantly larger scale of both the

datasets and models. Nevertheless, in both cases it suggests
that local information aggregation is a property linked with
good performance.

IX. FUTURE WORK
Our analysis in section VI demonstrates that contrastive
learning exhibits useful properties, namely, symmetry and
the ability to train a classification token in the pretraining
stage. Consequently, we believe that contrastive learning can
potentially outperform MAE in several tasks, given enough
training time and data. In fact, we theorize that due to their
distinct characteristics, some pretraining schemes may offer
greater advantages for a specific downstream task than others.
In future work, we plan on experimenting on a framework
for determining which pretraining scheme to use, in order to
utilize our models to their fullest potential.

APPENDIX A
MOCO & MAE HYBRID PRETRAINING
Wedevise a pretraing sceme that combines both core concepts
from MoCo and MAE. The main idea is that the reconstruc-
tion loss from MAE will help the backbone converge faster,
being a more straightforward task, and the contrastive loss
will help in training the CLS token and slightly contribute to
the backbone features as well. The scheme is realized through
a weighted sum of both losses, appropriately scaled so that
they are in the same order of magnitude.
Specifically, the standard reconstruction loss presented in

[33] is applied (Lrec) and a contrastive loss, Lcon, as in [20] is
added, using a queue size of 4096 encoded samples. The final
loss function is realized as:

L = Lrec + wc · Lcon

Where wc was set to 10−2 to bring the two losses to
the same order of magnitude. We also experimented with a
smaller weight(10−3), as theMoCo loss is responsible mainly
for the CLS token. Both approaches, however, produced sim-
ilar results.
Although the hybrid model’s accuracy reaches an unim-

pressive 91.8% score, we believe that with further research
it is possible to create a model that makes the best of both
worlds (masked autoencoding and contrastive learning).

A. STRATEGIC UNFREEZING
As briefly discussed in the main paper (due to space con-
straints), the finetuning data from ModelNet40 have already
been seen during the pretraining stage and therefore the dis-
tribution of said data has been captured by the backbone.
Therefore, it is sufficient to only train the backbone for the
last 50 epochs, where the learning rate is small enough so that
no overblown weight updates happen.
The ScanObjectNN is probably an even better indicator of

this strategy. We observe that in table 2, when training on ob-
jects without background the same unfreezing point yields the
best results. On the other hand, when background is included,

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3388155

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 13. Confusion matrix visualization for the validation set of
ModelNet40. Each row has been normalized through division by the
number of samples of that class.

unfreezing at 200 epochs is optimal and obtains even better
accuracy. While the higher accuracy can easily be attributed
to the extra information contained in the background itself, it
is important to notice that the background changes the data
distribution significantly. This change, coupled with the fact
that the data has been obtained through scanning, leads us to
think that 50 epochs is no longer enough for the backbone to
adjust to the new distribution.

This argument is further verified by finetuning on the hard
variant of ScanObjectNN. Sure enough, 100 epochs of train-
ing with the unfrozen backbone makes a staggering +1.18%
difference in accuracy compared to 50 epochs, however it is
still far from the optimal, which is to pretrain the network for
a few epochs on this dataset. In our experiments, 40 epochs
of pretraining are adequate to reach an accuracy of 85.25%,
that surpasses our baseline Point-MAE.

Generally speaking, there is no explicit way to determine
the exact epoch, at which the unfreezing yields optimal re-
sults. However, our proposed "strategic unfreezing" method
is a practical way of iteratively improving the model at hand,
by providing concrete proof regarding the similarity with the
original pretrained version of the model. Consequently, it
allows the researcher to make informed design choices and
gain an overall deeper understanding.

B. OPTIMIZATION AND LEARNING RATE POLICY
For both our optimizer and learning rate we follow one of
[33]’s suggestions. For our finetuning we use the AdamW
optimizer with a peak learning rate of λ = 5 · 10−4 and a
weight decay of Wd = 0.05. We utilize the cosine annealing
learning rate scheduler, updating during every step for a total
training of 300 epochs. A linear warmup is also performed,
with an initial learning rate λi = 10−6 for a duration of

FIGURE 14. Visualization of samples from problematic classes of
ModelNet40. First, second and third rows correspond to "flower pot",
"plant" and "vase" respectively.

10 epochs in total. The exact same setup is also used for
pretraining, with the exception of peak learning rate, being
λ = 10−3. The batch size is 128 for pretraining and 32 for
finetuning.

C. DATA PREPROCESSING
All data samples are normalized to be inside the unit sphere.
For data augmentations we apply random sampling of the
point clouds and anisotropic scale, following the paradigm of
our baseline.

D. HARDWARE
All models were trained on a single NVIDIA RTX 4090 GPU.
It should be noted that the memory requirements did not
exceed 16GB. The training times were (approximately) 16
hours for pretraining on the combined dataset. For finetuning
on our bestmodel (unfreeze 250) the training timewas 2 hours
onModelNet40 and 1 hour on ScanObjectNN.Note that when
unfreezing at an earlier stage, the total time is lengthened due
to the weight updates happening inside the backbone. It takes
the model approximately 36 ms to process a batch with 16
samples.

APPENDIX B
CLASS CLUSTERS
In order to get a better idea of the causes behind misclassified
objects we present a confusion matrix (figure 13) generated
from samples of ModelNet40 validation set. The most strik-
ing entry is the 15th category, "flower pot", being mistaken
for classes 26, "plant", and 37, "vase". These categories
contain an unreasonably large amount of overlap, e.g. pots
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have plants, plants have pots and a lot of pots have a vase-like
shape (figure 14). Therefore, it is hardly a surprising result
that these objects are being misclassified, and this particular
error is not a good descriptor of the model’s performance.

In figures 15 and 16 (MAE and MoCo respectively) we
visualize the feature vectors of 15 shapes from 10 arbitrary
classes randomly sampled from the validation set of Model-
Net40 and projected onto the 2d space by using T-SNE. Nat-
urally, the test accuracy is the sole indicator of how well the
clustering is performed. However, by using this technique we
are hoping to understand whether the clustering/classification
operates within the realms of human logic. For this purpose,
we are mostly interested in the misclustered samples.

All in all, these mistakes seem plausible from a human
perspective. In particular, the model seems to be "fooled" by
objects that have similar height/width or are composed by
roughly equivalent parts. This is hardly a fault however, as
it only decreases the score on the ModelNet40 benchmark,
whilst achieving greater generalization ability.
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FIGURE 15. Clustering performed by the model in the feature space for 10 arbitrary classes. The model has been pretrained using the MAE pipeline. T-SNE
is used to project the models two the 2-dimensional space. (A) A sample from the airplane class is placed near the guitar cluster. An "excusable" choice
as both share a lengthy shape and sharp protruding parts. (B) Two shape from the person and plant classes are placed further from their clusters, and
near each other, as they have a near non-existent depth. (C) Two uniquely shaped lamps have been assigned to a cluster of their own.

FIGURE 16. Clustering performed by the model in the feature space for 10 arbitrary classes. The model has been pretrained using the MoCo pipeline.
T-SNE is used to project the models two the 2-dimensional space. (A) A tall cactus is clustered together with the people class. (B1), (B2), Two lamps with
distinct characteristics have been assigned to a separate cluster. (C) A plant with hanging leaves is placed along with the table cluster, most likely because
the leaves share a similar structure with table legs.
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