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ABSTRACT Electric power steering (EPS) pose significant control challenges in autonomous vehicles due 

to their inherent complexity and non-linearity. This study explores the application of artificial neural network 

(ANN) to address these limitations. Two approaches are proposed: 1) an ANN-based identifier utilizing the 

backpropagation (BP) algorithm to learn the system's non-linear dynamics, and 2) an ANN-based controller 

leveraging the Levenberg-Marquardt (LM) algorithm to improve control performance. Our findings 

demonstrate the efficacy of the proposed ANN-based BP algorithm in EPS system identification achieving 

over 99.6% accuracy in predicting EPS system dynamics compared to the traditional approach. Additionally, 

the LM-learned ANN-based controller aiming a faster response and precise reference tracking compared to 

the traditional controller method. These advancements underscore the potential of employing ANN 

methodologies to optimize EPS performance in autonomous vehicles. 

INDEX TERMS Artificial neural network, autonomous vehicles, backpropagation, electric power steering, 

Levenberg-Marquardt, proportional integral derivative controller, system identification, transfer function 

estimator. 

I. INTRODUCTION 

Electric Power Steering (EPS) is a vehicle steering system 

that employs an electric motor to provide torque assistance 

for steering. EPS systems are increasingly common in both 

traditional power-assisted steering (PAS) vehicles, which 

enhances the driver's steering effort, and in autonomous 

steering control units for self-driving cars. In PAS-equipped 

vehicles, the system interprets the driver's steering inputs to 

adjust torque and instantaneously align with the desired 

steering angle. Furthermore, in autonomous vehicles, EPS 

systems autonomously control steering by processing data 

from various sensors i.e., cameras, radar, and lidar [1]. 

 There are two primary steering control methods: 

hydraulic steering control and electrical steering control. 

EPS operates through electrical steering control, and it offers 

superior reliability, safety, efficiency, reduced emissions, 

and ease of maintenance when compared to hydraulic 

steering control [2]. The electrical motor in EPS systems 

typically employs a brushless direct current motor (BLDCM) 

or permanent magnet synchronous motor (PMSM) as the 

actuator, which transmits power to the vehicle wheels 

through a gearbox and mechanical steering rack [2]-[4]. 

 Maintaining optimal performance and stability of the 

vehicle's EPS requires applying precise control inputs to the 

system [5]-[7]. This control can be implemented using a 

variety of methods, such as proportional integral derivative 

(PID) control. This is a classical control method that has 

been used for many years. PID controllers are simple to 

understand and implement, and they are effective in 

controlling a wide variety of systems. PID controller is 

typically a linear controller, which means it operates 

effectively within a linear control system [8]-[11]. Due to the 

nonlinearity of the EPS system, researchers have tried using 

machine learning and AI to understand and predict this 

complicated, non-linear behavior. One of these methods is 

using artificial neural network (ANN). ANN is a powerful 
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machine learning technique that can be used for a variety of 

tasks, including control and identification of EPS systems. 

ANN is inspired by the structure and function of the human 

brain, and they consist of a network of interconnected nodes, 

called neurons. Each neuron is able to process information 

and send signals to other neurons in the network. ANN is an 

adaptive and data-driven technology that can effectively 

determine relationships between input elements and process 

outputs. Activation functions in ANN empower them to 

capture both linear and nonlinear patterns in data, without 

requiring any prior assumptions. [12]-[31]. 

 Unlocking the full potential of ANN as an identifier and 

a controller, this study proposes two lines of research. The 

first study is to design an EPS identifier by using ANN based 

backpropagation (BP) algorithm to analyze the effectiveness 

of ANN based BP algorithm in EPS system identification 

and the second study is to use ANN based LM algorithm to 

improve the EPS system controller for autonomous vehicles. 

 This paper is organized as follows. Section II discussed 

the analysis of the original EPS system and the concept of 

ANN-based BP and LM. Section III discussed the 

identification of the EPS system using an ANN-based BP 

algorithm. Section IV presents the proposed ANN-based LM 

algorithm for EPS control. Section V presents the 

experimental results and discussion of system identification 

and EPS control using ANN. Section VI presents the 

conclusion of this research. 

 
II. ANALYSIS OF THE ORIGINAL EPS SYSTEM 

A. CONFIGURATION OF EPS 

EPS systems are crucial for improving the steering control of 

autonomous vehicles. In contrast to conventional hydraulic 

power steering systems, EPS systems in autonomous 

vehicles employ electric motors to deliver accurate steering 

control. The main components of an EPS system in an 

autonomous vehicle are: 

• Electric motor: At the core of EPS systems is the electric 

motor, responsible for generating torque that facilitates 

steering control. 

• Steering control unit (SCU): The steering control unit 

serves as the brain of the EPS system. It receives the 

angle command from the navigation unit. The navigation 

unit measures the vehicle's speed, acceleration, and 

heading. This information is used by the vehicle control 

unit to calculate required steering actions and send them 

to SCU. 

• Steering rack: The steering is responsible for converting 

the torque from the electric motor to the vehicle’s wheels. 

  

 Refers to Fig. 1, the vehicle control unit integrates and 

analyzes the sensor data, enabling the system to comprehend 

the vehicle's surroundings. Based on the analyzed data, the 

computational unit takes actions or determines the optimal 

steering adjustments required to navigate the vehicle. The 

vehicle control unit generates precise steering commands, 

which are transmitted to the SCU to calculate the required 

torque for the electric motor to execute the necessary steering 

actions. 

 

 

FIGURE 1. EPS system control and mechanism in autonomous vehicles. 

  

 For this study, a steering rack of a sedan car was used. 

We can see the EPS mechanical actuator in Fig. 2. This 

steering rack is a mechanical rack and pinion gear type that 

can be lengthened and shortened by 85mm. This gives a 

steering wheel a working angle of +46 to -46 degrees from 

its centerline. A positive sign indicates the steering direction 

in a clockwise direction and vice versa.  

 

 

FIGURE 2. The EPS system actuator used in this study. 

 

TABLE I 
VEHICLE STEERING RACK INFORMATION 

Component Remark 

Motor type and power BLDCM, 600W 

Motor poles count  8 poles 

Motor max. speed 2,000 RPM 

Steering wheel angle maximum ±46˚ 

Driving gear to the final wheel ratio 26:1 
Motor gear type Helical 

Drive motor to steering-rack gear connection Pulley 

  

 This mechanical rack and pinion are connected to a 

driven gear that has a ratio of 2.3:1 with the driving gear and 
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a ratio of 26:1 between the final vehicle’s wheel with the 

driving gear. The driving gear and the driven gear are 

connected by an HTD belt. Table I shows the details of 

vehicle steering rack information used in this research. 

B. REPRESENTATION OF EPS BEHAVIOUR WITH PID 
CONTROL IMPLEMENTATION FOR ANN DATASET 

To develop an accurate and robust ANN controller for an 

EPS system control, a comprehensive dataset of input-output 

pairs is first gathered. The dataset can be gathered from a 

simulation or observation. For the EPS ANN controller 

dataset in this research, we used an observation method using 

a PID controller that makes the EPS follow the angle 

reference with fast response time and minimum steady-state 

error. In Fig. 3 we can see the EPS PID controller scheme to 

provide a controlled EPS. 
 

 

FIGURE 3. EPS scheme of SCU with PID controller. 

 

 In Fig. 3, the variable e(t) represents the error signal of 

the difference between the angle reference and the actual 

measured position of the EPS as read by the angular position 

sensor at time t. Once the error e(t) signal is acquired, the 

PID controller calculates its derivative and integral 

concerning time. These calculations allow the controller to 

track how the angular position error signal is changing over 

time and how to use this information to adjust the control 

signal u(t) to the EPS movement. The PID controller 

produces an output that is determined in the time domain 

based on the feedback error using the following equation: 

u(t)=K1e(t)+K2 ∫ e(t) dt+K3

de

dt
, (1) 

where K1 is the proportional gain, K2 is the integral gain and 

K3 is the derivative gain. 

 Testing of the angular position control system is carried 

out by first determining the parameter values K1, K2, and K3 

which are in accordance with the desired system response 

design. Fig. 4 shows the EPS response results in two sets 

different of parameter value sets of K1, K2, and K3. The input 

angle reference is a sine wave with a frequency of 0.5 Hz and 

amplitude of ±10˚. 

 To facilitate the EPS ANN system identification and 

control datasets, we execute the chosen commutation code 

and its associated sequence algorithm on a microcontroller. 

This microcontroller is linked to an upper computer through 

serial communication, enabling the recording of motor 

responses based on input signals. MATLAB/Simulink, 

integrated with the NXP model-based design toolbox 

(MBDT), is utilized for code generation. Motor speed 

control is achieved through a PWM technique, with a 

maximum input voltage of 12VDC provided to rotate the 

motor, selected to meet the vehicle power environment. The 

actual motor angle position, serving as feedback, is measured 

using a magnetic position sensor (AS5247U) through the 

ABI interface. The experimental setup as described in Fig. 5. 

 

 
(a) 

 
(b) 

FIGURE 4.  Output responses by PID parameter tuning: (a) EPS 
response with a lower constant of K1=0.04, K2=0.0095, and 
K3=0.0000025, (b) EPS response with optimal constants of K1=0.113, 
K2=2.016, and K3=0.0000025. 

 
 From the data in Fig. 4(b), we can see the EPS system 

follows the given tracking line well, while Fig. 4(a) shows 

the weak performance of the EPS system response. Perform 

the cross-correlation between the two sine waves of Fig. 4(b), 

we can know the phase difference in time delay is 0.0425 sec. 

In this research, we select this parameter configuration of Fig. 

4(b) as a dataset in order to design the ANN angular 

controller. 

 

 

FIGURE 5. Experimental setup. 
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C. ANN BASED BP AND LM CONCEPT 

ANN are a fundamental component of machine learning 

algorithms designed to mimic the functioning of the human 

brain. ANN learn from data by iteratively adjusting their 

parameters (weights and biases) based on observed examples 

to minimize the discrepancy between their predictions and 

the actual target values. This learning process, often referred 

to as training, involves feeding input data through the 

network, computing predictions, comparing them to the 

actual targets, and updating the network's parameters 

accordingly. Through this iterative process, ANN gradually 

improve their ability to make accurate predictions on unseen 

data. 

 When designing ANN, it's essential to consider various 

factors such as the network architecture, activation functions, 

and optimization algorithms. The network architecture 

determines how input data is transformed through 

interconnected layers of neurons to produce output 

predictions. Activation functions introduce non-linearities to 

the network, enabling it to capture complex patterns and 

relationships within the data. Optimization algorithms, such 

as the BP and LM algorithm play a crucial role in adjusting 

the network's parameters during the training process to 

minimize prediction errors effectively. 

 In this research we were using ANN-based BP to design 

EPS identifier and ANN-based LM to improve the EPS 

system controller. The ANN-based BP is a multi-layered 

ANN model. The primary principle involves forward 

propagating the results, which generate an error that is then 

minimized and corrected through backward propagation. In 

this algorithm, the sigmoid-type function serves as the 

activation function between neurons, limiting the output 

values to a range of (0 to 1). The ANN-based BP structure 

comprises three layers: the input layer, hidden layer, and 

output layer. As depicted in Fig. 6, the node cells between 

each layer connect and interact. If the mean absolute error 

(MAE) between the output value from the output layer and 

the predicted output value does not meet the requirements, a 

reverse process with corrected weights, following the 

gradient descent, is initiated. Equations (2) and (3) detail the 

corresponding units of the ANN. 

 

ha=f (∑ Wab

n

a=1

+ϴa)  b=1, 2, 3, ...l (2) 

 

y
c
=g (∑ WbcPa

1

b=1

+ϴc)  c=1, 2, 3, ...m (3) 

 

 The notation introduces: ha for hidden layer output, yc for 

the output layer output, Wab for input-hidden weight, Wbc for 

hidden-output weight, n for number of input node, l for 

number of hidden layer node, m for output layer node, xa = 
[x1, x2,…, xn]T as the input vector, and 𝜃 as the threshold 

value. 

 

FIGURE 6. Three-layer ANN-based BP. 

 

 Using the results from the previous feedback 

process, Equation (4) presents the calculated MAE 

 

MAE=
1

N
∑ (Pc-Rc)

N

c=1

. (4) 

  

 To achieve optimal performance, the network relies on 

Equation (5) to propagate errors backward, meticulously 

adjusting its internal weights for enhanced predictions 

 

Wa+1=Wa - η
∂E

∂Wa

. (5) 

 
The Equation (5) defines the weight update rule for the ANN 

during training. It uses the difference between predictions Pc 

and true values Rc across N data points to adjust the current 

weight Wa by a factor of the learning rate η. This iterative 

process, known as BP, guides the ANN towards a model that 

minimizes MAE, fulfilling the desired accuracy 

requirements. 

 The LM algorithm is an optimization method commonly 

used in training ANN. It combines aspects of both gradient 

descent and Gauss-Newton methods to efficiently find the 

minimum of a cost function, which represents the error 

between the network's predictions and the actual target 

values. 

 Mathematically, the LM algorithm involves updating the 

parameters of the ANN, denoted as δ. The update rule can be 

expressed as: 

δk+1=δk-(JTJ+λI)
-1

JTe, (6) 

where δk represents the parameters of the ANN at iteration k, 

J is the Jacobian matrix, representing the first-order 

derivatives of the network’s outputs with respect to its 

parameters, e is the error vector, representing the difference 

between the network’s predictions and the actual target 

values, and λ represents the damping factor, controlling the 
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step size of the update to adjusts dynamically based on the 

progress of the optimization process. 

III. IDENTIFICATION OF EPS SYSTEM USING ANN-
BASED BP ALGORITHM 

In the domain of system identification, an ANN is employed 

to approximate the inherent dynamics or connection between 

input and output variables within a system, utilizing 

observed data. It acts as a versatile and adaptable model 

capable of capturing non-linearities and complex 

interactions within the system's behavior. The input variables 

are fed into the neurons of the ANN, where they endure 

processing across multiple interconnected layers. Each 

neuron employs an activation function to transform its input 

and transmit the outcome to the subsequent layer. 

Throughout the training phase, the network's parameters, 

such as the weights and biases of the neurons, are fine-tuned 

to enhance performance and reduce the disparity between 

predicted and observed outputs. 

 The learning process involves iteratively adjusting the 

weights of the network's connections. An iteration is 

specified as a comprehensive round of calculations, 

including both forward and backward passes. The goal is to 

minimize the error criterion ek(z) by reducing a cost function. 

When all the data, presented collectively with a size of N is 

processed, the final weight updates occur. The normalized 

sum of squared error for the networks, with respect to the 

size N, is then expressed as part of this iterative learning 

process. We thus have 

 

Ek(z)=
1

N
∑ ek

2(z)

N

k=1

. 
(7) 

 

The proposed architecture of the ANN for system 

identification in this study is shown in Fig. 7. The network's 

output is a function of both past inputs and outputs. In Fig. 7, 

multiple inputs, denoted as r(z), r(z-1), ..., r(z-n)  and 

𝑦(z-1), 𝑦(z-2), ..., y(z-m)  are depicted. Here 

r(z), r(z-1), ..., r(z-n) serves as the primary input for the main 

neurons, and y(z-1), y(z-2), ..., y(z-m) represents inputs from 

the feedback output plant. The desired output for the ANN 

identifier output, denoted as yk(z) is expressed as ỳ
k
(z). In the 

notation  Wji
1 , Wjl

1   and Woj
2 , the indices i, j, and o represent 

different weights within the network. The signal flow within 

the network progresses from left to right. In particular, 

neuron j corresponds to a neuron within the hidden layer, 

whereas neuron o represents the singular neuron in the output 

layer. 

 The feedforward process in the network initiates by 

multiplying the input of each neuron i and l with their 

respective weights, denoted as Wji
1  and Wjl

1 . Subsequently, 

the products are transmitted to each neuron j situated in the 

hidden layer. Within each neuron j, the computed values 

from all inputs go through summation, where each input is 

multiplied by its corresponding weight. The summation 

outcome in each neuron j is then processed through an 

activation function, represented as f. The output of f from 

each neuron j is further multiplied by its corresponding 

weight Woj
2 . The summation of all resulting products 

ultimately yields the network's output yk̀(z). The output yk̀(z) 

can be written as 

 

ỳk(z)= (∑ Woj
2 hj(z)

J

j=1

) , (8) 

where 

hj(z)=f (∑ Wji
1r(z-i)

n

i=0

+ ∑ Wjl
1y(z-l)

m

l=1

) , (9) 

 

 

FIGURE 7. Proposed ANN structure for EPS identification. 

 

 In a typical ANN setup, every neuron is linked to weights 

and biases. However, in this study, biases are not employed 

for data modeling, as the data inherently centers around zero. 

The exclusion of biases offers the advantage of diminishing 

the number of parameters in the model, resulting in a simpler 

network with fewer computations. 

 The BP algorithm is employed to iteratively adjust the 

weights and biases of the ANN. This iterative process 

continues until the model attains the desired level of 

performance on the training data. Mathematically, the sum 

of squared error Ek(z) is defined by measuring the 

discrepancy between yk(z) and yk̀ (z). Subsequently, the 

partial derivatives of Ek(z) with respect to Wji
1 , Wjl

1 ,  and Woj
2   

are: 

∂Ek(z)

∂Woj
2 (z)

=
∂Ek(z)

∂ỳ
k
(z)

∂ỳ
k
(z)

∂Woj
2 (z)

, (10) 

 

∂Ek(z)

∂Wji
1(z)

=
∂Ek(z)

∂ỳ
k
(z)

∂ỳ
k
(z)

∂hj(z)

∂hj(z)

∂Wji
1(z)

, (11) 

 

∂Ek(z)

∂Wjl
1(z)

=
∂Ek(z)

∂ỳ
k
(z)

∂ỳ
k
(z)

∂hj(z)

∂hj(z)

∂Wjl
1(z)

, (12) 
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and the procedure for updating the weights is outlined as: 

 

Woj
2 (z+1)=woj

2 (z) - η
∂Ek(z)

∂Woj
2 (z)

, (13) 

 

Wji
1(z+1)=wji

1(z) - η
∂Ek(z)

∂Wji
1(z)

, (14) 

 

Wjl
1(z+1)=wjl

1(z ) - η
∂Ek(z)

∂Wjl
1(z)

, (15) 

 

where, η represents the learning rate. 

 To investigate diverse possibilities and determine the 

optimal ANN structure for EPS system identification, several 

tests were conducted. Step signals were employed for both 

data learning and validation, while sine, square, and triangular 

wave signals served as the test datasets. These datasets were 

extracted from EPS, as depicted in Fig. 5. The upper computer 

recorded all data, involving input reference signal data and 

corresponding EPS response output for each input. We 

systematically varied parameters such as the number and types 

of samples, the order of input variables (nth and mth order), 

and the number of neurons in the hidden layer. The number of 

hidden layers was restricted to one, and the tanh activation 

function was utilized. Details of the test configurations and 

results can be found in Table II, while Algorithm 1 explains 

the training process for EPS system identification in this 

research. 

  

Algorithm 1 The training process of the system 

identification 

Initialize: weights Wji
1 , Wjl

1 , Woj
2  

Select: 𝜂 

Input: pattern-k, enter training dataset of 

r(z), r(z-1), ..., r(z-n),  𝑦(z-1), y(z-2), ..., y(z-m) 

Output: yk(z)̀  

for i←1 to maximum_iteration do 

    Calculation for neuron outputs: 

    for z steps do 

        Feedforward Calculation of first layer: 

        feedforward first layer calculation hj(z) 

        utilize the tanh activation function 

        Feedforward Calculation of second layer: 

        feedforward second layer calculation ỳk(z) 

        Square Error calculation: Ek 

        Backward Calculation of: 

        Calculate the derivatives: 
∂Ek(z)

∂Woj
2 (z)

, 
∂Ek(z)

∂Wji
1

(z)
, 

∂Ek(z)

∂Wjl
1

(z)
 

        Update the weights: Woj
2 (z+1), Wji

1(z+1), Wjl
1(z+1) 

    end 

end 

IV. THE PROPOSED ANN-BASED LM ALGORITHM FOR 
EPS CONTROL 

The ANN control system is a control system that the ANN 

algorithm to control a system. ANN is a type of machine 

learning algorithm that can learn from data and make 

predictions. In designing the ANN for training the ANN 

controller, this study gathers data from the EPS system with 

a given sine wave signal at a frequency of 0.5 Hz as an angle 

input reference. The output response results with its 

corresponding input signal as depicted in Fig. 4(b). All data 

are shown in Fig. 4 recorded with a time sampling of 400 Hz. 

We used only one full sine wave of the data with its 

corresponding compensated control signals, totaling 800 

data points. The dataset was divided into training, validation, 

and testing sets with a ratio of 70%, 15%, and 15%, 

respectively. The training set is used to train the ANN, the 

validation set is used to tune the hyperparameter, and the 

testing set is used to evaluate the model’s parameters. This 

model is then used as an EPS ANN controller in this study. 

  

 

FIGURE 8. Proposed ANN Controller Training Model for EPS 

 

As depicted in Fig. 8, the ANN controller ANNa training 

topology is 6-10-1. Which consists of 6 neurons in the input 

layer, 10 neurons in the hidden layer, and 1 neuron in the 

output layer. The input vectors of ANNa are [r(z-1), r(z-2), 

u(z-1), u(z-2), y(z-1), y(z-2)]T and the output of ANNa is ùk(z). 

We thus have 

 

uk̀(z)= (∑ Waoj
2 haj(z)

10

j=1

) , (16) 

 

where 

haj(z)=g
k

(∑ Waji
1
r(z-i)

2

i=1

+ ∑ Wajl
1
u(z-l)

2

l=1

+ ∑ Wajs
1

y(z-s)

2

s=1

) . (17) 
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The Waji
1  and Wajl

1  are the weight vectors in between input 

and hidden layer and Waoj
2  are the weight vector in between 

hidden and output layer. Fig. 8 is the proposed ANN angular 

controller training architecture scheme for the pre-trained 

model before being used as an EPS ANN controller. 

 In this research, The LM algorithm is used to adjust the 

weights of the networks such that the error eak between the 

desired output uk(z) and the estimated output ùk(z) 

approaches a very small value. Utilizing the LM algorithm, 

the error performance function Eak is expressed in the form 

of a sum of squares error as 

 

Eak(z)=
1

2
(uk(z)-uk̀(z))2 =

1

2
 eak

2(z). 
(18) 

The current gradient function ∇Eak(z) as 

 

∇Eak(z)=
∂Eak(z)

∂W(z)
 = eak(z)

∂eak(z)

∂W(z)
= Jc

T(z)eak(z), (19) 

  

where Jc is the Jacobian matrix. The Jacobian matrix Jc 

contains the first-order partial derivatives of the error 

function concerning the threshold and weight values. When 

the error function is minimized, the elements of the Jacobian 

matrix can be ignored, thus we have 

 

∇2Eak(z)=Jc
T(z)Jc(z). (20) 

  

 The Hessian matrix is the second derivative of the error 

function with respect to the weight values. It contains 

information about how the error function changes as the 

weight values are changed. The Hessian matrix is used in the 

LM algorithm to compute the update step for the weight 

values WakN(z+1). If the Hessian matrix is invertible, then 

the LM algorithm can be used to compute the exact update 

step that will minimize the error function. However, the 

Hessian matrix is not always invertible, especially when the 

weight values are close to the minimum of the error function. 

To use the LM algorithm even when the Hessian matrix is 

not invertible, a coefficient λ is introduced. This coefficient 

controls how much the LM algorithm relies on the Hessian 

matrix. When λ is large, the LM algorithm relies more on the 

Hessian matrix and behaves like the Gauss-Newton method. 

When λ is small, the LM algorithm relies less on the Hessian 

matrix and behaves like the gradient descent method [32], 

we thus have 

 

WakN(z+1)=WakN(z)-[Jc
T(z)Jc(z)+λI]

-1
Jc

T(z)eak(z), (21) 

 

where WakN(z)  represents the parameters of the ANN at 

iteration z, Jc is the Jacobian matrix, representing the first-

order derivatives of the network’s outputs with respect to its 

parameter, and eak(z)  is the error vector, representing the 

difference between the network’s predictions and the actual 

target values. 

 Once the ANN is trained, it is then used to predict the 

system's output for a given input. This information can then 

be used to generate a control signal that will cause the system 

to achieve its desired state. In Fig. 9, we can see the proposed 

EPS ANN controller system block diagram. The ANN takes 

inputs from the angle command rk(z), the measured angle of 

yk(z) with time delays p-1 of two order system, and the control 

signal uk(z) as feedback also to the input. The ANN processes 

these input data and produces the control signal output uk(z), 

serving as a voltage reference for the BLDCM switching 

device. 

 

FIGURE 9. Overall EPS block diagram with Proposed ANN controller 

V. EXPERIMENTAL RESULT AND DISCUSSION 

A. H/W CONFIGURATION FOR EXPERIMENTAL SETUP 

 

 

FIGURE 10. EPS testbed setup for Proposed ANN controller reviews. 

  

In this comprehensive experimental study, we investigated 

the effectiveness of EPS system identification using an ANN 

and the performance of EPS using an ANN controller. In the 

investigation of the ANN works in EPS system identification, 

we used five observed data taken from the EPS. For EPS 

system identification comparison, we use a linear transfer 

function estimator (TFE). For EPS control, the experiment 

was designed to assess the steering system's response in 

distinct scenarios of angular control. 

 The angular control scenario focused on the system's 
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reaction to varying steering wheel angles using sine wave 

input as an angular position reference. Sine wave angle 

reference input, for this purpose, is used to simulate the act 

of the steering vehicle in real steering activity. We examined 

the controllers’ capability to accurately translate the angle 

command input into wheel movements. Both EPS system 

identification and controller code were programmed in a 

microcontroller and the data of angle reference input and 

EPS response output were recorded by the upper computer 

via UART line. Fig. 10 shows the testbed setup for this 

purpose. 

B. RESULTS OF EPS MODELLING 

A common technique employed in system identification is 

the TFE. This method is utilized to characterize and estimate 

the dynamics of a linear time-invariant (LTI) system, where 

the connection between inputs and outputs remains constant 

over time and is unaffected by variations in the system's 

operating conditions. The transfer function acts as a 

mathematical representation of how the system's input and 

output are related in the frequency domain. It is defined as 

the ratio of the system's output to its input in the Laplace 

domain (s-domain). The general expression for the transfer 

function of an LTI system is: 

 

H(s)=
Y(s)

U(s)
=

ωn
2

s2+2ζωns+ωn
2

, 
(22) 

 

where H(s) denotes the transfer function, Y(s) represents the 

Laplace transform of the system's output y(t), U(s) 

corresponds to the Laplace transform of the system's input 

u(t), and 's' characterizes the complex frequency variable.  

 LTI systems comprise a subset of dynamic systems, but 

many real-world systems exhibit nonlinear behavior due to 

factors such as the nonlinear friction of the motor in our case, 

acting as an EPS actuator, and external uncertainties. In such 

scenarios, the Transfer TFE may struggle to accurately 

capture the system's dynamics, resulting in deficient model 

performance and limited predictive capabilities. The 

estimation results of the TFE model are depicted in Fig. 11. 

 Examining Fig. 11 reveals that this TFE yielded best-fit 

input-output models of 87.6%, 92.1%, and 87.3% for sine 

wave, square wave, and triangular wave test datasets, 

respectively. These outcomes highlight the effectiveness of 

ANN in system identification when compared to the TFE 

algorithm. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 11. The time response outcomes for original EPS and the 
simplified 2nd order TFE model (a) Response to the sine wave, (b) 
Response to the square wave, (c) Response to the triangular wave. 

C. RESULTS OF EPS SYSTEM IDENTIFICATION USING 
ANN 

When choosing an ANN architecture, it is crucial to carefully 

consider factors like task complexity, data characteristics, 

overfitting, computational resources, training time, and 

generalization capabilities. All the options detailed in Table 

II feature a rapid training process, but architecture number 

11 stands out as an optimal choice. This selection strikes a 

balance between model complexity and the specific 

requirements of the problem. With a fast training time, it can  

achieve excellent generalization performance. The results of 

the best-fit test model estimation in this study are presented 

in Fig. 12. 

 The optimal model for system identification in this 

research, as illustrated in Fig. 12, is obtained based on the 

test results using ANN with the design scenario specified as 

number 11. The network topology is set to 5-5-1, and a 

learning rate of 0.1 is applied. The error converges to the 

desired goal of 0.0167 after 100 iterations. Notably, at both 

learning rates of 0.1 and 0.01, design configuration number 

11 achieves an optimal fit, expressing a match of over 99.6% 

between the model's predictions and the actual measured 

data across all testing dataset. 
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TABLE II 

PERFORMANCE EVALUATION OF PREDICTED OUTPUTS OF THE 

EPS ANN SYSTEM IDENTIFICATION UNDER VARIOUS 

CONFIGURATIONS 

No. 
Learning 

iterations 

System 

order 

Neurons 
in 

hidden 

layer 

Test data 

Sine  

wave 

Square  

wave 

Triangular  

wave 

Best-

fit 

at η 

0.1  

(%) 

Best-

fit  

at η 

0.01  

(%) 

Best- 

fit  

at η 

0.1  

(%) 

Best-

fit  

at η 

0.01  

(%) 

Best- 

 fit  

at η 

0.1  

(%) 

Best- 

fit  

at η 

0.01  

(%) 

1 

10 

2 

3 94.9 97.8 96.0 98.1 95.4 98.0 

2 5 98.7 97.4 99.7 97.7 98.9 97.8 
3 9 64.1 97.9 74.4 99.1 65.9 98.1 

4 
3 

3 95.5 94.7 96.3 95.4 15.3 77.1 
5 5 86.0 98.4 89.6 99.1 67.5 -615.4 

6 9 98.4 98.9 98.8 98.5 14.5 -233.6 

7 
5 

3 58.3 90.5 68.0 89.7 67.4 -63.6 
8 5 96.5 92.3 96.2 93.0 84.3 55.4 

9 9 83.6 96.1 96.2 95.3 31.0 -219.1 

10 

100 

2 

3 99.4 99.3 99.6 99.8 99.5 99.4 
11 5 99.7 99.7 99.9 99.9 99.8 99.8 

12 9 99.3 99.5 99.4 99.9 99.4 99.7 

13 
3 

3 99.2 99.3 99.5 99.8 78.1 -164.8 
14 5 99.6 99.5 99.9 99.8 78.1 -107.3 

15 9 99.6 99.5 99.7 99.9 -135.9 45.5 

16 
5 

3 98.9 97.9 99.3 98.2 57.3 46.2 
17 5 98.3 99.0 99.3 99.3 -8.6 0.8 

18 9 96.9 99.6 96.8 99.6 7.7 -666.6 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 12. The time response outcomes for both the original EPS and 
the identified ANN model with network topology of 5-5-1, 100 learning 
iterations, and LR=0.1. The responses to: (a) Sine wave, (b) Square 
wave, (c) Triangular wave. 

D. TIME RESPONSE RESULTS OF DESIGNED EPS ANN 
CONTROLLER 

In this research, we design two types of EPS controllers: PID 

and ANN controllers to see the performance of each 

controller in controlling the EPS system. The 10%-90% rise-

time type, settling time response, steady-state analysis, and 

overshoot analysis was performed to analyze the 

performance of the EPS with respect to the step input 

reference.  

 

 
(a) 

 
(b) 

FIGURE 13. EPS response on step input of ±10˚: (a) EPS response using 
ANN controller in clockwise rotation, (b) EPS response using ANN 
controller in counterclockwise rotation. 

 

 
(a) 

 
(b) 

FIGURE 14. Time response results of EPS using ANN controller with sine 
wave input at a frequency of 0.25 Hz: (a) Responses on EPS angle target 
of ±10˚ and ±5˚, (b) The compensated signals. 
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(a) 

 
(b) 

FIGURE 15. Time response results of EPS using ANN controller with 
sine wave input at a frequency of 0.5 Hz: (a) Responses on EPS angle 
target of ±10˚ and ±5˚, (b) The compensated signals. 

 

 
(a) 

 
(b) 

FIGURE 16. Time response results of EPS using ANN controller with 
sine wave input at a frequency of 1 Hz: (a) Responses on EPS angle 
target of ±10˚ and ±5˚, (b) The compensated signals. 

 The results of the EPS system responses using the 

proposed ANN controller with a given step input command 

of ±10˚ and with the given sine wave at frequencies of 0.25 

Hz, 0.5 Hz, and 1 Hz in the ±10˚and ±5˚of reference angle 

with the compensated signal in this study are shown in Figs. 

13 to 16, respectively. The system with some given sine 

wave frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz as input 

references to know the performance of the EPS PID and EPS 

controller. These selected frequencies are based on the 

normal range of steering frequency of a car [33]. 

 The experimental results reveal a notable difference in 

compensation signals when the EPS target angle varies 

between ±10° and ±5°. This suggests a strong correlation 

between the compensation signal and the specific target 

angle required for EPS performance in autonomous vehicles. 
In essence, varying target angles in autonomous vehicles 

influence the dynamics of the steering mechanism and the 

vehicle's response characteristics. Larger target angles, 

necessitate more pronounced adjustments to the steering 

system to ensure the vehicle follows the desired trajectory. 

E. RESULTS COMPARISON AND ANALYSIS OF 
ORIGINAL EPS WITH PID CONTROLLER AND 
PROPOSED ANN CONTROLLER 

This section shows the comparison of EPS system response 

using both PID and ANN controllers. The comparison of PID 

and ANN controller EPS output performance corresponds to 

the provided step input of ±10˚ and input sine wave with 

angle peak target of ±10˚using frequencies of 0.25 Hz, 0.5 

Hz, and 1 Hz. These comparison graphs can be seen in Fig. 

17 and Fig. 18, respectively. Next, Table III and Table IV 

show the results detail of EPS PID and EPS ANN controller 

response time with a given step input commands of ±10˚. 

 
TABLE III 

RESULTS OF EPS PID IN TIME RESPONSE ANALYSIS ON INPUT 

COMMANDS OF ±10˚ 

Input step 

command 

Rise time 

[sec] 

Settling 

time [sec] 

Steady state 

error [%] 
Overshoot 

[%] 

+10˚ 0.155 0.307 2.1 3.6 
-10˚ 0.155 0.310 1.2 3.3 

 

TABLE IV 

RESULTS OF EPS ANN IN TIME RESPONSE ANALYSIS ON INPUT 

COMMANDS OF ±10˚ 

Input step 
command 

Rise time 
[sec] 

Settling 
time [sec] 

Steady state 
error [%] 

Overshoot 
[%] 

+10˚ 0.07 0.177 1.5 6.3 

-10˚ 0.07 0.182 0.17 6.25 

 

 
(a) 

 
(b) 

FIGURE 17. EPS response results on step input of ±10˚: (a) EPS 
response using PID and ANN controllers in clockwise rotation, (b) EPS 
response using PID and ANN controllers in counterclockwise rotation. 
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 As we can see from the results in Table III and Table IV, 

the ANN controller has a faster response time compared with 

the PID controller. ANN controller has a 10-90% rise-time 

response of 0.07 seconds and settling time of 0.177 seconds in 

order to reach the +10˚ angle target and has a 10-90% rise-

time response of 0.07 seconds and settling time of 0.182 

seconds in order to reach -10˚ angle target. The signs (+) and 

(-) indicate the turning rotation of the right and left of the EPS 

system, respectively.  

 As illustrated in Fig. 18, a comparative study between PID 

and ANN controllers for an EPS system was conducted. Both 

controllers were implemented on identical testbed 

configurations detailed in Fig. 10. The results revealed that the 

ANN controller achieved a significantly faster response time 

compared to the PID controller, despite independent data 

recording. This advantage stems from the inherent ability of 

ANN controllers to learn and adapt from data. 

  

 
(a) 

 
(b) 

 
(c) 

FIGURE 18. EPS PID and EPS ANN controllers output performance 
comparison corresponding to the provided input sine wave with angle 
target peak to peak of ±10˚: (a) At a frequency of 0.25 Hz, (b) At a 
frequency of 0.5 Hz, (c) At a frequency of 1 Hz. 

VI. CONCLUSION 

This study investigated the application of ANN to enhance 

the identification and control of EPS systems for 

autonomous vehicles. Two approaches were developed: 
• ANN-based identifier: This method, utilizing the BP 

algorithm, achieved a significant improvement in 

accuracy compared to the TFE method. Experiments 

demonstrated an achievement of over than 99.6% 

accuracy in predicting EPS system dynamics across 

various input signals. 

• ANN-based controller: This approach, leveraging the 

LM algorithm, surpassed the PID controller. The ANN 

controller achieved a rise time of 0.07 seconds and 

settling times of 0.177 seconds (for a +10° target) and 

0.182 seconds (for a -10° target), demonstrating faster 

response and improved reference tracking. Additionally, 

the controller consistently outperformed the traditional 

method when tested with varying sine wave inputs. 
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