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ABSTRACT This paper presents a framework for the optimal design of a solar and battery assisted electric
vehicle (EV) charging station in southern California, with a focus on maximizing long-term profits while
addressing operational uncertainties. The problem is conceptualized as an iterative two-stage decision
process. In Stage I, the sampled designs of station infrastructure, including the number of chargers, the
size of photovoltaic (PV) array, and capacity of the battery energy storage system (BESS), are specified.
In Stage II, the charging rule is designed and simulated based on the charging request and solar power
datasets. A model predictive controller and an empirical rule-based approach with incoming car forecasts
are developed and compared for the vehicle charging management. The simulated annual operational profit
and infrastructure investment with the consideration of long-term battery degradation is synthesized to build
response surface for better design exploration in Stage I. We find that the proposed rule-based approach
is computationally more efficient and suitable to integrate with response surface methodology (RSM) for
design optimization. In addition, RSM is compared with adaptive particle swarm optimization (PSO) with
multiple trials to demonstrate its superiority in high-profit design.

INDEX TERMS Battery energy storage system, model predictive control, photovoltaic systems, response
surface methodology

List of Symbols
αB Battery cost
αC Charging service fee per kWh
αG Grid TOU price
αS Solar power incentive per kWh
β Remained battery energy
∆ Decision time interval, 15 minutes
ηl(h) Required energy at spot l, time h
R̂H H-step predicted operational revenue
λ Level distance in RSM
P 10-year profit
R Annual operational revenue
ν Open spots in the charging station
γ Charging requests prediction
Θ(h) Set of occupied charging spots at time h
R̃ Approximated annual operational revenue

B Battery size
b Battery charging/discharging power
H MPC prediction horizon
h Time instant
L Level changing diection in RSM
l Charging spot index
M The maximum solar power generation
N Number of chargers
P PV capacity
pc EV power consumption
pg Solar power generation
pg

′
Non-grid power source

Q Maximum power output, 7.2, 11 or 22 kW
Tl(h) Allowable waiting time at spot l, time h
Th→6 Duration from time instant h to 6 AM
xl(h) Charging power at spot l, time h

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3386659

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

I. INTRODUCTION
As CO2 and air pollution continuously attract worldwide at-
tention, electrical vehicles (EV) are emerging as a promising
alternative to fossil fuel vehicles in the transportation sector
due to its zero emission nature. Nevertheless, this transition
process faces numerous challenges and may require a signif-
icantly long period. For instance, the California government
has set an ambitious target of having 5 million zero-emission
vehicles (ZEV) on the road by 2030, but only 862,874 cumu-
lative ZEV sales has been realized through the first quarter of
2021 [1]. One of the significant hindrances to widespread EV
adoption in daily transportation is the insufficiency of public
charging infrastructure [2]. In California, 70,000 public and
shared chargers were installed by Jan 2021, yet an estimated
700,000 chargers are needed to accommodate 5 million ZEV
on road [1]. This disparity underscores the urgency for col-
laborative efforts among government, industry practitioners,
and academia to collaborate and work out an economically
viable solution for the development of charging stations.

One of the most important factors to impact the operating
cost of a charging station is its power supply. Although the
grid is a traditional power source for charging stations, as the
efficiency of photovoltaic (PV) cells increases, the integra-
tion of charging stations and PV farms will be economically
more efficient. In addition, when a large number of EVs are
connected to the grid, the resulting high power demand will
incur significant drop on service quality and safety issues [3],
[4]. Hence, on-site solar power can be an alternative choice
for EV charging station to enhance its grid independence.
However, the intermittent nature of solar power may intro-
duce considerable fluctuations in the power supply, and thus
battery energy storage systems (BESS) are recommended to
couple with solar panels in the charging station design. Both
battery and solar panels are capital-intensive investments, and
thereby their optimal size to generate maximum profit will be
the research focus of this paper. Besides, given the specific
capacity of battery and solar panels, the EV charging policy
and number of plugs will also impact the financial status
and operations of a charging station, which deserve more
investigations.

The charging station infrastructure design can be formu-
lated as an optimization problem. In [5], the charging station
design, without PV and battery, is cast as a two-stage stochas-
tic program with only 28 scenarios to develop charging pro-
files with very limited uncertainties and duration. In [6],
energy usage, electricity cost, weather, geographic location,
inflation, and battery aging are considered to minimize the
long-term overall cost. The resulting mixed-integer nonlinear
program (MINLP) is solved over the entire life cycle of PV
panels and BESS. In [7], the battery size and daily charging
profile are determined simultaneously to minimize the cost
by solving a mixed integer linear program (MILP). However,
the charging demand in [7] is modeled as a probability func-
tion derived from a general database. A similar work highly
relying on solar and demand predictions is proposed in [8]
by solving a MILP and its convex relaxation to determine the

daily charging profile and battery size. In [9], different com-
binations of renewable energy systems are enumerated to de-
termine the lowest overall system cost. Such calculations are
conducted through the software HOMER, developed by the
National Renewable Energy Laboratory (NREL). Because the
optimal sizing of infrastructure may involve complex models,
constraints, and non-differential terms, [10] uses the differen-
tial evolution (DE) algorithm to optimize multiple-objectives,
including power loss, charging cost, and voltage stability, si-
multaneously. Reference [11] uses genetic algorithm-particle
swarm optimization (GA-PSO) hybrid approach to solve
the similar multi-objective optimization for charging stations
siting and sizing. Reference [12] employs a similar multi-
objective optimization method for charging station design
with aging battery and PV. That work only simulates 5 days
operations, which could be far from the real charging perfor-
mance. These metaheuristic methods may need to enumerate
a large number of solutions and repeat with many trials.
The response surface methodology (RSM) builds the rela-
tionship of inputs and response variables through carefully
designed sampling schemes. For example, the Box-Behnken
(BB) design only needs 13 initial samples to construct the
response surface for any 3-variable problem [13]. Then, the
search space can be gradually reduced to reach a near-optimal
solution. In summary, the existing methods try to formulate
the design problem as a large-scale MINLP/MILP, whose
complexity increases significantly as the long-term charging
operations and uncertainties are considered. The optimization
method adopted by these literature, such as PSO or GA, may
not be efficient enough to find an optimal design.
Given a specific station infrastructure, the EV charging

policy should be designed to meet customers’ demands and
maximize the operational revenue. The charging operation
design can be categorized into centralized and decentralized
approaches. Centralized approaches gather and analyze data
from all EVs and the power grid to determine the optimal
charging operations for each customer, while decentralized
approaches allow each EV to decide its charging power solely
based on its own status [14]. The centralized approaches need
more computation and communication resources, but its solu-
tions can be more profitable. Limmer [15] demonstrates that
a centralized optimization-based charging approach is better
than equally power dispatching to each EV. In [16], a central-
ized convex optimization formula is proposed for the charging
and discharging schedule. When the PV power system is
integrated with charging stations, the power dispatch policy
can be more flexible. Kabir et al. [17] study purely using PV-
generated energy for charging and assess the significance of
solar power and upcoming EV load predictions. Nevertheless,
this centralized method takes a long time to reach an optimal
solution. Tushar et al. [18] classify EVs into three types and
design their daily charging policies viaMILP offline to reduce
the intermittency of electricity supply and facilitate the cost
reduction of PV-powered charging stations. In [19], [20], the
PV-assisted EV-charging schedule problem is modeled as a
Markov decision process (MDP) to minimize the average
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waiting time of EVs under the long-term cost constraint. The
MDP can then be solved by reinforcement learning offline
to shorten the online decision-making time. Yan et al. [21]
develop a two-stage optimization formula to allocate power
source and then dispatch the power to each connected EV.
Ghotge et al. [22] employ model predictive control (MPC)
for charging policy design on a PV-assisted parking lot under
EV arrival and demand uncertainties. They also find that the
forecasting of EV energy demands can significantly affect
the charging station and power grid performances. Zhang
et al. [23] design a dynamic charging scheduling scheme
that uses MPC and real-time information to schedule EV
charging to maximize the operational profit of the station.
Similar to MPC, a moving horizon optimization framework
has been developed with several objective functions including
the cost minimization and valley filling [24]. Zheng et al. [25]
show that the fuzzy rule can be integrated with distributed
MPC to minimize the charging cost with the consideration of
power flow model. In summary, existing charging manage-
ment methods heavily rely on the real time optimization, but
are hard to be integrated into design formulas due to their high
computational burdens.

We propose a response surface based charging station de-
sign method combined with EVs charging power manage-
ment. The study data is gathered from an EV parking lot
in our university. We analyze the real data, encompassing
variables like charging energy demands, permissible waiting
times, and solar power generation, to design and compare
MPC and empirical rule based charging strategies given the
same infrastructure. MPC relies on the hour ahead solar
power and 15-minute ahead incoming car number forecast
to assign the charging power for individual EV at each time
instant. It repeatedly maximizes the operational revenue over
the prediction time frame in a receding horizon fashion, with
the consideration of time of use (TOU) price and BESS op-
erations. In addition, an empirical rule is also designed solely
based on 15-minute ahead incoming car number forecast to
determine on-spot EV charging power. A charging demand
peak occurs around 4 PM because of the university course
schedule. During that period, solar energy is not rich and TOU
price is high. The BESS charged by solar energy provides
power to EVs after 4 PM instead of using grid power with a
high price. The charging order is decided based on the energy
demand and waiting time. Utilizing the rule-based method or
MPC, various design combinations are efficiently enumerated
to obtain the resulting annual revenue. Subsequently, the ten-
year overall profit is computed by considering both operating
revenue and capital investment. This comprehensive assess-
ment aids in determining the optimal BESS capacity, PV
size, and number of chargers. Even though integrating charg-
ing operation with infrastructure design has been considered
very recently [26], that approach combines total EVs energy
demand as a single variable for annual operation design to
reduce the computational burden, which may deviate from
realistic operations.

In contrast to references and our preliminary results [27],

the new contributions are summarized below:
(i) The MPC and empirical rule-based charging strategies

are designed with various prediction models. Our findings
show that an empirically designed rule-based charging sched-
ule with incoming car prediction leads to slightly lower profit
than the MPC, but significantly reduces the computational
time because online optimization is not required.
(ii) A RSM scheme is developed to size BESS capacity,

charger numbers, and solar panel capacity, while optimizing
the 10-year pay back. The rule-based charging strategy allows
for the simulation of practical one-year operations, which
provide annual revenue for infrastructure design. Further-
more, the RSM can take the battery capacity degradation
into account to achieve more realistic solutions. To our best
knowledge, this paper is among the first to consider detailed
annual operations in station design and we demonstrate that
RSM is more efficient than some standard intelligent opti-
mization methods, such as PSO.
The rest of this article is organized as follows. Section II

presents the case description. Section III shows the charging
power management approaches, including MPC and empir-
ical rule. In Section IV, the RSM is proposed to determine
the quantity of chargers, capacity of solar panel, and size
of BESS. In Section V, the charging profiles and resulting
profits under various infrastructure sizes are demonstrated for
comparison. Finally, the conclusion is drawn in Section VI.

II. CASE DESCRIPTION
An EV charging station on our campus combined with a solar
farm is investigated. The J1772 type-I charger, with quantity
N and power limitQ kW, are employed. HereQ can be 7.2, 11,
or 22. The PV power capacity is denoted as P. A BYD lithium
iron phosphate BESS is equipped, whose capacity is denoted
as B. αB denotes the capacity-dependent BESS cost. The
charging service mainly relies on solar energy or battery, and
its power demand gap is covered by the grid. The TOUprice is
considered in this study, denoted as αG. The charging service
fee is flat αC =$0.40/kWh. Besides the charging service,
the net surplus compensation rate for solar power is assumed
to be αS =$0.04/kWh [30]. The objective of this research
is to determine the number of deployed chargers N , battery
capacity B, PV capacity P, and a charging policy to maximize
the 10-year economic profit of this charging station.

The California Solar Initiative (CSI) 15-minute interval
power generation data gathered at a nearby airport, with the
distance to campus less than 3 miles, is used to simulate the
solar energy profile [31]. This study assumes the capacity
factor of commercial PV to be 19.1%, and sampled power
profiles per unit in January are shown in Fig. 1. Additionally,
the charging data including the details of arrival time, allowed
duration, and energy demand on our university campus is
collected and used in the simulation. A typical energy request
profile on a weekday is shown in Fig. 2. The highest charging
peak occurs around 8AM (time instant 32) due to themorning
class schedule. In addition, several charging requests were
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received after 4 PM (time instant 64) because of the evening
class schedule.
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FIGURE 1. Solar power generation baseline in January.
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FIGURE 2. A typical charging energy demand profile on weekday at
CSULB campus.

Considering that EV users may follow a consistent pattern
in a short period, the week-ahead average number of charging
requests at time instant h, denoted as γ(h), will be used as an
estimation of the incoming EVs at h. Different from our previ-
ous work [32], the maximum number of charging requests is
not considered, because such a conservative estimation may
significantly reduce the profitability of charging services.

III. SOLUTION METHOD
In this section, Stage-II is conducted firstly to design and
compare two charging power management approaches by fix-
ing N , B, and P. The most computational efficient strategies
will be selected and integrated with RSM to search for the
optimal N , B, and P.

Let the decision time interval ∆ to be 15-minute, aligning
with the measurement time interval of solar power genera-

tion. This setting implies that accepted charging requests are
consolidated within a 15-minute time frame and added to the
service list. Subsequently, the power supply to each EV is
updated at each 15-minute. Upon the arrival of an EV, its
energy demand and desired charging period should be sent
to the centralized decision-maker. When the expected waiting
time has expired or the EV is fully charged, the charging cable
can be disconnected, and the service request will be removed
from the list. If no charger is available, new charging requests
will be declined.

A. CHARGING MANAGEMENT SCHEME I
Themodel predictive control (MPC) based EV-chargingman-
agement method was developed by authors in [32]. The cur-
rent paper further integrates the BESS into the MPC for-
mula, and replaces the worst-scenario estimation with the
average number of service requests forecast. A simplified
MPC framework is demonstrated in Fig. 3. At each sampling
time step, a mathematical program is solved to allocate the
charging power of each on-spot EV within the prediction
horizonH . Themanagement objective is to satisfy customers’
requests and optimize revenue over the prediction horizon.
Once the optimization solver determines the power sequence
for EV at spot l, only the first charging action, denoted
as xl(h|h), will be executed. This receding horizon manner
adjusts future charging power based on the incoming informa-
tion at each time step. Solving this optimization recurrently
will generate the charging profile for each EV.

FIGURE 3. The overall structure of MPC based charging management.

The uncertain parameter of MPC is the solar power pre-
diction p̂g and number of incoming EVs. We assume that
the 1-hour ahead prediction is accurate based on the weather
data and the machine learning method proposed in [33]. If
the prediction horizon H is longer than 1-hour, the monthly
average solar power generation profile is used as a predictor.
For the incoming EVs at h, the average number of charging
requests γ(h) in the previous week is used as an estimation.
Then, MPC is solved to optimize the H -step forecast revenue
R̂H (h) at each time instant h:

R̂H (h) = max
x,z,b

∆

H∑
k=0

( ∑
l∈Θ(h)

αCxl(h+ k|h) (MPC1)
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+
(
pg(h+ k|h)− pc(h+ k|h)

)
αS + z(h+ k|h)·(

pg(h+ k|h)− pc(h+ k|h)
)(
αB(h+ k)− αS

))
s.t. pc(h+ k|h) =

∑
l∈Θ(h)

xl(h+ k|h)− b(h+ k|h)

+ Qγ(h+ w) ∀k ∈ [0,H ], (1a)

β(h) + ∆

H∑
k=0

b(h+ k|h) ⩽ B, (1b)

(1− dl(h+ k|h))E +∆

H∑
k=0

xl(h+ k|h) ⩾ ηl(h),

∀l ∈ Θ(h), ∀k ∈ [0,H ], (1c)

dl(h+ k|h) ⩾ dl(h+ k − 1|h), ∀l ∈ Θ(h),∀k ∈ [0,H ],
(1d)

ν(h) +
∑

l∈Θ(h)

dl(h+ k|h)−
k−1∑
w=0

γ(h+ w) ⩾ 0,

∀l ∈ Θ(h), ∀k ∈ [0,H ], (1e)

∆

Tl(h)∑
k=0

xl(h+ k|h) = ηl(h), ∀l ∈ Θ(h) and Tl(h) ⩽ H ,

(1f)

∆

H∑
k=0

xl(h+ k|h) + Q∆(Tl(h)− H) ⩾ ηl(h),

∀l ∈ Θ(h) and Tl(h) > H , (1g)

pg(h+ k|h)− pc(h+ k|h) ⩽ (1− z(h+ k|h))M ,

∀k ∈ [0,H ], (1h)

pg(h+ k|h)− pc(h+ k|h) ⩾ −z(h+ k|h)M ,

∀k ∈ [0,H ], (1i)

z, dl ∈ {0, 1}, 0 ⩽ xl ⩽ Q, |b(h)| ⩽ 0.2B, (1j)

where set Θ(h) contains all occupied charging spots at time
h; b(h) is the battery charging/discharging power, bounded by
0.2 C-rate; binary variable z indicates whether solar power is
greater or less than the power consumption; binary variable
dl indicates whether the EV at spot l completes its charging;
pg(h) is the solar power generation at h; pc(h) is the total
power consumption at h; parameter β(h) represents remained
energy in battery at h; parameter ν(h) is the number of empty
chargers at the beginning of h; constant parameter E is the
upper limit of EV energy demand; constant parameter M is
the upper limit of solar power generation. For each on-spot
EV, ηl(h) and Tl(h) are the required energy and allowable
waiting time, respectively. These values, rather than state of
charge (SOC), are recorded in our campus systems, and thus
can be utilized in the charging management.

A series of discussions regarding (MPC1) is shown below.
The objective function is composed of three components:
sales of solar power, charging fees, and grid power cost.
Equation (1a) shows the total power consumption as a sum-
mation of the power charge of existing EVs, maximum power
request of incoming cars, and battery power supply. Here if

b(h) > 0, then BESS discharges power to EV; otherwise,
BESS is on charging. In addition, the battery cannot be
charged beyond its capacity, as shown in (1b). Equation (1c)
implies dl(h + k|h) = 0 before the supplied energy reaches
demand ηl(h). However, when total charging energy for EV
at spot l is greater than ηl(h) and more charging spots are
needed, as shown in (1e), then dl(h+ k|h) should be 1. Once
dl = 1 at a time slot, then it implies that the task is completed
and dl should remain as 1 subsequently, as described in (1d).

If the permissible charging duration is less than the pre-
diction horizon, (1f) necessitates the completion of charging
tasks within the allowed time slots. If the permitted charg-
ing time exceeds the prediction horizon, then the maximum
charging power Q kW is deployed out of the prediction
horizon, as shown in (1g). Note that using the maximum
power may not be the most economically efficient choice
but ensures the shortest charging time. MPC with an infinite
prediction horizon is theoretically sound. However, the long-
term forecast error of solar power and serving requests, as
well as increased computational demand make large H less
attractive. Equations (1h) and (1i) determine if the solar power
generation is greater or less than the power consumption.

In (MPC1), the prediction process relies on average charg-
ing request numbers, with no consideration for predicting
energy demands. Such uncertainty may lead to unnecessary
delays in charging operations. Hence, we may further seek
an alternative solution with the same operation revenue but
maximizing the EV charging power while minimizing the
battery charging or discharging rate at current time instant h.
That formula is shown in (MPC2):

max
x,z,b

∑
l∈Θ(h)

xl(h|h)− |b(h|h)| (MPC2)

s.t. (1a)− (1j), (2a)

R̂∗
H (h) ⩽

H∑
k=0

∆

( ∑
l∈Θ(h)

αCxl(h+ k|h)+

+
(
pg(h+ k|h)− pc(h+ k|h)

)
αS + z(h+ k|k)·(

pg(h+ k|h)− pc(h+ k|h)
)(
αB(h+ k)− αS

))
,

(2b)

where R̂∗
H (h) is the optimal solution obtained from (MPC1)

at time instant h. The linear constraint (2b) guarantees that the
profit yielded by (MPC2) is the same with (MPC1). The
objective function maximizes the charging power at current
time instant h and reduces the battery charging/discharging
cycle. Using this formula, the charging schedule allows a
charger to finish the existing services faster and accept more
requests.

Formulas (MPC1) and (MPC2) are solved at each 15
minutes with updated Θ(h),Tl(h), ν(h), ηl(h) and pg(h) for
each EV. By summing the revenue at a single time slot, we can
estimate the actual revenue R along the entire operating pe-
riod. Station design parameters B and P have direct influence
on the MPC solution. The available charging spots number N
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does not explicitly exist in (MPC1) and (MPC2), but it im-
pacts the total EVs that can be accommodated. Since each EV
will be associated with a binary variable in the formula, the
total service number will influence the online computational
time. The bilinear term in the objective function of (MPC1)
can be equivalently converted to an auxiliary variable with
a set of inequalities, as we have shown in [32]. Thus, the
resulting formula (MPC1) is an MILP, which can be solved
to the global optimum. (MPC2) is an MINLP due to the
absolute value of b(h|h) in the objective function. Note that
MPC is relying on solar power prediction. Such uncertainties
may significantly impact the performance of MPC.

B. CHARGING MANAGEMENT SCHEME II
This subsection proposes a new empirical rule method for
charging management. Comparing with our preliminary re-
sults in [27], the new rule further integrates service prediction
to optimize EV charging schedules. To make this paper self-
contained, we provide the entire details of the charging rule.
Let BESS be charged using solar power at no additional
cost. During the energy peak time, the fully charged BESS
becomes the power supply and curbs the energy drawn from
the grid. Here we list the rule of battery charging/discharging:

• Starting from 6:00 AM, the BESS is charged and should
be full before 4:00 PM, denoted as TB.

• After 4:00 PM, the BESS-based EV charging gets prior-
ity.

• The BESS energy is solely used for EV charging rather
than selling to the grid.

The charging period for BESS is determined by available
solar energy resources. After 4:00 PM, αG increases, and thus
energy stored in the battery is preferred to use. Given that αC
is higher than αS , the stored power should be used for EV
instead of injecting back to the utility.

At step h, an EV at spot l should be charged at least by x l ,
and the battery should be charged at power b:

x l(h) = min
{
Q,max{ηl(h)/∆− 7.2(Tl(h)− 1), 0}

}
(3)

b(h) = min
{
0.2B,max{β(h)/∆− 0.2B(TB − 1), 0}

}
(4)

The minimal charging power at h is calculated by using either
Q kW or 0.2B charging rate in the subsequent time intervals.
Furthermore, the following procedure is proposed to increase
the scheduled minimal charging power for EVs based on the
prediction of incoming service requests γ(h). This algorithm
accelerates the charging process, and consequently reduces
the number of rejected service requests.

Algorithm 1:
If γ(h) > ν(h) +

∑
l,Tl⩽1 1, then

Step 1 l′ = argminl∈Π(h) ηl(h)
Step 2 x l′(h) = ηl′(h)/∆
Step 3 Π(h)← Π(h) \ l′ and γ(h)← γ(h)− 1. If γ(h) >

ν(h) +
∑

l,Tl⩽1 1 and Π(h) ̸= ∅, go back to step 1;
else terminate algorithm.

where set Π(h) is initialized as {l|Tl > 1 and ηl(h) < Q∆},
representing EVs that can be charged to full at h but with
longer allowable waiting time. Algorithm 1 is triggered when
the number of expected incoming EVs is greater than the
available charging spots.
Between 6 AM and 2 PM on weekdays or from 6 AM to

4 PM on weekends, the minimal power demands is initially
fulfilled through PV and any deficit can be seamlessly sup-
plemented by the grid. When there is surplus solar energy,
priority is assigned to storing it in the battery or charging EVs.
If neither EV nor BESS requires additional power, then the
excess solar energy can be sold back to the grid.

• On weekdays from 6:00 AM to 2:00 PM or week-
ends from 6:00 AM to 4:00 PM, the minimal power
x l(h),∀l ∈ Θ(h) or b(h) is assigned to EV or battery.

• Then, if pg(h) >
∑

l∈Θ(h) xl(h)+b(h), we choose an EV
l∗ with the shortest permissible waiting time, denoted as
Tl∗(h). Let its charging power to be

xl∗(h) = max
{
x l∗(h),

min{Q, pg(h)−
∑
l ̸=l∗

x l(h)− b(h), ηl∗(h)/∆}
}
(5)

• If BESS has the most urgent charging need, and excess
solar energy is available, then

b(h) =max
{

b(h),min{0.2B, pg(h)−
∑
l

x l(h), β(h)/∆}
}
(6)

Repeat the above procedure for each EV and BESS until
the generated solar energy is exhausted.

ηl∗(h)/∆ or β(h)/∆ is integrated into the calculation to
prevent overcharging. In the above algorithm, the charging
power calculation starts from the minimal required power and
gradually increases until solar power is fully utilized.
To minimize peak time charging on weekdays, we let EVs

acquire the maximum possible solar energy before 4 PM. In
addition, there is no need to postpone charging after 2 PM
when solar energy resources begin to decline. The rule is

• On weekdays from 2:00 PM to 4:00 PM, there are:

xl(h) = min
{
Q, ηl(h)/∆,min{Tl(h), 65− h}

}
(7)

b(h) = min
{
0.2B, β(h)/∆(65− h)

}
(8)

There two formulas for xl(h) and b(h) try to finish charging
tasks before 4 PM, with the power bound Q kW or 0.2B.
In peak hours, it is essential to minimize the charging tasks’

power requirements to facilitate load shifting to off-peak
periods. Furthermore, the non-grid power source is denoted
as pg

′
(h) = pg(h) + min{0.2B, β(h)/∆}.

• From 4:00 PM to 9:00 PM, the charging power is tenta-
tively set as its minimal value x l(h),∀l ∈ Θ(h).
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• If pg
′
(h) >

∑
l∈Θ(h) xl(h), then we choose an EV l∗ fea-

tured by the shortest allowable charging time, denoted as
Tl∗(h), whose charging power is

xl∗(h) =

max
{
min{Q, pg

′
(h)−

∑
l ̸=l∗

x l(h), ηl∗(h)/∆}, x l∗(h)
}
.

(9)

Repeat the above procedure and update the stored battery
energy until pg

′
is used up or there is no remained

charging request.
• The discharge rate of BESS is:

b(h) =

−min
{β(h)

∆
, 0.2B,max{

∑
l∈Θ(h)

xl(h)− pg(h), 0}
}
.

(10)

In the evening, the power supply can be assigned to each
time step evenly due to unchanged grid electricity price
αG(h). If an EV needs to depart later than the sunrise, its
charging task is properly postponed to make use of more solar
power. We use T ′

l to denote the allowed charging time period
after 6 PM. If an EV at spot l prefers leaving before 6 PM,
then T ′

l = 0.
• From 9:00 PM to 6:00 AM, there is:

xl(h) = min
{
Q,max{0, ηl(h)− Q∆T ′

l

∆min{Tl(h),Th→6}
}
}
,

(11)

where Th→6 is the duration from current time point h to
6 AM.

• The discharging rate of BESS from 9:00 PM to 6:00AM:

b(h) = −min{β(h)
∆

, 0.2B,
∑

l∈Θ(h)

xl(h)} (12)

Compared to the MPC approach, the empirical rule based
method manages charging power without using solar power
prediction and optimization solvers, and thus it offers agility
in making charging decisions at the cost of losing some
optimality. The principle of rule-basedmethod is to maximize
the utilization of available solar power, meet charging time
constraint, and allocate enough charging spots for anticipated
incoming cars. It is worthwhile to note that California benefits
from relatively rich solar power resources, and the charging
peak hour is consistent due to the fixed school course arrange-
ment. The presented empirical rule thus is suitable.

C. INFRASTRUCTURE OPTIMIZATION
The RSM is a data-driven approach to determine the infras-
tructure parameters,P,N , andB.WhileMPC heavily depends
on computationally-intensive optimization and receding hori-
zon methods to adapt operations dynamically during the sim-
ulation, the rule based method without real-time optimization
is more computationally efficient. Our simulation shows that
the time consumption of rule-based versusMPC is nearly 1:67

(see Table 6). Given the rule-based charging revenue gener-
ated under many sampled designs, we can build a response
surface model, which is used to search for a new optimal
design solution. The new design and its neighbors will be
sampledwith shrinking level distance to evaluate and improve
the surface function. This algorithm will be terminated when
the searching level distance is shrunk to a low level. In addi-
tion, once the design is finalized, we can use MPC instead
of the empirical rule for real operations. Comparing with
preliminary results [27], the battery degradation is integrated
within the RSM framework to characterize the total profit
more accurately.We demonstrate the RSMflowchart in Fig. 4
and each step is discussed below.

FIGURE 4. RSM algorithm flowchart. The rule-based approach is used to
evaluate each design. Once the station design is finalized, the MPC can be
applied to improve charging operations.

Sampling: According to reference [13], the 3-factor BB
design only needs to evaluate 13 samples around the central
sampling point. The changing direction for B, N , and P are
represented by LB, LN , and LP, respectively. Their values
can be 1, 0, or -1. Assume that the current optimal design
parameters are B∗, N∗, P∗. The level distances at this solution
point are denoted asλB∗ ,λN∗ , andλP∗ , respectively. Then, the
sampled solutions enumerated around the previous optimum
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are:

B = LBλB∗ + B∗, N = LNλN∗ + N∗, P = LPλP∗ + P∗.
(13)

Design evaluation: The annual operational revenue can be
quickly generated by the empirical rule method. The one-time
infrastructure cost includes charger, BESS, and PV panel. The
Level 2 charger cost per plug depends on the output power,
denoted asαN .We follow [38] to use the cost $6, 000, $6, 500,
and $10, 500 for 7.2, 11, and 22 kW chargers, respectively.
The battery price αB(B) has already been shown in Table 1.
The cost of a commercial solar carport panel stands at $1.56
per Watt DC (WDC) in the U.S. market as of 2021, with
an additional yearly maintenance cost of $17 per KW [34].
Hence, the profit spanning for 10 years is:

P(B,N ,P) =
9∑
j=0

R̃(B(1− 4j%),N ,P)

− αB(B)− αNN − (1560 + 17× 10)P, (14)

where R̃ is the estimated operational revenue by taking bat-
tery degradation into account. The lithium iron phosphate
battery under 0.5 C-rate usually degrades to 80% capacity
after 6,000-8,000 cycles [35]. The manufacturer guarantees
that its battery capacity at most reduces to 60% after 10-year.
Thus, the annual capacity degradation of battery is assumed
to be a constant 4%. This capacity degradation will adversely
impact the operations of BESS and thus the profitability of
charging station.

Construct and update surface function: Given the sam-
pled designs and their revenue R evaluated by the annual
operation simulation using empirical rule charging approach,
a second-order surface function for estimated revenue can be
defined in (15):

R̃(B,N ,P) =c0 + cbB+ cNN + cPP+ cB2B2 + cN2N 2

+ cP2P2 + cBNBN + cBPBP+ cNPNP, (15)

where c0, cb, cN , cP, cB2, cN2, cP2, cBN , cBP, and cNP are model
parameters identified through least squares. Then, R̃(B(1 −
4j%),N ,P) in (14) can be estimated through the following
formula:

R̃(B(1− 4j%),N ,P) = R− cb4j%B− cBN4j%BN
− cBP4j%BP− cB2(1− (1− 4j%)2)B2 (16)

As more samples are evaluated, the surface function can be
updated by re-fitting the data.

Search a new design: The design solution can be updated
by searching on the function P defined in (14).

max
B,P,N

P(B,N ,P) (17)

The resulting optimization is an integer quadratic program,
solvable by many off-the-shelf solvers.

Re-sampling: As shown in Fig. 4, if the solution derived
from (17) has been explored before, then the best solution
within the existing sampling set will be selected. Associated

level distance of that solution is halved and BB-design re-
samples new points within a smaller region around the se-
lected solution. When the level distance of a solution point is
small enough, it implies that the optimum is found.
Improve the charging: MPC is not integrated with RSM

for infrastructure design because it takes much longer time
than the rule-based method to determine the charging power
for each EV. However, MPC is able to achieve higher opera-
tional profit due to its optimization nature. Therefore, we can
use it to improve the charging strategy when the infrastructure
is determined via RSM.

IV. SIMULATION
We conduct the simulation on a workstation with Intel
Xeon Silver 4208 processor and 16 GB memory. The soft-
ware platform is GAMS 41 with MILP solver CPLEX and
MINLP/MIQP solver SCIP [36]. The termination condition
for both CPLEX and SCIP is the relative gap 0.1% or solving
time 200 seconds. The compared approach, adaptive parti-
cle swarm optimization (PSO) [37] is also programmed in
GAMS.

A. INFRASTRUCTURE DESIGN
In the simulation study, the rule-based charging management
is applied in the RSM for infrastructure design because MPC
with a moderate prediction horizon H = 15 may take several
hours to determine the annual operations even for one design
solution. In contrast, the empirical rule approach completes
the same task for about 10 minutes. The real world data intro-
duced in Section II are used for simulation. After determining
the optimal size and capacity of station infrastructure through
RSM, we can still use MPC to further improve the charging
policy and revenue. The goal is to determine the optimal
number of chargers, the capacity of battery, and the size of
solar panels, under various Level 2 charging power, including
7.2, 11, and 22 kW.

The BESS price αB(B) is listed in Table 1. The TOU-EV-
8 made by the utility company Southern California Edison
(SCE) is shown in Table 2.

TABLE 1. Price of battery αB(B) [28]

Capacity (kWh) Price ($)
4 2,885
8 4,985
12 7,085
16 9,185
20 11,285
24 13,385
28 15,485
32 17,585
36 19,685
40 21,785
44 23,885
48 25,985
52 28,085

An initial guess of searching area on the surface function is
shown in (18). Here B should be the capacity value in Table 1.
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TABLE 2. Grid TOU price αG [29]

Period October-May June-September
8 am-4 pm $0.10 /kWh $0.12 /kWh
4 pm-9 pm $0.23 /kWh $0.28 /kWh
9 pm-8 am $0.12 /kWh $0.12 /kWh

N and P can be any integer values in (18). If an optimal design
is found on any boundary of (18) during RSM iterations, then
the BB-design formula (13) will enable us to dynamically
extend the searching area.

B ∈ [0, 52], N ∈ [10, 45], P ∈ [60, 250] (18)

Table 3 shows the first set of sampled BB-designs and as-
sociated annual operational revenue with 7.2 kW chargers
using the empirical rule based charging method. In addition,
the analysis of variance (ANOVA) is conducted to investigate
how three design variables impact the operational revenue.
The resulting near-zero p-value indicates that all three design
variables have substantial influences on revenue, and it is
therefore advisable to optimize them concurrently.

TABLE 3. The first BB-design set:revenue with ANOVA using 7.2 kW
chargers

R B P N
56847.913 12 100 32
68887.703 12 240 32
58110.644 52 100 32
70235.631 52 240 32
60699.234 12 170 20
64050.193 12 170 44
61975.569 52 170 20
65406.131 52 170 44
53825.395 32 100 20
58298.684 32 100 44
67215.242 32 240 20
69983.293 32 240 44
64464.340 32 170 32
F-value 12.10 1062.24 99.41
p-value 0.0078 0 0

Figs. 5-7 plot the profit of each sampled design solution
during RSM iterations for 7.2, 11, and 22 kW chargers,
respectively. Moreover, Figs. 8-10 show the sampled battery
size, PV capacity, and number of chargers during RSM it-
erations for 7.2, 11, and 22 kW chargers, respectively. The
initial 13 samples are distributed sparsely to explore different
areas, and thus the resulting profits vary significantly. With
more iterations, the samples are more concentrated, and the
profit profiles in Figs. 5-7 become smoother. We terminate
RSM when the level distance of B , P, and N reaches 4,
2, and 1, respectively. Figs. 11-13 frame the 3-dimensional
(3D) solution space and color the profit for 7.2, 11, and
22 kW chargers, respectively. The RSM initially explores
a wide range of design space, but quickly converges and
generates more samples around a small high-profit area. The
optimal solutions and resulting profits are shown in Table 4.
Among three types of chargers, the 11 kW is preferred whose
high profitability is due to a good balance between charging

speed and capital cost. The solutions also show that larger
PV-panels or BESS diminishes the overall profit due to the
extended payback period resulting from the high initial capital
investment. The BESS effectively shifts some of the solar
power generated during the day to peak hours after sunset,
which increases operational revenue. However, the high cost
and capacity fading issue of BESS may degrade its merits.
We employ the adaptive PSO to solve the same design

problem for comparison. Totally 13 independent particles are
initialized at the same positions with BB-design of RSM.
These particles can evolve with 13 generations, resulting in
169 evaluations, which is the same as the maximum evalua-
tion number of RSM. Due to the stochastic nature, we execute
the adaptive PSO with 5 different trials. The optimization
results are shown in Table 5. Comparing it with Table4, we
can see that the RSM outperforms PSO in all scenarios and
trials. More importantly, the proposed RSM is a deterministic
approach that does not require multiple trials.
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FIGURE 5. The profit evolution in RSM (7.2 kW charger).
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FIGURE 6. The profit evolution in RSM (11 kW charger).
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FIGURE 7. The profit evolution in RSM (22 kW charger).
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FIGURE 8. The enumerated design solutions in RSM (7.2 kW charger).
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FIGURE 9. The enumerated design solutions in RSM (11 kW charger).
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FIGURE 10. The enumerated design solutions in RSM (22 kW charger).

TABLE 4. Optimal solutions of the RSM

Charging B P N 10-year
Power (kW) Profit ($)

7.2 0 85 18 236028
11 0 84 17 241352
22 0 93 11 200328

After creating the response surface for operational rev-
enues R, we use the 7.2 kW case as an example to gradually
reduce the BESS cost and investigate whenBESS is preferred.
The optimal solution in Table 6 shows that BESS becomes
attractive when its market price αB(B) is halved. It is not
supervised because utility incentives for surplus solar energy
offset the advantage of BESS.

B. CHARGING MANAGEMENT
Apart from the rule-based charging management, we setH =
15 and execute MPC to operate the charging station under the
same design parameters for comparison. Here only the 7.2
kW charger is applied as an example presented in Table 6.

TABLE 5. Optimal solutions of adaptive PSO

Charging Trials B P N 10-year
Power (kW) Number Profit ($)

7.2 1 0 86 21 234668
7.2 2 0 78 18 235188
7.2 3 0 96 18 233739
7.2 4 0 88 19 235753
7.2 5 0 94 19 234976
11 1 4 87 19 238214
11 2 16 94 16 237055
11 3 0 95 18 240708
11 4 12 91 17 238437
11 5 4 90 18 239354
22 1 0 89 13 198684
22 2 16 88 11 196415
22 3 0 79 13 197329
22 4 0 92 12 200294
22 5 0 95 13 199582
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Weobserve thatMPC requires significantlymore time to opti-
mize the annual operation due to the need of solving (MPC1)
and (MPC2) at each time instant. It demonstrates that a long
prediction horizon significantly increases the MPC’s solving
time. Regarding the operational revenue and declined services
in two scenarios, MPC is superior to the rule-based method
because of its real-time optimization nature. Moreover, this
finding contradicts with our preliminary result in [27] because
the incoming car prediction is newly integrated within both
MPC and rule-based approaches. However, the high computa-
tional demands of MPC hinders its integration with the RSM
for infrastructure optimization. When a battery is deployed
in the charging station, MPC must decide whether battery,
solar, or grid power is used. This additional task renders the
MPC to spend more computational time. The simple charging
rule with incoming car number prediction needs much less
time without solving optimization, and generates only 8%
lower revenue than that of the MPC. Considering that RSM
needs to evaluate the annual operations under 160 different
designs shown in Fig. 5, a simple charging rule method is
more suitable to the RSM-based infrastructure design. Once
the station design parameters are fully determined, then MPC
can be used to manage the charging power of each EV.

The annual charging power profiles using MPC and rule-
based approach at all 3657 × 24 × 4 = 35040 time instants
are plotted in Fig. 14. More power is needed during January
toMarch because of spring semester course schedule whereas
less power is demanded during the summer break. Because
rule-based approach heavily relies on solar power to charge
EVs, it accepts a smaller number of services and thus requests
less power. To better illustrate this, we further plot Fig. 15
for one-day EV charging profiles using MPC-based and rule-
based strategies, respectively. The rule-based approach aligns
EV charging with solar power generation before 4:00 PM
to optimize cost, while MPC is more aggressive to acquire
more charging power from the grid and accommodate a larger
amount of charging demands. For example, at 27th time in-
stant (6:45 AM), only two charging requests with expected
waiting time 9.75 and 5.25 hours are received. At that time
instant, the rule-based method only provides the charging
power 0.1438 kW due to the lack of solar power, whereas
MPC charges EVs using grid power supply with 14.4 kW.

To test the function of BESS in EV charging, we halve
the battery price and find that deploying a 12 kWh BESS
in the charging station is profitable. The one-day battery
charging/discharging operations using rule-based approach
and MPC under 0.2-C rate are shown in Fig 16, respectively.
The rule-based method treats BESS as a long-term charging
request in the morning and starts charging at 11 AM when
solar power is high enough. The BESS becomes full before 4
PM. After 4 PM, the BESS discharges to supply EV power.
The MPC determines BESS operations by solving two op-
timization problems at each time instant. It stops charging
the battery before 4 PM even though it may not be full, and
discharges it to supply EV power demands in the evening.

Finally, we need to acknowledge the limitations inherent
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TABLE 6. One-year Operational Revenue, Simulation Time for Single
Design, and Declined Services under the Optimal Solutions. Note: Two
optimal designs are generated. BESS is employed in the second solution
when αB(B) is halved. 7.2 kW charger is applied.

Design (B: 0 P: 85 N: 18) Rule MPC
R($) 49107.89 53000.85

Simulation Time (minutes) 9.7 648.3
Declined Service 2289 774

Design (B: 12 P: 86 N: 20) Rule MPC
R($) 50928.18 53852.61

Simulation Time (minutes) 11.9 6000.3
Declined Service 1856 582
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FIGURE 14. Annual charging power using MPC and rules-based
approaches, 7.2 kW chargers. Blue solid: Rule-based; Red dash: MPC; (a)
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in the proposed design and management approaches. Our
study is confined to a 3D searching space with quadratic
surface function. However, for higher-dimensional design
space, a more complex surface function becomes necessary.
In addition, how to reduce the performance gap between the
empirical rule based charging method and MPC still deserves
more investigations.

V. CONCLUSION
Our study introduces a comprehensive framework aimed at
achieving a near-optimal design of a PV and BESS-assisted
charging station. We develop two distinct charging manage-
ment approaches, MPC and the rule-based method. MPC,
leveraging solar power and charging request predictions,
solves two optimization problems to determine the optimal
charging solution at each time step. In contrast, the empirical
rule predominantly utilizes solar power in daytime charging
and shifts loads to the off-peak hours. This rule relies on
the charging request forecast without engaging with opti-
mization, and thus resulting nearly 1/67th of the computa-
tion time required by MPC. We then develop the RSM to
optimize the design solution by maximizing long-term profit
with the rule-based charging schedule instead of MPC due to
its computational efficiency. The one-year charging requests
collected on the station and solar power data are used for
simulation to assess the presented scheme. The proposed
charging rule yields slightly less revenue compared to the
MPC, but substantially reduces solving time, making it par-
ticularly suitable for implementation within RSM to explore
the design space effectively. Furthermore, the RSM-based
analysis shows that the high-price BESS subject to capacity
degradation is unfavorable to the charging station profitability
when excess solar energy can be sent back to the utility with
incentives. In fact, the BESS is preferred only when its price is
halved. In addition, we compare the deterministic RSM with
a stochastic optimization method, adaptive PSO, and demon-
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strate that RSM consistently achieves better solutions in all
tested scenarios. This comprehensive evaluation underscores
the robustness and efficiency of our proposed framework
for designing and managing PV and BESS-assisted charging
stations.
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