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ABSTRACT Intentional islanding is one of the potential strategies to mitigate risks related to total blackouts
by partitioning the network into multiple power islands. This paper focuses on developing a cloud-based
strategy for managing the post-islanding power islands operation considering the coupling of the electrified
heating vector. At the core, a novel multi-vector cloud-based optimization strategy (CbOS) is utilized to
harness the hidden flexibility of heating, ventilation and air-conditioning (HVAC) systems, resulting in
reduced load shedding required to balance the power island and decreased operational costs. To maintain the
sustainability of the power island, CbOS is further integrated with an additional objective of optimizing a
voltage stability index and costs. The architecture uponwhich CbOS is built, provides themeans to deploy the
required software tools and its operation is tested in a generalizable power island under representative cases
studies with respect to the level of controllability that CbOS is expected to have among the fleet of energy
assets. The results reveal that when all energy assets are operated under CbOS, a substantial cost reduction
up to 55.6% can be achieved by utilizing the flexibility stemming from the HVAC systems. Concurrently,
voltage stability profiles are improved for the lines under stress.

INDEX TERMS Cloud-based optimization, demand side response, electrified heating, intentional islanding,
multi-vector power island

NOMENCLATURE

Parameters
∆t Time interval.
ηc Charging efficiency of battery stor-

age.
ηd Discharging efficiency of battery stor-

age.
Bbp Susceptance of line connecting buses

b and p.
C Equivalent heat capacity.
CostSG Operational cost of synchronous gen-

erator.
Gbp Conductance of line connecting buses

b and p.
H Equivalent heat rate.
Qr Reactive power at the receiving end of

line.

RTH Equivalent thermal resistance.
Tbld,min Minimum acceptable building tem-

perature.
Tbld,max Maximum acceptable building tem-

perature.
Vs Bus voltage at sending end of line.
VOLL Value of Lost Load.
VOVS Value of Voltage Stability.
X Reactance of line.
Z Impedance of line.

Sets
ESTOmax Energy capacity of battery storage.
Nbr Total number of line branches.
Nbus Total number of buses.
NbusBESS Total number of buses with a battery

storage.
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NbusHVAC Total number of buses with a heat-
ing, ventilation and air-conditioning
(HVAC) system.

NbusLD Total number of buses with a load.
NbusPV Total number of buses with a solar PV.
Nbussen Total number of sending ends of

buses.
NbusSG Total number of buses with a syn-

chronous generator.
NbusWT Total number of buses with a wind

turbine.
Nlinerec Total number of receiving ends of

lines.
Tambient(b, t) Ambient temperature at bus b at time

t .
PLD(b, t) Active load at bus b at time t .
PPV ,max Maximum active power generation of

solar PV.
PSG,min Minimum active power generation of

synchronous generator.
PSG,max Maximum active power generation of

synchronous generator.
PWT ,max Maximum active power generation of

wind turbine.
SBESS Power capacity of battery storage.
SHVAC Rated power of HVAC.
S imax Capacity of line i.
QLD(b, t) Reactive load at bus b at time t .
QPV ,max Maximum reactive power generation

of solar PV.
QSG,min Minimum reactive power generation

of synchronous generator.
QSG,max Maximum reactive power generation

of synchronous generator.
QWT ,max Maximum reactive power generation

of wind turbine.
Vmax Maximum acceptable bus voltage.
Vmin Minimum acceptable bus voltage.

Variables
δbp(t) Voltage angle difference between

buses b and p at time t .
P(b, t) Active power generation at bus b at

time t .
Pex(b, t) Active power exchange between bus b

and all interconnected buses at time t .
KHVAC(b, t) Power regulation % of HVAC system

at bus b at time t .
PLoadshed(b, t) Loss of active load at bus b at time t .
PPV (b, t) Active power generation of solar PV

at bus b at time t .
PSG(b, t) Active power generation of syn-

chronous generator at bus b at time t .
PWT (b, t) Active power generation of wind tur-

bine at bus b at time t .
Q(b, t) Reactive power generation at bus b at

time t .
Qex(b, t) Reactive power exchange between

bus b and all interconnected buses at
time t .

QLoadshed(b, t) Loss of reactive load at bus b at time
t .

QPV (b, t) Reactive power generation of solar
PV at bus b at time t .

QSG(b, t) Reactive power generation of syn-
chronous generator at bus b at time t .

QWT (b, t) Reactive power generation of wind
turbine at bus b at time t .

S(i, t) Power flow through line i at time t .
ScBESS(b, t) Charging power of battery storage at

bus b at time t .
SdBESS(b, t) Discharging power of battery storage

at bus b at time t .
SoC(b, t) State of charge of battery storage at

bus b at time t .
Tbld(b, t) Building temperaturewithHVAC sys-

tem at bus b at time t .
V (b, t) Voltage at bus b at time t .

I. INTRODUCTION

POWER grids are experiencing a significant transition,
with wide penetration of renewable resources, energy

storage systems and controllable demand, dispersed among
various voltage levels. The existing grid continues to serve
as the backbone of this development, thus, requiring signifi-
cant reinforcement in order to successfully incorporate these
technologies whilst serving the ever increasing demand. En-
hancements range from capital-intensive grid infrastructure
upgrades to smart tailored management, automation and con-
trol applications, assisted by the advanced computation, com-
munication and networking capabilities being offered nowa-
days [1], [2]. The significant penetration of renewable energy
resources and the ambitious carbon targets set out within the
next decades, the electrification of heating and transportation,
increased integration of power electronic-based devices and
decommissioning of large synchronous plants has increased
the uncertainty around network stability and security of sup-
ply. Power systems are subjected to dynamic variations in
their state, which under specific circumstances can lead to
cascading outages and precipitate a partial or total blackout
[3].

Intentional islanding serves as a potential measure to miti-
gate the risk stemming from cascading outages. Adoption of
intentional islanding secures the system integrity downstream
of the incepted network contingency while serving the local
load with minimum load shedding. Intentional islanding can
be classified as scheduled and unscheduled, with the former
being deployed at a pre-defined time due to e.g. forecasted
extreme weather conditions that could lead to network con-
tingencies and the latter being decided following a flag from a
real-time monitoring system with respect to a network abnor-
mality [4]. Successful deployment of an intentional islanding

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384985

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Patsidis et al.: Multi-Vector Power Island Operation Utilizing Demand Side Response Based on a Cloud-based Optimization Strategy (CbOS)

scheme pertains to solving a trilateral problem which can be
disaggregated into the following [4]–[7]:

• Establish appropriate timing to initiate an intentional
islanding scheme.

• Identify optimal partition of the power network by es-
tablishing the lines to be disconnected.

• Specify control actions necessary to maintain sustain-
ability of the power island(s).

This paper primarily focuses on the last point and proposes
a novel architecture to operate the power island(s) following
network partitioning. Following intentional islanding, each
power island must be sustainable while awaiting a reconnec-
tion command from the system operator [6]. With respect to
this issue, a low volume of research has been conducted on
the control actions within the formed power islands, with the
literature assuming local load shedding as the predominant
control to maintain the sustainability of each island [8]. The
latter point presented above (i.e. control actions necessary to
maintain sustainability of the power island(s)), consists of a
mix of high- and low-level control actions, which maintain
healthy power islands in a short- or long-term basis, achieving
a dual objective: 1) supply local load in an uninterrupted
manner and minimize load shedding, and 2) guarantee power
is within acceptable frequency and voltage limits. Following
system partitioning, each power islandmust be sustainable for
a finite time interval while awaiting a reconnection command
from the system operator [6]. With respect to this issue, a low
volume of research has been conducted on the control actions
within the formed power islands, with the literature assuming
local load shedding as the predominant control to maintain
the sustainability of the islands [8]. Other research papers in-
vestigate the optimal installation of renewable mobile power
stations (RMPSs) [9], low-level control of battery systems
in islanded microgrids [10] and static converter control for
frequency and voltage regulation [11]. The authors in [12]
have proposed a formulation which considers the low-level
control in both grid-connected and islanded operation. Those
papers, albeit addressing significant issues with respect to the
islanded operation of an intentional power island, do not pro-
vide an end-to-end approach from the operator’s perspective,
lack consideration of the significantly dynamic nature of the
problem, do not exploit flexibility sources to minimize load
shedding and do not explore the benefits of coupled energy
vectors in a multi-vector network.

The current state of the art, albeit addressing significant
issues with respect to the islanded operation of an intentional
power island, does not provide an approach from the op-
erator’s perspective, lacks consideration of the significantly
dynamic nature of the problem, disregards the stability issues
that can emerge within the power islands, does not exploit
flexibility sources to minimize load shedding and does not
explore the benefits of coupled energy vectors in a multi-
vector network, considering especially the rapid electrifica-
tion of heating. The vast majority of research surrounding
intentional islanding pertains to the optimal network partition,

i.e. which lines shall be disconnected in order to create the
power islands. Several research papers have tried to tackle
this problem [4], [7], [13], [14], utilizing numerous methods
to achieve the desired objectives while adhering to network
constraints. To tackle the aforementioned gaps within the
literature, this paper formulates a flexible optimization strat-
egy and integrates it within an operational framework. This
approach takes into consideration the coupled multi-vector
flexibility, proposes a flexible and scalable architecture and
optimizes the power island operation both in terms of cost
and stability.
One of themost significant elements in today’s commercial

buildings and industrial units is the heating, ventilation and
air-conditioning (HVAC) system, which regulates the flow
and temperature of air flowing from and to a building, thus
modulating the temperature and humidity. These parameters
influence the comfort level of the inhabitants. HVAC sys-
tems utilize a significant portion of energy, accounting on
average for 44% of total energy consumption in commercial
buildings [15]. HVAC systems have been proven to provide
considerable advantages towards realising net-zero carbon
targets. These devices are already gaining popularity and are
perceived as appropriate replacement of conventional heating
systems, with incentives being proposed in many countries.
Studies have been conducted in order to minimize HVAC
systems energy consumption and maximize their efficiency,
however HVAC systems operation is typically optimized on a
single-unit and/or single-building framework thus neglecting
the hidden flexibility stemming from HVAC systems within
a wider multi-asset network [16] [17]. Another study, where
HVAC systems were part of the optimization variables, did
not consider the financial and technical incentives accompa-
nying the optimal operation of theHVAC system [18]. The au-
thors in [15] introduced a multi-HVAC optimization in multi-
ple buildings under a time-of-use (ToU) tariff framework. The
problem formulation considered temperature comfort levels
and power feeder losses, with the aim of minimizing total
energy costs, however the study did not considered control
of other energy assets and emergency conditions.
To harness the flexibility of HVAC, a demand side re-

sponse (DSR) mechanism is required. Demand side response
manually or automatically regulates the demand in order to
maintain the balance between generation and load. DSR has
been identified as a solution to increase operational flexibil-
ity, provide multi-objective ancillary services from the end-
user side and ultimately minimize the need for large capital
expenditures associated with network reinforcements. DSR
schemes, at the present, can be categorised into two main
classes: price-based and incentive-based. In price-basedDSR,
the consumers receive market signals and respond accord-
ingly, with the pre-defined time-of-use (ToU) tariffs being
the predominant price-based DSR schemes in the electricity
markets nowadays. In incentive-based DSR, consumers en-
ter a contractual obligation with the utility to disconnect or
completely reduce a part or all their demand when required
[19]. DSR is deployed either by the end-user who possesses
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the ultimate control over the energy asset [20] or by direct
load control (DLC) DSR schemes. In DLC, demand is di-
rectly controlled and regulated by external entities which have
procured the DSR scheme, meaning that these parties can
directly regulate and control the end-user energy asset in a
continuous manner without intervention by the end user or
the autonomous controller of the energy asset [20]. The ma-
jority of the early-stage DSR schemes are mainly employed
to provide peak load shaving, however, it has been argued
that harnessed flexibility from demand side response has the
ability to tender highly remunerative contracts for residen-
tial and industrial end users in order to participate in other
than peak shaving formats of DSR schemes [21]. Large-scale
deployment of DSR schemes is subject to market incentives,
asset flexibility and two-way communications infrastructure
between energy management systems and flexible demand.
The proposed post-islanding management scheme presented
in this paper assumes direct controllability over the DSR
energy assets, thus DLC is utilized as the control strategy.

The key to apply a DLC scheme to support intentional
islanding lies upon the utilization of measuring equipment,
networking infrastructure, communication channels and net-
work management systems. In that context, cloud computing
services have manifested their pivotal role in fast, reliable,
flexible and scalable software architectures, which can play
a significant role towards alleviating the increased need for
computing resources associated with the evolution of energy
systems. Cloud computing is at the core of multiple appli-
cations in various sectors, such as finance, telecommunica-
tion, data analytics, etc. The business case and economies-
of-scale derived by cloud services present an opportunity
to other sectors, such as the energy sector, to adopt cloud-
based solutions into their software developments. Thus far,
the main cloud computing solutions used by the energy sector
encompass large data storage and network monitoring [22].
Lately, a new type of cloud service has emerged, entitled
Containers-as-a-Service (CaaS), manifesting itself as a highly
robust cloud service capable of supporting data process with
high availability, short response time, low latency and com-
petitive costing [23]. Containers are lightweight, stand-alone
virtualization instances consisting of applications and depen-
dencies. In CaaS, end-users are able to deploy and handle pro-
prietary applications whilst providing exceptional scalability
and flexibility, consuming less computational resources and
time, resulting into a considerable increase in applications
of cloud solutions both at a development and deployment
stage. Toolkits such as Docker provide the means to deliver
packaged applications [24]. As power systems evolve, tech-
nologies such as cloud computing are becoming appealing as
means of decentralising tasks and applications to the cloud
[25]. The inherent decentralized nature of distributed gener-
ation requires computational intelligence that is capable to
orchestrate the operation of multiple assets at the network
edge. Cloud computing can shift this need towards the cloud
while requiring minimum intelligence at the network edges,
where energy assets are connected.

In a recent study, the authors of [26] explored the applica-
tion of a cloud-edge scheme for the provision of fast flexi-
bility services. In that paper, the optimization and forecasting
are implemented on the cloud with the fast control actions
occurring at the network edge, near the energy assets. The
framework developed creates a set of operational scenarios
for storage assets to be able to provide flexibility services.
The authors introduce convex relaxations to solve the power
flow problem by utilizing a second-order cone programming
on a single phase network. A further study conducted in
[27] also utilized a cloud-edge strategy to provide demand
response using deep reinforcement learning, where cloud
computing services are used for the deep learning activities,
while the authors in [28] demonstrate a virtual power plant
(VPP) energy trading platform deployment on the cloud. The
authors of [29] propose a cloud-based scheme for control and
optimization during contingencies, with the participation of
demand side response, while presenting a comprehensive list
of research-based demand response formulations in optimiza-
tion problems. The solution comprises an IoT-based cloud
platform with multiple cloud nodes in charge of the various
tasks, including a DC power flow.
This paper takes these initial concepts one step forward,

providing detailed mathematical formulation through an AC
optimal power flow (AC OPF), thus capturing voltage, fre-
quency and voltage angle variations which are necessary
to provide accurate power dispatch schedule, introduces a
flexible cloud-edge architecture and explores the coupling
among the electricity and electrified heating vectors. Further-
more, it benchmarks different objective functions, subject to
network particularities that would otherwise not be captured
by simplified formulations (e.g. DC OPF, second-order cone
programming).
Additionally, to mitigate and address any potential stability

issues, various voltage stability indices were investigated as
part of this research, in order to be modelled and integrated
as objectives within the AC OPF [30]–[33]. Among them,
the Fast Voltage Stability Index (FVSI) was chosen as an ap-
propriate metric, as it can accurately predict voltage collapse
and does not pose a significant computational burden for the
overall problem formulation.
Within this paper we propose, validate and benchmark a

cloud-hosted optimization-based power island management
system. At the core of the system lies a multi-vector cloud-
based optimization strategy (CbOS) equipped with an AC
OPF with integrated demand side response by HVAC units.
We focus on demonstrating the capabilities, advantages and
flexibility offered by a flexible optimization-based system,
which does not require high capital expenditures in physical
equipment, utilizing the cloud as a basis for its operation and
low-level hardware on the edge (e.g. single-board computer)
for the implementation of the high-level actions. A schematic
representation of the system architecture is presented in Fig.
1. The proposed cloud framework adopts the Docker con-
tainerisation technology to deploy the necessary applications
in an economic, reliable and scalable manner.
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FIGURE 1. CbOS-based intentional islanding operation.

Orchestration of islanded operation following intentional
islanding has been identified as a contingency network ser-
vice with deployment characteristics that render a cloud-
based solution economical, scalable, flexible and cyberse-
cure. Power island management via cloud computing services
provides 1) no additional hardware allocation from the net-
work operator, i.e. no up-front capital expenditure, require-
ment for hardware upgrades and maintenance, 2) reduced
costs (work hours) with respect to IT/software updates, 3)
dynamic resource allocation with respect to the computa-
tional requirements, 4) flexible, interoperable, plug-and-play
architecture with the capability to migrate the solution among
different providers and network operators, 5) geo-replication
and failover capability for disaster mitigation, 6) cybersecure

computing services, and 7) operator can choose to store the
cloud products in data centers far from the network under
supervision, thus guaranteeing that a local power system
contingency would not disable the computing resources.
The paper is organized as follows: Section II examines

the architecture and considerations for the cloud-based op-
timization strategy. Furthermore, it presents the mathemat-
ical representation of the AC OPF algorithm for optimally
controlling the energy assets under consideration towards a
flexible HVAC-oriented DSR strategy. Section III describes
the case studies conducted to validate the proposed solution,
demonstrates the consequent simulation results and discusses
the benefits stemming from the adoption of the scheme. Fi-
nally, conclusions are drawn in Section IV.
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II. DEVELOPED CLOUD-BASED OPTIMIZATION
STRATEGY FOR POST-ISLANDING OPERATION
Intentional islanding is contingency service which serves as
a last resort measure to mitigate the risk of cascading outages
that could potentially lead to a partial or total blackout. Suc-
cessful deployment of an intentional islanding scheme per-
tains solving a trilateral problem which can be disaggregated
into the following sub-problems [4]–[7]:

• Establish the appropriate timing to initiate an intentional
islanding scheme.

• Identify the optimal partition of the power network by
establishing the lines to be disconnected.

• Specify the control actions necessary to maintain sus-
tainability of the power island(s).

The latter consists of a mix of high- and low-level control
actions, which maintain healthy power islands in a short or
long-term basis, achieving a dual objective: 1) supply local
load in an uninterrupted manner and minimise load shedding,
and 2) guarantee power is within acceptable frequency and
voltage limits.

The main control actions over renewable generators and
additional energy assets such as synchronous generation and
storage is the active and reactive power dispatch signals,
subject to the natural resource available, state of the generator
and operational constraints. The problem of identifying the
control signals over a finite number of generators within a
power island can be translated into an optimization problem,
where the objective function is not based upon purely eco-
nomic factors but also considers the stability of the power
island.

Typically, renewable generation such as solar and wind is
configured to operate in a maximum power point tracking
(MPPT) mode, meaning that all the available power is ex-
ported through their point of connection. However, as power
networks, especially on the distribution level, integrate addi-
tional renewable resources, controllability over a proportion
of the total fleet is essential to guarantee the security of
supply.

Optimization in power systems is typically manifested
through market clearing (day-ahead, intra-day, etc.) and the
optimization for local energy communities and microgrids.
However, these applications traditionally occur within the
context of a centralized management system (e.g. whole-
sale market mechanism, microgrid controller, etc.) with pre-
defined topological and operational elements. However, with
power generation and demand increasing at the lower levels
of the power system (i.e. distribution system), optimizing the
operation at these levels is becoming a necessity.

At the core of the proposition of this paper, an AC OPF
has been developed, incorporating multiple DG assets (wind,
solar PV, synchronous generator, battery storage, etc.), as
well as considering both fixed and flexible demand. The AC
OPF is further equipped with capabilities to optimize HVAC
systems, with respect to their technical particularities. Scope
of the AC OPF is to optimize the operation of the network,

both in terms of cost and stability, while harnessing DSR
flexibility from both traditional demand and HVAC systems.
In order to benchmark the continuous supply of a satisfac-

tory energy service, the HVAC end-user is assumed to have
declared statutory limits with respect to their comfort (i.e.
minimum acceptable temperature within premises assuming
variable operation of HVAC). CbOS, other than control over
generating units in scenarios where this is explicitly stated,
has controllability over end-user equipment in two ways,
namely 1) DLC over HVAC load, and 2) DLC over demand
(either regulating controllable demand or load shedding).
Between operational time intervals, the optimization en-

gine is idle, requiring no computing power. Orchestration of
islanded operation following intentional islanding has been
identified as a contingency network service with deployment
characteristics that render a cloud-based solution economical,
scalable, flexible and cybersecure. Power island management
via cloud computing services provides 1) no hardware alloca-
tion from the network operator, i.e. no up-front capital expen-
diture, requirement for hardware upgrades and maintenance,
2) reduced costs (work hours) with respect to IT/software
updates, 3) dynamic resource allocation with respect to the
computational requirements, 4) flexible, interoperable, plug-
and-play architecture with the capability to migrate the solu-
tion among different providers and network operators, 5) geo-
replication and failover capability for disaster mitigation, 6)
cybersecure computing services, and 7) operator can choose
to store the cloud products in data centers far from the network
under supervision, thus guaranteeing that a local power sys-
tem contingency would not disable the computing resources.
The case studies conducted and presented in Section III

focus on the provision of power schedules utilizing hidden
flexibility from HVAC systems. This work demonstrates the
added value and decreased load shedding required from uti-
lizing DSR from HVAC systems to ensure secure and reliable
operation of the power island while examining the technical
and financial impact of optimizing both cost and voltage
stability.
The contributions of this paper are summarized hereafter:
• A novel cloud-based optimization strategy (CbOS) ca-

pable of operating a power island.
• A novel multi-vector AC OPF incorporating a HVAC-

based DSR scheme and a voltage stability metric to
ensure power island sustainability.

• Proposition of a low-cost, flexible and scalable digital
architecture for adoption by network operators.

• Benchmarking of DSR from HVAC systems under vari-
ous comfort level limits.

• Validation of various objective functions, eventually ac-
counting for both cost and voltage stability in a single
formula.

A. MULTI-VECTOR CLOUD-BASED OPTIMIZATION
SCHEME (CBOS) ARCHITECTURE
This research proposes a hybrid cloud-edge strategy with the
following tasks split between the cloud and the edge intelli-
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gence: 1) Cloud containers are in charge of forecasting natural
resources such as solar irradiance, temperature and wind
speed, and demand. An additional cloud container is in charge
of solving the AC OPF problem and sending the necessary
datasets to the edge devices. 2) The edge devices requiremini-
mal computational capabilities and storage. These devices act
primarily as interfaces among the cloud and the energy assets,
utilizing communication protocols (e.g. TCP/IP) to operate
the energy assets. In case of communication failure, the edge
device identifies the lack of communication upstream (cloud)
and utilizes the setpoints from the latest power schedule for
the next interval(s) which although outdated shall be available
to be used. In that case, the cloud platform identifies the
failure and caters accordingly by assuming the utilization
of the outdated setpoint(s) by the asset(s). The architecture
described above, comprising the cloud, edge and asset layers,
is presented in Fig. 2.
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FIGURE 2. Proposed layered architecture.

This research introduces a novel three-layer architecture
for multi-vector power island operation which encompasses
the cloud layer, the edge layer, and the asset layer. Each layer
serves a distinct but interconnected function in the overall
optimization strategy.

Cloud Layer: The cloud layer is the brain of our optimiza-
tion strategy, responsible for the overarching orchestration
of commands and actions. It leverages advanced forecasting
algorithms for demand and natural resources, performing
AC OPF calculations to ensure the efficient utilization of
available assets. By maintaining comprehensive databases,
the cloud layer facilitates seamless communication across the
network, which is vital for real-time operational agility.

Edge Layer: Serving as the intermediary, the edge layer
acts as the interface between the cloud and asset layers. It
ensures the reliable dispatch of control signals even in the
face of communication failures, maintaining a local schedule

repository as a contingency measure. This layer’s design is
critical for enhancing the resilience of the power island’s
operation, allowing for uninterrupted control despite potential
network disturbances.
Asset Layer: The asset layer is where the physical realiza-

tion of the power schedule occurs. It directly communicates
with the edge layer, executing the operational plans using
a robust communication protocol. This layer comprises the
tangible components of the power island, such as HVAC
systems, batteries, and other controllable loads and resources.
The focus of this paper lies on the cloud layer, as it is

the central hub for the decision-making process, integrating
the flexibility and computational power of modern cloud
computing to address the dynamic nature of post-islanding
conditions. By prioritizing the cloud layer, we can harness the
full potential of cloud-based optimization without detracting
from the critical roles of the edge and asset layers, which
are detailed in accordance to their supportive functions in the
proposed strategy.
A detailed description of the sequence of actions pertaining

to the cloud layer can be found hereafter:

1) The algorithm starts and awaits an operator request for
an intentional islanding event.

2) Following a request from the operator at t = t0 to
prepare for an intentional islanding at t = tn (assuming
tn the intentional islanding scheme deployment), the
algorithm triggers Container 1 which is the master
container with a description of the next steps.Container
1 triggers Container 2 and Container 3.

3) Container 2 comprises the algorithm which forecasts
demand, temperature, irradiance and wind speed for the
next 24 hours. To facilitate that, Container 2 utilizes
a database of historical data regularly updated within
a MS Azure blob storage container. It then stores the
forecasted data into an output MS Azure blob storage
container, which shall be later used by the AC OPF.

4) Concurrently with Container 2, Container 3 initiates
its processes. The first algorithm within Container 3
checks the latest forecasting output via awatchdog rou-
tine every 1 second until it confirms that the forecasting
routine of Container 2 has been concluded.

5) The actual AC OPF is then initiated, gathering two
types of required datasets: a) Forecasting output, and b)
network topology as declared by the network operator.
The AC OPF runs and produces a dataset of dispatch
signals for the energy assets via the edge intelligence
in order to realize it at the appropriate timing (i.e. tn).

6) The procedure is re-initiated fromStep 2 (i.e.Container
1 triggering) to provide a new power schedule starting
from tn+1, where tn+1 = tn+5 minutes.

It should be noted that the AC OPF and the Forecasting
modules are both constructed in a manner which provide
flexibility in terms of number of assets and topological char-
acteristics, thus rendering the solution flexible, scalable and
interoperable.
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The forecasting container is executed upon request on the
cloud. The inputs are historical data regarding demand, tem-
perature, wind speed and irradiance. The outputs are the same
variables, forecasted for the subsequent 24 hours in 5 minutes
time intervals. As IoT devices gather the historical data and
update the repository of each variable, Prophet tool is utilized
to proceed into the 24 hour forecasting [34]. Prophet is a time
series, open-source, forecasting tool developed by Facebook.

A presentation of the algorithm with its necessary building
blocks, as described above, is presented in Fig. 3.
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FIGURE 3. Flowchart of cloud layer operation.

B. AN AC OPF CONSIDERING DSR FROM HVAC
The AC OPF presented in this section is utilized on-demand,
following a network partitioning (i.e. intentional islanding),
to optimally dispatch generation, controllable and uncon-
trollable demand and controllable HVAC systems located
within a power island in order to satisfy all operational con-
straints and stability limits. HVAC controllability pertains to
the power regulation of the HVAC subject to satisfying the
building temperature limits. It should be noted that subject
to the HVAC technical characteristics, and utilizing the flex-
ibility stemming from (21), the HVAC control can either be
a thermostatic or power setting. The AC OPF presented in
this section, based on the equations shown in [35], is further
expanded by integrating HVAC systems and their respective
mathematical formulation.

The AC OPF presented hereafter has the following unique
characteristics: 1) calculates a 24 hours ahead active and

reactive power schedule in 5 minutes time intervals, thus
maximizing the granularity of the dispatch and increasing the
visibility to temporal variations, 2) runs every 5 minutes in a
rolling window basis, guaranteeing that the latest conditions
are taken into consideration fewminutes prior to dispatching a
control signal to an energy asset, 3) possesses feedback-based
capabilities with most recent forecasting data being fed into
the algorithms.
The algorithm is written in Python and utilizes the Pyomo

toolbox with the IPOPT open-source solver to solve the non-
linear AC OPF.
The objective function for the optimization problem of the

power island operation is presented in (1).

F1 = min(
∑
t∈T

∑
g∈NbusSG

CostSG · (PSG(g, t))

+
∑
t∈T

∑
l∈NbusLD

VOLL · (PLoadshed(l, t))) (1)

The first term includes the operational cost of the syn-
chronous generator and the second term is the expected cost
of load shedding (assuming a static costCostSG of £200/MWh
and VOLL cost of £3,000/MWh [36]). Aim of the optimiza-
tion is to minimize the value of the objective function, as a
whole (i.e., both terms with their respective weights). It is
assumed that generation costs stem solely from fuel-based
generating units. Note that the cost of load shedding is much
higher than the cost of the synchronous generator, meaning
that inherently and when applicable the AC OPF shall utilize
all internal generation capabilities prior to deciding that load
shedding is required.
For this study, another objective function for the ACOPF is

formulated and presented in (2), which incorporates, among
the cost terms presented in (1), FVSI as a third term with
an accompanying weight (i.e. VOVS) in order to drive the
optimization to minimize this term alike.

F2 = min(
∑
t∈T

∑
g∈NbusSG

CostSG · (PSG(g, t))

+
∑
t∈T

∑
l∈NbusLD

VOLL · (PLoadshed(l, t))

+
∑
t∈T

∑
k∈Nlinerec

∑
v∈Nbussen

VOVS · 4 · Z
2(k, t) · Qr(k, t)

V 2
s (v, t) · X(k, t)

) (2)

The operational problem is subject to operational constraints
presented by (3)-(18). (3) and (4) pertain to the active and
reactive power limits of conventional synchronous generator,
respectively.

PSG,min ≤ PSG(g, t) ≤ PSG,max ∀t ∈ T ,∀g ∈ NbusSG (3)

QSG,min ≤ QSG(g, t) ≤ QSG,max ∀t ∈ T ,∀g ∈ NbusSG (4)

The active and reactive power limits of wind turbine generator
are represented by (5) and (6), respectively.

0 ≤ PWT (g, t) ≤ PWT ,max ∀t ∈ T ,∀g ∈ NbusWT (5)
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0 ≤ QWT (g, t) ≤ QWT ,max ∀t ∈ T ,∀g ∈ NbusWT (6)

(7) and (8) correspond to the maximum active and reactive
power limits of solar PV, respectively.

0 ≤ PPV (g, t) ≤ PPV ,max ∀t ∈ T ,∀g ∈ NbusPV (7)

0 ≤ QPV (g, t) ≤ QPV ,max ∀t ∈ T ,∀g ∈ NbusPV (8)

FVSI typically ranges from 0 to 1, with values over 1
indicating an imminent voltage collapse. In this research,
CbOS utilizes either (1) or (2) to benchmark their individual
performance.

Battery storage-related constraints are provided by (9) -
(13). Note that (11) relates to allowing the battery to either
charge or discharge at each time interval considered, while
(13) guarantees that the state of charge of the battery at the
end of each 24 hours horizon is the same as at the beginning
of the operational cycle.

0 ≤ ScBESS(b, t) ≤ SBESS ∀t ∈ T ,∀b ∈ NbusBESS (9)

0 ≤ SdBESS(b, t) ≤ SBESS ∀t ∈ T ,∀b ∈ NbusBESS (10)

ScBESS(b, t) · SdBESS(b, t) = 0 ∀t ∈ T ,∀b ∈ NbusBESS (11)

0 ≤ SoC(b, t) ≤ ESTOmax ∀t ∈ T ,∀b ∈ NbusBESS (12)

SoC(b, t) = SoC(b, t − 1)+

(ηc · ScBESS(b, t)− ηd · SdBESS(b, t)) ·∆t,
∀t ∈ T − {1},∀b ∈ NbusBESS (13)

The active and reactive power balance equations at each
bus b are represented by (14) and (15), respectively, where
Pexb (t) and Q

ex
b (t) are given by (16) and (17), which are the

classical equations pertaining to power flow problems.

SdBESS(b, t)− ScBESS(b, t) +
∑
g∈Nbus

P(g, t) + PLoadshed(b, t)

= Pex(b, t) + PLD(b, t) + KHVAC(b, t) · SHVAC (14)

∑
g∈Nbus

Q(g, t) + QLoadshed(b, t)

= Qex(b, t) + QLD(b, t) (15)

Pex(b, t) =
∑
p∈Nbr

V (b, t) · V (p, t) · (Gbp · cosδbp(t)+

Bbp · sinδbp(t)) ∀t ∈ T ,∀b ∈ Nbr (16)

Qex(b, t) =
∑
p∈Nbr

V (b, t) · V (p, t) · (Gbp · sinδbp(t)−

Bbp · cosδbp(t) ∀t ∈ T ,∀b ∈ Nbr (17)

(18) corresponds to the limit of available load shedding at
each time.

PLoadshed(l, t) ≤ PLD(l, t) ∀t ∈ T ,∀l ∈ NbusLD (18)

Finally, (19) and (20) represent voltage and line capacity
constraints, respectively.

Vmin ≤ V (v, t) ≤ Vmax ∀t ∈ T ,∀v ∈ Nbus (19)

max(S(i, t)) ≤ S imax ∀t ∈ T ,∀i ∈ Nbr (20)

To integrate HVAC within the optimal power flow formu-
lation, the thermodynamic equation represented by (21) and
proposed in [20] was formulated. This equation describes
the temperature within a building with specific thermal char-
acteristics and an installed HVAC system. The constraints
accompanying the HVAC operation are represented by (22)
and (23).

Tbld(b, t +1) = Tambient(b, t +1)+H ·RTH ·KHVAC(b, t)−
(Tambient(b, t +1)+H ·RTH ·KHVAC(b, t)−Tbld(b, t))e∆t/RC

∀t ∈ T − {1},∀b ∈ NbusHVAC (21)

0 ≤ KHVAC(b, t) ≤ 1,∀t ∈ T ,∀b ∈ NbusHVAC (22)

Tbld,min ≤ Tbld(b, t) ≤ Tbld,max
∀t ∈ T ,∀b ∈ NbusHVAC (23)

The implementation of our AC OPF model leverages the
hidden flexibility of HVAC systems—this flexibility allows
for adjustments in energy use by HVAC systems that maintain
comfort levels within acceptable ranges while contributing
to demand-side management. Specifically, we demonstrate
how this flexibility can be utilized to mitigate the need for
load shedding by providing additional demand-side respon-
siveness. This responsiveness is crucial in maintaining grid
stability, especially in scenarios where renewable generation
may not fully meet demand.

The hidden flexibility of HVAC systems is harnessed
through dynamic adjustments in their operation, including but
not limited to, modulation of temperature setpoints. These ad-
justments allow HVAC systems to contribute to grid stability
in an active manner.

III. DESCRIPTION OF CASE STUDIES
Two main scenarios with representative case studies have
been conducted as part of this research, with respect to the
level and extent of controllability that the operator possesses
over various assets. Each category is then investigated with
respect to the utilization of either objective function (1) or
(2) and results were drawn for different HVAC comfort lim-
its. Assuming that the initial intentional islanding scheme
deployed created an imbalance between the local load and
generation, the following operational scenarios are explored
to restore the power balance before moving into an unstable
locus of operation:
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1) Scenario I: Local generation ≤ local demand, with the
cloud-hosted architecture having controllability solely
over demand and HVAC.

2) Scenario II: Local generation≤ local demand, with the
cloud-hosted architecture having controllability over
all energy assets.

For each of the scenarios described above, the following
cases were explored, thus creating a set of four different
arrangements (i.e. I.a., I.b., II.a., II.b.):

• Case a: Objective function described by (1) (i.e. only
cost is considered) and HVAC comfort limit set at 20◦C ,
19◦C , 18◦C and 17◦C .

• Case b: Objective function described by (2) (i.e. cost and
voltage stability index are both considered) and HVAC
comfort limit set at 20◦C , 19◦C , 18◦C and 17◦C .

The detailed description of the problem, as formulated in
the previous sections, has been applied to a 7-bus meshed
distribution network presented in Fig. 4.

B2

PV1

Main Grid

CB1

LD2 HVAC1

WT1 HVAC2 SG1 LD1 BESS1

B0 B3

B4 B1 B5

LD3

LD4

B6

LD5

FIGURE 4. Case study 7-bus power island.

In this paper, the selection of a 7-bus meshed distribution
network as our primary model for simulation and analysis
was driven by strategic considerations. Thismodel size strikes
an optimal balance between complexity and clarity, allowing
for the nuanced demonstration of the proposed CbOS ca-
pabilities. The 7-bus network, while compact, encapsulates
the energy asset classes and challenges of larger power sys-
tems, making it an ideal test-bed for innovative strategies
like CbOS. Its use facilitates a focused investigation into
the effectiveness of integrating HVAC flexibility for voltage
stability improvements, without the computational, analytical
and cloud cost overheads associatedwith larger scale systems.
Importantly, the chosen network enables a detailed, step-by-
step illustration of CbOS’s impact on operational efficiency
and cost reduction, ensuring that the advantages of our ap-
proach are comprehensively communicated.

The post-contingency islanded network comprises tech-
nologies that are already integrated into power systems,
including Synchronous Generator (SG), Solar Photovoltaic
(PV), Wind Turbine (WT), Battery Energy Storage System

(BESS), load (LD) and HVAC. The PV capacity is set at 50
kW,WT at 100 kW, SG at 200 kW, BESS at 200 kW/300 kWh
while the HVAC systems, which are assumed to be installed
at industrial and/or commercial facilities are rated at 200 kW
each. It should be noted that we assume the presence of grid-
forming capability within the power island. The algorithm
which decides the optimal network partitioning shall include
this within the problem formulation. The building thermal
parameters H , RTH and C , as proposed in [20], are set to 400
W, 0.121 ◦C /W and 3599 J/◦C , respectively, and considered
the same for all HVAC-served premises. The line parameters
of the test network are presented in Table 1 (the per-unit
values corresponding to a base value of 1 MVA at 11 kV).

TABLE 1. Network Parameters

Line From Bus To Bus R (p.u.) X (p.u.)
L01 0 1 0.0611 0.0079
L02 0 2 0.1222 0.0158
L03 0 3 0.0815 0.0105
L13 1 3 0.0764 0.0099
L14 1 4 0.1528 0.0198
L15 1 5 0.1834 0.0238
L24 2 4 0.1019 0.0132
L26 2 6 0.1834 0.0198
L46 4 6 0.1528 0.0148

Commencing at tn, CB1 opens and concurrently the net-
work is operated by the cloud-hosted optimization system. It
is assumed that prior to the disconnection with the main grid,
the power island was a net power importer. For the results
depicted in the subsequent cases, we assume that tn=0.

A. SCENARIO I - NETWORK OPERATION WITH LIMITED
ENERGY ASSETS CONTROLLABILITY
In Scenario I, the optimization algorithm is tuned to oper-
ate and control solely the demand (i.e. load shedding and
controllable load) and HVAC systems. In that case, the gen-
erating assets (i.e. SG, WT, PV and BESS) are operating
according to a mix of maximum available resources and/or
pre-contingency schedules. The schedule is used as an input,
instead of a set of variables, for the AC OPF. The forecasting
algorithm, considering a historical set of wind speed, solar
irradiance, demand, and temperature generated a forecast for
the parameters which are illustrated in Fig. 5.
A typical schedule which was used for Scenario I is pre-

sented in Fig. 6, with 1) renewable generation operating under
maximum power point tracking (MPPT) and thus producing
the maximum available power, subject to the natural resource
availability, 2) BESS operating under a pre-defined schedule
and 3) SG (not depicted) operating at 180 kW throughout the
24 hours duration.

1) Case a - Objective function to minimize cost introduced
by SG and load shedding
In the baseline scenario, the HVAC has a setting of
Tbld,min =20.9◦C and an initial Tbld of 21◦C . Then the same
operating scenario is run with Tbld,min set at 20◦C , 19◦C ,
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FIGURE 5. Natural resources (wind, irradiance) and load forecast.
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FIGURE 6. Power schedule for cases of Scenario I.

18◦C and finally 17◦C which is assumed to be the lowest
temperature which does not significantly affect the occupants
comfort. Please note that HVAC systems can be found in both
domestic (e.g. family homes) and commercial (e.g. industrial
plants, office buildings, etc.) deployments.

For each of these Tbld,min settings, the AC OPF calculates

the necessary load shedding required to maintain the sus-
tainability of the power island, with the objective function
examined being (1). The results are presented in Fig. 7(a). The
results show that as the Tbld,min and thus the required power
fromHVAC systems is decreased, the island requires less load
shedding to reach a power equilibrium.
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FIGURE 7. Load shedding required for Scenario I.a. (a), I.b. (b), II.a (c). and
II.b. (d).

The voltage stability index FVSI of each line is also cal-
culated for this set of results and illustrated in Fig. 8(a).
L46 sporadically exhibits values over 1.0 (i.e. stability limit)
which indicates that the line is over the stability limit and
close to voltage instability and collapse. Note that only the
results for the baseline scenario of Tbld,min set at 20.9◦C are
presented as no significant differences (i.e. ≤0.001) in FVSI
indices were observed in other Tbld,min settings.

2) Case b: Objective function to minimize cost introduced
by SG and load shedding and FVSI
To mitigate this issue and investigate the additional value of
considering voltage stability as part of the objective function,
the same problem was reformulated and run, with the objec-
tive this time being mathematically formulated by (2).
The load shedding required to operate the island in bal-

anced conditions is shown in Fig. 7(b). For Tbld,min settings
of 20◦C , 19◦C , 18◦C and 17◦C there is a slight increase in
load shedding, namely 5%, 5.5%, 6.1% and 7% increase in
overall shedding, however there is concurrently a significant
improvement of the FVSI indices, especially at L46 from 1.05
to 0.96, i.e. a 8.57% FVSI decrease which sets the line below
the stability limit of 1.0. The FVSI of all lines for Scenario
I.b. are presented in Fig. 8(b).

A comparison among the maximum values of FVSI for
each line, with both objective functions (i.e. (1) and (2)) under
Scenario I is depicted in Fig. 9. Without the provision of the
solution proposed in this paper, the power island faces two
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main challenges: 1) Technically, the voltage will collapse due
to FVSI values exceeding the safe region, and 2) financially,
the cost of operating it will be substantially more due to the
required load shedding.

B. SCENARIO II - NETWORK OPERATION WITH
CONTROLLABILITY OVER ALL ENERGY ASSETS

This work further investigates the added value introduced
when the optimization-based control is further expanded in
controlling both power consuming and generating assets. To
demonstrate the impact of controllability over all energy
assets, the overall architecture was altered to facilitate the
additional generating units, namely SG, PV, WT and BESS.

To maintain uniformity between Scenario I and II, the
forecastingmodule was fedwith the same historical databases
(i.e. no additional updates on databases) and regressors (i.e.
initialization instant) in order to force the generation of the
same forecast for the natural resources, demand and temper-
atures depicted in Fig. 5.

The overall system is triggered and following generation
of the required forecasting, the AC OPF proceeds into solv-
ing the optimization problem subject to network and assets
constraints discussed in Section 2. The evaluated scenarios
were again evaluated under two testing variables 1) objective
function and 2) HVAC comfort level. A baseline scenario was
utilized to serve as a benchmark in which the HVAC is again
set with a Tbld,min thermostat setting of 20.9◦C and an initial
Tbld of 21◦C . Identically with Scenario I, the baseline case
is repeated under Tbld,min thermostat settings of 20◦C , 19◦C ,
18◦C and 17◦C for both objective functions described in (1)
and (2).

1) Case a: Objective function to minimize cost introduced
by SG and load shedding
For each of these Tbld,min settings, the AC OPF calculates
the necessary power setpoint of the generating assets, load
shedding required to maintain the sustainability of the power
island, with the objective function utilized being (1). Even
though there is controllability over the generating assets, the
available capacity and natural resources are not sufficient to
cover the local demand. Consequently, the AC OPF proceeds
into shedding the necessary load to maintain the balance
within the power island. The load shedding required for each
Tbld,min setting is presented in Fig. 7(c). Note that the addi-
tional controllability over the generating assets, allows the
power island to operate with lower load shedding, with re-
spect to the load shedding required for both cases of Scenario
I. The voltage stability index FVSI is also illustrated in Fig.
8(c), with the FVSI index of L46 reaching values of over 1.0
under high system stress, rendering the line prone to voltage
collapse.
Similarly to Scenario I, note that solely the FVSI results

from the Tbld,min = 20.9◦C are shown, as no significant
deviations (i.e. ≤0.001) were observed in other Tbld,min cases
of this scenario.

2) Case b: Objective function to minimize cost introduced
by SG and load shedding and FVSI
Even though the load shedding is significantly affected by
the integration of control on the generating assets, FVSI
index of L46 is still at a critical value of 1.04, 4% above the
stability limit. To alleviate the issue, this subsection focuses
on examining the utilization of objective function defined
by (2), thus considering additionally considering the voltage
stability index FVSI of all lines of the network part of the
objective function.
Again, the network operation was investigated under

Tbld,min settings of 20◦C , 19◦C , 18◦C and 17◦C . The load
shedding required to balance the network for each Tbld,min is
presented in Fig. 7(d). It is observed that there is an increase
in total load shedding required for each case of Scenario
II.b. where voltage stability is part of the objective function,
namely 6.8% for Tbld,min = 20◦C , 7.7% for Tbld,min = 19◦C ,
9.1% for Tbld,min = 18◦C and 11% for Tbld,min = 17◦C with
respect to the results obtained for Scenario II.a.
Nevertheless, the slight increase of total load shedding

required is accompanied by an improvement of FVSI indices,
as demonstrated in Fig. 8(d). Specifically, FVSI index of
line L46, which would be subject to voltage collapse when
optimizing only the operational cost, has a value of 0.95, a
8.7% decrease from its previous value of 1.04, thus rendering
the line voltage-stable according to FVSI stability limit of 1.0.
A comparison between the maximum observed FVSI val-

ues for each network branch with respect to the objective
function utilized under Scenario II is illustrated in Fig. 9.
Again, it is evident that the optimisation of FVSI helps reduce
the stress of branch L46.
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C. DISCUSSION

While Figures 7 and 8 might initially suggest similarities
across scenarios, a closer examination of the quantitative
outcomes reveals substantial differences. For instance, the
reduction in load shedding achieved by leveraging HVAC
flexibility—though visually subtle between Fig. 7(a) and
7(c)—is quantitatively significant and in the region of 25%.

Similarly, the improvements in voltage stability metric
FVSI, as depicted in Fig. 8, is notable. Lines with FVSI over
1.00 are considered voltage unstable. The results presented in
Fig. 8, and specifically the FVSI reduction shown in Fig. 8(b)
and Fig. 8(d) highlight the efficacy of the cloud-based opti-
mization strategy (CbOS) in enhancing microgrid resilience
and increased voltage stability.

The remainder of this section serves as a cost-level com-
parison among the case studies presented above. Fig. 10
illustrates the cost comparison of operating the power island
under both cases of Scenario I and II, with various Tbld,min
settings.

The quantitative results show that extending the deploy-
ment of the method to generating assets and not solely
demand and HVAC yields a cost reduction spanning from
22.2%-31% for same Tbld,min settings. Similar results are
observed in Fig 10, where (2) was used as objective function.
In that case, Scenario II costs were reduced by 23.7%-29.9%
for same Tbld,min settings.
The second additional benefit, stemming from adjusting

the Tbld,min setting to lower comfort levels is also evident:
Reducing the comfort levels from the default 20.9◦C to 17◦C
while controlling both demand and generation results into a
55.6% cost reduction when using objective function (1). The
correspondingmetric when (2) was used as objective function
is 49.6%. In terms of optimizing both cost and voltage stabil-
ity, among case studies with the same Tbld,min setting, a cost
increase of 4.2%-7.1%was observedwhich shall be taken into
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FIGURE 10. Cost comparison for Scenario I.a., I.b., II.a. and II.b.

consideration under a cost-benefit analysis (CBA), however
the authors believe that the impact of a voltage collapse under
emergency conditions justifies the additional cost.

IV. CONCLUSIONS
This paper addresses fundamental challenges pertaining to 1)
the operation of a contingency-triggered multi-vector power
island with minimum consumers disruption and better stabil-
ity profiles and 2) providing system operators with flexible
and scalable tools that can be used during contingencies.
Both challenges are addressed by the CbOS proposed in
this paper. It has been demonstrated that the deployment
of a cloud-hosted, contingency-triggered, optimization-based
control scheme is possible at a low cost (considering the low
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cost of maintaining an active container repository and edge
devices), thus rendering the solution desirable for network
operators which would otherwise not necessarily invest at a
low-probability contingency.

First, we propose a strategy which bridges the gap be-
tween the multi-vector energy assets and the system operator
through a multi-layered approach. At the core of the proposi-
tion, CbOS receives the operator commands and proceeds into
orchestrating the actions necessary to optimize and operate
the power island. Then we devise the problem in the form of
an AC OPF and we unlock the HVAC flexibility potential by
formulating and integrating it into the AC OPF, hosted within
CbOS. Furthermore, we incorporate an additional term to
optimize both cost and voltage stability, in order to maintain
the sustainability of the power island and alleviate the risk of
voltage collapse. To validate our proposition, the strategy is
benchmarked under representative case studies, with respect
to the extent of controllability that CbOS possesses. Simula-
tion results indicate that the CbOS can effectively optimize
the voltage stability when required, with results showing a
voltage stability index improvement up to 8.7% for lines un-
der stress, while comparatively reducing the operational cost
up to 55.6% by harnessing the hidden flexibility of HVAC.
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