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ABSTRACT
A Physics-Informed Dynamic Graph Neural Network (PIDGeuN) is presented to accurately, efficiently and
robustly predict the nonlinear transient dynamics of microgrids in the presence of disturbances. The graph-
based architecture of PIDGeuN provides a natural representation of the microgrid topology. Using only the
state information that is practically measurable, PIDGeuN employs a time delay embedding formulation to
fully reproduce the system dynamics, avoiding the dependency of conventional methods on internal dynamic
states, e.g., of controllers. Based on a judiciously designed message passing mechanism, the PIDGeuN
incorporates two physics-informed techniques to improve its predictive performance, including a physics-
data-fusion approach to determining the inter-dependencies between buses, and a loss term to enforce the
known physical law of the power system, i.e., the Kirchhoff’s law, to ensure the feasibility of the model
prediction. Extensive tests show that PIDGeuN can provide accurate and robust prediction of transient
dynamics for nonlinear microgrids over a long-term time period. Therefore, the PIDGeuN offers a potent
tool for the modeling of large scale networked microgrids (NMs), with potential applications to predictive
or preventive control in real time applications for the stable and resilient operations of NMs.

INDEX TERMS Graph Neural Network (GNN), networked microgrids (NMs), transient dynamics, predic-
tion, distributed energy resources (DERs)

I. INTRODUCTION

MODERNIZATION of electric power grid is critical for
improving the system’s resiliency and reducing power

outages , e.g., Manhattan blackout. To solve this problem,
microgrids have been recognized as a promising archetype
by integrating Distributed Energy Resources (DERs), such as
wind and photovoltaic (PV). To further enhance the flexible
and resilient operations of low- or medium-voltage distri-
bution networks, networked microgrids (NMs) are currently
under development. Microgrids and NMs are sensitive and
vulnerable to disturbances such as PV fluctuations, leading
to frequent transient dynamics. To improve the power capa-
bility of individual microgrids, it has been proposed to inter-
connect multiple microgrids to form Networked Microgrids.
Interconnection enables microgrids to mutually support and
provide ancillary services to the entire power grid. Moreover,

interconnection propagates dynamics like photovoltaic out-
put fluctuation-induced disturbances. In particular, when the
system is disconnected from the main grid, considering net-
worked microgrids’ inertia is significantly reduced due to the
high penetration of distributed energy resources with power-
electronic interfaces, this interconnected system is sensitive to
disturbances [1]. Therefore, studying and improving the tran-
sient dynamics of such an interconnected system is becoming
a challenging scientific problem.

Power system stability has seen extensive efforts in the past
decade [2]–[4]. This paper studies the transient dynamics of
networked microgrids, which refers to the ability of power
generation unit such as distributed energy resources or in-
dividual microgrid in the interconnected system to remain
synchronism under credible disturbances. Although extensive
research effort has been made on the microgrids’ transient
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behavior [5], it is still a challenge to study and stabilize the
system’s transients. First, detailed modeling is usually re-
quired for studying the transients; however, the wide integra-
tion of DERs results in a high-dimensional system, increasing
the difficulty of efficiently analyzing the transient behavior.
Second, microgrids are typical nonlinear systems, which is an
inherent feature stemming from power loads and dynamics of
DERs; and thus, the existing model may not be sufficiently
accurate to fully represent the nonlinear dynamical system.
Third, the operations of microgrids or NMs keep changing
due to the fluctuations of DERs and/or the changes of system
topology caused by the join or disconnection of microgrids or
DERs. With the wide deployment of the advanced metering
infrastructure (AMI), the nonlinear dynamical system is more
observable than ever before. Hence, one inspiring solution of
transient dynamics is: to develop a data-driven approach
to precisely and efficiently model and predict the system’s
transient dynamics, so that predictive or preventive control
can be performed to stabilize microgrids and NMs.

There are several existing data-driven approaches to iden-
tify the transient dynamics model of a nonlinear system
through its operating data, which can fall into two major
categories [6], namely linear models and data-driven non-
linear methods. First, the linear models are well-established
and commonly-used system identificationmethods [7], which
are relatively easy to implement and guaranteed to converge
given sufficient system responses. However, these methods
do not extrapolate due to their nature of local linearization,
therefore are not suitable to identify microgrid systems that
are typically nonlinear for the entire operating envelope. Sec-
ond, several data-driven methods have also been developed
to identify a nonlinear system to capture the global transient
dynamics over the entire state space [8]. These methods
can theoretically identify an accurate model if appropriate
nonlinear terms are used. However, selecting the correct non-
linear terms is not trivial, and the required number of terms
grows exponentially as the system size increases. Moreover,
thesemethods usually involve system’s state variables that are
impractical to measure. Therefore, general nonlinear system
identification methods may become intractable when applied
to the identification of practical nonlinear systems such as
microgrids.

Microgrids can be defined on buses and their pairwise
connections, i.e., a graph, and the graph topology may sig-
nificantly impact the microgrid transient dynamics. How-
ever, such topological information is not utilized in many
aforementioned data-drivenmodeling approaches. The Graph
Neural Network (GNN), a recent variant of deep learning
models [9], [10], has emerged as a powerful tool for the
modeling of data defined on graphs, and thus a promising
candidate for the transient dynamics modeling of microgrids.

In general, the GNN-based methods have gained trac-
tions for many complex dynamical physics simulations that
can benefit from the graph representation of the underlying
systems [11], [12], where the temporal dependency in the
transient problems can be tackled with additional recurrent

architecture [13]. The superior modeling capabilities of GNN
has incurred interests in its application to power systems
including microgrids, that have a natural graph structure.
Most of the GNN-oriented studies on power systems focus on
static problems, e.g., optimal power flow (OPF) problem [14],
power flow approximations [15], [16], state estimation [17],
[18], and anomaly detection [19], [20]. Fewer efforts based
on the GNN methods have been devoted to the modeling of
transient dynamics in power systems; relevant work include
the short-term power prediction of DERs [21], [22], and tran-
sient stability assessment (TSA) [23]–[25]. However, these
problems are considered on a relatively slow timescale, where
the transient responses in microgrids are not well resolved.
Therefore, in the literature, it still remains an open question
whether a GNN-based data-driven model can be developed to
capture and resolve the transient dynamics of a power system,
esp. the NMs.
Most physical systems are governed by well-developed

algebraic or differential equations that can be used to ‘‘in-
form’’ the data-driven model of the physics [26]. For power
systems, Kirchhoff’s law equation can be directly applied as
the training objective in the power flow approximations to
ensure that the network predictions are physically feasible
[15]; the grid impedance is also commonly used as the edge
weights of the underlying graph to indicate the strength of cor-
relation between buses [14]. However, these approaches have
been only applied to static problems, which are inherently
governed by an algebraic equation. This paper focuses on
transient problems of power systems, which are nonlinear dy-
namics governed by coupled differential-algebraic equations.
Specifically, in dynamical modeling, using only the power
flow equation as the objective functionmay overlook valuable
time series data. In addition, the fixed and predefined edge
weights are not necessarily good representations of time-
dependent correlations between buses.
To bridge the gap identified above, we develop a

novel Physics-Informed Dynamic Graph Neural Network
(PIDGeuN), which is a data-driven approach for accurate,
efficient, robust and time-resolved prediction of microgrid
transient dynamics. The PIDGeuN incorporates the underly-
ing physical laws of power system in two aspects, with the
following motivations and novelties. First, long-term fore-
casting becomes a challenge in many time-series problems
due to prediction error accumulation; in the context of mi-
crogrids, the prediction error is likely to manifest in the form
of nonphysical loss or gain of conserved energy. To account
for the conservation of energy, a partial set of the power
system equations is implemented into the model training, so
as to produce a PIDGeuN model that respects the physical
laws during prediction. Second, the strengths of correlation
between buses, characterized by the pairwise edge weights
in the graph, are formulated to dynamically adjust based on
the bus states and admittance matrix, so as to capture the
time-varying inter-dependencies between buses and enhance
the predictive accuracy of transient dynamics. The incorpo-
ration of the two physics-informed techniques improves the
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network’s training efficiency and prediction accuracy, and
enables the unprecedented capability of accurate long-term
prediction for microgrid transient dynamics. Such capability
paves the way for performing real-time control in microgrids,
which is the authors’ next work.

The remainder of this paper is organized as follows: Sec-
tion II poses the mathematical problem for the graph-based
dynamicmodeling of networkedmicrogrids. Section III intro-
duces the presented PIDGeuN method for transient dynamics
prediction. In Section IV, the PIDGeuN model is bench-
marked against existing methods using numerical examples
to demonstrate the feasibility and effectiveness of PIDGeuN.
Conclusions are drawn in Section V.

II. PROBLEM STATEMENT
A. NETWORKED MICROGRID SYSTEMS
Networked microgrids consist of several distributed and in-
dependent microgrids to provide local energy generation and
delivery. Each microgrid is a group of DERs and loads within
clearly defined electrical boundaries, which acts as a single
controllable entity and can connect to or disconnect from
NMs.

Assume in a NM system, there areGDERs,L power loads,
and N buses {Bi}Ni=1. The connection of buses is depicted by
the admittance matrix Y ∈ CN×N . Each Bi are described by
the following quantities: active power Pi ∈ R, reactive power
Qi ∈ R, voltage Vi∠δi ∈ C, and current Ii∠θi ∈ C, which are
measurable. These variables define a vector xgi ∈ R6,

xgi = [Pi,Qi,Re(Vi∠δi), Im(Vi∠δi),Re(Ii∠θi), Im(Ii∠θi)]
(1)

Note that the dynamics of microgrids are determined by
several factors such as controller of DERs, power loads,
network topology, etc.. In this work, only the measurable
variables such as {xgi}Ni=1 are utilized to identify the system
dynamics. It removes the dependence of conventional data-
driven methods on the internal states of DERs that are hard to
measure, making it feasible for real world applications.

At the steady state, DERs produce power to satisfy the
consumption of power loads. When disturbance occurs, the
outputs of dispatchable DERs are adjusted accordingly as
well as power loads to compensate for the disturbance until
a new equilibrium is reached. Our goal is to accurately pre-
dict the transients of the system in between two equilibrium
points.

Assuming buses are measured locally, we collect the mea-
surements within a period of time T to identify the dynamical
system. To model the transient dynamics of microgrids sub-
ject to disturbances, the bus Bi at the time instance k is then
characterized by an extended state vector,

x
(k)
i = [xgi, dPi, dQi, γ, βi]

(k) ∈ R10, (2)

where the first six variables correspond to the standard states
xgi. The new variables are introduced below.

The power disturbances are parametrized by dP and dQ,

dP(k)
i = P(k+1)

i − P(k)
i , (3a)

dQ(k)
i = Q(k+1)

i − Q(k)
i , (3b)

and the values of dP and dQ are non-zero only in the buses
where the disturbance occurs such as load or DER buses. A
Boolean variable γ is introduced to indicate if disturbances
occur in any of the buses, i.e., γ(k) = 1 means a disturbance
occurred in the system at the k th time step (though not neces-
sarily at bus Bi), and γ(k) = 0 otherwise. βi is the type index,
meaning the type of the bus Bi, where,

βi =

 0 Empty
0.5 Loads
1.0 DERs (w/ or w/o Loads)

(4)

At the time step t = tk , denote the collection of the
extended states as X(k) = {x(k)

i }Ni=1 ∈ RN×10 and the
standard states as X(k)

g = {x(k)
gi }Ni=1 ∈ RN×6. The transient

dynamics modeling and prediction of microgrids is stated
as follows: Given a sequence of states of C steps, X (k)

C =
[X(k),X(k−1), · · · ,X(k−C+1)] ∈ RN×10×C , predict the sys-
tem states X(k+1)

g at the future time t = tk+1. Motivated by
the time-delayed embedding technique [27], the use of con-
secutive time steps compensates for the partial knowledge of
microgrids obtained through AMI and facilitate the complete
reconstruction of the microgrid dynamics.

B. GRAPH REPRESENTATION
Power systems including microgrids can be represented by
a graph, where the nodes are the buses of microgrids and
the edges are the connections between buses. The weights
of edges, i.e. the edge attributes, describe how correlated the
states xgi of two buses are. Formally, let G = (V, E ,W) be a
graph with a set of N nodes, V , a set of edges E ⊆ V ×V and
the edge weights W . The graph for microgrids is undirected,
meaning that if (i, j) ∈ E then (j, i) ∈ E . Conventionally the
edge weights are computed as given in (5) [14],

wij =

{
exp

(
−k|Yij|2

)
(i, j) ∈ E

0 otherwise,
(5)

where k is tunable parameter chosen so that W is in the
range of [0.2, 1]. Since the admittance matrix Y is symmetric,
wij = wji. The adjacency matrix of a graph that describes
the connections between the nodes is defined by A ∈ RN×N

where [A]ij = wij if (i, j) ∈ E and 0 otherwise. Therefore, the
diagonal terms in the adjacency matrix A are always zero,
whereas those in the admittance matrixY are not. The graph
is more conveniently represented by a normalized Laplacian
matrixL = I−D−1/2AD−1/2, whereD is a diagonal degree
matrix with [D]ii =

∑
j[A]ij.

Data defined on a graph reside on a non-Euclidean space
and often comes with a variable size of unordered nodes
without a fixed spatial locality. The learning task on graph
therefore poses challenges to the conventional machine learn-
ing algorithms, e.g., convolutional neural networks (CNNs).
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The convolution operation used by CNN is defined on struc-
tured grid, and does not apply in the unstructured graph
data. Additionally, the edges in graphs contain connection
information among nodes. Such information can only be
treated as node features in standard neural networks, which is
inefficient and often inaccurate [28]. Graph neural networks
generalize the convolution operation from multi-dimensional
data arrays to data on irregular topology, i.e., on graphs, and
serve as an effective filter that extracts localized features from
graph data. Utilizing GNNs, microgrid transient dynamics is
characterized by the following differential equation,

Ẋ(k)
g = F(X (k)

C ,G;Θ), (6)

where a GNNF, parametrized byΘ, maps the sequence of C
consecutive extended state vectors X (k)

C to the rate of change
Ẋ

(k)
g for the states on all buses at the current time step k , given

the graph structure G of the system. Then the states of the
buses at the next time step can be numerically calculated. (7)
gives an example when the explicit integration is adopted.

X(k+1)
g = X(k)

g +∆tẊ(k)
g , (7)

where∆t is the time step size.

III. FORMULATION OF PIDGEUN
In this section, we present the key components and salient
features of the proposed PIDGeuN architecture. The archi-
tecture builds upon the message passing (MP) mechanism
of GNNs and judiciously chooses a hybrid form of two MP
implementations as its building blocks to capture the dynam-
ical system’s transient dynamics. Furthermore, the known
physical knowledge of microgrids is infused into both net-
work architecture and loss function, in order to improve the
expressiveness and training efficiency of the network.

A. MESSAGE PASSING MECHANISM
The message passing mechanism is the corner stone for many
GNN architectures, which consists of multiple consecutive
MP steps. Consider an input graph G = (V, E ,W) of N
nodes, and each node v ∈ V has a node feature vector
hv ∈ RD and a set of neighbor nodes u ∈ N (v). At the jth MP
step, the new feature of node v is computed using its previous
feature and information from its neighbors as [29],

mj
N (v) = AGGREGATE

(
{hju | u ∈ N (v)},W

)
, (8a)

hj+1
v = UPDATE

(
hjv,m

j
N (v),W

)
, (8b)

where AGGREGATE and UPDATE are nonlinear mappings,
e.g., neural networks, and mN (v) denotes the information
aggregated from the neighbors of node v. One MP step cor-
responds to the information exchange between 1-hop neigh-
bors, i.e., the nodes that directly connected. It is possible to
stack different forms of aggregators over k MP steps, and the
feature vector of a node is influenced not only by its 1-hop
neighbors, but also by the more distant k-hop neighbors.

In PIDGeuN for microgrids, using the MP mechanism, the
change of states of each node is determined by the input states

of itself and its neighbors through a sequence of neural net-
work modules; the long-range interaction between the buses
during a disturbance is captured via a stack of MP layers.

B. TWO TYPICAL MP IMPLEMENTATIONS
1) Graph Convolutional Layers (GCLs)
TheGCLs generalize the convolution frommulti-dimensional
data arrays to data on graphs, and serve as an effective filter
that extracts localized features from graph data. Under the
framework of graph Fourier Transform (GFT), the GCLs
performs the filtering on the spectrum of the Laplacian matrix
[30].
An efficient implementation of the GCL is the ChebConv

network [31], which performs the MP aggregation and up-
dating over all nodes simultaneously. Let the input be Hj =
{hji}Ni=1 ∈ RN×D, the ChebConv-based graph convolution is
defined as

Hj+1 = σ

 K∑
k=0

Tk(L̃)HjΘj
k

 , (9)

where σ is a nonlinear activation function, {Θj
k}Kk=0 are

learnable parameters, and Tk(L̃) is a series of Chebyshev
polynomicals of a scaled Laplacian L̃ = (2/λmax)L− Iwith
λmax the largest eigenvalue of L. The ChebConv network
avoids the direct computation of GFT and approximates the
spectral filtering through the truncated series of Chebyshev
polynomials Tk up to K th order, which are equivalent to
performing K MP steps.

2) Graph Attention Layers (GALs)
The GAL can be viewed as a nonlinear form of graph con-
volution where the adjacency matrix is dynamically adjusted
according to the node features using the attention mechanism
[32]. One GAL effectively performs just one MP step, but
introduces stronger nonlinearity when compared to GCL.
In the general attention mechanism, for node u and its

neighbor v, with feature vectors hju and h
j
v, one may compute

m attention coefficients {αjuv}mk=1 as

αjuv =
exp(LeakyReLU(f(hju,h

j
v;Θ

j
f )))∑

w∈N (u) exp(LeakyReLU(f(h
j
u,h

j
w;Θ

j
f )))

. (10)

In the attention calculation (10), fk is nonlinear function,
such as a neural network, which characterizes the correla-
tion between two feature vectors; LeakyReLU is a nonlinear
activation function f (x) = max(−ϵx, x), where ϵ = 0.2 as
a typical choice; the sum-of-exp formulation normalizes the
correlation to produce αjuv ∈ [0, 1]. Subsequently, defining
a set of new adjacency matrices, [Aj

α]uv = αjuv, the node
features are updated as

Hj+1 = σ(Aj
αH

jΘj
α) ∈ RN×D. (11)

Note that in generalAj
α is not symmetric. It is possible that a

node u is strongly influenced by its neighbor v, quantified by
a large αuv, but not vice versa.
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Figure 1: The PIDGeuN architecture.

C. PIDGEUN METHODOLOGY
The PIDGeuN architecture, shown in Fig. 1, uses an encoder-
processor-decoder architecture and adopts a combination
of graph convolutional and attention layers with physics-
informed techniques. The key components of the PIDGeuN
architecture are detailed in the following.

1) Encoder
First, the encoder is applied to each individual node. It maps
microgrid state vectors at a node xi, which consists of both
continuous and discrete variables, to a latent vector h0

i ∈ RD.
The latent vector is a set of high-dimensional nonlinear fea-
tures that provide a continuous representation of the states on
each bus, which is amenable for NN computations. For the ith

node at time step k , the encoder fE is

h0
i = fE(x

(k)
i ,x

(k−1)
i , · · · ,x(k−C+1)

i ;Θ0), (12)

where fE is implemented as a standard fully-connected NN
(FCNN) of NM layers with a set of trainable parameters Θ0.
After the encoding, the latent vectors of all the nodes are
denotedH0 = {h0

i }Ni=1 ∈ RN×D.

2) Processor
Subsequently, a stack of N = NA+NC graph MP layers serve
as processors that successively aggregate the latent features
from each node and its neighbors and update the latent vectors
at each node. Formally, the jth processor step is written as

Hj+1 = f jP(H
j;Θj), (13)

where f jP is either a GCL or a GAL, with parameter Θj.
Specifically, starting from the encoded latent vector H0,

the PIDGeuN first uses NA GAL layers in the processor to
successively generate a series of latent vectorsH1, · · · ,HNA ,
as well as the attention-based adjacency matrix ANA

α , using
(10) and (11).

Next, to incorporate the physical knowledge of the micro-
grid into the network, a new physics-infused adjacency matrix
Â is formed by combining the attention-based matrix ANA

α

and the admittance-based matrix A in (5),

Â =
1

2

(
ANA

α +A
)

(14)

Note that Â maintains the same graph topology as the
admittance-basedA in (5), but with different non-symmetric
weights.
The processing step is finalized with NC K th-order GCL

layers that use the normalized Laplacian L̂ computed from Â,
and generate a series of the latent vectorsHNA+1, · · · ,HN us-
ing (9). The last outputHN is sent to the subsequent decoding
step.
Over the entire processing step, the total number of effec-

tive MP step performed is NMP = NA + KNC . In the special
case that NA = 0, the GCLs directly employ the symmetric
admittance-based A as the adjacency matrix; while when
NC = 0, the GALs outputs the last latent vector HNA for the
next step and the attention coefficients are not used.

3) Decoder
Finally, the decoder maps the latent vector of each node to the
desired output, i.e. the rate of change,

˜̇X(k)
g = fD(H

N ;ΘN+1), (15)

where fD is a FCNN of NM layers with trainable parameters
ΘN+1.

4) Loss Function
The network parameters Θ need to be trained using a loss
function, a typically choice of which is the Frobenius-norm
between the predicted and true rate of change over the training
sequence of Nt steps,

L1(Θ) =

Nt∑
k=1

∥∥∥∥ ˜̇X(k)
g (Θ)− Ẋ(k)

g

∥∥∥∥2
F

(16)

However, leveraging known physical principles, at each time
step the predicted states of the grid, computed using (7),
should satisfy the physical constraints, i.e. the Kirchhoff’s
law, at each node, or power flow computation for the system.
This fact motivates the inclusion of an additional term in the
loss function to penalize the violation of the Kirchhoff’s law
in the prediction at each node and at each time step,

L2(Θ) =

Nk∑
i=1

Nt∑
k=1

|P̃(k)
i + iQ̃(k)

i − (Ṽ (k)
i ∠δ̃(k)i )(Ĩ (k)i ∠θ̃(k)i )|2

(17)
(17) is expanded to a formulation that contains only real
values in the implementation so that the network training does
not involve any complex arithmetics. Combining (16) and
(17), the loss function used to train the PIDGeuN network
is

L(Θ) = L1(Θ) + νL2(Θ) (18)
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Figure 2: Networked microgrid test system.

where ν is a factor to control the penalty on physical violation;
in this study ν = 1 is used, which assigns both loss terms
equal weights.

5) Activation Functions
In this study, the nonlinear activation function is designed to
have two components to ensure model convergence during
the training. First, a batch-normalization (BN) layer [33] is
used to reduce the potential differences in the latent vec-
tors caused by the differences due to disturbances. Second,
the Parametric Rectified Linear Unit (PReLU) function is
applied to compute the new latent vectors. From numerical
experiments, the PReLU performed more robustly than the
commonly used ReLU function, which suffered from the
dying neuron problem and caused premature convergence in
the training.

IV. NUMERICAL EXAMPLES
In this section, the PIDGeuN architecture is applied to model
and predict the transient dynamics of a typical 33-bus net-
worked microgrid system [1], as shown in Fig. 2, to demon-
strate its accuracy, robustness and versatility in modeling
and predicting dynamics on graph. Circuit Breaker 1 is open
and others are closed, so the NM system is in the islanded
operation. In this operation mode, the DER unit connected to
Bus 13 is under voltage-frequency (Vf) control, and all other
generators are under constant power output (PQ) control. The
power loads in the system are constant power loads with the
instantaneous load demands being the input disturbances to
the system.

A. DESCRIPTION OF THE NUMERICAL EXAMPLE
1) Datasets
The dataset for training and testing the PIDGeuN models
contains the transient responses of the system starting from

different initial conditions with a step load change applied to
randomly chosen nodes at the start of simulation. The magni-
tude of the load change is in the range of±10% of the nominal
value of each load, which is beyond the regime of linear
analysis. The electromechanical DAE model of the Vf and
PQ control of each generator connected with their individual
phase-locked loop and the electrical network is first built and
simulated to provide synthetic data for PIDGeuN. Two types
of responses are generated: (1) complete transient response
that starts from an equilibrium point and ends when the
system reaches a new equilibrium point; (2) initial transient
response during which random load changes are added every
0.01s so that the system is always away from equilibrium and
shows transient dynamics. The training dataset consists of 90
complete transient responses and initial transient responses
with 5000 load changes. The test dataset contains 30 complete
transient responses and initial transient responses with 500
load changes.

2) Evaluation Metrics
The performance of the data-driven models are quantified
using three types of metrics:
a) One-step root mean squared error (RMSE): The error in

the rates of change of all buses is defined as

E1 =

√√√√ 1

TN

T∑
k=1

∥∥∥∥ ˜̇X(k) − Ẋ(k)

∥∥∥∥2
F
, (19)

where T is the total number of time steps in the time series
for prediction, and ˜̇X(k) = F(X (k),G) is the predicted
rate of change using the current true bus states. The one-
step RMSE is equivalent to the loss term in (16) except
that it is applied to the test dataset.

b) Cumulative RMSE (C-RMSE): The difference between
the predicted and true dynamics of bus states is defined
as

E2 =

√√√√ 1

TN

T∑
k=1

∥∥∥X̃(k) −X(k)
∥∥∥2
F
, (20)

where X̃(k) is the predicted bus states at time step k that are
evaluated iteratively using (7) given only the initial condi-
tion X (0). The C-RMSE accounts for the accumulation of
prediction error in the time-series prediction and thus is
the major metric for assessing the model performance.

c) Number of parameters, which measures the complexity
of each model. More trainable parameters give the neural
network more expressive power but may result in the over-
fitting issue and increased computational cost for training
and prediction.

3) Implementation Details of Nominal PIDGeuN Model
The PIDGeuN architecture is implemented using PyTorch
Geometric (PyG) [34], an open-source PyTorch-based ma-
chine learning framework for Graph Networks. The hyperpa-
rameters used for the nominal PIDGeuN model are: NM = 3,
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NA = NC = 5, K = 5, D = 128, and C = 3. During the
training, the states as well as the rate of change are normalized
to a range of [0, 1]. The loss is minimized using the standard
Adam optimizer with an exponential decay of learning rate
from 10−3 to 10−7.

B. COMPARISON WITH BASELINE METHODS
1) Baseline Methods
The PIDGeuN model is benchmarked with a number of base-
line methods that are specialized in time-series prediction,
ranging from conventional data-driven models that do not
account for graph topology to various forms of STGNNs.
These methods are widely used and benchmarked, and are
listed as follows:

a) Subspace identification [35]: A linear state-space system
identification method using only the measured states.

b) Long Short-TermMemory (LSTM) [36]: A type of Recur-
rent Neural Network (RNN) that have been widely applied
for time-series prediction. We used 5 stacked layers each
with a hidden size of 128.

c) Graph Convolutional Recurrent Network (GCRN) [13]: A
type of STGNN that uses a Chebyshev GCN (i.e., GCL) in
space and a GRU in time for data correlation over a larger
spatiotemporal scale. We used 5 stacked layers each with
a hidden size of 128 and K = 5 for the GCL.

d) Spatial-Temporal GCN (STGCN) [37]: A type of STGNN
that uses a GCL in space and 1D convolution instead of
a RNN in time, which eliminates the usage of recurrent
architecture and allows for faster training with fewer pa-
rameters. We used 2 temporal convolution layers, and 5
GCL layers with K = 5, all with a hidden size of 128.

The LSTM model is implemented with the PyTorch pack-
age, and the two recurrent GNN models are implemented
using the PyTorch Geometric Temporal package [38]. The
LSTM does not utilize the graph structure, therefore at the
time step t = tk , the extended node states X(k) ∈ RN×10 are
stacked into a R10N vector as input to the network.

2) Results and Discussion
In this experiment, we compare the performance of PIDGeuN
against other baseline methods in the predictions of transient
response of the test system.

The evaluation metrics are detailed in Table 1, including
the one-step RMSE’s for the training and test dataset, and the
C-RMSE’s for 200 and 700 time steps. The two C-RMSE’s
are chosen to quantify the short-term and long-term predic-
tive capabilities of the models. Note that, when compared
to the complete response cases, the dynamics of the initial
response is more complex due to the frequently introduced
disturbances, and thus the C-RMSE of initial responses is
expected to be higher than that of complete responses.

Overall, the PIDGeuN outperforms the baseline methods
by a significant margin. First, all the models achieve low
training and test one-step RMSE’s, showing that they are suf-
ficiently complex and expressive to predict the rate of change

Figure 3: Complete and initial voltage dynamic response of a
DER bus.

if given the true states, and generalize to unseen inputs. Yet the
PIDGeuN achieved the lowest training and test errors, high-
lighting its superior expressiveness and generalizability over
other models. Second, the high C-RMSE’s show that most
of the baseline models fail to produce accurate predictions
over a long time horizon; particularly the STGCN quickly
diverges beyond 200 time steps. The best baseline model is in
fact the subspace model, a linear method. On the contrary, the
PIDGeuN consistently achieved the lowest C-RMSE’s in all
cases and the slowest growth in the error, which demonstrates
its robustness in time series prediction. Finally, note that the
superior performance of the PIDGeuN is achieved only using
an amount of parameters that is comparable to the smallest
and worst learning-based baseline model, i.e., the STGCN.
Subsequently, a typical voltage response of a DER bus is

closely examined in Fig. 3. In the complete response case, a
large load change is introduced in the grid at time tk = 50
causing an initial step change in the DER voltage, followed
by a damped oscillatory response until a new equilibrium
in the system is reached. The complete response resembles
that of a linear system to a step input. In the initial response
case, smaller load changes are introduced every 10 time steps,
and the system never reaches equilibrium in between the
load changes. As a result, the system dynamics in the initial
response case is more dynamic and nonlinear, and thus more
challenging to predict. It also mimics the applications of
PIDGeuN in the real world when the system is under frequent
disturbances.
As visualized in Fig. 3, in the complete response case, the

PIDGeuN reproduces the DER’s response to the load change
by accurately predicting first the initial step voltage of the
DER and then the decay of signal oscillations that matches
the true dynamics in both magnitude and frequency. The sub-
space method performs well overall except for not capturing
the peak voltages in each oscillation and the final equilibrium
voltage. The LSTM and STGCN are able to follow the first
few periods of oscillation but both diverged because of the
modeling error accumulation, resulting in large error. The
GCRN model does not capture any oscillatory response and
also diverged. In the initial response case, the PIDGeuN

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384457

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Yu et al.: PIDGeuN: Graph Neural Network-Enabled Transient Dynamics Prediction of Networked Microgrids Through Full-Field Measurement

Table 1: Comparison of PIDGeuN and baseline models

Model Training one-step Test one-step C-RMSE 200 C-RMSE 700 # of parameters
RMSE(×10−3) RMSE(×10−3) Complete/Initial Complete/Initial

Subspace – – 2.018/9.978 4.815/36.791 7595
LSTM 0.167 1.282 12.192/304.777 45.183/1348.707 1830088
GCRN 0.988 2.203 6.045/26.191 20.894/99.472 5000726
STGCN 0.338 3.426 19.953/35.719 4.886E51/1.042E52 805518

PIDGeuN 0.093 0.167 0.986/1.276 2.311/11.911 986006

Figure 4: Complete and initial current dynamic response of a
DER bus.

Figure 5: Complete and initial power dynamic response of a
DER bus.

captures the transient dynamics almost perfectly despite the
frequent introduction of load changes. The subspace method
performs worse than the previous case and misses most of
the peak voltages. The other three models show similar trend
as in the previous test case, and do not make any useful
prediction. The current and power responses of the sameDER
bus are respectively shown in Figs. 4 and 5, where PIDGeuN
considerably outperforms the baseline methods in predictions
again.

Lastly, a brief comparison in time complexity is provided.
Leveraging the sparse graph structure, the cost in prediction
for STGCN, GCRN and PIDGeuN is only O(N ) when com-
pared to (N 2) for the subspacemethod and LSTM.Among the
learning-based methods, the cost in training for PIDGeuN is
O(K ), when compared to O(K2) for the LSTM, GCRN, and
STGNN that all employed a recurrent network architecture.
Therefore, PIDGeuN has the lowest time complexities in

prediction and training among the models considered.
From the comparison of the evaluation metrics and typical

response cases, it is clear that the PIDGeuN model signifi-
cantly outperforms the baseline models, including a classical
system identification method (subspace), a learning-based
methodwithout graph (LSTM), and two learning-basedmeth-
ods with graph information (STGCN and GCRN), in terms of
the generalizability, predictive accuracy, robustness in long-
term prediction, and time complexity.

C. ABLATION STUDY
To explain the effectiveness of the PIDGeuN and study how
its components affect the performance, we conducted an abla-
tion study where a number of hyperparameters are varied one
by onewhile holding others at the nominal value. Specifically,
the composition of the processors, the sizes of the MP layers,
and the inclusion of physics-informed loss are examined.
The complete list of tested models is provided in Table 2,
where in each group the varying parameters are highlighted
and the nominal model is labelled as C1. In addition to the
hyperparameters listed in Table 2, we also studied the effects
of varing the batch size of training data, number of MLP
layers in the encoder and decoder, training learning rate, and
number of attention heads in GALs. These hyperparameters
did not have a significant impact on the model performance,
and therefore not listed for concision. For the same reason,
only the test case using complete response is presented.

Table 2: Ablation study

ModelNA NC PI-loss K D C C-RMSE C-RMSE
200 700

C1 5 5 True 5 128 3 0.986 2.311
C2 3 5 True 5 128 3 1.087 2.634
C3 1 5 True 5 128 3 0.941 2.825
C4 0 5 True 5 128 3 2.494 1.850E3
C5 0 10 True 5 128 3 2.310 6.231
C6 5 3 True 5 128 3 1.115 3.108
C7 5 1 True 5 128 3 3.359 6.941E61
C8 5 0 True – 128 3 3.736 1.552E51
C9 10 0 True – 128 3 2.493 3.591E42
C10 3 3 True 5 128 3 0.985 2.648
C11 1 1 True 5 128 3 28.823 NaN
C12 5 5 False 5 128 3 1.563 3.732
C13 5 5 True 7 128 3 1.102 3.101
C14 5 5 True 3 128 3 1.484 2.869
C15 5 5 True 1 128 3 7.385 3.717E6
C16 5 5 True 5 64 3 1.054 2.787
C17 5 5 True 5 32 3 1.470 2.614E3
C18 5 5 True 5 256 3 1.010 2.489
C19 5 5 True 5 128 1 7.080 4.472E31
C20 5 5 True 5 128 2 1.045 2.581
C21 5 5 True 5 128 5 1.338 2.782
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Figure 6: Impact of processor layers on the model perfor-
mance.

1) Processor layers
To examine how the composition of the processor affects
the model performance, the models C2-C11, having different
combinations of GAL and GCL layers, are trained and tested.
The differences among the models are two-fold. First, when
NA = 0 (GCL-only) or NC = 0 (GAL-only), the PIDGeuN
model no longer uses a hybrid architecture; the GCL-only
models (C4, C5) and GAL-only models (C8, C9) use only the
physics-based and data-driven adjacency matrices, respec-
tively. Second, while the rest models all use a hybrid archi-
tecture, they differ significantly in the number of MP steps,
which determines the capability of the network to propagate
information between distant nodes, as noted in Sec. III-A.

The comparison of C-RMSE’s for these cases are listed
in Table 2 and the C-RMSE’s for 200 steps are visualized
in Fig. 6. First, the nominal PIDGeuN model (C1) and the
other hybrid models outperforms the models with only GCLs
(C4, C5) or only GALs (C8, C9) by a significant margin. The
difference indicates the performance gain in microgrid dy-
namics prediction is facilitated by the proposed physics-data-
infusion strategy that combines the physics-based admittance
information and the data-driven attention coefficients in the
adjacency matrix.

Next, focusing on the models with hybrid architecture, a
strong correlation between prediction accuracy and number
of MP steps is identified. The hybrid models with relatively
fewer MP steps (C4, C7-C9, C11) tend to accumulate large
errors during time series prediction and diverge in some test
cases. Particularly, for models C7 and C11, the lack of MP
steps limits the long-range information propagation between
the nodes and the prediction performance is even worse than
the GCL-only and GAL-only models. The rest hybrid models
(C1-C3, C6, C10) achieved similar performance in the 200-
step prediction, with C3 being the best. But in the 700-step
prediction, model C1, which has the most MP steps, consis-
tently produced the lowest prediction error for all test cases.
The comparison indicates the importance of using sufficient
number of MP steps to achieve high accuracy and robustness
in the long-term prediction.

For the microgrid problem, since a load disturbance on the

selected few load buses triggers a dynamical response in the
whole grid, the network needs sufficient MP steps to ensure
the global effects are captured. The lack of MP steps may also
explain the poor performance of GCRN and STGCN in Sec.
IV-B2. However, increasing the number of layers in GCRN
and STGCN makes them vulnerable to over-smoothing issue
in GNNs [39], and incurs prohibitive computational cost in
training.
Lastly, the frequency and damping ratio of the dynamic

responses are examined in further detail. Three models are
selected for analysis: (1) C1, the nominal and best model; (2)
C6, which is less accurate than C1; (3) C11, which diverges in
long-term prediction. The frequencies f and damping ratios ζ
of the first three dominating oscillation modes are extracted
from the voltage response using the auto-regressive moving
average (ARMA) method [40], and compared against the
true values obtained from the analytical DAE model. The
results are plotted in Fig. 7, where each data point corresponds
to a node in the system and the shaded region illustrates
the spread of the identified eigenvalues. In the true model,
most of the nodes share similar frequencies but have different
damping ratios. The eigenvalues of the PIDGeuN models
differ drastically. Model C1 accurately captures most of the
frequencies and damping ratios on different nodes for all
three modes, which aligns with its low prediction errors. The
model C6 over-predicts many damping ratios in the third
mode and misses most of the frequencies, which leads to
premature convergence to the equilibrium voltage. The model
C11 under-predicts most of the damping ratios, and shows
positive damping on some nodes, which can explain its early
divergence in many short-term predictions.

2) Physics-informed Loss Function
Next, the effect of the physics-informed loss term (17), based
on the Kirchhoff’s law, is examined using model C12, where
the PI loss is removed during the training process. Comparing
the losses in Table 2, it is clear that the PI loss positively
contributed to model performance. A further comparison of
training loss of C1 and C12 is shown in Fig. 8. For C12,
the training of network depends solely on the RMSE loss,
and the additional loss term is only computed for recording
purpose. During the training process, the RMSE of both cases
decreased at a similar rate. However, the model prediction of
C12 violates theKirchhoff’s law one order ofmagnitudemore
than that of C1, resulting in a higher total loss in training. As
a result, in the actual prediction, the C12 model may produce
responses that prone to violate the Kirchhoff’s law, which
explains its higher C-RMSE’s in both 200-step and 700-step
predictions than C1. Further examination of the predicted dy-
namics, though not shown in paper due to space limit, reveals
that C12 can only capture the first few oscillations accurately
and start to diverge after around 400 steps. Mathematically
speaking, the PI loss term limits the learnable parameter space
where the optimizer searches during the training, and results
in more feasible model prediction in the tests.
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Figure 7: Frequencies and damping ratios of the first three modes in voltage dynamics, and the corresponding model predictions.

Figure 8: Comparison of loss function components in train-
ing.

3) Other hyperparameters
Finally, we study the effects of three main hyperparameters in
the PIDGeuN network through a series of models: the order
of Chebyshev polynomials K (C13-C15), the latent size of
each hidden layer D (C16-C18), and the number of steps to
include in the input C (C19-C21). The results are provided in
Table 2 and visualized in Fig. 9. In these tests, the number of
GALs and GCLs are kept the same as C1, i.e., NA = NG = 5.

As found earlier, a sufficient number of MP steps is critical
in the microgrid prediction problem, which can be achieved
by increase the polynomial order K in the GCLs. In the
parametric study, increasing K from 1 to 3 rapidly decreases
the prediction error as expected, but improvement becomes
marginal beyond that. Once sufficient MP is reached, the
model performance does not benefit from a larger K .
The size of hidden layerD determines the size of a network.

The performance of PIDGeuN turns out to be less sensitive to
D, and D = 128 achieves a good balance between network
size and prediction accuracy.

The number of input steps C decides the amount of pre-
vious information the network can access during prediction.
When C = 1, the network can only access the bus state
of the current step, which is insufficient to reconstruct the
dominating dynamics, resulting in poor performance. The
performance is improved immediately when another step of
states is included in the input (C = 2), but the improvement
becomes marginal as more steps of previous states are in-
cluded. This is likely due to the nature of the current problem
where a long-term temporal dependency is not significant,
and two steps of measured states already form sufficient time
delay embedding to fully describe the system.

Figure 9: The effects of different hyperparameter choices on
prediction performance.

V. CONCLUSION
In this paper, we presented the Physics-Informed Dynamic
Graph Neural Network, PIDGeuN, for accurate, efficient
and robust prediction of transient dynamics in microgrids.
The PIDGeuN model exploits its graph-based architecture to
incorporate the topological information of microgrids. Fur-
thermore, based on a judiciously designed message pass-
ing mechanism, the PIDGeuN incorporates two physics-
informed techniques to improve its predictive performance.
First, the PIDGeuN dynamically learns and adjusts the un-
derlying graph representation of the system by combining
the data-driven attention-basedweights and physics-informed
admittance-based weights, and thus better represents the
inter-dependencies between buses. Second, the PIDGeuN
includes the known equation of physical law of the power
system in the loss function that ensure the feasibility of the
predictions.
The PIDGeuN is demonstrated using transient response

data of microgrids due to load changes that contain com-
plete transient responses, and initial transient responses. The
results show that the PIDGeuN can accurately and robustly
predict the dynamics of the microgrid using initial states and
load changes in the system, and outperforms a number of
baseline methods in the transient predictions. Specifically, in
the complete response cases, the PIDGeuN accurately cap-
tures the frequencies and damping ratios of the system as well
as the new equilibrium states after the system stabilizes. In the
initial response cases, the PIDGeuN is capable of capturing
the transient and nonlinear dynamics due to the frequent
load changes. The physics-informed techniques are proven
to significantly contribute to the predictive accuracy of the
model.
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As a new data-driven methodology, the PIDGeuN archi-
tecture may be further extended and tested towards its real-
world application. Currently the model assumes a high level
of availability and accuracy in the measurement data. Yet,
message passing and time-delay embedding can be general-
ized to account for data that is missing spatially and tempo-
rally; denoising and anomaly detection modules can be added
to preprocess potentially polluted inaccurate data. Also, the
PIDGeuN architecture shall be tested on larger systems with
more complex operation scenarios having, e.g., un-balanced
loads, and single and double phase laterals, and with more
load characteristics, e.g., daily variation and dynamic motor
models.

In sum, the results establish initial capability of the
PIDGeuN to be applied to large scale networked microgrids,
and show its potential as an online predictive tool to enable
predictive or preventive control in real time applications,
which is crucial to the stable operations of the NMs.
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