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ABSTRACT Electric systems are getting more complex with time, and primitive protection methods such as traveling wave and 
impedance-based methods face limitations and shortcomings. This paper incorporates and presents the applications of an adaptive 
neuro-fuzzy inference system and compares it with a back propagation neural network, self-organizing map, and hybrid method 
of discrete wavelet with adaptive neuro-fuzzy inference system for fault detections, classification, and localization in transmission 
lines. These methods, in comparison with primitive methods, could be capable of detecting, identifying, and predicting the location 
of the faults more accurately. The IEEE 9-bus system is utilized to obtain data from one end of the transmission line to develop an 
ANFIS-based model. This system is simulated in MATLAB/Simulink for different fault cases at various locations. The three-phase 
voltage and current at one end of IEEE 9-bus number seven are taken for training. Three ANFIS models are developed for fault 
detection, classification, and localization and compared with other models. For verification of the models, mean square error, mean 
absolute error, and regression analysis have been computed and compared for all the models. All four techniques have performed 
well for fault classification, detection, and location. However, the percentage error for the ANFIS-based fault model is less 
compared to backpropagation, self-organizing map, and discrete wavelet transform with ANFIS. Therefore, the proposed ANFIS 
models can be implemented for deploying in real-time-based protection systems. 
 
INDEX TERMS ANFIS, SOM, DWT Fault Detection, Classification and Location, IEEE-9 Bus System, Transmission Line. 
 
I. INTRODUCTION 

HE three stages of the power system are generation, 
transmission, and distribution. The electrical system is 
built to provide stable and continuous electricity [2]. 

Some parts of electrical systems are exposed to the 
environment, so these systems are more susceptible to faults. 
There are two main types of faults in transmission lines: short 
circuit faults or shunt faults and series faults or open conductor 
faults. A fault in transmission lines is an undesirable event that 
may happen due to lightning, a short circuit between 
transmission lines, an accident, any other unforeseen incident, 
or even human error [1].  
   The short circuit faults in transmission lines are symmetrical 
and asymmetrical. Asymmetrical faults are single-line-to-
ground, double-line, and double-line-to-ground faults. These 
faults are commonly known as phase A to ground (A-G), phase 
B to ground (B-G), phase C to ground (C-G), phase A to phase 
B (A-B), phase B to phase C (B-C), phase C to phase A (C-A), 
phase AB to ground (AB-G), phase BC to ground (BC-G), 
phase CA to ground (CA-G) faults. These faults cause 
instability in the power supply and severe damage to the system 
and humans [2]. Locating faults quickly and accurately is vital 
to reduce the outage time and save the system from major 
damage. Intelligent fault detection, identification, and Location 

will increase the electrical system's reliability, restore the power 
system, and reduce the power system's outage time [1],[3].  
   Protecting a transmission line uses relays at both ends that 
continuously monitor voltages and currents and respond to a 
fault. The most frequently utilized transmission line protection 
method is distance protection, with a line safety of around 85% 
[4].  
   There are a few limitations in using phasor-based methods in 
the protection system. First, delay associated with relay operation 
results in uncertainty in voltage protection. Second, to ensure 
quick tripping from both ends, it is necessary to employ a 
communication link between the relays at the two ends of the 
line [5]. Relay communication links provide a cyber threat 
when relays are connected to substation local area networks 
(LANs).  
   Researchers have presented several methods for transmission 
line fault detection and location methods; the broader categories 
are mentioned here: Conventional methods, Signal processing-
based methods, and Artificial intelligence-based methods. 
   The conventional methods that are often used for the 
detection, classification, and localization of the fault in a 
transmission line are the traveling wave method and the 
impedance measurement-based method [6]. Single-end or two-
end impedance techniques are suggested based on a variation of 
current and voltage signals gathered from a transmission line 
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terminal. Due to the high fault impedance, load on the line, 
source characteristics, and shunt capacitance, the fault location 
error of the impedance-based method is high [7].  
   To calculate the fault's distance, the traveling wave-based 
method compares the forward and backward propagation of 
waves in a transmission line. This approach is more accurate in 
finding faults in high resistance faults. However, the challenges 
are the high sampling frequency, high cost, and computational 
complexity that make practical use difficult [8]. 
   Signal processing methods such as fast Fourier transform 
(FFT), wavelet transform (WT), multiresolution analysis 
(MRA), and discrete wavelet transform are some of the famous 
methods. WT is entirely accurate and can identify the fault 
characteristics using a faulty waveform's decomposed 
frequency components [9]. For the calculation of coefficients 
to be proper and precise, the FFT needs the signal to be 
stationary in the broad sense. However, most signals in power 
systems are flexible and fluctuate over time concerning their 
properties [4]. 
   To address several issues with Fourier transform analysis 
techniques, multiresolution analysis (MRA), a signal 
processing tool, was established in the nineties [8], [4]. 
   The discrete variant of the wavelet transform (WT), known as 
the discrete wavelet transform (DWT), is widely used to 
analyze discrete or sampled signals. The demand for DWT 
techniques in digital relaying systems has been rising recently 
in an era of digital communication and analysis [10]. 
   For the safety of transmission lines, different AI-based fault 
detection, classification, and Location techniques, such as 
ANN, Fuzzy logic, and hybrid algorithms using integrated 
wavelet transform ANN, SVM, and fuzzy logic, have been used 
for the past few years [9], [15], [11]. 
   Artificial neural networks, or ANNs, have traditionally been 
used successfully in various fault analysis studies. ANN's 
ability to learn independently is its most valuable feature.     
The author in [11] suggested an ANN-based method in which a 
feed-forward neural network is used to detect and classify 
transmission line faults.  
   ANN is frequently combined with fuzzy logic inference to 
create an Adaptive Neuro-Fuzzy Inference System (ANFIS) 
topology, which many researchers have utilized to provide 
adequate security measures [12],[13],[14]. 
   ANFIS is similar to a neural network, and the function is the 
same as a fuzzy inference system. ANFIS is used for the 
location and classification of faults in a transmission line. An 
adaptive network is a multilayer network where every node 
operates a particular function of the applied data set. The 
process of the node varies from node to node.  
   The author in [1] presented a neuro-fuzzy technique to 
investigate fault location estimates in power systems. The 
development of a 264 km, 132 kV, 50 Hz transmission line 
model and the simulation of various faults using MATLAB 
Simulink. To train the ANFIS, wavelet-processed data from 
both ends of the line are used, including the detailed features of 
the signal.  
   In contrast to other machine learning methods, the 
effectiveness of the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) as an estimation model is discussed in [2]. In [14], to 
localize the fault site precisely, the method feeds the data into 
ANFIS and computes the line impedance using the 
approximation coefficients of these signals.  
   The use of an ANFIS and ANN for the classification and 
localization of faults in a lengthy transmission line is presented 
in [8]. Artificial intelligence-based machine learning techniques 
do better in specific tasks than other approaches. Using current 
and voltage data from the source end, ANFIS and ANN are used 
to precisely identify fault types and pinpoint the transmission 
line issue. Global System For Mobile Communication (GSM) 
and Global Positioning System (GPS) based ANN model has 
been developed in [16]. The challenge with such a 
communication-based protection system is that it could be more 
reliable, and there are always issues with cybersecurity threats. 
   Considering the mentioned restrictions, a new relaying 
technique is required. This technique helps the system operate 
without delay, just with currents and voltages, and without a 
communication link. 
   Therefore, this paper presents an Artificial Intelligence (AI) 
based technique that uses only voltage and current for fault 
detection, classification, and Location and is tested using only 
post-fault three-phase current and voltage.  
   The detection, classification, and localization of fault in a 
transmission line in an IEEE 9-bus system using ANFIS are 
studied in this paper. The post-fault three-phase voltage and 
current data from one end bus of an IEEE 9-bus system are used 
to detect and determine the fault's class and Location. All 
Asymmetrical marks are considered while varying the Location 
of the faults.  
The main contributions in this paper are as follows: 
1)The ANFIS-based technique is proposed for fault detection, 
classification, and Location, using one-end data for the IEEE 9 
bus system. 
2)IEEE has introduced a new technique called Self Organizing 
Map (SOM) for fault detection, classification, and location 
prediction. 
3)Various asymmetrical faults under various conditions and for 
different Locations have been studied. 
4)For the precision of the proposed ANFIS-based model, root 
mean square error, regression analysis, and mean absolute error 
are computed in MATLAB. 
5)A comparison of the ANFIS-based model with a 
backpropagation neural network, self-organizing map, and 
discrete wavelet transform-based ANFIS is presented. 
To present the mentioned goals, the paper is organized as 
follows. A brief overview of the system, the techniques ANFIS, 
ANN SOM, and DWT-ANFIS, and the detailed methodology 
are given in Section II. Simulation results for the proposed 
model for different fault conditions are given in Section III. And 
finally concluded in Section IV. 

II. SYSTEM AND TECHNIQUES 
A. SYSTEM STUDIED 
The IEEE 9-bus system is used as a study model in this paper 
[17]. The single line diagram is given in Fig.1. All the data for 
the IEEE 9-bus system is taken from [18] and [19] and is 
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displayed in Fig. 2. The transmission line under study is 
between bus number 7 and bus number 8. The IEEE 9-bus 
system consists of three generators, three transformers, nine 
buses, six transmission lines, and three loads. The 
interconnection of all these utilities is shown in Fig. 2.  
   This system is simulated in MATLAB/Simulink version 
2019a to implement the proposed ANFIS-based fault detection 
and classification technique. 
 
B. PROPOSED TECHNIQUE  
1) ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 
ANFIS is a hybrid learning algorithm that best uses ANN and 
fuzzy logic. An adaptive network is a multilayer network where 
each node performs a specific function according to the applied 
data set. The process of each node is different from that of 
another node. This allows ANFIS to differentiate each input 
feature and detect the output.       
   Some advantages, such as better generalization ability, 
learning from experience, and better decision-making ability, 
make ANFIS better for complex problems. Therefore, ANFIS 
is helpful for fault detection, location, and classification in the 
transmission line. This approach has higher accuracy compared 
to other networks.   

 
FIGURE 1. IEEE 9-bus system [17] 

As mentioned above, a multilayer feedforward network called 
an adaptive network, shown in Fig.3, allows each node to 
perform a unique function on incoming signals and a set of 
parameters specific to that node. The node functions' formulae 
may differ from one node to the next, and the selection of each 
node function depends on the overall input-output function that 
the adaptive network must perform. It should be noted that 
connections in an adaptive network do not carry weights; 
instead, they simply represent the signal flow direction between 
nodes [20]. 
 

 
 
FIGURE 2. IEEE 9-bus system impedance diagram [18] [19]. 

   As illustrated in Fig.3, the ANFIS construction includes a 
Fuzzy Interface System (FIS) whose membership function of 
parameters was altered using various methods, such as the 
backpropagation algorithm or the least squared approach. 
Compared to fuzzy inference systems, which are not offered by 
all fuzzy system possibilities, ANFIS is significantly more 
sophisticated. ANFIS exclusively supports the Sugeno-type and 
has a number of features that are compatible with the ANFIS 
system. 
  The mathematical structure of an Adaptive Neuro-fuzzy 
inference system with one prediction (output) y and two inputs 
x1(current) and x2 (voltage) is defined below [6][13].  
The rule base has two Takagi and Sugeno-type fuzzy if-then 
rules. 
Rule I: If x1 is A1 and x2 is B1, then f1 = plx1 + q1x2+ rl. 
Rule 2: If x1 is A2 and x2 is B2, then f2 = p2x1 + q2x2 + r2. 
The five layers of the ANFIS structure are as follows: 
Layer 1: 
Each node i in this layer has a node function. An adaptive node 
is present in this labeling. The fuzzy membership grade of the 
inputs is the layer's executed output and is represented as 
follows: 
𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝐴𝐴𝑖𝑖 (𝑥𝑥)                                                                                   (1) 
Where A is the linguistic label connected to this node. 𝑂𝑂𝑖𝑖1 is the 
membership function of 𝜇𝜇𝐴𝐴𝑖𝑖 (𝑥𝑥). Every MF (membership 
function) is changed according to the layer's parameter. 
 
Layer 2: 
The nodes are fixed, nodes with the symbol π, which denotes 
that they perform function as a multiplier. Each node in this 
layer multiplies the input signals to determine the firing strength 
of each rule before sending the result out. The equation is 
written as follows: 
𝑂𝑂𝑖𝑖2 = 𝑤𝑤𝑖𝑖 = 𝜋𝜋𝑗𝑗=1𝑚𝑚 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥)                                                                 (2) 
Layer 3: 
The nodes in this layer are fixed nodes as well. The nodes 
marked with a N, as shown in Fig.3, indicate that the firing 
strength has been normalized from the preceding layer. The 
equation for this layer is represented as follows: 
 

Fault

~
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𝑂𝑂𝑖𝑖3 = 𝑤𝑤� =
𝑤𝑤𝑖𝑖

𝑤𝑤1 + 𝑤𝑤2
                                                                       (3) 

Layer 4: 
Each node in this layer is an adaptive node, and the output 
parameters are modified in this layer. The output, which 
combined the first-order polynomial with the normalized firing 
strength, was processed for each node in the layer. As a result, 
this layer's outputs are provided as follows: 
 
𝑂𝑂𝑖𝑖4 = 𝑦𝑦𝑖𝑖 = 𝑊𝑊𝚤𝚤���𝑓𝑓𝑖𝑖 = 𝑊𝑊𝚤𝚤���(𝑝𝑝𝑖𝑖𝑥𝑥1 + 𝑞𝑞𝑖𝑖𝑥𝑥2 + 𝑟𝑟𝑖𝑖), 𝑖𝑖 = 1,2, . .               (4) 
 
Layer 5: 
In this layer, all the inputs from the previous layer are summed 
together to get the predicted output. The total sum output is 
given by below equation: 
 
𝑂𝑂15 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝚤𝚤���𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤1����(𝑝𝑝1𝑥𝑥1) + 𝑤𝑤1����(𝑞𝑞1𝑥𝑥2) + (𝑤𝑤1����𝑟𝑟1) +
𝑤𝑤2����(𝑝𝑝2𝑥𝑥2) +𝑤𝑤2����(𝑞𝑞2𝑥𝑥2) + (𝑤𝑤2����𝑟𝑟2)                                                (5)  
 
The succeeding parameters can be solved using a least squares 
technique in this final layer. The final equation can be written 
as: 

𝑦𝑦 = [𝑤𝑤1𝑥𝑥1  𝑤𝑤1𝑥𝑥2   𝑤𝑤1   𝑤𝑤2𝑥𝑥2    𝑤𝑤2]

⎣
⎢
⎢
⎢
⎢
⎡
𝑝𝑝1
𝑞𝑞1
𝑟𝑟1
𝑝𝑝2
𝑞𝑞 2
𝑟𝑟2 ⎦
⎥
⎥
⎥
⎥
⎤

= 𝑋𝑋𝑋𝑋                        (6) 

 
FIGURE 3. ANFIS architecture with input features [20].  

 

 
 

FIGURE 4. Flow chart for ANFIS-based fault model. 

The flow diagram for ANFIS techniques is shown in Fig.4. The 
steps followed for the ANFIS model are as follows [30],[31]: 
Step 1. Select the area in the power system for study; in this 
study, the area between bus seven and bus eight has been 
selected as shown in Fig. 1. 

Step 2. Generate fault between bus seven and bus 8, and capture 
the voltage and current values from one end. 
Step 3. Apply all fault conditions, AG, BG, CG, AB, BC, CA, 
ABG, BCG, CAG and no-fault 
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Step 4. Change the fault position and collect the faulty signal's 
voltage and current (rms)values. 
Step 5. Normalization of the data 
Step 6. Select the structure of ANFIS 
Step 7. Choose input and target data 
Step 8. Train ANFIS with the dataset 
Step 9. Test the models 
Step 10. Compute and record the percentage error and the Mean 
square error for the ANFIS-based detector, classifier, and 
location to check the performance of the ANFIS model. 

2) BACK PROPAGATION NEURAL NETWORK (BPNN) 
The ability of ANNs to work with complex systems 
makes ANNS a good network for fault detection, 
classification, and location [26].  

Some of the properties that make ANNs better to work for 
complex and nonlinear tasks are as follows: 

a) Every electrical system fault causes a change in the 
power system, and a neural network (NN) can 
reorganize according to these changes 

b) ANN can make decisions and learn through 
experience 

c) Due to their numerical strength, they can carry out 
several tasks at once.  

The ANN offers a lot of benefits, but it also has certain 
drawbacks. The choice of network type, the number of hidden 
layers, the number of neurons, and the settings of the learning 
method are some crucial elements [4]. There are several 
limitations, such as post-fault values of line currents and 
voltages for fault identification and classification. The line 
current and voltage of the fault transmission lines are 
considerably different before and after the incident. Therefore, 
determining the type of faults from pre- and post-fault value 
patterns is necessary for the fault classification procedure. The 
BPNN basic structure and the network used in this paper are 
given in Fig. 5a and 5b, respectively. Correct weight tuning in 
BPNN reduces the error rate [32]. Weights are selected at 
random. The consequences are updated after each iteration or 
epoch, and the procedure is repeated. The following are some 
of BPNNs' most valuable benefits: Backpropagation may 
function without having thorough network expertise since it is 
simple, quick, and straightforward to implement [34],[7]. As 
shown in Fig. 5c the simple flow diagram of ANN-based fault 
detection. It just requires tuning a small number of input 
parameters, such as the number of hidden layers and neurons in 
each hidden layer. Levenberg-Marquardt backpropagation is 
used to modify the weights and biases of the training process. 
Additionally, the mean absolute error (MAE), root mean square 
error (RMSE), and mean square error (MSE) can be used to 
calculate learning errors. 
The following equation 7 is used to compute RMSE, which has 

been used in this paper for the performance of the models. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��   
𝑛𝑛

𝑖𝑖=1

�𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  −  𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
2

                       (7) 

This way, it generates the error for fault detection, 
classification, and location against the fault generated in the 
IEEE 9 system for each case of fault. The final output of BPNN 
generated for sample j can be calculated as below: 

 𝑦𝑦𝑗𝑗 =  �𝜔𝜔𝑘𝑘,𝑗𝑗 𝑓𝑓(ℎ𝑘𝑘) + 𝛽𝛽𝑗𝑗

𝑛𝑛

𝑗𝑗=1

                                                   (8) 

The 𝜔𝜔𝑘𝑘,𝑗𝑗  in equation 8 is the weight of hidden node k at the jth 
epoch. 𝛽𝛽𝑗𝑗  is the bias value of the output node at the jth age. 
𝑓𝑓(ℎ𝑘𝑘) is the output value of hidden node k. The fitness of values 
can be calculated using the Error in the equation below. 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)                                     (9) 

 

 
 

FIGURE 5b. ANN structure for Fault detection [21]. 
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FIGURE 5a. BPNN basic structure [7].   

 
FIGURE 5c. Flow chart for ANN-based fault model. 

3) SELF ORGANIZING MAP (SOM) NEURAL NETWORK  
   SOM is an extensively used neural model in the competitive 
learning network category. It uses unsupervised learning. 
Therefore, there is no need for human assistance during training 
or extensive prior knowledge of the input and output data. SOM 
is used for tasks like clustering input data and locating the 
faults.  
   The self-organizing map (SOM), which has strong 
visualization capabilities, is particularly well suited for data 
categorization tasks [27]. It produces a collection of prototype 
vectors to represent the data set. It projects the prototypes from 
the high-dimensional input space onto a low-dimensional grid 
while maintaining their structure. This ordered grid may be a 
practical visualization surface to display various SOM 
properties, such as the cluster structure. The structure is shown 
in Fig. 6a [22]. 
   The voltage and current data set is first clustered using the 
Kohonen-mean clustering method. The k-means clustering 
technique divides a given data set into a predetermined number 
(k) of clusters. 
The centroid's k number is initially picked. A data point at the 
cluster's center is called the centroid. 
   For this work, a two-dimensional SOM is used. A 2D lattice 
of 'nodes', each completely linked to the input layer, makes up 
the network. A Kohonen network of 8* 8 nodes connected to 
the input layer and representing a two-dimensional vector can 
be seen in Fig. 6a. Each node in the lattice has a distinct 
topological location and a vector of weights that has the same 
dimension as the input vectors. Afterward, a matching weight 
vector W with n dimensions is mapped with clustered input, as 
shown in Fig. 6a. 
   

 
FIGURE 6a. SOM structure with clustered input. 

Unlike many other types of networks, a SOM does not need a 
specific target output. Instead, the area of the lattice where the 
node weights match the input vector is specifically tuned to 
resemble the data for the class the input vector belongs to more 
closely. The SOM finally settles into a map of stable zones after 

starting with a distribution of random weights and going 
through several iterations. Training of SOM takes several steps 
[28],[33], which are mentioned below. 
Step 1. Weight initialization 

∑

∑

∑

∑

∑

∑

Va
Vb
Vc
Ia
Ib
Ic

Input Layer 
(Competitive layer) 

Output Layer 
(Cooperative layer )

Weight matrix 

SOM Cluster mapping
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Step 2. Best matching unit (BMU) calculation using Euclidean 
distance method. 
The Euclidean distance can be calculated using the following: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �� (𝑋𝑋𝑖𝑖 −𝑊𝑊𝑖𝑖)2
𝑖𝑖=𝑛𝑛

𝑖𝑖=0
                                          (10) 

In equation (10),  𝑊𝑊𝑖𝑖 is the input vector, and 𝑊𝑊𝑖𝑖 is the weight 
vector of nodes. 
Step 3. Calculating the size of BMU 
𝜎𝜎(𝑛𝑛) = 𝜎𝜎0 exp �−

𝑛𝑛
𝑇𝑇�                                                                  (11) 

In equation 11, 𝜎𝜎(𝑛𝑛) is the width of the lettuce the at time zero, 
n is the epoch, and T is the time constant 
Step 4. Weights adjustment can be done using equation (12) and 
(13)                                                                               
𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛  = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜  +  L (X −𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜)                                              (12)  
𝑊𝑊(𝑛𝑛 + 1) = 𝑊𝑊(𝑛𝑛) + 𝐿𝐿(𝑛𝑛)�𝑋𝑋(𝑛𝑛) −𝑊𝑊(𝑛𝑛)�                         (13) 
In equations (12) and (13), L is the learning rate, 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 new 
weights, 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜  is old weights, and X is the input vector.  
The learning rate is calculated at each epoch using equation 
(14). 
𝐿𝐿(𝑛𝑛) =  𝐿𝐿0 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑛𝑛
𝑇𝑇�                                                                 (14) 

In this paper, we preprocessed the data: six features of three-
phase voltage and current. Meanwhile, the SOM parameters, 
such as grid size and number of input features for fault 
detection, classification, and location, are defined using the 
Matlab tool first, and changes are made in the SOM code 
according to the learning rate. The size of the grid as we test the 
grid for larger size; the higher the size, the better. We tested for 
as high as a 60*60 grid. After defining the features, we train the 
SOM model for detection, classification, and Location. After 
training, the training data and testing points to the SOM grid 
using the SOM function in Matlab [21]. 
Then, the fault type, fault detected value, and fault location 
within each mapped neuron were retrieved for training data. 
The flow diagram of the whole process is given in Fig. 6b. The 
weights generated by the SOM model for each input is given in 
Fig. 8a and Fig. 8b shows the distance created between all the 
neighboring weights. 

 
FIGURE 6b. Flow chart for SOM-based fault model. 

 
4) DISCRETE WAVELET TRANSFORM AND ANFIS 
Wavelet transform, using information from the frequency 
domain and time domain, can detect and classify different kinds 
of faults. Wavelet transform is sensitive to signal abnormalities 
[23]. In this algorithm, the DWT is employed to extract the 
detailed features of the current signal using the mother wavelet 
"db1". Several kinds of mother wavelets may be used to extract 
characteristics from the current signal. After several 
calculations using several wavelet families, it was determined 
that the Daubechies family's "db1" wavelet can accurately 
identify fault in the current signal [24]. The original current 
signals are divided into several frequency levels using wavelet 
algorithms. The mother wavelet is scaled and shifted 
throughout the signal to achieve this. DWT is used because the 
data being analyzed is digital [25].  
   The steps used to apply DWT are as follows. 
Step 1. Record the current signal at bus number 7 in the IEEE 
9-bus system. 
Step 2. Apply DWT using the below equation [29],[35]. 

𝐷𝐷 =
1

�2𝑝𝑝
� 𝑥𝑥(𝑡𝑡)𝜑𝜑∗
∞

−∞
�
𝑡𝑡 − 𝑞𝑞2𝑝𝑝

2𝑝𝑝
�𝑑𝑑𝑑𝑑                              (15) 

Where p and q are the wavelet's scale and the wavelet function's 
positions. x(t) represents the current signal recorded at bus 7. 
𝜑𝜑∗ is the complex conjugate and the mother wavelet.  
Step 3. Decompose the current signal into high-frequency 
components and low-frequency components.  
Step 4. Recording detailed components and approximate 
components to use it with ANFIS. It can be represented 
mathematically as. 
𝑎𝑎(𝑡𝑡) = ∑ 𝑥𝑥(𝑡𝑡).ℎ𝑞𝑞(2𝑡𝑡 − 𝑞𝑞)                                                      (16)𝑞𝑞   
 
𝑑𝑑(𝑡𝑡) = �𝑥𝑥(𝑡𝑡).𝑔𝑔𝑞𝑞(2𝑡𝑡 − 𝑞𝑞)                                                     (17)

𝑞𝑞

 

Where a(t) is the approximate coefficient of the current signal 
extracted using the low pass filter (ℎ𝑞𝑞), and d(t) is the detail 
coefficient of the current signal extracted using the high pass 
filter 𝑔𝑔𝑞𝑞. 
Step 5. Use an Approximate and detailed coefficient and apply 
ANFIS by following the steps in ANFIS. After the training 
and testing, record the results to check the model's 
performance. As shown in the flow diagram in Fig. 7. 
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FIGURE 7. Flow chart for DWT-ANFIS-based fault model. 

C. TRAINING AND TESTING  
1) TRAINING TESTING DATA 
For developing neural network-based models, arranging input 
and targets for a particular task is necessary. The two basic 
processes in a Neural network are training and testing with the 
input and target data to make predictions for upcoming events, 
in our case, predictions about fault detection, fault 

classification, and fault location. Training and testing input and 
out-sample data is mentioned in Table I. 
   For ANFIS, ANN, SOM, and DWT-ANFIS-based models, 
data is collected from bus number 7 in the IEEE 9-bus system 
after generating eight different types of faults and for no-fault 
conditions. The eight fault cases are A-G, B-G, C-G, AB, BC, 
CA, AB-G, BC-G, CA-G faults. All these faults are generated 
at four locations at the transmission line between bus number 7 
and bus number 8 in the IEEE 9-bus model simulated in 
MATLAB/Simulink [21]. Training and testing data, in the form 
of root mean square values of three-phase current and three-
phase voltage, are collected and preprocessed for the next step. 
80% of the total data is used as training data, and 20% is used 
as testing data. For the development of ANFIS-based fault 
detection, classification, and Location models, a Fuzzy C-mean 
(FCM) Clustering algorithm is used. The total clusters used are 
50, and the total membership for each cluster is 50, too. The 
Gaussian input membership function is further used as a 
membership function for inputs. 
   After generating a trained ANFIS network for fault detection, 
classification, and Location, the trained network is saved and 
used with the simulated model to get the results. The generated 
ANFIS Network is presented in Fig.10. 
   An ANN-based fault model for detection, classification, and 
location, a MATLAB toolbox, is used. The generated 
MATLAB code is further used. To adjust the parameters to 
make the model better. 80% of the data is used for training, and 
20% is used for testing and validation. Two hidden layers are 
used, and the hidden neurons in each layer are 18 and 15, 
respectively, with sigmoid and tan sigmoid membership 
functions. 
   The workflow for the developed ANFIS model is given in 
Fig. 4. 
   For SOM, the train data is the root mean squared value of 
three-phase voltage and current. The dimension defined for the 
SOM for detection is 8*8. The clusters generated are mapped 
with the target to evaluate the performance. The clustered 
mapping is shown in Fig. 6a. 

 

     
       a)                                                                                                       b)      

FIGURE 8 a). Weights for each input, b) Neighbor distance between weights. 
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TABLE I 
SAMPLE DATA SET FOR THE ANFIS-BASED FAULT DETECTION, CLASSIFICATION, AND FOR LOCATION 

 
 Input data Output data 

Fault case Va Vb Vc Ia Ib Ic Detection classification Location 

AG 0.1311 0.6292 0.6068 2.1012 0.3729 0.3622 1 1 25,50,75,100 

BG 0.606 0.1213 0.6297 0.3651 2.0097 0.3712 1 2 25,50,75,100 

CG 0.63 0.6069 0.1616 0.3717 0.3642 1.5324 1 3 25,50,75,100 

AB 0.2912 0.3291 0.6116 2.305 2.0751 0.3619 1 4 25,50,75,100 

BC 0.6116 0.2981 0.3451 0.3619 1.7722 1.4873 1 5 25,50,75,100 

CA 0.3487 0.6116 0.2997 1.4149 0.3619 1.7019 1 6 25,50,75,100 

ABG 0.1178 0.1282 0.6235 2.1606 2.176 0.3723 1 7 25,50,75,100 

BCG 0.6235 0.1087 0.1312 0.3709 2.0516 1.6206 1 8 25,50,75,100 

CAG 0.1459 0.6237 0.1367 2.0298 0.3716 1.5825 1 9 25,50,75,100 

No fault 0.611627 0611627 0.611627 0.361749 0.361749 0.361749 0 0 25,50,75,100 

 
 
2) FAULT DETECTION  
The ANFIS-based fault detection model detects the fault while 
analyzing the three-phase voltage and current signal. The RMS 
value of three-phase voltage and post-fault current are inputs 
for the fault detection model. The output of the fault detection 
model is two binary states: 1 or 0. The one indicates a fault, and 
0 shows a no-fault condition. The fault detection modal 
structure in MATLAB for ANN and ANFIS is given in Fig. 5b 
and Fig.10. 
   Fault detection takes six inputs (three-phase voltage and 
three-phase current) and one output to display whether there is 
a fault or no fault in the system.  
     The same input and output datasets are used for ANN and 
SOM for training and testing, and trained models are used with 
the system for fault detection. For the fault detection model of 
DWT-ANFIS, the detail coefficient of the faulty current signal 
is used in addition to the raw voltage and current signal values 
for training and testing of the DWT-ANFIS model. 
 
 
 
3) FAULT CLASSIFICATION  
The ANFIS-based fault classification model is designed and 
trained for the same input as the fault detection model. The 
output for fault classification is changed; for fault 
classification, we used one output indicating the fault class. 
Table I shows that the fault class output is eight numerical 
values for eight different fault classes and 0 for no-fault 
conditions. 
 

 
   The ANFIS-based fault classification structure is given    
in Fig. 7. The total input for the fault classification model is 6, 
and the output is 1. When the trained model is tested with the 
system post-fault rms values of three-phase voltage and current, 
the model gives the output based on the fault generated. 
According to the results shown in Table I, the system has the 
respective fault.          
   The same inputs and outputs are employed by ANN and 
SOM-based classification models for training and testing. For 
the fault classification model of DWT-ANFIS, the detail 
coefficient of the faulty current signal is used in addition to the 
raw voltage and current signal values for training and testing of 
the DWT-ANFIS model. The performance of all models is 
simulated and recorded in Tables VI and VII for all the models. 
    
4) FAULT LOCATION  
   ANFIS fault location trained model is developed for six 
inputs and one output for four different locations. The Location 
is in kilometers (km), and the eight various faults are generated 
at 100km, 75km, 50km, and 25km. The model is trained with 
the generated data for 40 different fault conditions. 
   The trained model is then tested with different conditions and 
three-phase current and voltage values; the results are given in 
the next section. 
   The same inputs and outputs as in ANFIS are used with ANN 
and SOM models for training and testing to find the Location 
of the fault generated in the system. For the Fault detection 
model of DWT-ANFIS, the detail coefficient of the faulty 
current signal is used in addition to the raw voltage and current 
signal values for training and testing of the DWT-ANFIS 
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model. The results for all the models are displayed in the results 
section in Tables VI and VII. 
   The first six columns in the Table are six inputs, and the last 
three columns are output data. 

III. RESULT AND COMPARISON OF MODELS 
A total number of 40 different fault conditions have been 
studied. Ten fault types are generated in the IEEE-9 bus system 
at four locations. Nine asymmetrical faults and no-fault states 
to analyze the performance of the proposed technique. These 
faults were caused on transmission lines at four different 
locations at different times.  
   The ANFIS model is trained and tested for six inputs and one 
output for fault detection. The results from the training and 
testing of ANFIS are given in Table II. Predicted fault 
detection, classification, and Location have been recorded, and 
percentage error has been computed for each case. The average 
percentage error for ANFIS-based fault detection, type, and 
Location is 0.008%. -0.005% and 0.547%, respectively. Which 
is less than zero. Compared to other models, the based model 
can detect all faults accurately, as shown in Table II, it detected 
all faults correctly. For Fault classification, the ANFIS model 
classified all fault classes with less than zero percent error. 
However, for the AB-G fault, the percentage error is -1.224 at 
100 km. For fault location, ANFIS performed well with an 
average percent error of 0.547%. The root mean square error 
and mean absolute error are calculated and recorded in Table 
VII.    
   ANN-based models are given in Table III. The average 
percentage error is recorded in Table VI. The average 
percentage error for ANN-based Fault detection, classification, 
and Location is zero, 0.268, and 0.348 percent. The root mean 
square error. It can detect the fault correctly with zero percent 
error and classify the error with less than zero percent error 
except for phase C to A fault at 25km and phase A to phase B 
fault at 50 km.  
   Fault detection in the SOM-based model is computed in Table 
IV. The SOM clustered accurately for fault detection for all the 

faults and did not miss any fault with zero percentage error. In 
the case of SOM-based fault classification, the percentage error 
for all classifications is zero. However, the percentage error is 
more than one percent for AB-G fault classification at 100 km, 
as shown in Table. IV. Fault location is predicted well for most 
fault locations with zero percent error; however, it cannot detect 
the Location for two fault conditions at 100km and once for 
50km, as shown in Table IV. The weight plane representation 
of the SOM classes displaying each of the six input features is 
shown in Fig. 8 (a), providing a visual depiction of the weights 
that link each input to a single neuron in the 6*8 hexagonal grid. 
Heavy weights are indicated by darker hues than lighter ones. 
Six inputs are highly correlated when they have comparable 
weight planes (color gradients can be inverted or identical). 
It was also shown that the weight ratios of voltage and current 
are opposite to one another when all four variables are weighted 
equally. Consequently, the Euclidean interval between each 
neuron's class and its surroundings is shown in Fig. 8(b). 
The input space's highly related regions are indicated by the 
vivid connections. On the other hand, groups representing areas 
of the function space that have few or no members separating 
them are shown by the dark links.  
Large swaths of the input space are divided by extended 
boundaries with dark connections, indicating that the groups on 
either side of the boundary reflect substantially different 
neighborhoods. 
   The DWT-ANFIS-based fault model predicted results are 
computed and recorded in Table V. The percentage error for 
fault detection for all the fault conditions is zero, as shown in 
Table V. Performance of DWT-ANFIS based model needs 
more improvement as the average percentage error for fault 
classification is -0.364% as shown in Table VI. For fault 
location, the DWT-ANFIS-based model detected fault location 
with a percentage error less than zero for most cases. Still, for 
some, the percentage error is 1 percent, as shown in Table V. 
The average error for this model is recorded in Table VI.   
   The average percentage error for all the models is computed 
and recorded in Table VI. 
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TABLE II 
PERFORMANCE OF ANFIS -BASED FAULT DETECTION, CLASSIFICATION AND LOCATION MODEL  

Fault type Actual 
Location 

(km) 

ANFIS 
predicted 

fault 
detection 

% error in 
the ANFIS 

model 

ANFIS estimated 
classification 

% error in 
the ANFIS 

model 

ANFIS predicted 
fault Location(km) 

% error in 
the ANFIS 

model 

1 (A-G) 25 1.000 0.048 1.000 -0.008 25.321 1.282 

2 (B-G) 25 1.000 -0.005 2.000 -0.001 23.393 -6.427 

3 (C-G) 25 1.001 0.062 3.002 0.065 24.798 -0.806 

4 (AB) 25 1.000 0.001 4.000 0.002 25.007 0.029 

5 (BC) 25 1.000 0.000 5.000 0.004 24.614 -1.545 

6 (CA) 25 1.000 -0.015 5.999 -0.016 25.062 0.248 

7(AB-G) 25 1.000 0.000 7.000 0.000 24.995 -0.020 

8(BC-G) 25 1.000 0.007 8.000 0.002 24.994 -0.026 

9(CA-G) 25 1.000 0.000 9.000 -0.003 24.853 -0.588 

1 (A-G) 50 1.000 -0.004 1.000 0.000 49.967 -0.067 

2 (B-G) 50 1.000 0.002 2.000 -0.005 48.434 -3.131 

3 (C-G) 50 1.000 -0.001 3.000 -0.008 50.326 0.653 

4 (AB) 50 1.000 0.000 4.000 0.000 50.231 0.462 

5 (BC) 50 1.000 0.002 5.000 0.008 49.777 -0.447 

6 (CA) 50 1.000 -0.001 6.000 -0.002 49.615 -0.769 

7(AB-G) 50 1.000 0.003 7.000 0.000 50.214 0.428 

8(BC-G) 50 1.000 0.004 8.000 -0.003 49.769 -0.463 

9(CA-G) 50 1.000 -0.004 9.000 -0.005 50.526 1.052 

1 (A-G) 75 1.000 0.009 1.000 0.014 73.761 -1.653 

2 (B-G) 75 1.000 -0.001 2.000 -0.001 74.374 -0.835 

3 (C-G) 75 1.000 -0.002 3.000 -0.006 74.837 -0.217 

4 (AB) 75 1.003 0.347 4.025 0.624 74.599 -0.535 

5 (BC) 75 1.000 0.000 4.999 -0.010 75.542 0.722 

6 (CA) 75 1.000 -0.002 6.000 -0.001 75.935 1.246 

7(AB-G) 75 1.000 0.000 7.000 0.001 75.354 0.472 

8(BC-G) 75 1.000 -0.003 8.000 0.006 75.195 0.260 

9(CA-G) 75 1.000 -0.005 9.000 -0.005 75.290 0.387 

1 (A-G) 100 1.000 -0.008 1.000 -0.002 99.467 -0.533 

2 (B-G) 100 1.000 -0.005 2.000 0.003 99.083 -0.917 

3 (C-G) 100 1.000 -0.007 3.000 0.002 99.956 -0.044 

4 (AB) 100 1.000 0.025 3.999 -0.023 99.237 -0.763 

5 (BC) 100 1.000 0.000 5.000 0.007 100.910 0.910 

6 (CA) 100 1.000 -0.049 6.002 0.033 99.000 -1.000 

7(AB-G) 100 0.999 -0.066 6.914 -1.224 96.193 -3.807 

8(BC-G) 100 1.000 -0.004 8.002 0.028 99.098 -0.902 

9(CA-G) 100 1.000 -0.047 9.030 0.331 97.667 -2.333 
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TABLE III 

PERFORMANCE OF ANN BASED FAULT DETECTION, CLASSIFICATION AND LOCATION MODEL  
 

Fault type Actual 
Location 

(km) 

ANN 
predicted 

fault 
detection 

%error in 
the ANN 

model 

ANN predicted 
fault classification 

%error in 
the ANN 

model 

ANN 
predicted 

fault  
location 

(km) 

%error in 
the ANN 

model 

1 (A-G) 25 1.000 0.000 1.003 0.262 25.728 2.911 

2 (B-G) 25 1.000 0.000 2.004 0.209 25.076 0.303 

3 (C-G) 25 1.000 0.000 2.990 -0.320 25.974 3.898 

4 (AB) 25 1.000 0.000 3.999 -0.034 26.860 7.441 

5 (BC) 25 1.000 0.001 4.996 -0.071 23.738 -5.048 

6 (CA) 25 1.000 0.000 5.315 -11.414 26.235 4.941 

7(AB-G) 25 1.000 0.000 6.995 -0.066 24.736 -1.057 

8(BC-G) 25 1.000 0.001 8.002 0.024 25.141 0.564 

9(CA-G) 25 1.000 0.000 9.000 0.005 25.457 1.828 

1 (A-G) 50 1.000 0.000 1.006 0.592 49.565 -0.871 

2 (B-G) 50 1.000 0.000 2.001 0.038 48.177 -3.646 

3 (C-G) 50 1.000 0.000 2.994 -0.185 49.645 -0.710 

4 (AB) 50 1.000 0.000 4.220 5.491 50.485 0.970 

5 (BC) 50 1.000 -0.001 5.002 0.040 49.147 -1.705 

6 (CA) 50 1.000 0.000 6.008 0.140 46.300 -7.400 

7(AB-G) 50 1.000 0.000 6.999 -0.009 50.638 1.276 

8(BC-G) 50 1.000 0.000 8.001 0.016 49.403 -1.194 

9(CA-G) 50 1.000 0.000 9.000 -0.002 50.350 0.700 

1 (A-G) 75 1.000 0.000 1.003 0.280 76.945 2.594 

2 (B-G) 75 1.000 0.000 1.999 -0.052 74.808 -0.256 

3 (C-G) 75 1.000 0.000 2.996 -0.136 74.277 -0.964 

4 (AB) 75 1.000 0.007 3.875 -3.124 79.080 5.440 

5 (BC) 75 1.000 0.000 5.002 0.048 77.279 3.039 

6 (CA) 75 1.000 0.000 5.993 -0.117 76.491 1.987 

7(AB-G) 75 1.000 0.000 6.998 -0.033 76.164 1.552 

8(BC-G) 75 1.000 0.000 8.005 0.061 74.680 -0.427 

9(CA-G) 75 1.000 0.000 8.992 -0.092 75.423 0.564 

1 (A-G) 100 1.000 -0.001 0.997 -0.350 98.511 -1.489 

2 (B-G) 100 1.000 -0.001 2.008 0.412 98.845 -1.155 

3 (C-G) 100 1.000 0.001 2.994 -0.196 99.044 -0.956 

4 (AB) 100 1.000 0.000 3.973 -0.666 99.556 -0.444 

5 (BC) 100 1.000 0.000 5.005 0.106 99.152 -0.848 

6 (CA) 100 1.000 0.003 6.028 -0.468 99.860 -0.140 

7(AB-G) 100 1.000 0.000 6.997 -0.037 101.668 1.668 

8(BC-G) 100 1.000 0.000 7.995 -0.063 100.301 0.301 

9(CA-G) 100 1.000 -0.001 9.006 0.064 100.165 0.165 
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TABLE IV 
PERFORMANCE OF SOM -BASED FAULT DETECTION, CLASSIFICATION AND LOCATION MODEL  

 
Fault type Actual 

Location 
(km) 

SOM 
predicted 

fault 
detection 

%error in 
the SOM 

model 

SOM 
predicted 

fault 
classification 

%error in 
the SOM 

model 

SOM 
predicted 

fault  
location 

(km) 

%error in 
the SOM 

model 

1 (A-G) 25 1.000 0.000 1 0.000 25 0 

2 (B-G) 25 1.000 0.000 2 0.000 25 0 

3 (C-G) 25 1.000 0.000 3 0.000 25 0 

4 (AB) 25 1.000 0.000 4 0.000 25 0 

5 (BC) 25 1.000 0.000 5 0.000 25 0 

6 (CA) 25 1.000 0.000 6 0.000 25 0 

7 (AB-G) 25 1.000 0.000 7 0.000 25 0 

8 (BC-G) 25 1.000 0.000 8 0.000 25 0 

9 (CA-G) 25 1.000 0.000 9 0.000 25 0 

1 (A-G) 50 1.000 0.000 1 0.000 50.000 0 

2 (B-G) 50 1.000 0.000 2 0.000 50.000 0 

3 (C-G) 50 1.000 0.000 3 0.000 50.000 0 

4 (AB) 50 1.000 0.000 4 0.000 43.750 -12.5 

5 (BC) 50 1.000 0.000 5 0.000 50.000 0 

6 (CA) 50 1.000 0.000 6 0.000 50.000 0 

7 (AB-G) 50 1.000 0.000 7 0.000 50.000 0 

8 (BC-G) 50 1.000 0.000 8 0.000 50.000 0 

9 (CA-G) 50 1.000 0.000 9 0.000 50.000 0 

1 (A-G) 75 1.000 0.000 1 0.000 75.000 0 

2 (B-G) 75 1.000 0.000 2 0.000 75.000 0 

3 (C-G) 75 1.000 0.000 3 0.000 75.000 0 

4 (AB) 75 1.000 0.000 4 0.000 75.000 0 

5 (BC) 75 1.000 0.000 5 0.000 75.000 0 

6 (CA) 75 1.000 0.000 6 0.000 75.000 0 

7 (AB-G) 75 1.000 0.000 7 0.000 75.000 0 

8 (BC-G) 75 1.000 0.000 8 0.000 75.000 0 

9 (CA-G) 75 1.000 0.000 9 0.000 75.000 0 

1 (A-G) 100 1.000 0.000 1 0.000 97.22222 -2.77778 

2 (B-G) 100 1.000 0.000 2 0.000 100 0 

3 (C-G) 100 1.000 0.000 3 0.000 100 0 

4 (AB) 100 1.000 0.000 4 0.000 100 0 

5 (BC) 100 1.000 0.000 5 0.000 100 0 

6 (CA) 100 1.000 0.000 6 0.000 97.91667 -2.08333 

7 (AB-G) 100 1.000 0.000 6.727273 -3.896 100 0 

8 (BC-G) 100 1.000 0.000 8 0.000 100 0 

9 (CA-G) 100 1.000 0.000 9 0.000 100 0 
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TABLE V 
PERFORMANCE OF DWT-ANFIS-BASED FAULT DETECTION, CLASSIFICATION, AND LOCATION MODEL  

 
Fault type Actual 

Location 
(km) 

DWT-
ANFIS 

predicted 
fault 

detection 

% error in 
DWT-
ANFIS 
model 

DWT-
ANFIS 

estimated 
classification 

% error in 
DWT-
ANFIS 
model 

DWT-ANFIS 
predicted 

fault 
Location(km) 

% error in 
DWT-
ANFIS 
model 

1 (A-G) 25 1.000 0.000 0.998938 -0.106 24.98329 -0.06685 

2 (B-G) 25 1.000 -0.002 1.99655 -0.172 25.339 1.35648 

3 (C-G) 25 1.000 0.002 2.9338 -2.207 25.124 0.42975 

4 (AB) 25 1.000 0.000 3.98245 -0.439 24.832 -0.67328 

5 (BC) 25 1.000 0.000 4.743457 -5.131 25.393 1.572514 

6 (CA) 25 1.000 0.000 6.036992 0.617 25.079 0.314833 

7 (AB-G) 25 1.000 0.000 7.015356 0.219 25.036 0.142133 

8 (BC-G) 25 1.000 0.001 7.896957 -1.288 25.145 0.578229 

9 (CA-G) 25 1.000 0.000 8.9781 -0.243 25.001 0.005714 

1 (A-G) 50 1.000 -0.004 1.0003 0.030 49.739 -0.52184 

2 (B-G) 50 1.000 -0.003 2.0022 0.110 50.149 0.297455 

3 (C-G) 50 1.000 0.001 2.99994 -0.002 49.991 -0.01704 

4 (AB) 50 1.000 0.002 4.000488 0.012 50.098 0.19635 

5 (BC) 50 1.000 0.000 5.00839 0.168 49.846 -0.30706 

6 (CA) 50 1.000 -0.002 6.0378 0.630 49.822 -0.35572 

7 (AB-G) 50 1.000 0.000 7.002743 0.039 49.940 -0.12011 

8 (BC-G) 50 1.000 0.000 8.014625 0.183 49.982 -0.03545 

9 (CA-G) 50 1.000 -0.002 9.01562 0.174 50.000 -0.0004 

1 (A-G) 75 1.000 -0.003 0.982418 -1.758 74.959 -0.05485 

2 (B-G) 75 1.000 0.000 1.999891 -0.005 75.054 0.071576 

3 (C-G) 75 1.000 0.000 2.999 -0.033 75.051 0.068133 

4 (AB) 75 1.000 0.002 4.00061 0.015 75.202 0.26868 

5 (BC) 75 1.000 0.001 
 

0.181 75.198 0.263827 

6 (CA) 75 1.000 -0.001 5.99218 -0.130 74.826 -0.23177 

7 (AB-G) 75 1.000 -0.001 6.998723 -0.018 75.233 0.310482 

8 (BC-G) 75 1.000 0.002 7.936269 -0.797 75.020 0.026992 

9 (CA-G) 75 1.000 -0.004 8.998229 -0.020 74.994 -0.0076 

1 (A-G) 100 1.000 -0.001 1.002144 0.214 99.940 -0.06031 

2 (B-G) 100 1.000 0.007 1.9999 -0.005 99.139 -0.86128 

3 (C-G) 100 1.000 0.000 2.99182 -0.273 100.022 0.02181 

4 (AB) 100 1.000 0.002 3.98418 -0.396 99.978 -0.02236 

5 (BC) 100 1.000 0.000 5.016222 0.324 99.943 -0.05733 

6 (CA) 100 1.000 0.001 6.0023 0.038 99.830 -0.17002 

7 (AB-G) 100 1.000 0.001 6.867009 -1.900 99.703 -0.29667 

8 (BC-G) 100 1.000 0.002 8.007442 0.093 99.926 -0.07367 

9 (CA-G) 100 1.000 -0.001 8.89006 -1.222 100.025 0.0247 
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TABLE VI 
PERCENTAGE ERROR COMPARISON OF ANN, ANFIS, WT-ANFIS, AND SOM MODELS  

Task  
ANFIS ANN SOM DWT-

ANFIS 

Fault Detection (%)  0.008 
 

0.000 
 

0.000 
 

0.000 
 

Fault Classification (%) -0.005 
 

-0.268 
 

-0.108 
 

-0.364 
 

Fault Location (%) -0.547 
 

0.384 
 

-0.482 
 

0.056 
 

Average (%) 0.0015 
 

0.039 
 

-0.197 
 

-0.103 
 

The performance of various models including ANN, ANFIS, 
SOM, and DWT-ANFIS are illustrated in Fig. 9 a, b, and c, 
representing fault detection, classification, and location 
respectively. Fig. 9a showcases the fault detection capabilities 
of these models across forty distinct scenarios, each assessed 
with a testing dataset comprising 400 instances. The 
simulation was conducted for fault (1) and no-fault (0) 
conditions, with all models demonstrating accurate detection 
capabilities for both scenarios. 
 

For fault classification, depicted in Fig. 9b, the models' 
performance is evaluated across ten fault classes (AG, BG, 
CG, AB, BC, CA, ABG, BCG, CAG) as well as the no-fault 
case. While overall performance was satisfactory, certain fault 
classes exhibited lower accuracy, particularly with ANN and 
DWT-ANFIS models. 
In the context of fault location prediction, the models were 
tested across four distinct locations. ANFIS and SOM notably 
achieved precise location predictions, as depicted in Fig. 9c, 
outperforming the other models in this regard. 

 

 
a)     

 
b)  

 
 

 
c)    
ANFIS-based fault detection, classification, and 

Location 
ANN-based fault detection, classification, and 

Location 
SOM-based fault detection, classification, and 

Location 
DWT-ANFIS-based fault detection, classification, 

and Location 
FIGURE 9. The performance of ANFIS, ANN, SOM, and DWT-ANFIS models for testing: a. Fault detection, b: fault classification, c: fault location 
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TABLE VII 
TRAINING AND TESTING PERFORMANCE OF ANN, ANFIS, DWT-ANFIS AND SOM BASED MODELS  

 

Models  Technique 
Training Testing 

RMSE MAE R2 Time(minute) RMSE MAE R2 Time(s) 

Detection  

ANN 0.0.000 0.000 1.000 
13.00422 

0.000 0.000 1.000 
0.219179 

ANFIS 0.000 0.000 1.000 

 
612.345 

0.000 0.000 1.000 

 
0.210096 
 

DWT-
ANFIS 0.000 0.000 1.000 1235.60 0.000 0.000 1.000 

0.205 

SOM 0.000 0.000 1.000 17.4816 0.000 0.000 1.000 0.0030 

Classification 

 

ANN 0.061 0.009 0.999 13.4822 0.062 0.014 0.999 0.099 

ANFIS 0.000 0.000 1.000 579.63 0.019 0.003 0.999 0.203 

DWT-
ANFIS 0.003 0.000 1.000 

1205.18 0.133 0.038 0.998 0.229 

SOM 0.000 0.000 1.000 8.206 0.1564 0.0082 0.997 0.001763 

Location  

ANN 4.229 2.664 0.977 19.069 5.171 3.271 0.966 0.0533 

ANFIS 1.118 0.664 0.999 1800.12 1.880 1.142 0.996 0.299 

DWT-
ANFIS 7.199 2.191 0.933 1241.629 7.234 2.161 0.935 0.2016 

SOM 1.129 0.051 0.998 34.362 14.744 3.669 0.726 0.001173 
 
The performance of models in the form of RMSE given in 
equation, mean absolute error, and R2 is recorded in Table VII.   
 

 
 
 
FIGURE 10. ANFIS network for fault models [21],[30]. 

 
 
 

%𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
� ∗ 100   (18) 

 
     𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|

𝑛𝑛
𝑛𝑛
𝑖𝑖=1                        (19) 

 
The output graph between predicted values and actual fault is 
given in Fig. 9a for ANFIS, ANN, SOM, and DWT-ANFIS 
models. Similarly, Fig. 9b shows the predicted value and 
actual classification for fault for all four models. Further, Fig. 
9c represents the exact fault location and predicted Location 
for model ANFIS, ANN, SOM, and DWT-ANFIS.  
 
V. CONCLUSION 
In this study, we compared the effectiveness of several 
methods, including Artificial Neural Networks (ANN), 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Self-
Organizing Maps (SOM), and a hybrid approach that combines 
Discrete Wavelet Transform (DWT) with ANFIS, for fault 
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detection, classification, and localization in transmission lines. 
Our study set out to investigate the effectiveness of these 
techniques in managing the complex tasks (faults) that are a part 
of power transmission networks. 
Our findings show that the average percentage error for each of 
the approaches under investigation differs significantly. The 
average percentage error for the ANN-based models was 0.039, 
which is a good result. But with a noticeably lower average 
percentage error of 0.0015, the ANFIS-based models beat their 
ANN counterparts, demonstrating the greater adaptability and 
robustness of the ANFIS technique in fault identification.  
   The SOM-based models showed an average percentage error 
of -0.197, which can be explained by the special properties of 
SOMs and their effective mapping of high-dimensional data to 
low-dimensional space. This negative error number shows how 
well the SOM-based models handled complicated transmission 
line fault situations by continuously producing findings that 
were closer to ground truth values. 
   Additionally, with an average percentage error of -0.103, the 
hybrid strategy that combined DWT with ANFIS demonstrated 
a significant improvement. This enhancement highlights how 
well DWT and ANFIS operate together, using DWT's signal 
processing capabilities to improve the ANFIS framework's fault 
detection, classification, and location accuracy. 
Overall, our comparative analysis demonstrates how well 
ANFIS and hybrid approaches work to address the problems 
related to fault localization, classification, and detection in 
transmission lines. These results highlight the need of utilizing 
cutting-edge computational methods and hybrid strategies to 
improve the dependability and effectiveness of electricity 
transmission networks. 
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