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ABSTRACT Image stitching is one of the research hotspots in the fields of computer vision and image
processing. Existing methods typically use traditional algorithms or deep learning-based algorithms to
achieve this task. However, traditional image stitching algorithms perform poorly in images with weak
textures, dark light and multiple noises. And the convolutional neural network (CNN) used by deep learning
image stitching algorithms is difficult to capture the global contextual information of an image, resulting
in limited accuracy. To address this issue, we designed a Multi-Grid Homography Estimation Network
(MGHE-Net) based on Transformers. This network consists of cross-image integration feature extraction
module, image matching module, and offset refinement module. The powerful global modeling capability
of the Transformer is used to achieve multi-grid homography estimation from coarse to fine, improving the
accuracy of image stitching. Experimental results demonstrate that our network not only achieves better
stitching results in images with weak textures and dark light, but also reduces errors by 75.3% and 65.1%,
respectively, compared to traditional algorithms and CNN-based algorithms on datasets with large parallax.
Furthermore, our network improves the efficiency of image stitching.

INDEX TERMS Deep learning, Homography Estimation, Image Stitching, MGHE-Net, Transformer.

I. INTRODUCTION
Image stitching is one of the oldest and most widely used
topics in computer vision and graphics [1]. It is a method
of creating seamless panoramas or high-resolution images
by stitching together multiple images with overlapping re-
gions [2]. This process involves two primary steps: image
registration and image fusion. Image registration aligns the
overlapping parts of multiple images, while image fusion
adjusts the colors, brightness, etc. of the images to ensure they
blend together seamlessly. The application of image stitching
technology has advanced significantly in recent years and can
be used in a variety of fields such as panorama image syn-
thesis, virtual reality [3], geographical mapping and remote
sensing imagery [4]. Also its demand is increasing day by
day [5].

As a challenging task, the effectiveness of image stitching
is not only highly dependent on the stitching algorithm used,
but is also affected by the quality of the image itself. In
general, the following types of images pose a challenge to
image stitching:

1) Weak texture image: texture refers to the grooves pre-

sented by the unevenness of the surface of the object, the
texture in the image is usually manifested in more obvious
shapes, colours, structures, etc., which contains the detailed
feature information of the image. Weak texture image is the
image that the texture is not obvious, there is no obvious edge
or texture features in this type of image, more gradient or solid
colour uniform distribution, such as the sky, snow and so on.
2) Low-light images: Due to their low brightness and a

higher proportion of black background, low-light images of-
ten contain feature points concentrated in specific local areas.
This can lead to a larger error in estimating the homography
transformation, thereby affecting the image stitching effect.
3) High-noise images: Due to the distinct difference be-

tween noise and the original content of the image, noise is
easily identified as feature points by feature extraction algo-
rithms, thereby interfering with subsequent feature matching
and leading to failed image stitching.
4) Large parallax images: In images with large parallax,

there is a significant relative displacement between the fore-
ground and background, making image stitching significantly
more challenging. Since homography transformations can
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only align scenes on the same plane, and scenes in images
with large parallax clearly exist on different planes, this often
results in ghosting artifacts in the stitched image.

Image stitching algorithms can be divided into traditional
algorithms and deep learning-based algorithms. Traditional
algorithms [6], [7], [8] generally follow five steps in image
stitching: feature extraction, feature matching, computation
of homography matrix, image registration, and image fusion.
Feature extraction is a crucial step in the traditional image
stitching process, and many scholars have been devoted to
improving feature extraction algorithms, proposing various
improvement algorithms. Traditional image stitching algo-
rithms can achieve good results in ideal images with rich
textures; however, they often struggle when dealing with
images containing weak textures, low-light conditions, and
high noise levels. This is because existing traditional feature
extraction and matching algorithms are not stable in handling
such images, leading to poor or failed image stitching results.

In comparison, research on algorithms related to homogra-
phy estimation and image stitching in the field of deep learn-
ing began in 2016 [9]. Although the current research time is
significantly shorter than traditional methods, deep learning-
based algorithms utilize deep neural networks to extract im-
age features and estimate stitching parameters, thus possess-
ing stronger generalization ability and robustness. This has
somewhat improved the stitching effect of images with weak
textures, low light, and high noise levels. However, previous
deep learning image stitching algorithms [9], [10], [11], [12],
[13] are all based on CNN. CNN use convolutional operations
to extract features, where the receptive field depends on the
kernel size, which is not conducive to modeling long-distance
dependencies and leads to poor stitching performance in im-
ages with significant parallax.

Compared to CNN, existing research has shown that the
Transformer architecture using a multi-head self-attention
mechanism is more advantageous for long-range dependency
modelling [14], which can improve the stitching of images
with large parallax. Therefore, we propose the following in-
novations for the previous deep-learning based image stitch-
ing algorithms:

1) We propose a cross-image integration feature extraction
module that effectively combines the information from the
reference image with the features extracted from the target
image. Additionally, we enhance the fused features using the
CSWin Transformer to capture a broader range of global cor-
relations. By doing so, the network gains a better understand-
ing of the interplay and coherence between distinct regions,
resulting in improved accuracy and consistency throughout
the stitching process.

2) We have enhanced the image matching process by uti-
lizing efficient matrix multiplication to enable parallel com-
parison of dense feature similarities between two images.
This accelerates the computation of feature similarity, thereby
significantly improving the efficiency and accuracy of the
image stitching process.

3) We propose an offset refinement module aimed at refin-

ing and extrapolating the initial normalized relative grid offset
obtained. It improves the accuracy of grid offset between
overlapping and non-overlapping regions in image alignment,
resulting in more accurate image stitching.

II. RELATED WORK

A. TRADITIONAL IMAGE STITCHING ALGORITHMS

Over the past few decades, numerous scholars have conducted
extensive research on traditional image stitching algorithms,
proposing different algorithms for each step of the image
stitching process. Richard et al. proposed a method in 1997
that uses a rotational motion model for image stitching but
requires estimation of the camera focal length.In 2003, Brown
et al. proposed an automatic panorama image stitching al-
gorithm based on invariant features and further improved
the algorithm in 2007. Brown et al. [6] first introduced a
more comprehensive multi-image stitching process, treating
image stitching as a multi-image matching problem. They
used the Scale Invariant Feature Transform (SIFT) algorithm
[7] to extract features from the images to determine the
matching relationships between all images and employed the
Multi-Band Blending algorithm for image fusion. In practice,
features extracted by algorithms like SIFT often result in
many mismatches during matching. Therefore, Brown et al.
used the Random Sample Consensus (RANSAC) algorithm
[15] to eliminate mismatches. Subsequently, they solved for
a relatively robust global homography matrix based on the
matching relationships.

Zaragoza et al. [8] proposed the "As Projective As Possi-
ble" (APAP) algorithm to eliminate artifacts created by using
global homography transformation for image stitching. They
utilized the Moving DLT algorithm to calculate local homog-
raphy transformations and divided the images into multiple
grids for deformation. This algorithm enables images to be
locally aligned as much as possible based on matching fea-
tures, thereby enhancing the precision of image registration
and effectively improving the image stitching results. Due
to the favorable performance of the APAP algorithm, subse-
quent traditional image stitching algorithms have largely been
improved based on this approach.

Although traditional image stitching algorithms have
achieved certain results through years of development, they
still face challenges in processing images with weak textures,
low lighting, and high noise levels. This is because tradi-
tional image stitching algorithms are based on explicit feature
extraction and feature matching. Existing feature extraction
algorithms struggle to extract a sufficient number of features
in images with weak textures or low lighting. Additionally,
feature matching algorithms are prone to interference from
noise in images with repetitive textures and high levels of
noise. As a result, it becomes difficult to establish stable and
effective transformation relationships between two images,
significantly impacting the image stitching results.
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FIGURE 1. MGHE-Net Network Model.

B. DEEP LEARNING-BASED IMAGE STITCHING
ALGORITHMS

With the widespread application of deep learning in computer
vision, many scholars have begun to explore how to apply
deep learning to homography estimation and image stitching
to improve their robustness in images with weak textures.
Detone et al. [9] first proposed a deep learning-based global
homography estimation algorithm in 2016, which utilizes
global homography transformation to describe the transfor-
mation relationship between two images. Only after obtaining
the transformation relationship can the mapping algorithm be
used to map the target image to the reference image in order
to achieve image registration and complete image stitching.
Nowruzi et al. [10] used a hierarchical stacked Siamese net-
work to estimate global homography transformations, refin-
ing the estimates gradually by stacking multiple structurally
identical network modules. Nguyen et al. [13] further devel-
oped the Tensor Direct Linear Transformation and Spatial
Transformation Layer based on the work of Detone et al. [9]
to achieve unsupervised learning.

Zhang et al. [11] proposed an algorithm that uses a residual
network as the backbone and content masks to select reliable
regions for global homography estimation, aiming to miti-
gate the impact of dynamic objects in images on homogra-
phy estimation. Nie et al. [2] introduced an image stitching
method based on global homography transformation. They
first estimated the global homography transformation using
the method proposed by Detone et al. [9], then conducted
initial image stitching and fusion using the estimated global
homography, and finally employed a content correction net-
work to eliminate artifacts that may appear in overlapping
regions. Subsequently, Nie et al. [12] presented a multi-grid
homography estimation network, incorporating a context-
aware layer to capture matching relationships between image
feature maps. They also utilized depth information from im-
ages as additional supervision to compute depth-aware shape-
preserving loss, thereby enhancing the image stitching results
to a certain extent. Furthermore, Nie et al. [16] introduced
an unsupervised deep image stitching method, developing an
unsupervised deep image stitching framework that eliminates
artifacts in overlapping regions in an unsupervised manner
from features to pixels.

The above-mentioned deep learning-based image stitching
algorithms have to some extent improved the stitching effect
of images with weak textures, low light, and high noise.
However, existing deep learning algorithms based on CNN
architecture use convolutional operations to extract features,
and their receptive fields depend on the size of the con-
volution kernel. Current CNN networks typically use small
convolution kernels to improve computational efficiency, of-
ten requiring the stacking of multiple convolutional layers to
expand the receptive field globally. This makes it difficult for
the algorithms to capture the global contextual information of
images. Even if they can capture it, it may lead to overly large
networkmodels that are challenging to train. As a result, these
algorithms often perform poorly in image stitching for images
with large disparities. In contrast, our method leverages the
advantages of Transformers in modeling long-range depen-
dencies, thereby improving the image stitching performance
for images with large parallax.

III. OUR METHOD
A. NETWORK MODEL

We have designed MGHE-Net, a multi-grid homography es-
timation network based on the Transformer architecture. This
network directly outputs parameterized multi-grid homogra-
phy transformations (normalized grid offsets). The multi-grid
homography transformation divides the image into a series
of grid planes and employs a homography transformation in
each grid plane to describe the mapping relationship between
the reference image and the target image, all with a fixed size.
After estimating the multi-grid homography transformations
through the network, the target image is mapped to the ref-
erence image using a mapping algorithm and then fused to
obtain the stitched image.
The network model for MGHE-Net is shown in Fig.1.

In order to integrate the information from the two images
across the image in order to perceive the image information
in a wider field of view and to make the features contain
more global relevance in the feature extraction, we integrated
the information from the features of both images across the
image and further enhanced them using the Transformer. In
the image matching module, we improved the efficiency of
similarity computation between the two images by employing
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FIGURE 2. Patch Embedding Module Structure Diagram.

efficient matrixmultiplication to parallelly compare the dense
feature similarities. Additionally, to enhance the accuracy of
grid offsets, we incorporated an offset refinement module that
continuously refines and extrapolates the primary normal-
ized grid offsets. From the ablation experiments detailed in
SectionIV-D, these improvements have demonstrated positive
effects in enhancing the network accuracy and improving the
accuracy of the image stitching results.

B. CROSS-IMAGE INTEGRATION FEATURE EXTRACTION
MODULE
The cross-image integration feature extraction module com-
prises the patch embedding module, cross-image integration
module, and feature enhancement module. In this module,
the features of both the reference image and the target image
are initially extracted. These two sets of features are then
connected in different orders along the channel dimension
to obtain two new sets of features. Finally, through feature
enhancement, these two sets of features encapsulate a greater
amount of global correlation information.

1) Patch embedding module
We have adopted the Transformer as the backbone in our
proposed network structure. To input the image into the
Transformer, it undergoes a process called patch embedding,
which involves splitting the image into a series of patches and
preliminarily extracting the image features.

To perform the preliminary feature extraction, we utilized
existing generic methods and leveraged the high efficiency of
CNN. Specifically, we employed a CNN-based patch embed-
ding module to downsample the image in spatial dimensions
while increasing the number of channels.

The patch embedding module consists of three different
stacked convolutional layers, as shown in Fig.2. Specifically,
the first convolutional layer has a kernel size of 7×7 and
a stride of 2, which reduces the size of the input image by
half and expands the number of channels to 16. The second
convolutional layer has a kernel size of 3×3 and a stride of
2, further reducing the size of the feature map while doubling
the number of channels to 32. The third convolutional layer
has a kernel size of 3×3 and a stride of 1, which further
transforms the features while preserving their original shape.
Following each convolutional layer, a Layer Normalization
layer [17] is used to normalize the features for accelerated
training. Subsequently, a GELU activation function [18] is
applied to enhance the network’s nonlinearity and improve
its learning capacity.

2) Cross-image integration module
The patch embedding module transforms the two input im-
ages into two sets of embedded features with a shape of
H
4 ×

W
4 . At this stage, each set of features only contains

information corresponding to its respective image. Research
by Xu [19] has demonstrated that integrating knowledge
from another image into the features of the current image
effectively enhances the quality of the extracted features. This
improvement cannot be achieved by operating solely on the
features of each image separately.Considering that in image
stitching, the reference image and the target image do not
completely overlap, they each contain unique content. By in-
tegrating this unique content into the other image, it becomes
possible to obtain a complete representation of the content,
thus facilitating a wider perception of the image information.
As a result, the accuracy of normalized grid offset estimation
can be improved.
To integrate the information from another image, we used

a simple channel concatenation operation. Specifically, by
concatenating the embedded feature of the reference image
F embed
1 ∈ H

4 ×
W
4 ×32 with the embedded feature of the target

image F embed
2 ∈ H

4 ×
W
4 ×32 along the channel dimension,

we obtain a new reference image feature F1∈ H
4 ×

W
4 ×32;

similarly, we can obtain a new target image feature F2∈
H
4 ×

W
4 ×32:

F1 = Concat(F embed
1 ,F embed

2 )
F2 = Concat(F embed

2 ,F embed
1 )

(1)

By connecting the features, we can effectively integrate the
information from both images without incurring any addi-
tional computational resources, thereby avoiding an increase
in computational cost. Moreover, when interchanging the or-
der of the two sets of input features, the order of the integrated
features will also be interchanged accordingly. This corre-
lation between the order of the integrated features and the
original features ensures that the features are not confused or
mixed up. Consequently, this approach proves advantageous
in enhancing the robustness of the network.

3) Feature enhancement module
After the two aforementionedmodules, the image features are
initially extracted and integrated. However, since the patch
embedding module only utilizes CNN to extract features, the
features at this stage only contain local contextual informa-
tion. If these features are directly applied to the subsequent
correlation calculation in the network, it will result in signif-
icant training loss and difficulty in convergence. Therefore,
we employ a feature enhancement module to enhance the
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FIGURE 3. Feature Enhancement Module Structure Diagram.

FIGURE 4. Feature Enhancement Basic Block Diagram.

embedded features and improve the learning capacity of the
network.

The feature enhancement module is based on the Trans-
former, and its structure is shown in Fig.3. It consists of two
stages (stage 1 to 2) connected by one patch-merge block.
In order to improve the module’s modeling capacity while
balancing memory consumption, we have set the number of
feature enhancement basic blocks to 2 and 4 for stage 1 and
stage 2, respectively. Additionally, the number of multi-head
attentions are 4 and 8, with a window size of cross-attention
at 2 and 7, respectively. The patch-merge block reduces the
feature map size and expands the channel numbers by merg-
ing adjacent feature vectors, thereby generating a multi-scale
feature representation between stage 1 and stage 2.

Furthermore, in order to effectively improve the computa-
tional efficiency and modeling capacity of the network, we
have adopted the CSWin Transformer as the backbone of
the feature enhancement module, as compared to the original
Transformer [20] and SWin Transformer [21]. The CSWin
Transformer incorporates two key designs: the cross-window
attention and the local enhanced position encoding. The
cross-window attention mechanism balances global attention
and computational complexity more effectively, while the
local enhanced position encoding, proposed by Dong [14],
differs from the encoding method proposed by Vaswani [22]
and Shaw [23]. It introduces positional information on differ-
ent channels of the features to enhance their representation.

Finally, the basic component of the feature enhancement
module is the feature enhancement basic block, which has a
structure shown in Fig.4. It includes a cross-window attention
layer and a multi-layer perceptron module, where the cross-
window attention layer integrates the aforementioned cross-
window attention and local enhanced position encoding. In
addition, both components use residual structures, and Lay-
erNorm (LN) and Dropout layers [24] are used before and
after them.

C. IMAGE MATCHING MODULE
The goal of image stitching is to align the target image onto
the reference image. In the MGHE-Net network, normalized
grid offsets are used to represent the coordinate correspon-
dence, and efficient matrix multiplication is employed to
parallelly compare the dense feature similarity between the
two images, thus obtaining the correlation in the overlapping
region. Specifically, the computation process is as follows:

C =
F2F

T
1√

128
(2)

In equation(2), F1 and F2 respectively represent the fea-
tures of the reference image and the target image, F1 , F2∈
(HG×WG)×128 (For the sake of convenience, HG andWG

are used to represent the grid offset dimensions of the net-
work output, with HG=H /8 and WG=W /8); C represents
the feature correlation matrix between the two images; and
1/
√
128 serves as a normalization factor to prevent numerical

amplification after matrix multiplication.
To convert feature correlation into coordinate matching

relationships, it is necessary to normalize the feature corre-
lation. We use the SoftMax function to normalize the cor-
relation matrix C , thus obtaining the normalized correlation
weights W for the same coordinates on the target image and
all coordinates on the reference image:

W = SoftMax(C , dim = 1) (3)

Here, W∈ (HG×WG)×(HG×WG); dim=1 (indexing
starts from 0) means applying the SoftMax function on the
second dimension. Expanding the equation(3), we can write:

W [(i , j ), (x , y)] =
eC [(i,j ),(x ,y)]

a=HG−1∑
a=0

b=WG−1∑
b=0

eC [(i,j ),(a,b)]

(4)

Here, (i , j ) and (x , y) are indices on different dimensions.
Then, the coordinate matching relationship can be obtained:

Gabs = WGbase (5)
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FIGURE 5. Offset Refinement Module Structure Diagram.

Gabs∈ (HG×WG)×2 represents the absolute pixel grid
coordinates of the target image on the reference image; and
Gbase∈ (HG×WG)×2 represents the grid coordinates on the
reference image.

Finally, by subtracting the base grid Gbase from the ab-
solute pixel grid Gabs and normalizing it using broadcast
multiplication, we can obtain the primary normalized relative
grid offset Gpri :

Gpri = (Gabs −Gbase)

 1

H
0

0
1

W

 (6)

It should be noted that the primary normalized grid offset
Gpri obtained based on the above operations can onlymap the
target image to the interior of the reference image. Therefore,
it is only valid in the overlapping area between the two
images, and invalid in the non-overlapping area. For the grid
offset in the non-overlapping area, the offset refinement mod-
ule in SectionIII-D needs to be used for further estimation.

D. OFFSET REFINEMENT MODULE
To further enhance the accuracy of the grid offset in the
overlapping area and extend it to the non-overlapping area,
we have designed the offset refinement module. This module
refines and extrapolates the initial grid offset obtained from
the image matching module to achieve a high-precision grid
offset across the entire image region.

In the offset refinement module, ensuring a sufficiently
large attention region is crucial in order to capture long-range
correlations between images. This plays a vital role in im-
proving the estimation accuracy of the grid offset. Therefore,
the offset refinement module also employs Transformer as its
backbone, with a structure depicted in Fig.5.

The specific approach is as follows: First, a set of linear
layers with shared weights are used to perform channel-
wise linear transformations on the enhanced features of the
reference image F enh

1 and the enhanced features of the tar-
get image F enh

2 obtained in SectionIII-B, compressing their
channel numbers from 128 to 126, resulting inF pri

1 andF pri
2 .

Next, the fused feature Ffuse∈ H
8 ×

W
8 ×256 is obtained by

stacking F pri
1 , F pri

2 , and the estimated primary grid offset

Gpri from SectionIII-C according to the method shown in
Fig.5. Subsequently, a separation operation is used to detach
Ffuse from the computation graph before inputting it into the
subsequent network structure of the module, ensuring that the
parameters of the previous network modules are not affected
by the offset refinement module. When the separated Ffuse

is input into a series of offset refinement basic blocks, these
blocks refine and extrapolate the primary grid offset from
the fused features. After a series of offset refinement basic
blocks, the features are further compressed to 2 channels
using linear layers, ultimately outputting the high-precision
grid offsetG∈ H

8 ×
W
8 ×2 after refinement and extrapolation.

Subsequent ablation experiments in SectionIV-D demonstrate
that this coarse-to-fine design effectively improves the accu-
racy of grid offset estimation.

IV. EXPERIMENT AND ANALYSIS
A. RAW DATASET
In order to fully utilize the extensive image datasets available,
we conducted experiments using two prominent datasets: the
MS-COCO dataset and the Places dataset. The MS-COCO
dataset [25], which was released by Microsoft in 2014, is a
publicly accessible dataset that encompasses 80 diverse ob-
ject categories, 1.5 million instances of objects, and includes
training, validation, and test sets comprising 118K, 41K,
and 41K images respectively. On the other hand, the Places
dataset, introduced by Zhou et al. [26] in 2017, is specifically
designed based on principles of human visual perception and
aims to provide a comprehensive dataset for training visual
understanding tasks at a higher level. This dataset consists of
an impressive collection of over 10 million images, encom-
passing more than 400 distinct scene categories.

B. EXPERIMENTAL SETUP
We selected original images from the MS-COCO and Places
datasets, and used the image stitching dataset generation
algorithm [2] to generate the test samples required for the
experiments. In order to comprehensively evaluate the image
stitching performance of different algorithms under various
conditions, we set up four groups of datasets with varying
degrees of disparity for algorithm testing based on expe-
rience. Each dataset consists of 20,000 image pairs gen-
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TABLE 1. Experiment Dataset List.

Dataset
Maximum Vertex

Offset ρ

Overall
Maximum

Displacement µ

Maximum Grid
Deformation
Ratio φ

A 28 pixels 32 pixels 0

B 56 pixels 64 pixels 0

C 56 pixels 64 pixels 0.25

D 56 pixels 64 pixels 0.5

erated from test samples from the MS-COCO dataset and
Places dataset. Datasets A, B, and C are created by randomly
selecting images from the MS-COCO dataset and Places
dataset, while dataset D is primarily comprised of images
with weak textures, low light, and high noise. In dataset D,
images with weak textures account for 40%, low light images
for 30%, and high noise images for 30%. The datasets and
corresponding hyperparameter configurations are shown in
Table1. The complexity of the transformation relationships
between image pairs increases sequentially across the four
datasets, making the image stitching difficulty progressively
more challenging.

In order to evaluate the effectiveness of image stitching, in
the absence of recognized evaluation standards, we adopted
the method proposed by Detone [9] and used the Average
Corner Error (ACE) mentioned in SectionIV-C1 to measure
the stitching error of individual samples. In fact, during the
testing process, some samples may occasionally exhibit ex-
tremely large ACE errors (especially with traditional algo-
rithms), leading to higher mean ACE (Mean Average Corner
Error, Mean-ACE) values across the entire test set. Addition-
ally, traditional algorithms may fail due to a limited number
of feature points. Taking into account these two scenarios
and aiming to ensure fairer test results, this study imposes
restrictions on the ACE error: we chose 32 pixels as the
threshold for ACE error. That is, when ACE is greater than
32 pixels or when the traditional method fails, we consider
ACE as 32 pixels. Since the Mean-ACE can only reflect
the average error on the test set and cannot reflect the error
distribution, we introduced the Median-ACE as one of the
evaluation metrics. For cases where ACE is greater than 32
pixels or the traditional method fails, indicating an ineffective
stitching, we also introduced the Invalid Rate (IR) as one
of the evaluation metrics, which represents the proportion
of ineffective cases in the entire test set. All methods in the
experiment were tested multiple times and the average values
were taken to avoid accidental occurrences.

C. NETWORK TRAINING
1) Loss Function
The network we proposed, MGHE-Net, employs a coarse-to-
fine design. It uses the imagematchingmodule to estimate the

primary normalized grid offset Gpri in Gbase∈ HG×WG×2,
and then feeds it into the offset refinement module to obtain
the refined normalized grid offset, denoted as G . To achieve
this, during training, both the primary normalized grid offset
Gpri and the refined grid offsetG need to be used to calculate
the loss.
Since Gpri is only effective in the overlapping region of

images and invalid in non-overlapping regions, it is necessary
to first use Equation (6) and the label Glabel to obtain the
absolute grid offset of the target image on the reference image
Gabs∈ HG×WG×2. Then, by comparing whether each grid
point in Gabs is within the coordinate range of the reference
image, we can obtain amaskmatrix for the overlapping region
M∈ HG×WG . After obtaining the mask M , it is applied to
Gpri and Glabel respectively, resulting in masked GM

pri and
masked GM

label .

GM
pri = Gpri ◦M

GM
label = Glabel ◦M

(7)

The "◦" represents the Hadamard product, which means
element-wise multiplication.

Finally, use the average corner error as the basic loss
function, and calculate the sum of the average corner errors
between GM

pri and GM
label , and between G and Glabel , as the

final loss.

∥X ∥2 =

√√√√ n∑
i=1

x 2
i ,X = [x1, · · · , xn ] (8)

ACE(GM
pri ,G

M
label) =

1

HGWG
·

HG−1∑
i=0

WG−1∑
j=0

∥∥∥∥(GM
pri(i , j )−GM

label(i , j ))

[
H 0
0 W

]∥∥∥∥
2

ACE(G,Glabel) =
1

HGWG
·

HG−1∑
i=0

WG−1∑
j=0

∥∥∥∥(G(i , j )−Glabel(i , j ))

[
H 0
0 W

]∥∥∥∥
2

(9)

Losstrain = ACE(GM
pri ,G

M
label) + ACE(G ,Glabel) (10)

Here, ∥X ∥2 denotes the L2 norm,which is used to calculate
the Euclidean distance of the error. Since the network output
is normalized grid offset, in order to make it more intuitive,
it needs to be converted into pixel distance by multiplying it
with the corresponding scaling coefficient.

2) Training method
Weused the Pytorch deep learning framework to complete the
experiments, and optimized the network using theAdamWal-
gorithm [27]. The L2 regularization weight decay coefficient
was set to 0.05, and the initial learning rate (LR) was set to
1.25×10−4. We trained 16 pairs of images at each iteration
and used 60,000 pairs of images for training and 5,000 pairs of
images for validation in each epoch. We trained the network
for a total of 120 epochs. In addition, we used a learning
rate scheduling strategy that combines multiple algorithms to
improve the performance of the network model [28], [29].
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TABLE 2. Results of Network Structure Ablation Experiments.

Cross-Image
Information
Integration
module

Feature
Enhancement

module

Image
Matching
module

Offset
Refinement
module

Mean-
ACE

Median-
ACE IR

✓ ✓ ✓ 2.215 1.928 0.075%

✓ ✓ ✓ 3.201 2.678 0.275%

✓ ✓ ✓ 2.994 2.384 0.155%

✓ ✓ ✓ 9.728 8.367 0.690%

✓ ✓ ✓ ✓ 1.776 1.646 0.020%

D. ABLATION EXPERIMENT
To examine the influence of distinct network modules on
MGHE-Net, we executed a sequence of network structure ab-
lation experiments. These tests encompassed the Cross-Image
Information Integration module, Feature Enhancement mod-
ule, ImageMatching module, and Offset Refinement module.
As the Patch Embedding module is fundamental, it was not
considered in the ablation experiments. All experiments were
trained using the techniques outlined in SectionIV-C and
were assessed utilizing dataset D, which was mentioned in
SectionIV-B. The outcomes of the ablation experiments are
presented in Table2.

From Table2, it can be observed that the four modules in
the table have different roles and all contribute to improving
the accuracy of the network to some extent. These experi-
ments demonstrate that by combining these network mod-
ules, MGHE-Net achieves multi-grid homography estimation
from coarse to fine, resulting in higher accuracy. This further
confirms the rationality and effectiveness of the MGHE-Net
structure.

E. COMPARATIVE EXPERIMENT
1) Quantitative error comparison
After conducting the ablation experiments, in order to fur-
ther demonstrate the effectiveness of our algorithm, we con-
ducted comparative experiments between our algorithm and
representative image stitching algorithms proposed in the
past. The algorithms involved in the comparative experi-
ments include traditional image stitching algorithms such as
SIFT+RANSAC algorithm, ORB+RANSAC algorithm, and
APAP algorithm, as well as deep learning-based image stitch-
ing algorithms such as the algorithms proposed by Detone
[9], Zhang [11] and Nie [12]. Considering that the algorithms
proposed by Detone, Zhang are only suitable for scenes with
relatively large overlapping areas, we retrained their networks
on datasets with smaller overlap ratios to ensure a fair com-
parison. Table3 shows the experimental results of the above
algorithms on different datasets, where the units of Mean-
ACE error and Median-ACE error are in pixels. The units
are omitted in Table3 for clarity. Here, "Nie1" represents
Nie’s algorithm using a multi-grid homography estimation
network [12], while "Nie2" represents Nie’s algorithm using

TABLE 3. Experimental Results of Different Algorithms on Four
Datasets.

Algorithm Dataset Mean-ACE Median-ACE IR

SIFT+RANSAC

A 3.001 0.396 6.165%

B 5.345 0.751 12.195%

C 6.893 2.186 13.060%

D 8.096 3.360 13.690%

ORB+RANSAC

A 3.746 1.024 6.525%

B 9.976 3.507 20.215%

C 10.936 4.671 20.730%

D 12.566 7.300 23.190%

APAP

A 3.053 0.582 5.815%

B 5.842 1.081 9.250%

C 6.285 2.055 9.895%

D 7.186 3.026 10.395%

Detone

A 7.393 6.714 0.095%

B 12.665 10.906 3.425%

C 13.013 11.063 4.285%

D 13.110 11.207 4.540%

Zhang

A 1.820 1.648 0.015%

B 4.525 3.393 0.205%

C 4.731 3.552 0.295%

D 5.084 3.968 0.385%

Nie1

A 2.099 1.393 0.200%

B 5.164 3.564 0.360%

C 5.213 3.683 0.480%

D 5.820 4.344 0.500%

Nie2

A 1.975 1.478 0.120%

B 4.856 3.422 0.300%

C 5.024 3.781 0.510%

D 5.314 4.563 0.550%

Ours

A 0.585 0.553 0.000%

B 0.882 0.761 0.010%

C 1.197 1.071 0.020%

D 1.776 1.646 0.020%
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FIGURE 6. Variation of Errors for Different Algorithms on Four Datasets.

unsupervised depth image [16].

To have a more intuitive understanding of the variation
of errors for different algorithms on the four datasets, Fig.6
presents the line graphs depicting the changes in Mean-ACE
error and Median-ACE error for each algorithm on the four
datasets. From Table3 and Fig.6, it can be observed that all
algorithms exhibit an increasing trend in terms of Mean-ACE
error, Median-ACE error, and IR on the four datasets. Among
the traditional algorithms, the APAP algorithm performswell.
In terms of deep learning-based image stitching algorithms,
Detone’s algorithm performs poorly due to limitations in the
network structure at that time, while the other algorithms
achieve lowerMean-ACE error compared to traditional meth-
ods. Due to the utilization of our carefully designed multi-
grid homography estimation network, our algorithm achieves
the lowest Mean-ACE error among all algorithms and consis-
tently maintains a smallerMedian-ACE error on datasets with
parallax and dataset D. Specifically, our algorithm achieves a
decrease of 75.3% and 65.1% in Mean-ACE error compared
to the APAP algorithm and Zhang’s algorithm, respectively,
indicating a significant improvement in accuracy.

Fig.7 displays the cumulative distribution curves of errors
for different algorithms on Dataset B (disparity-free) and
Dataset D (with disparity). Among them, traditional image
stitching algorithms maintain lower errors in some disparity-
free images. However, in other images with weak textures,
their errors increase sharply, indicating their weaker robust-
ness. In deep learning-based image stitching algorithms,
Detone’s algorithm performs the worst, but its IR is still
lower than that of traditional algorithms. On the other hand,

TABLE 4. Efficiency Comparison of Different Algorithms.

Algorithm Model Size Running Speed

SIFT+RANSAC - 35 FPS

ORB+RANSAC - 50 FPS

APAP - 0.2 FPS

Detone 32.61M 980 FPS

Zhang 20.31M 1000 FPS

Nie1 32.77M 30 FPS

Nie2 - 15 FPS

Ours 12.56M 200 FPS

the remaining deep learning-based algorithms can function
properly in over 99%of cases, demonstrating the significantly
superior robustness of deep learning-based image stitching
algorithms over traditional methods. Among them, our algo-
rithm exhibits the strongest robustness and is the only one
capable ofmaintaining high accuracy (ACE< 4 pixels) in over
95% of cases.

2) Runtime efficiency comparison
In addition to comparing the accuracy of different im-
age stitching algorithms, we also compared their efficiency.
Table4 illustrates the comparison of model size and running
speed for different algorithms. Here, "Nie1" represents Nie’s
algorithm using a multi-grid homography estimation network
[12], while "Nie2" represents Nie’s algorithm using unsuper-
vised depth image [16].
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FIGURE 7. Cumulative Distribution Curve of ACE Errors for Different Algorithms.

Among them, the image size is 224×224×3. SIFT+RANSAC,
ORB+RANSAC, and APAP algorithms run on CPU (AMD
Ryzen 5 5600X 6-core 3.7GHz), while the remaining deep
learning-based image stitching algorithms run on GPU
(NVIDIA RTX 3080Ti 12GB) utilizing deep learning frame-
works. Our algorithm has significantly lower parameter count
compared to previous deep learning-based image stitching
algorithms and achieves faster running speeds compared to
traditional image stitching algorithms and Nie’s [12], [16]
algorithm.

3) Visual effect comparison
Fig.8 and Fig.9 display the image stitching results on Nie’s
[12] dataset and our self-collected dataset, respectively. In the
overlapping regions of the images, a simple average fusion
method is used to mitigate artifacts for better visualization.
Due to significant errors observed in the ORB+RANSAC
method and Detone’s algorithm in SectionIV-E1, these two
algorithms are excluded from the result images. It is evident
from the figures that our algorithm achieves superior stitch-
ing results in images with weak textures, large disparities,
and low-light conditions, demonstrating the practical value
of our image stitching algorithm. Here, "Nie1" represents
Nie’s algorithm using a multi-grid homography estimation
network [12], while "Nie2" represents Nie’s algorithm using
unsupervised depth image [16].

V. CONCLUSION
We have designed a Transformer-based multi-grid homog-
raphy estimation network called MGHE-Net to better align
image pairs with disparities. MGHE-Net consists of several

FIGURE 8. Image Stitching Results Comparison on Nie’s Dataset.

key network modules, including a cross-image integrated
feature extraction module, an image matching module, and an
offset refinement module.In the cross-image integrated fea-
ture extraction module, features are initially extracted from
the reference image and the target image. These two sets of
features are then concatenated along the channel dimension
in different orders to obtain two new sets of features. Fi-
nally, feature enhancement is conducted to incorporate more
global contextual information into these two sets of fea-
tures.Subsequently, in the image matching module, efficient
matrix multiplication is employed to perform initial feature
matching between the two images, obtaining normalized grid
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FIGURE 9. Image Stitching Results Comparison on Our Self-collected
Dataset.

offsets in the overlapping regions.Lastly, in the offset refine-
ment module, the primary normalized grid offsets are refined,
and the normalized grid offsets in the overlapping region are
extrapolated to the non-overlapping regions. The output is a
high-precision refined normalized grid offsets.Experimental
results demonstrate that on datasets with significant dispari-
ties, our algorithm achieves a reduction of 75.3% and 65.1%
in errors compared to traditional algorithms and CNN-based
algorithms, respectively. Our algorithm also outperforms tra-
ditional algorithms and Nie’s [12], [16] algorithm in terms of
running speed and exhibits stronger generalization capability
in real-world scenarios.
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