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ABSTRACT Conventional communications systems centered on data prioritize maximizing network
throughput using Shannon’s theory, which is primarily concerned with securely transmitting the data despite
limited radio resources. However, in the realm of edge learning, these methods frequently fall short because
they depend on traditional source coding and channel coding principles, ultimately failing to improve
learning performance. Consequently, it is crucial to transition from a data-centric viewpoint to a task-
oriented communications approach in wireless system design. Therefore, in this paper, we propose efficient
communications under a task-oriented principle by optimizing power allocation and edge learning-error
prediction in an edge-aided non-orthogonal multiple access (NOMA) network. Furthermore, we propose
a novel approach based on the ant colony optimization (ACO) algorithm to jointly minimize the learning
error and optimize the power allocation variables. Moreover, we investigate four additional benchmark
schemes (particle swarm optimization, quantum particle swarm optimization, cuckoo search, and butterfly
optimization algorithms). Satisfactorily, simulation results validate the superiority of the ACO algorithm
over the baseline schemes, achieving the best performance with less computation time. In addition, the
integration of NOMA in the proposed task-oriented edge learning system obtains higher sum rate values
than those achieved by conventional schemes.

INDEX TERMS task-oriented communication, edge learning, non-orthogonal multiple access (NOMA),
learning error, ant colony optimization (ACO).

I. INTRODUCTION

DEPLOYMENTS and applications in the Internet of
Things (IoT) involve a vast network of interconnected

users that generate substantial amounts of data. However,
transmitting large quantities of data from diverse IoT devices
to a distant cloud server creates significant communications
challenges and increases latency in transmissions [1]. Con-
sequently, the concept of edge computing has emerged as
an alternative to traditional cloud computing to tackle these
issues. Edge computing harnesses the storage, communica-
tion, and computational capabilities available at edge servers
to efficiently collect and manage this immense volume of
data. Additionally, edge servers facilitate quick access to the
extensive data distributed across end-user devices, enabling
rapid model learning and the delivery of intelligent services

and applications to IoT users [2]. Aligned with cutting-edge
smart IoT sensors in 5G networks and the anticipated 6G
networks, edge computing is evolving into edge intelligence,
ushering in a new era of more sophisticated and intelligent
IoT applications and services [3].

In the realm of edge learning, the primary goal is to
swiftly acquire intelligence from the abundant, yet widely
dispersed data generated by subscribed IoT users. This hinges
critically on the processing of data at edge servers, and on
establishing efficient communication between these servers
and IoT users. However, as opposed to the ever-increasing
processing capabilities of edge servers, communications en-
counter obstacles in the form of wireless channel issues,
making it the bottleneck in achieving ultra-fast edge learning
[4]. Additionally, the diverse nature of ubiquitous IoT users
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and the complexity of transmission environments introduce
interference that significantly undermines the reliability and
communication speed of the IoT network, particularly when
transmitting vast amounts of data to an edge server [5]. To
tackle these challenges, traditional data-centric communica-
tion systems aim to maximize network throughput based on
Shannon’s theory, which focuses on securely transmitting
data despite constrained radio resources [6]. Nonetheless,
such approaches often prove ineffective in the context of edge
learning, because they rely on classic source coding and chan-
nel coding theories, failing to enhance learning performance.
Therefore, a shift in wireless system design is imperative,
moving from a data-centric perspective to one that prioritizes
task-oriented communication [1], [7].

In this regard, task-oriented communication aims to extend
its scope beyond transmitting data at the micro level, where
performance is assessed based on factors like bit or packet
error rates, and instead emphasizes communication experi-
ences that consider macro-level performance metrics, such
as learning rate and inference accuracy [8]. Task-oriented
communication in particular can lessen communication load
by supplying only task-relevant information, such as feature
extraction for edge inference, as opposed to sending all the
data and ignoring information structures [9]. For instance,
in [10], the authors introduced a learning-driven communi-
cation strategy designed to optimize local feature extraction,
and distributed feature encoding for task-oriented purposes.
This approach aims to eliminate redundant data and transmit
only crucial information needed for downstream inference
tasks, instead of reconstructing data samples at the edge
server. In [1], the authors achieved effective communication
within the task-oriented framework by optimizing power al-
location and edge learning error prediction. Moreover, they
implemented multi-user scheduling to mitigate interference
issues in densely populated networks. Similarly, in [11], the
authors focused on enhancing learning performance rather
than communication throughput in the edge learning network.
Therefore, they proposed an approach called learning-centric
power allocation (LCPA), which is an analytically based so-
lution for allocating radio resources in scenarios driven by
learning. Simulation results showed that the LCPA scheme
overcame conventional power allocation methods in terms of
classification error.

None of the previous papers discussed above considered
non-orthogonal multiple access (NOMA) to address spectrum
scarcity issues caused by the massive connectivity for future
wireless networks in task-oriented communication systems.
Indeed, the IoT’s rapid advances for 5G and beyond wireless
networks must accommodate the massive connectivity de-
mands imposed by the rapid growth in IoT devices. However,
this reality introduces a spectrum scarcity issue, which can
be dealt with through the adoption of a NOMA transmission
strategy that operates in the power domain and employs tech-
niques like superposition coding and successive interference
cancellation [12]. Thus, motivated by the benefits provided
by the NOMA technique and next-generation communication

systems envisioned to be task-oriented, in this paper, we
investigate a low-complexity design to optimize the learning
error and power allocation for task-oriented communications
in an edge learning NOMA network. In the pursuit of finding
optimal solutions, traditional optimization methods can in-
troduce significant computational complexity. Additionally,
these methods lack flexibility, requiring reformulation when-
ever network alterations occur [13]. As a remedy to these
limitations, the realm of metaheuristic algorithms within arti-
ficial intelligence (AI) has emerged, offering a powerful ap-
proach to addressing intricate computation problems. Meta-
heuristic algorithms systematically generate potential solu-
tions for optimization challenges, subsequently selecting the
most promising option, while maintaining a balance between
computational efficiency and solution accuracy.
In the domains of science and engineering, several meta-

heuristic algorithms have garnered substantial popularity, in-
cluding the genetic algorithm [14], cuckoo search (CS) [15],
ant colony optimization (ACO), and particle swarm optimiza-
tion (PSO) [16]. Notably, Mohiz et al. [15] delved into a com-
prehensive exploration of diverse metaheuristic algorithms,
discerning their effectiveness in optimizing task placement
within network-on-chip cores. Their study concluded that
CS outperformed baseline schemes by exhibiting minimal
computational overhead. In [13], quantum particle swarm
optimization (QPSO), an extension of the PSO algorithm,
was applied to optimization problems for wireless commu-
nication networks. The simulation results showed that QPSO
overcame the standard PSO and several metaheuristic meth-
ods to maximize the secrecy energy efficiency in a coopera-
tive NOMA system. Motivated by the inherent benefits that
metaheuristic algorithms bring to bear in tackling complex
optimization dilemmas, this paper embarks on evolutionary
computing algorithms for the resolution of power allocation
optimization problems in an edge-learning NOMA system.
Among these strategies, we propose an ACO-based scheme
as a promising candidate that manages to strike a balance
between accuracy and computational complexity. To compre-
hensively assess the performance of our proposed network,
we formulated two distinct optimization problems: a single-
task case (SC) and a multiple-task case (MC).
The main contributions of this paper can be summarized as

follows.
• A task-oriented power allocation scheme is proposed for

SC and MC optimization problems where the NOMA
transmission strategy is considered in an edge learning
system to improve network performance. To validate the
advantage from using NOMA, we evaluate its perfor-
mance against the maximum ratio combining (MRC)
technique in terms of achievable data rate.

• Furthermore, we propose a novel power allocation
scheme based on the ACO algorithm. This scheme
is aimed at minimizing learning errors while optimiz-
ing power variables within a task-centric edge learning
NOMA system. In addition, for comparison purposes,
we solve the conventional sum-rate maximization prob-
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FIGURE 1: The system model of NOMA for task-oriented
edge learning.

lem. To assess the practical applicability of our algo-
rithms, we examine their performance in the context
of three perception tasks related to autonomous driving
systems [17].

• Simulation results show that the proposed ACO-based
algorithm efficiently resolves task-specific power al-
location issues with significantly reduced computation
time compared to conventional baseline schemes. In par-
ticular, we investigate four additional algorithms: QPSO
[13], PSO, CS, and butterfly optimization [18]. In ad-
dition, our simulations reveal that the implementation of
NOMA in a task-oriented edge learning system achieved
higher data rates in comparison to the standard MRC
technique.

The rest of the paper is structured as follows. The system
model is described in Section II. In Section III, we present
the problem formulation. In Section IV, we described the
proposed ACO-based optimization scheme. In section V, we
provide the simulation results, and the computational com-
plexity analysis. In section VI, we outline unsolved problems,
and provide future research directions. Finally, conclusions
are described in Section VII.

II. SYSTEM MODEL
We consider the task-oriented edge learning NOMA system
shown in Figure 1, in which the edge server is equipped
with N antennas. We consider L user groups, with L differ-
ent learning tasks, {τ1, ..., τL} . Let us define the group of
users as Ω = {Ω1, ...,ΩL}, where Ωl represents the users
executing the l-th task, with the number of users equal to
|Ωl |. We assume each user is exclusively associated with a
single task, and the total number of users is denoted as K ,

i.e., K =
L∑
l=1

|Ωl |. Furthermore, power allocation for each k th

user is denoted pk .
Regarding the L distinct learning tasks depicted in Figure 1,

each of these tasks encompasses a specific dataset, a learning
model, the process of fine-tuning model parameters, and
a task-oriented power assignment. Moreover, hk ∈ CN×1

denotes the complex-valued channel fast-fading vector from
the k th user to the edge server. It is assumed that users in
a higher indexed group have better channel conditions than

users in a lower indexed group [19]. Without loss of gener-
ality, we consider ∥h1∥2 ≤, ...,≤ ∥hK∥2. Following NOMA
principles for uplinks that utilize the successive interference
cancellation (SIC) technique, the decoding process prioritizes
channels in descending order of power. This means the signal
with the highest power and associated with the k th user is
decoded first at the edge server. Subsequently, this initial
decoding contains interference from all users that have com-
paratively weaker channel conditions. Thus, the achievable
rate of decoding a message from the k th user can be expressed
as follows:

ANOMAk =


log2

1 +
pkgk,k

k−1∑
j=1,j ̸=k

pjgk,j + σ2

, 2 ≤ k ≤ K (1a)

log2

(
1 +

pkgk,k
σ2

)
, k = 1 (1b)

where gk,j denotes the composite channel gain from the j-
th user at the edge server when decoding data of the k th

user, computed as gk,k = ρk ∥hk∥22 if j = k, and gk,j =

ρj
∣∣hHk hj∣∣2/∥hk∥22 if j ̸= k. ρk represents the path loss of the

k th user, and σ2 is the variance of additive white Gaussian
noise. Note that if we consider the MRC technique, inter-
ference from other users is considered noise. Subsequently,
the achievable data rate of the k th user can be expressed as
follows:

AMRCk = log2

1 +
pkgk,k

K∑
j=1,j̸=k

pjgk,j + σ2

 . (2)

At the edge server, the number of samples transmitted by a
user to learn task τl can be calculated as follows [1]:

Vl =
∑
k∈Ωl

[
WTANOMAk

Dl

]
+ Rl ≈

∑
k∈Ωl

WTANOMAk

Dl
+ Rl , (3)

where W denotes the total bandwidth in hertz, and T rep-
resents transmission time in seconds. For each data trans-
mission, Dl represents the number of bits. Meanwhile, for
the l th pre-trained task, Rl represents the initial amount of
historical data. Furthermore, in order to link wireless resource
allocation with the performance of machine learning, a non-
linear exponential function, Θl (Vl |al , bl )

∆
= alV

−bl
l , is for-

mulated to represent the characteristics of the learning error
function, where the tuning parameters al and bl represent
non-independent and identically distributed parallel datasets,
respectively. In practice, values for al and bl are determined
through a process of fitting the learning error function from
the historical dataset. This tuning function closely aligns with
the empirical data of the machine learningmodel, showcasing
a good degree of alignment [1].
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III. PROBLEM FORMULATION
In this paper, we minimize the learning error function by
jointly optimizing the power allocation variables in the pro-
posed NOMA edge learning network for multi-users with
task-oriented communication. Moreover, we consider an SC
and an MC. Therefore, the optimization problem for the SC
is formulated as follows:

min
{pk}

aSCV
−bSC
SC (4a)

subject to
K∑
k=1

pk = P, (4b)

pk ≥ 0,∀k ∈ Ω, (4c)

where constraint (4b) indicates that the power allocation of
all users does not exceed the total available power, P. For the
MC, the optimization problem is formulated as follows:

min
{pk}

L∑
l=1

ϕl × alV
−bl
l (5a)

subject to

(4b), and (4c),

where ϕl
∆
= RlDl

/(
L∑
i=1

RiDi

)
is the weight of diverse

datasets. Note that the objective function in (5) can adapt
to various learning tasks by dynamically adjusting weight
factors ϕl ,∀l. Furthermore, for comparison purposes, we for-
mulate the optimization problem for the traditional sum-rate
maximization as follows:

max
{pk}

K∑
k=1

ANOMAk (6a)

subject to

(4b), and (4c).

IV. ACO-BASED OPTIMIZATION METHOD
In this research article, we investigate the ACO algorithm to
address the optimization problems formulated in (4a), (5a),
and (6a). Initially, the ACO algorithm was introduced by
Socha and Dorigo for discrete spaces, drawing inspiration
from the foraging behavior of real ants [20]. In the ACO al-
gorithm, a group collaborates to discover the optimal solution
by utilizing an artificial pheromone trail to navigate through
potential paths or solutions. This sharing of information
through pheromone deposition enables “the ants” to construct
effective paths using a discrete probabilistic approach. Nev-
ertheless, the inherent pheromone deposition mechanism of
ACO is tailored for discrete domains, necessitating adaptation
for continuous spaces. Thus, the ACO algorithm designed
for continuous domains achieves this by replacing discrete
probability distributions with continuous probability distribu-
tions, which are represented as probability density functions

FIGURE 2: The solution archive (three users).

(PDFs) [21]. Within each iteration of the ACO algorithm,
the system learns these PDFs by accumulating a historical
record of candidate solutions, which is stored in a dedicated
solution archive. To be more specific, ACO retains the most
promising solutions within a designated file, denoted as a
solution archive as depicted in Figure 2. This practice forms
a Gaussian probabilistic model that implicitly simulates the
concept of the continuous pheromone. It is worth noting that a
single Gaussian function is limited to searching in one dimen-
sion because it possesses only one maximum. To overcome
this limitation, a Gaussian kernel PDF is employed, which
is essentially a weighted sum of several one-dimensional
Gaussian functions.
Furthermore, to cater to multi-dimensional search spaces,

a distinct Gaussian kernel PDF is constructed for each di-
mension. Each of these Gaussian kernel PDFs utilizes three
essential vectors: the weights, the vector of means, and the
vector of standard deviations. This comprehensive approach
allows ACO to adapt and excel at optimization of real-valued
parameters in continuous domains, making it a powerful tool
for solving complex optimization problems. In this paper,
we consider ACO to optimize the power allocation variables,
{pk} , which minimizes the cost function given by the learn-
ing error in both the SC and the MC. The set of power
variables, pk , is denoted by the vector C. Let us change the
notation of pk to ck where k = 1, ...,K indicates the index of
the dimension vector. In this paper, K = 6 since we consider
six users; each of them is assigned one power allocation
variable, ck . Accordingly, the group of variables is C ={
c1, c2, c3, c4, c5, c6

}
. Then, to build the solution archive

[21], random solutions are generated in the range [0,P] for
each ck . Every solution Cj of the archive is composed of a
vector of the variables to be optimized,

{
c1j , c

2
j , ..., c

k
j , ..., c

K
j

}
,

the associated objective function values, {f (Cj)}, and asso-
ciated weight wej where j = 1, 2, ..., r . The solution archive
is built in ascending order according to the performance of
the objective function values, {f (C1) , f (C2) , ..., f (Cr)} .

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3374635

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Carla et al.: ACO-based Scheme in Edge Learning NOMA Networks for Task-Oriented Communications

Moreover, the weight of the j-th element in the solution
archive can be expressed as follows:

w ej =
1√
2πζr

exp

[
−1

2

(
j− 1

ζr

)2
]

(7a)

subject to
r∑

j=1

wej = 1, (7b)

where ζ is the intensification factor and is a positive real
number that manages the degree of selection pressure in the
process. For high values of ζ, a large number of possible
solutions in the archivemay be chosen. Therefore, as the value
of ζ rises, convergence may be slower.

In addition, fr denotes the sample size of the new candidate
solutions. The generation of fr is based on a guide solution.
For this purpose, the Roulette wheel selection algorithm is
utilized to choose a guide solution from the solution archive in
accordance with equation (8) such that the higher the fitness,
the higher the probability of selection as a parent solution:

P (Cj) =
wej
r∑

a=1
wea

. (8)

After the guide solution is chosen, the f -th new candidate
solution is generated based on the Gaussian PDF. Thus, for
every decision variable, a Gaussian model is built:

Gk
f

(
ckf
)
=

r∑
j=1

wejN
(
ckf ;µ

k
guide,f , σ

k
guide,f

)
, (9)

N (c, µ, σ) =
1√

2πσkguide,f
exp

−1

2

(
ckf − µkguide,f

σkguide,f

)2
 ,

(10)
where ckguide,f indicates the k th element of the vector Cguide

in the guide solution. Moreover, the values of mean and
variance for the Gaussian kernels in the guide solution can
be expressed as follows:

µkguide,f = ckguide,f , (11)

σkguide,f =
λ

r − 1

r∑
q=1

∣∣ckq − ckguide,f
∣∣, k = 1, ...,K , (12)

where λ > 0 represents the exploration and exploitation
balance. High values of λ indicate high exploration. On the
other hand, small values of λ represent high exploitation. It
is worth noting that the f -th new candidate solution, Cf ={
c1f , ..., c

K
f

}
with f = r+1, ..., r+fr , is generated, dimension

by dimension, based on the guide solution.
Finally, fr new candidate solutions are assessed to ob-

tain {f (Cf )} and are added to the solution archive: A ={
C1,C2, ...,Cr+fr

}
. Then, the best r solutions are preserved

for the subsequent iteration, and the remaining solutions are
discarded, thereby restoring the solution archive’s size to r .

Algorithm 1 ACO-based scheme to solve problems (4a) and
(5a).

1: inputs: set the parameters IteACO, K , fr , ζ, λ, N , P.
2: Compute r random solutions in the range of [0,P] for

the power allocation variables to be optimized, {pk},
denoted by Cj =

{
c1j , ..., c

K
j

}
, j = 1, 2, ..., r , and assess

their performance by solving the optimization problems
to obtain {f (Cj)}.

3: Sort the r solutions in the archive, A = {C1,C2, ...,Cr}
4: Evaluate the weights in accordance with (7a).
5: while It ≤ IteACO do
6: for f = r + 1 to r + fr do
7: for k = 1 to K do
8: Chose a guide solution from the solution archive.
9: Generate a sample, ckf , from a Gaussian

distribution with parameters µkguide,f , σ
k
guide,f .

10: end
11: Save and assess the generated solution

Cf =
{
c1f , ..., c

K
f

}
by solving problem (4a) or (5a)

to obtain {f (Cf )}.
12: end
13: Update solution archive A =

{
C1,C2, ...,Cr+fr

}
with the best r candidate solutions and remove the
remaining. Sort the r solutions in the archive.

14: Increase the number of iterations: It = It + 1.
15: end while
16: Output: Set C1 =

{
c11, ..., c

k
1, ..., c

K
1

}
as the best solu-

tion for power variables {p1, ..., pk , ..., pK} of problem
(4a) or (5a).

Accordingly, in each iteration It , where It = 1, 2, ..., IteACO,
the results in the solution archive are updated to achieve the
most optimal outcome recorded to this point. IteACO denotes
the maximum number of iterations in the algorithm. Finally,
the best result so far is the optimization result until meeting
the termination criteria. Otherwise, the ACO algorithm recal-
culates the probabilistic model. Algorithm 1 summarizes the
ACO algorithm to minimize the learning error in problems
(4a) and (5a) while optimizing power allocation {pk} . Note
that optimization problems (4a) and (5a) are solved individu-
ally by the ACO algorithm.

V. SIMULATION RESULTS
In this section, we showcase simulation results to assess
the performance of the designed schemes in comparison
to benchmark methods. To generate the simulation results,
we used a computer with a 4 GHz i7-6700K CPU and
16 GB of RAM. The simulation parameter settings for the
proposed wireless communications were similar to those in
[11]. Specifically, we set communication bandwidth W =
180kHz, the number of users to K = 6, the total power
budget at P = 20mW, the path loss of the k th user was
ρk = −90dB, and channel hk was based on CN (0, ρkI) .
Since we considered multiple-user connectivity in an IoT
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TABLE 1: Simulation parameters for swarm-based
schemes.

Algorithm Parameters

ACO
Sample size, fr = 20

Number of iterations, IteACO = 400

PSO

Number of iterations, ItePSO = 500
Number of particles, NPSO = 80

Inertia weight, Ine = 0.7
Scaling factor, c1 = 1.496
Scaling factor, c2 = 1.496

QPSO
Number of iterations, IteQPSO = 500
Number of particles, NQPSO = 55

CS

Number of iterations, IteCS = 500
Number of nests, NCS = 55,

Probability of abandoned maximum, pmax
a = 0.5,

Probability of abandoned minimum, pmin
a = 0.25

BOA

Number of generations, GBOA = 500
Number of agents, SBOA = 70
Sensory modality, sm = 0.01
Power exponent, pe = 0.01
Switch probability, sp = 0.5

network, we assumed the number of user sets is equal to
the number of L different tasks [1]. Therefore, we consid-
ered three tasks, one for each set of users (i.e., three user
sets). Each set was composed of two users. Thus, for task-
oriented learning at the edge, we considered three tasks in
autonomous driving [17]—Task 1: weather classification uti-
lizing RGB images and a CNN, Task 2: object detection
using point cloud data and sparsely embedded convolutional
detection (SECOND), and Task 3: traffic design using RGB
images and YOLOV5. In these experiments, datasets were
generated by the open-source autonomous driving simulation
platform called CarlaFLCAV. These datasets are available
online at https://github.com/SIAT-INVS/CarlaFLCAV. In the
simulation experiments, Task 2 was selected to perform the
SC. Meanwhile, the three-task case representing the MC is
given by Task 1, Task 2, Task 3. Each RGB image contained
D1 = D3 = 0.7MB, and that of each point cloud sample
D2 = 1.6MB. Moreover, the number of historical data
samples was R1 = R2 = R3 = 300. The learning parameters
for Task 1, Task 2, and Task 3 were (a1, b1) = (10.34, 1.2) ,
(a2, b2) = (0.5, 0.1) , and (a3, b3) = (8.89, 0.64) , re-
spectively. The results were averaged over several channel
realizations.

In the simulations, we considered five swarm-intelligence
schemes: ACO, PSO, QPSO, CS, and BOA. The settings
for the parameters of each algorithm listed in Table 1 were
determined by analyzing the optimal outcomes obtained from
several experiments.

Figure 3 and Figure 4 show the convergence behavior
for the SC and the MC, respectively, of the proposed ACO
algorithm and the four additional swarm intelligence baseline
schemes when the number of antennas is equal to N = 6,
and the variance of additive white Gaussian noise is σ =
−90dBm. The learning error is computed by (4a) and (5a) for
the SC and the MC, respectively. From Figure 3 and Figure
4, we observe that as the number of iterations increased, the
learning error decreased. Moreover, for the SC and the MC,
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FIGURE 3: Convergence behavior of the swarm intelligence
schemes for the SC.
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FIGURE 4: Convergence behavior of the swarm intelligence
schemes for the MC.

observe that PSO achieved faster convergence than the other
swarm-learning algorithms, followed by CS and the proposed
ACO algorithm. On the other hand, the worst performance
was given by BOA, followed by the QPSO algorithm.
To validate the superiority of the ACO algorithm over

PSO and CS, we evaluated the algorithms in terms of
computational complexity and computation time. In par-
ticular, the computational complexity of PSO depends of
the number of particles, NPSO, and the number of itera-
tions, ItePSO. Therefore, its computational complexity is ex-
pressed as O (NPSO · ItePSO). The computational complexity
of CS relies on the number of nests, NCS , the probability
of abandonment, pa, and the number of iterations, IteCS .
Therefore, the computational complexity for CS is given by
O (NCS + (pa · NCS) · IteCS). Regarding the proposed ACO
algorithm, computational complexity is based on the sample
size, , fr , and the number of iterations, IteACO, which results
in O (rf · IteACO). Accordingly, we can appreciate the ACO
algorithm has the least computational complexity because it
requires fewer particles and iterations than the PSO and CS
algorithms. In Table 2, we evaluate the investigated schemes
in terms of computational time and learning error perfor-
mance. Overall, we can see that the learning error values vary
slightly between the algorithms in both the SC and the MC.
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TABLE 2: Computational time.

Algorithm
SC-
learning
error

SC-
computation
time [s]

MC-
learning
error

MC-
computation
time [s]

ES 0.2569 1250 0.34737 3587
ACO 0.2574 0.623 0.34740 0.803
PSO 0.2574 1.124 0.34740 1.288
CS 0.2574 2.231 0.34743 2.94

QPSO 0.2574 3.21 0.34743 3.613
BOA 0.2581 2.36 0.34747 2.94
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FIGURE 5: Learning error versus number of antennas in the
SC.

However, the main difference among of them is computation
time; the least computation timewas obtained by the proposed
ACO algorithmwhere the result is remarkably lower than that
obtained by CS and PSO. This can be attributed to the fact
that the ACO algorithm achieves convergence with a smaller
number of particles compared to its counterparts. Moreover,
in Table 2, we compare the learning performance and compu-
tational complexity between the swarm-based algorithms and
the traditional exhaustive search (ES) method, typically em-
ployed to identify optimal solutions in optimization problems.
The ES technique, while thorough, is burdened by its sig-
nificant computational demands and slow convergence rate
due to its systematic evaluation of every potential solution.
Notably, the computational complexity of exhaustive search
scales with the number of candidate solutions. In contrast,
our proposed-based scheme called ACO, offers expedited
convergence towards near-optimal solutions and requires less
computational overhead compared to ES.

Figure 5 and Figure 6 show the learning error computed
by (4a) and (5), respectively, considering different available
transmission power levels. To gain more insight into the
proposed edge learning system, Figure 5 and Figure 6 show
the learning error versus the number of antennas, with two
values for the variance of additive white Gaussian noise: σ =
−80dBm and σ = −90dBm. We can see from Figure 5 and
Figure 6 the benefit of a multiple-antenna system, because as
the number of antennas increased the learning error decreased
for both the SC and the MC. This demonstrates the advantage
of multiple antenna at the edge server.

Furthermore, to validate the advantage of the NOMA sys-
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FIGURE 6: Learning error versus number of antennas in the
MC.
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FIGURE 7: Sum rate versus transmission power in the SC
between the proposed edge learning task-oriented com-
munications with NOMA and the baseline with MRC.

tem against the conventional MRC method, Figure 7 and
Figure 8 show the sum rate given by the summation of a user’s
rate versus the total power budget. Overall, observe that as the
transmission power increased, the sum rate improved. This
is because by increasing the total available power, a greater
amount of power becomes available for data transmission
from the users to the edge server, resulting in an increase
in the achievable rate that minimizes the objective function
defined by the learning error. It is worth noting that according
to equations (3) and (5), an increase in the sum rate corre-
sponds to a decrease in learning error. Moreover, from Figure
6 and Figure 7, we can see that the edge learning system
with the NOMA technique outperformed the conventional
edge learning with the MRC technique in terms of sum rate.
This is because NOMA can remove the interference from
other users by applying SIC. In this manner, the decoding
process is carried out in descending order according to the
channel conditions, as expressed in (1), instead of treating the
interference from other users as noise, as in (2).
Figure 9 shows the relationship between learning error and

transmission power in our proposed scheme in (5), which is
designed tominimize the learning error. The baseline scheme,
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FIGURE 8: Sum rate versus transmission power in the
MC between the proposed edge learning task-oriented
communications with NOMA and the baseline with MRC.
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FIGURE 9: Learning error versus transmission power in the
MC.

(6), is primarily focused on the traditional goal of maximizing
the sum rate. The figure reveals a compelling trend as the
power budget increased across all scenarios—a reduction in
learning error. However, insight emerges when comparing
these two schemes. Our proposed optimization framework
in (5) outperformed the conventional sum-rate maximization
approach in (6) by achieving a significantly lower learning
error. This superiority stems from our incorporation of ML
techniques in our optimization problem, a facet that the sum-
rate maximization scheme in (6) neglects.

Furthermore, Figure 10 shows the edge learning error
versus the number of antennas between the proposed task-
oriented communication with NOMA and the baseline with
MRC. From Figure 10, we can observe that NOMA is able
to reduce learning error compared to the benchmark MRC
scheme, underscoring the efficacy of NOMA in enhancing
edge learning outcomes.

In addition, to showcase the outstanding generalization
of our proposed ACO-based approach for task-oriented
communication in NOMA networks, we consider three
distinct architectures for various classification: a 6-layer
convolutional neural network (CNN6) deployed for clas-
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FIGURE 10: Learning error versus number of antennas
between the proposed edge learning task-oriented com-
munications with NOMA and the baseline with MRC.

FIGURE 11: Learning error versus transmission power and
number of users in the MC.

sifying the MNIST dataset [22], a deep residual net-
work consisting of 110 layers (ResNet110) applied to
the CIFAR10 dataset [23], and a PointNet model utilized
for processing 3D point clouds within the ModelNet40
dataset [24]. The learning parameters for these tasks are:
(a1, b1,R1,D1) = (7.3, 0.69, 300, 6276) , (a2, b2,R2,D2) =
(8.15, 0.44, 1600, 24584) , and (a3, b3,R3,D3) = (0.95,
0.24, 800, 192008) , respectively. For further insights into
obtaining these learning parameters, readers are directed to
Section III of [11]. Accordingly, Figure 11 shows the learning
error performance by using the aforementioned three-task
case, versus the transmission power, P, and different number
of users, K when the number of antennas is equal to N=2.
Similar to Figure 9, from Figure 11, we can observe that
as the transmission power increases P, the learning error is
improved. On the other hand, from Figure 11, we can see that
as the number of user increases, the learning error slightly
rises since the total transmission power allocated to each user
need to satisfy a maximum value, P. Therefore, as more users
are served in the system, less power will be assigned to each
user, as well as, the interference between users increases as
the number of users increases.
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It is worth to highlight that for time-varying channel condi-
tions, the implementation of the ACO algorithm is imperative
within each coherence time subsequent to channel estimation.
Approaches rooted in swarm intelligence offer a promising
avenue for optimization, boasting both efficiency and low
complexity. These methods yield solutions that are nearly op-
timal while demanding minimal computational resources and
ensuring stable convergence [25]. Such characteristics make
them particularly suitable for supporting delay-sensitive ap-
plications across wireless communication networks. Particu-
larly in scenarios characterized by highly dynamic channel
conditions, the necessity for rapid algorithms capable of fur-
nishing nearly optimal solutions akin to ACO becomes appar-
ent. Furthermore, there exists the option to adjust ACO pa-
rameters, such as sample size and maximum iteration count,
to expedite convergence of the objective function. However,
such alterations entail the risk of obtaining sub-optimal solu-
tions, potentially local optima rather than global optimal.

VI. FUTURE WORKS
Future directions in research should investigate the integra-
tion of reinforcement learning (RL) techniques into the task-
oriented communication framework for edge learning sys-
tems. RL is a branch of machine learning that focuses on
learning optimal decision-making policies through interac-
tions with an environment. In the context of edge learning and
communication systems, RL could be utilized to dynamically
adapt communication strategies based on the learning task at
hand [26]. This could involve optimizing power allocation,
resource allocation, and scheduling decisions in real-time to
maximize the learning performance of edge devices. Here,
RL algorithms could adapt communication parameters based
on feedback from the learning process, such as error rates or
learning progress.

Moreover, within the framework ofmobile edge computing
systems, mobile devices utilize servers to delegate tasks for
low-latency computing, a process that can occur in either
partial or binary modes. In the partial mode, computational
tasks are divided into two segments: one segment is processed
locally on the mobile device while the other is transferred to
a nearby mobile edge computing server for execution. Con-
versely, in the binary mode, the entire task is either completed
locally on the device or transferred entirely to a nearbymobile
edge computing server via the uplink connection [12][27]. In
terms of future directions, an interest approach to explore is
to joint task offloading and resource optimization in NOMA-
based vehicular networks [27][28] with edge computing AI
technology. This can be beneficial from the resource man-
agement perspective since both, the user and the server can
perform tasks. However, it also brings some complexity and
security challenges to solve because of the load burden at the
user and the task transmission in an open wireless environ-
ment susceptible to eavesdroppers’ attacks.

Additionally, the reduction of the communication over-
head plays a crucial role in wireless communications for
optimizing network performance, reducing costs, minimizing

latency, and improving resource allocation. In this paper, the
communication overhead for power allocation with ACO is
primarily attributed to uplink channel estimation, which is
generally performed using pilot symbols. In particular, let
us consider an edge computing system with a coherence
interval composed of Ω symbol periods. The pilot sequences
assigned to users are designed to be pair-wise orthogonal
and consist of ς symbols [29]. During the coherence interval,
channel estimation takes ς symbols, while the data uplink
transmission occurs in the remaining Ω − ς symbols. It’s
important to note that the required number of symbols in the
pilot sequence, ς , increases with the number of users. For
example, we can select ς ≥ K to avoid pilot contamination.
Therefore, the channel estimation overhead increases with
the number of users. However, it is worth noting that state-
of-art schemes for power allocation also necessitate chan-
nel estimation procedures. Therefore, concerning communi-
cation overhead, the proposed ACO-based scheme involves
similar communication overhead compared to state-of-the-
art schemes. In future work, reducing the channel estimation
overhead can be studied through pilot-reuse and investigating
schemes to mitigate pilot contamination in those scenarios.

VII. CONCLUSION
In this paper we proposed a novel power allocation design
based on the ACO algorithm to optimize the learning error
in a task-oriented edge NOMA system for an SC and an MC.
The proposed ACO-based scheme provides a low-complexity
solution because it requires fewer particles and iterations to
achieve convergence than required by the comparative swarm
learning techniques. Moreover, the ACO algorithm effec-
tively achieved the best performance with less computation
time than its counterparts. Furthermore, simulation results
demonstrated that the integration of NOMA in the proposed
task-oriented edge learning system reaches higher achievable
data rates.
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