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ABSTRACT In today’s digital age, coverage prediction is essential for optimizing wireless networks and
improving user experience. While numerous path loss models and advanced machine learning algorithms
have been developed to achieve high prediction performance, they predominantly operate within a centralized
learning paradigm. While effective, this conventional approach often suffers from scalability and privacy
limitations that are critical to the successful deployment of wireless maps. Conversely, in this paper, we
propose a novel decentralized approach based on a federated learning long short-term memory (LSTM)
model to accurately predict network coverage in indoor environments. The proposed FedLSTM is a method
that allows multiple users, or clients, to train the model without sharing their personal data directly with a
central server. In an experimental setup, we used real data collected from numerous clients moving along
different paths. The FedLSTMmodel is evaluated in terms of root mean square error (RMSE), mean absolute
error (MAE), and R2. Furthermore, compared to a centralized counterpart, FedLSTM shows a slight increase
in RMSE from 2.4 dBm to 2.5 dBm and an increase in MAE from 1.7 dBm to 1.9 dBm. In addition,
we evaluate the proposed FedLSTM considering variations in the number of participating clients and the
number of local training epochs. The results show that even devices with limited computational power can
meaningfully contribute to the training of the federated model, with fewer epochs achieving competitive
results. Graphical analyses of the radio environment maps (REMs) generated by both FedLSTM and the
centralized LSTM highlight their similarities. However, FedLSTM provides client privacy while reducing
communication overhead and server strain.

INDEX TERMS radio environment map (REM), coverage prediction, received signal strength indicator
(RSSI), LiDAR sensor, federated learning.

I. INTRODUCTION

IN the context of the Fourth Industrial Revolution, aware-
ness of operating environment conditions is becoming

increasingly important for the efficient management of re-
sources in diverse dynamic systems. This era, marked by the
emergence of advanced technologies such as artificial intel-
ligence, big data, the Internet of Things (IoT), and robotics,
has significantly transformed modern industrial ecosystems,
especially smart factories. Our research is strongly motivated
by the urgent need to address the complex and multifaceted
challenges of ensuring robust, efficient, and secure wireless
connectivity in such environments. Smart factories, which
are not only hubs of innovation but also arenas where the
reliability and precision of wireless communications are rig-
orously tested, have leveraged these technologies to automate

production processes. This automation facilitates automatic
assessment of process status, enabling timely intervention and
improving overall operational efficiency [1].

Central to the functionality of smart factories is wireless
communications, which assumes a pivotal role in empow-
ering instantaneous tracking and surveillance of production
processes. Moreover, the flexibility and simplicity of wire-
less communications make it the preferred mode of con-
nectivity in the dynamic landscape of production environ-
ments, compared to cumbersome wired alternatives. How-
ever, the surging count of wireless devices introduces a chal-
lenge—potential interference with the industrial, scientific,
and medical (ISM) band [2]. Moreover, obstacles within
indoor environments can attenuate communication signals,
leading to regions of radio shadow. Accordingly, a precise
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assessment of the extent of radio communication coverage
emerges as a priority. In addressing the aforementioned chal-
lenge, radio environment map (REM) construction has been
investigated as an innovative tool that serves to furnish in-
tricate details about the radio environment within specific
geographic areas. By harnessing the insights provided by the
REM, informed decision-making is facilitated, and network
operators can seamlessly identify coverage gaps and high-
traffic regions [3].

In the literature, path loss models have been investigated
for coverage prediction. However, these models depend on
various factors, such as the distance between transmitter and
receiver as well as the height of the receiver and transmitter
above ground, which increases the difference in error predic-
tion between real and estimated values [4]. Hence, machine
learning (ML)-based approaches have emerged as innovative
predictive methods capable of effectively addressing the intri-
cate operational challenges within communication networks.
These techniques have demonstrated a remarkable ability to
achieve high prediction accuracy [5], [6]. For example, the
authors in [7] introduced a three-level Reconfigurable Intel-
ligent Surface (RIS) framework to improve the signal quality
of wireless communications, focusing on efficient channel
state information (CSI) acquisition with low latency and pilot
overhead. It uses a sparse connected long short-term memory
(SCLSTM) neural network to decompose and predict the
dynamic channels between base stations and user equipment.
This approach significantly outperforms traditional channel
estimation methods in terms of accuracy and robustness.
Moreover, researchers have projected the path loss in an urban
setting in Beijing, China, when utilizing artificial neural net-
works (ANNs), support vector regression (SVR), and random
forest (RF) models [8]. Assessments of performance were
measured through root mean square error (RMSE), yielding
results ranging between 4 dB and 5 dB. In [9],the authors
proposed the extra tree regressor-based approach for REM
construction in wireless communications networks for indoor
environments. The results showed that the extra tree regressor
can obtain the best accuracy with less computational time
than other ensemble learning baseline schemes. To the best
of our knowledge, the researchers described above considered
a centralized manner where the learning process is managed
by a central server or a base station. In this paper, we propose
a federated learning (FL) approach called FedLSTM, which
works with a long short-term memory (LSTM) model to
provide distributed learning between users. Note that in the
conventional centralized approach, more data are transmitted
since both the features and the labels must be sent. On the
other hand, in a distributed manner, the user only sends the
weights of the local model that are entailed in computation.

Moreover, the proposed FedLSTM scheme allows both
server and users to generate the REM. Then, the server can be
considered network planning to obtain a REM that can solve
coverage problems (installing APs or relays). Meanwhile,
users can more fully appreciate coverage of the area, and can
redirect to a better coverage area by looking at the REM. In

addition, the proposed FL-based approach provides security
because the data sent to the server are the weights, not the
labels and features of each user. This scenario is very useful in
commercial, hospital, and military environments where users
do not want to share their location with unknown people, thus
guaranteeing privacy and security.
We propose a novel FL-based approach to coverage pre-

diction in indoor environments that not only minimizes data
transmission but also enables network planning and empow-
ers users to make informed decisions about their coverage.
Additionally, it prioritizes user privacy and security, making
it highly applicable in various sensitive settings
The main contributions of this paper can be summarized as

follows.

• First, we propose a novel FL-based approach, called
FedLSTM, providing coverage prediction for indoor en-
vironments. FedLSTM enables distributed model train-
ing by having users send only model weights to the
server. This is in stark contrast to centralized approaches
where users must transmit both features and labels, lead-
ing to a significant increase in data transmissions.

• Secondly, the data utilized in this study were collected
from a real environment with location points captured
using Emesent’s Hovermap and real received signal
strength indicator (RSSI) values obtained via Raspberry
Pi. After collection, we preprocess the location data with
Emesent’s software and synchronize it with the cleaned
RSSI readings from Raspberry Pi by using timestamps.

• Third, we construct a REM by using Python software
to enhance coverage prediction visualization. For this
objective, we generate a grid of data comprising 1000
Ö 1000 grid points within our area of interest to plot
coverage prediction over a 2D map.

• Furthermore, our FL-based scheme empowers both
server and users to generate the REM. The server func-
tions as the network planner, leveraging the REM to
address coverage issues by installing access points or
relays. On the other hand, users can assess the coverage
of their area and relocate to areas with better coverage
by examining the REM.

• In addition, we compared the FedLSTM model with
its centralized counterpart, showing that our research
ensures security by transmitting only the weights of
each user’s model to the server, while the labels and
features remain private. This approach is particularly
advantageous in commercial, hospital, and military set-
tings where users are hesitant to share their location data
with unknown entities.

The remainder of this paper is organized as follows. Section
II describes related work, and Section III describes data col-
lection and preprocessing. Section IV outlines overall system
model, including the FL scheme, the FedLSTM architecture,
and REM construction. Section V presents numerical results
and a computational complexity analysis, with visual findings
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presented in Section VI. Finally, conclusions are in Section
VII.

II. RELATED WORK
Radio maps (commonly known as REMs) and their construc-
tion play a very important role in modern communication
systems. These maps offer a comprehensive view of the
radio spectrum environment by retaining various types of
information, from geographic and land features to spectrum
usage characteristics. Over the years, a significant amount of
research has been conducted to enhance and diversify their
applications. Introduced in 2006 [10], REMs have facilitated
a multitude of applications, ranging from network monitoring
[11], localization [12] and resource management [13] to V2X
communication [14], [15].

Traditional methods of radio map construction often in-
volve detailed field surveys, which can be time-consuming
and labor-intensive. To address this, researchers have been
developing algorithms to lower these costs. A number of
path loss models have been influenced by factors like ter-
rain suitability, the heights of the receiver and transmitter
above ground level, their spatial separation, and the pres-
ence of intervening obstructions, among other things [16].
These elements can widen the gap between forecast and real
signal degradation, with the extent of the variance hinging
on the chosen propagation model. In the REM construction
literature, ordinary kriging (OK) is frequently employed as
a geostatistics-based spatial interpolation method [17], [18].
OK predicts unseen data points by considering the spatial
relationships between recorded data and the relative locations
of all sampled points [19].

In [20] Maiti and Mitra developed a radio map for indoor
signal propagation, leveraging interpolation methodologies.
Results showed that OK achieved better performance than
ordinary methods like inverse distance weighting [21] and
K-nearest neighbors (KNN). These methods were evaluated
based on prediction error, i.e., RMSE. Although the OK-
based model achieved better performance, it encounters a
limitation in its computational proficiency, especially with
more data points [18].

In [22], and [23], heuristic-derived methodologies were
introduced providing indoor coverage prediction for indoor
dominant path models. However, heuristic solutions are typi-
cally designed for specific problems, andmight not generalize
well to other scenarios or variations of the problem, making
them inconsistent and unreliable in critical applications.

In classical prediction models, the design of mobile-device
networks demonstrates an inherent lack of adaptability [24].
Predictions are constrained to specific conditions, such as
frequency range, antenna height, and surrounding environ-
mental conditions. Nonetheless, current observations indicate
that the operational environment of modern radio networks is
characterized by an elevated level of diversity and complexity
[25]. Consequently, there is a strong need for prediction mod-
els that are more flexible and that can handle the challenges
of modern networks.

ML-based prediction techniques are recognized as rev-
olutionary within the realm of modern mobile-device net-
work planning owing to their enhanced accuracy over age-
old empirical prediction methods. When compared with
deterministic-based models, the ML-based methods are no-
tably superior in their data processing efficacy [26], [27].
For instance, the authors in [28] conducted research in

an urban area of Lisbon, Portugal, at 3.7 GHz and 26 GHz
frequency bands, leveraging an authentic 5G network. They
utilized input factors, and the resultant values closelymatched
those in [29]. However, the dataset utilized was double in size.
The study mainly focused on SVR and RF models, which
showed error rates ranging between 6 dB to 7 dB.
Similarly, the authors in [30] conducted their research in

suburban areas of South Korea, focusing on frequency bands
of 450 MHz, 1450 MHz, and 2300 MHz. Although the input
parameters were mostly similar to previous studies, a new
parameter was introduced: the ratio between Tx height and
Rx height. That research exclusively employed the Artificial
Neural Network (ANN) and Gaussian Process Regression
(GPR) ML models, both of which exhibited RMSE values
ranging from 8 dB to 9 dB.
In addition, the authors in [31] evaluated ML models

(ANN, SVR, and RF) in a rural environment in Greece in
the 3.7 GHz band. Input parameters were 3D Tx-Rx distance,
heights above sea level, and signal propagation (LOS/NLOS).
The target was path loss, and RMSE ranged between 4 dB to
5 dB.
Lastly, the authors in [32] introduced a new approach using

the extremely randomized trees regressor (ERTR) algorithm
for mobile coverage prediction, and visualized results on a
REMoverlaid on top of Google Earth. Real measurement data
from Victoria Island and Ikoyi in Lagos, Nigeria, were used.
Through extensive simulations and comparisons with seven
other ML algorithms, including ordinary kriging, the ERTR
algorithm showed the lowest RMSE error at 2.75 dB with an
R2 score of 92%.
To the best of our knowledge, commonly employed meth-

ods for constructing radio maps heavily rely on central-
ized data approaches. While these methods are comprehen-
sive, they bring forth computational complexities and po-
tential vulnerabilities, particularly concerning user-specific
data such as geospatial information. In environments such as
commercial complexes, healthcare institutions, and military
facilities, the adoption of a centralized approach is considered
suboptimal. In these contexts, users place a high premium
on privacy and security, necessitating measures to prevent
the disclosure of location information to unauthorized par-
ties. Our model incorporates the FL approach, advocating
decentralized data processing across user nodes. Unlike the
centralized framework, which necessitates transmission of
both feature vectors and labels, the federated approach entails
only transmission of model weight vectors. This reduction
in data transmission overhead simultaneously enhances data
security for users, with a minimal increase in prediction error.
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III. DATA COLLECTION AND PREPROCESSING
In this study, we sourced our primary data from the Engineer-
ing Building at the University of Ulsan in South Korea. For
the collection process, we systematically employed two key
devices: the Emesent Hovermap and Raspberry Pi. The Eme-
sent Hovermap, equipped with a state-of-the-art LiDAR sen-
sor, operates using the simultaneous localization andmapping
(SLAM) technique. It functions by emitting laser pulses and
keenly noting the duration taken for these beams to bounce
back after reflecting off surfaces. In relation to the speed
of light, the LiDAR sensor can precisely calculate distances
from the reflection time. Consequently, it creates an intricate
3Dmap based on these light reflections. After data collection,
the raw data from Hovermap is processed and refined using
the specialized Emesent software, making it fit for analytical
use.

We used the received signal strength indicator as a metric
to evaluate the quality of the connection between transmitting
and receiving devices. In wireless systems, including Wi-Fi,
Bluetooth, and cellular networks, RSSI is commonly used to
measure the strength of a radio signal. These values in decibel
milliwatts (dBm) are systematically obtained using the built-
in Wi-Fi module in Raspberry Pi. The RSSI data is then
pre-processed to remove any NaN values and outliers. The
location data from the Emesent Hovermap and the RSSI data
from Raspberry Pi are then synchronized using timestamps in
Python to create a time series dataset. This synchronization
aligns spatial coordinates with corresponding RSSI values
over time, which is essential for LSTM model training and
accurate REM construction in our federated LSTM approach.

IV. SYSTEM MODEL
Our experimental setup consists of 16 different clients that
participate in model updates and a server that collects the
updated models. Each of these clients traveled through 10
unique paths, updating its model with each trip. Each new
data collection was used by the client to train its local model,
adhering to predefined model and hyperparameter specifica-
tions. Upon completion of the training phase for a specified
number of epochs, the local model weights are transmitted
to a central server. At this central node, they are aggregated
using the FedAvg to update the globalmodel weight. This iter-
ative process of individual learning and centralized aggrega-
tion was performed across all clients over 10 communication
rounds.

A. FEDERATED LEARNING
FL is a novel approach to ML where a model is trained across
multiple devices or servers while keeping the data localized.
Instead of transferring raw data to a central server for training,
FL pushes the model to edge devices (smartphones, tablets,
IoT devices, etc.) and allows training to happen locally on
each device. After local training, only the model updates
are sent to the central server where they are aggregated and
the global model is updated. Figure 1 shows the overall FL
process. This approach addresses multiple concerns, such as

privacy, security, and data ownership, while ensuring a quality
model.
In the context of wireless communications, consider a sys-

tem with N clients where each client, j, has its own distinct
local dataset. The FL procedure begins with the central server
initializing the global model. Let the parameters of this model
be denoted by ω. For the ith iteration of the FL process, the
central server shares the current global model parameters,
ωi, with all N clients. Subsequently, each client j utilizes its
dataset to conduct local training. Through this, it computes
an updated version of the model parameter, which we label
ωi,j. After completion of this local training phase, each client’s
updates are sent back to the central server. The server then ag-
gregates these updates using Federated Averaging (FedAvg)
shown in Algorithm 1. The aggregated update for the ith

iteration is described by the following equation:

ωi+1 =
1

n

N∑
j=1

ωi,j (1)

Consensus in FL is critical to ensure that the global model
accurately reflects the collective learning of all distributed
clients. It helps to synchronize model updates from different
data sources, thus maintaining the integrity and relevance of
the model [33]. In our FL model, consensus is achieved by
defining ϵ as the number of local epochs after which clients
synchronize their updates. Each client j trains its local model
for ϵ epochs and sends the updates to the server. The server
aggregates these updates after receiving them from all clients.
This aggregated model is then redistributed to a new set of
clients for further training. This iterative process continues
until global convergence is achieved. The main advantages of
FL in the context of wireless communications include pre-
serving the privacy of user data, reducing the communication
load of transmitting large data sets, and taking advantage of
distributed data resources.
Evaluating the computational complexity of federated

learning algorithms is essential for assessing their scalability
and resource requirements. This analysis focuses on the com-
plexity of a specific federated learning process. The process
involves I communication rounds, where in each round, where
in each round N clients perform local training. Assuming that
each client’s training has a complexity of O(L), the complex-
ity per round is O(N × L). Therefore, the total complexity of
the algorithm over I, rounds is O(i × N × L), highlighting
the interplay between the number of rounds, the number of
clients involved, and the individual training complexity. This
insight is crucial for optimizing federated learning systems
for efficiency and practicality.

B. FEDLSTM ARCHITECTURE
LSTM is a specialized type of recurrent neural network
(RNN) designed to remember and utilize information over
extended sequences. This capability addresses the vanishing
gradient problem commonly observed in traditional RNNs,
enabling LSTM to learn and retain long-term dependencies
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FIGURE 1. Federated learning overview

Algorithm 1 Federated Learning Process with FedAveraging
1: Initialize global model parameters ω on central server
2: for round = 1 to i do ▷ Repeat for i communication

rounds
3: selected_clients← Randomly select N clients
4: for each client j in selected_clients do
5: Send current model parameters ωi to client j
6: ωi,j ← client j performs local training using its

data
7: Send ωi,j back to central server
8: end for
9: ωi+1 ← 0
10: for each client j in selected_clients do
11: ωi+1 = ωi+1 + ωi,j
12: end for
13: Apply FedAvg:
14: ωi+1 = ωi+1/N ▷ Average the updates
15: Send updated model parameters ωi+1 to all

selected_clients
16: end for

in the data. Often utilized in time series prediction and other
sequential tasks, LSTM significantly improves the efficiency
and accuracy of deep learning models dealing with sequential
data. RSSI prediction based on x and y geographic coordi-

nates, can be done by the LSTM model. We train the LSTM
model in a federated manner at the edge, and update the
global model on the server. This proposed federated LSTM
is called FedLSTM owing to the nature of its training. At
first, the global model is initialized with random weights, and
is then updated by the clients locally. The layer architecture
starts with an LSTM layer of 256 units, designed to process
spatial input and extract pertinent sequential patterns. To
avoid overfitting, a subsequent dropout layer is employed,
ensuring themodel remains generalizable across diverse radio
conditions. The succeeding layers (LSTM with 128 units and
64 units) progressively refine these patterns with intermittent
dropout layers for regularization. The architecture ends with a
pair of dense layers; the first handles the processed data, and
the subsequent layer outputs the predicted RSSI value. The
detailed, layer-by-layer architecture is described in Table 1.

What sets this research apart is its innovative adoption
of federated learning. Rather than centralized model train-
ing, the architecture is distributed across multiple clients.
Each client refines the model using local data before sending
weight updates to a central server. This decentralized ap-
proach not only accentuates data privacy but also captures the
diverse radio environments each client is exposed to, ensuring
a more comprehensive and applicable real-world REM.
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TABLE 1. Architecture of the LSTM Network

Layer (type) Output Shape Params Description

lstm_3 (LSTM) (None, 3, 256) 265,216 LSTM layer

dropout_3 (Dropout) (None, 3, 256) 0 Regularization
layer

lstm_4 (LSTM) (None, 3, 128) 197,120 LSTM layer

dropout_4 (Dropout) (None, 3, 128) 0 Regularization
layer

lstm_5 (LSTM) (None, 64) 49,408 LSTM layer

dropout_5 (Dropout) (None, 64) 0 Regularization
layer

dense_2 (Dense) (None, 32) 2,080 Fully connected
layer

dense_3 (Dense) (None, 1) 33 Fully connected
layer

Total Parameters: 513,857

Trainable Parameters: 513,857

Non-Trainable Parameters: 0

C. REM CONSTRUCTION
In this subsection, our primary focus is the construction of
a deep FL model designed to predict indoor propagation
coverage for Wi-Fi networks using x and y coordinates of the
area of interest. To design the deployment model, we trained
the deep FedLSTM network in a distributed manner. This can
be mathematically represented as

L(θ) =
N∑
j=1

wjLj(θ) (2)

where L(θ) denotes the global loss function, N is the total
number of local datasets, wj signifies the weight assigned to
each local dataset, and Lj(θ) represents the loss function for
the jth local dataset.
The input dataset, denoted D, is partitioned into two sub-

sets: Dtrain (for training) and Dvalid (for validation or testing).
This division is crucial for effective hyperparameter tuning.
As a result, parameters θ are fine-tuned based on evaluation
metrics such as relative error ϵ, MAE, RMSE, and R2 scores.

To visualize the radio map over our target area, we con-
structed a mesh grid with 1000 × 1000 points. This grid
was delineated by considering the minimum and maximum
coordinates within our region of interest. To achieve this, we
employed the Emesent Hovermap, which utilizes a LiDAR
sensor in tandem with SLAM to produce a 3D representa-
tion of the environment. The resulting data are processed in
CloudCompare, producing a point cloud. This point cloud can
be further refined into a comprehensive 3D model, such as a
mesh derived from the identified extreme points.

Subsequent steps involve feature normalization based on
the Z-score. We then employ a FedLSTM-driven regression

FIGURE 2. REM Construction.

approach tailored for the prediction task. Using the model
trained in a federated manner, coverage predictions are de-
termined from the RSSI values for each grid point. The
predicted values derived from the federated framework are
then combined with horizontal and vertical coordinates of the
grid. This results in a REM visualizing the predicted data
points as a pseudocolor plot, which is rendered into a 2D
map using the pcolor function. Complementing this, a bar
graph is introduced to correlate our data with the associated
color representation in each plot. For a clearer understanding,
Figure 2 provides a detailed graphical representation of the
entire procedure.

1) The Fine Tuning Process
For construction of the REM, the fine-tuning procedure ne-
cessitates systematic optimization of various hyperparam-
eters to achieve optimal model performance. Determining
the optimal network architecture, including the choice of
layers, is critical. Additionally, regularization parameters are
carefully adjusted to prevent overfitting and improve the
model’s generalization capability. Time steps, which influ-
ence LSTM’s ability to capture temporal dependencies, are
also an essential aspect of this fine-tuning. The entire opti-
mization process is carried out on a trial-and-error basis. The
performance of each configuration is assessed using several
metrics, namely RMSE, R2 score, and relative error. Each
iteration provides insights, helping subsequent adjustments to
refine the model’s performance for REM construction. The
detailed fine-tuning process is illustrated in Figure 3.

D. MODEL EVALUATION
In this subsection, we evaluate the efficiency of the pro-
posed federatedmodel with different evaluation error metrics:
RMSE, MAE, relative error, R2 score,and mean absolute per-
centage error (MAPE). These error metrics can best evaluate
the performance of the model in different ways. In the field of
wireless communications, they play a vital role in evaluating
the performance of the prediction model. Predicting RSSI
at distinct x and y coordinates demands a comprehensive
understanding of the deviations between true measurements
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FIGURE 3. Fine-tuning the FedLSTM network for REM construction.

and predicted values, because these can greatly influence
the precision of REM generation. Recognizing these error
metrics aids in refining and bolstering predictive models.
Some of the main metrics are explained below.

Root Mean Square Error shows the average squared
deviations between true values, y, and predicted values, ŷ.
In REM building, a low RMSE means the federated LSTM
model predicts RSSI values accurately across different loca-
tions. The formula for RMSE is

ErRMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (3)

Mean Absolute Error calculates the average deviation
between predicted and true values. This metric becomes
essential in scenarios where accurate RSSI predictions are
critical for precise REM construction:

ErMAE =
1

m

m∑
i=1

∣∣yi − ŷi∣∣ (4)

Relative Error provides a deviation measure adjusted by
the actual value. Considering the diverse range of wireless
signal strengths, this metric evaluates the proportional dif-
ferences between predicted and actual values across various
signal levels:

ErRelative =
|ŷi − yi|

yi
(5)

Mean Absolute Percentage Error characterizes the de-
viations of predictions in terms of their percentage errors
from actual observations. Given its foundation in relative
accuracy, MAPE is paramount for discerning the fidelity of
REM predictions in the context of empirical data:

ErMAPE =
100

m

m∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (6)

The R2 score, also known as the coefficient of determina-
tion, measures how well the model’s predictions correspond
to the actual data. An R2 value approaching 1 indicates the

model accounts for most of the variability in the data, signify-
ing precise RSSI predictions suitable for REM creation. Con-
versely, an R2 value approaching 0 suggests the predictions
are predominantly aligned with the data’s average, potentially
lacking in genuine predictive power:

ErR2 = 1−
∑m

i=1(yi − ŷi)2∑m
i=1(yi − ȳi)2

, (7)

with ȳi representing the mean target value.
Overall, these metrics address various dimensions of pre-

diction accuracy. By analyzing them collectively, we obtain
a comprehensive understanding of the model’s performance
and robustness, which is critical for optimal wireless commu-
nications and precise REM generation.

1) Implementation Platform
We utilized the NVIDIA GeForce RTX 3060 Graphics Pro-
cessing Unit (GPU) for our training processes. This GPU
enables us to undertake sophisticated deep-learning taskswith
remarkable efficiency and speed. The NVIDIAGeForce RTX
3060 is equipped with a state-of-the-art Ampere architecture
boasting 3584 CUDA cores capable of delivering impressive
computational throughput. Alongside this, the card is comple-
mented with 12 GB of GDDR6 memory, ensuring swift data
handling during intensive operations. For our development
environment, we utilized Python, and structured our deep
learning architectures using the TensorFlow framework.

V. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
FL model using various testing scenarios. We established
multiple experimental setups to rigorously analyze the be-
havior of the FedLSTM network under different conditions.
Initially, the REMwas constructed using a centralized LSTM
network with a consistent architecture. This served as a base-
line to compare against the federated configuration of the
REM employing the same architecture. We conducted eval-
uations of FedLSTM based on different numbers of clients in
the training process, enabling an assessment of performance
fluctuations. The effect of varying local epochs on client de-
vices was also studied to evaluate the adaptability of less com-
putationally robust devices. Additionally, FedLSTM’s perfor-
mance was examined across different client configurations
and batch sizes, elucidating their respective impacts on model
efficiency. Detailed numerical results of these evaluations are
provided in the subsequent subsections.

A. COMPARISON WITH A CENTRALIZED LSTM NETWORK
To evaluate our federated model’s performance, it is essential
to compare it against a centralized model. In our experiment,
we employed a federated setup consisting of 10 clients. Each
client moved along a different path to collect data from differ-
ent parts of the area of interest. The model was created on the
main server and then distributed to the participating clients.
After each client trains the model using their data for these
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two rounds, the updates are sent to the central server. The
server integrates each update with those from other clients,
and then relays the consolidated model to another randomly
chosen client. For this experiment, data processing was con-
ducted in batch sizes of 32. Referring to the results in Figure 4,
our Federated LSTM model’s performance metrics (RMSE,
MAE, and R2 score) were assessed against the centralized
model.

FIGURE 4. Comparison of centralized and federated LSTM networks

The federated model’s RMSE was marginally elevated by
0.1 dBm in comparison to its centralized counterpart. The
MAE metric indicated a prediction difference of approxi-
mately 0.2 dBm. When evaluating the R2 score, the cen-
tralized model exhibited a slight advantage. However, it is
crucial to highlight that while the centralized model offers
marginally better performance, it raises concerns over data
privacy, demands higher computational resources, and creates
more communications overhead. Particularly in the process
of aggregating data across an expansive geographic spectrum
for REM construction, the centralized methodology demands
substantial bandwidth for data transmission, which is a con-
cern for participants reluctant to disclose their location due to
potential security and privacy breaches.

B. IMPACT OF THE NUMBER OF CLIENTS ON GLOBAL
CONVERGENCE
In this assessment, we evaluate the impact of the number of
clients participating in convergence of the federated model.
The model was employed in different federated settings; each
time, the number of participating clients was changed to ob-
serve the behavior of the model. We evaluated the regression
model with five error metrics, namely, RMSE, MAE, R2,
relative error, and MAPE. In general, the performance of
the model can attain the expected efficiency with various
numbers of clients participating in the FL model. However,
the more clients, the sooner the system will converge to the
global minimum.

Therefore, with a large number of clients using FedLSTM,
prediction accuracy can quickly achieve high performance,

and thus, the accuracy will be more stable through com-
munication rounds. Figure 5 shows that for C = 16, the R2

score of the FedLSTM model reached 90% after just two
communication rounds, and reached 93% after 10 rounds. In
contrast, the system with few assigned clients (C = 4) had a
relatively lower R2 score, not going above 90% even after 10
communication rounds.

FIGURE 5. R2 variations from the number of clients

Similarly, Figure 6 shows that the RMSE of the feder-
ated model also showed a lower value, which means best
performance, when the number of clients in model training
was high (C = 16). The proposed federated model showed a
lower RMSE in all communication rounds when C was 16.
This error metric was high when C was 4. In the early com-
munication rounds, the model with four clients showed fast
convergence. However, convergence was reduced after five
communication rounds. This means that with fewer clients,
the model may start with sharp convergence, but it may stop
further along with certain communication updates.

FIGURE 6. RMSE variations from the number of clients

In addition, MAE calculates the average deviation between
predicted and true values, and in our setting, MAE also fol-

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3367589

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

lowed the trends in Figure 7. The graph depicts high MAE
in every communication round when C = 4. Even after 10
rounds, MAE was 3 dBm, just above 2 dBm when clients
numbered 8 and 12. However, MAE decreased continuously
to 2 dBm after eight communication rounds, and the trend
continued, decreasing to below 2 after 10 rounds.

FIGURE 7. MAE variations from the number of clients

Furthermore, the model was evaluated with relative error to
show the deviations from actual values and the proportional
differences between predicted and actual values across the
data. The relative error graph in Figure 8 illustrates that an
increase in clients had a strong impact. Relative error was
above 0.06 dBm before five communication rounds had been
completed, and then dropped to about 0.05 dBm after 10
rounds. This error metric followed the same trend as metrics
discussed above, meaning that relative error decreased with
each client added to train and update the model. This error
was near 0.03 dBm when C = 16 after 10 rounds for updating
the model. With that many clients, the error dropped very fast
in the beginning as well.

FIGURE 8. Relative error based on the number of clients

Finally, to characterize deviations in predictions in terms
of percentage errors from actual values the mean absolute
percentage error was evaluated based on variations in the
number of clients updating the model. Figure 9 shows MAPE

FIGURE 9. MAPE variations based on the number of clients

was below 4% when C = 16 after 10 rounds. In contrast, this
error increased to around 5% when C = 4. MAPE was around
4% with eight and 12 clients, but converged to these values in
the final updates, compared with 16 clients updating model
weights.
Overall, for a system with 16 clients, in comparison with

the four-client system, accuracy and precision were higher
with notably fewer errors. Generally, in a predetermined num-
ber of training rounds, the number of clients affects the FL
process accuracy and convergence speed. As more clients
participated in the FL process in each round, the model’s
absolute precision and training speed suffered from fewer
adverse effects. Nevertheless, once C improved to a particular
level, advancement of system performance was less note-
worthy, and sometimes even degraded. When putting the FL
process into practice, we can face difficulties in that as C
increases, more clients update local parameters to the server.
As a consequence, the communication and computation costs
of the FL model amplify significantly. This is encouraging
because, in real-world applications with large-scale clients,
we only need to select a set of clients from the network to
execute the FL process in each communication round. This
procedure saves considerable communication costs in the FL
process.

C. CONTRIBUTION OF LOCAL MODEL EPOCHS TO
GLOBAL CONVERGENCE
In ML, an epoch is one complete cycle through the full
training dataset. Specifically, each epoch involves both for-
ward propagation (estimation of output given the input) and
backward propagation (adjustment of model weight based
on error). The number of epochs is a hyperparameter that
determines how many times the learning algorithm will work
through the entire training dataset. In the context of FL, where
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data remain distributed across multiple devices or nodes
and do not converge centrally, the local number of epochs
becomes a pivotal factor. It dictates how much training is
conducted on each local dataset before aggregating model
updates into the global model. This subsubsection delves into
the nuanced influence that varying the local number of epochs
has on convergence speed and quality in FL setups.

From Figure 10, it is evident that as the number of epochs
for training on each selected client per communication round
increased, the RMSE of the federated model decreased. To
elucidate, in the federated setting where the number of epochs
was set to two ( ϵ = 2), the model experienced rapid con-
vergence initially but plateaued at a value of 2.75 dBm after
20 epochs. In contrast, as ϵ was incremented to 3, 4, and
finally 5, the trends illustrate that the RMSE of the model
with ϵ = 5 remained consistently lower than the other three
configurations in every communication round.

FIGURE 10. RMSE variations from the local number of epochs

Similarly, to assess the accuracy with which our federated
model represents the data, we evaluated the R2 score. As
depicted in Figure 11, our federated model achieves a com-
mendable R2 score of 93% after only a few communication
updates when ϵ is set to 5. However, when the local epochs
ϵ are adjusted to 4, 3, and 2, there is a subsequent decrease
in the R2 score for each setting. However, their impact on the
global model convergence decreases with the increase in the
number of communication rounds.

Furthermore, the model was assessed using relative error
to demonstrate deviations, adjusted by the actual values, and
to display the proportional differences between the predicted
and actual values across the data. Figure 12 illustrates that as
ϵ increased from 2 to 5, the FedLSTM model mirrored the
trend exhibited by variations in the number of clients. In the
initial communication rounds, ϵ significantly impacted global
convergence. There appears to be a substantial difference
between ϵ = 2 and ϵ = 5 in the early stages; however,
after each update, this difference decreased to a certain extent.
By the 20th communication round, the difference in relative
error amongst the four settings for ϵ (5, 4, 3, and 2) was

FIGURE 11. R2 score variations based on the number of local epochs

minimal, indicating that with more communication rounds,
models with fewer or more epochs can exhibit nearly identical
performance.
Figure 13 illustrates how MAPE, expressed as a percent-

age, quantified prediction deviations from actual error values
based on variations in the number of clients during model
updates.

FIGURE 12. Variations in relative error based on the number of local
epochs

Lastly, mean absolute error quantifies the average deviation
between predicted and actual values. In our experiments,
trends in MAE were consistent with those observed in other
error metrics. Figure 14 illustrates how MAE was notably
high during the initial communication rounds when ϵ =2.
Conversely, when ϵ = 5 for the first model aggregation, MAE
was significantly lower. Yet as the aggregation rounds pro-
ceeded, the disparity in MAE between different ϵ settings
diminished considerably, eventually converging to a value
slightly above 2 dBm across all settings. Nonetheless, the
model with ϵ = 5 consistently registered a lower MAE,
whereas ϵ = 2 consistently exhibited a higher error value
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FIGURE 13. Variations in MAPE based on the number of local epochs

throughout the communication rounds.

FIGURE 14. Variations in MAE based on the number of local epochs

VI. GRAPHICAL RESULTS
In the domain of wireless networking, the received signal
strength indicator is a metric quantifying the signal power a
device receives from the access point or router. Expressed in
decibel milliwatts (dBm), RSSI is a pivotal criterion in evalu-
ating the quality of a Wi-Fi connection. Under optimal wire-
less communications conditions, an RSSI value of -30 dBm
represents peak signal reception. However, achieving such
an ideal benchmark is infrequent in practical environments
due to various interference and propagation factors. Signal
strengths ranging from -50 to -30 dBm denote a very stable
connection, facilitating seamless streaming and downloading.
Between -60 and -50 dBm, the signal is still sufficiently
strong formost standard applications, including uninterrupted
streaming. However, as signal strength falls to the range
of -70 to -60 dBm, performance becomes notably average.
Connections in this rangemay struggle during intensive tasks,

particularly if the network sees simultaneous activity from
multiple devices or if the connected device is significantly
mobile. Progressing further down the scale, a range of -80
to -70 dBm indicates an inconsistent connection prone to
disruptions, especially during data-intensive operations like
streaming. An even weaker range, -90 to -80 dBm, offers
a highly unstable connection that is not only susceptible to
frequent dropouts but also languid speeds. Any signal weaker
than -90 dBm is practically non-functional, rendering a reli-
able connection almost impossible.
The dispersion of wireless signal strength is graphically

represented as a 2D color map using the predicted RSSI
values from the trained FL model. Figure 15(a) illustrates
a LiDAR map of the area of interest constructed through
the Emesent Hovermap, while Figure 15(b) displays the
coverage map generated using the centralized LSTM model.
In Figure 15(c), the REM constructed through the proposed
FedLSTM model is presented. REMs constructed through
the LSTM centralized model and FedLSTM are comparable,
showing similar signal dispersion. Specifically, the region
near the access point exhibits RSSI values above -50 dBm,
indicating excellent signal strength. However, as one moves
farther away from the access point, the RSSI values gradually
decrease and eventually drop below -80 dBm at the far end of
the area.
To further evaluate and test our proposed federated model

under different settings, we conducted experiments inside
a room. For this purpose, we utilized Room 7-602 at the
University of Ulsan in South Korea. In this federated setting,
we engaged five clients, each of which updated the model
over 10 iterations for 10 communication rounds. Figure 16(a)
provides an overview of the room’s layout, including an
example path (path_1) followed by Client-1. In our scenario,
we considered 10 paths taken by five clients. The central-
ized model’s REM is Figure 16(b), and FedLSTM’s REM
in Figure 16(c) highlights the excellent coverage near the
access point and the gradual reduction in signal strength when
moving away from it. These graphic results demonstrate that
in both room and corridor settings, FedLSTM achieved per-
formance comparable to centralized approaches while con-
currently ensuring data privacy, minimizing communications
overhead, and reducing the server load.

VII. CONCLUSION
In this study, we presented an innovative approach called
FedLSTM and based on FL for REM construction. In particu-
lar, the proposed FedLSTM framework is designed to predict
indoor network coverage while addressing the pressing issue
of data privacy. This proposed method is decentralized, al-
lowing clients to participate in the training process without
disclosing their data to a central server. For this approach, we
utilized real measurements from various clients navigating
different paths and updating their models with data from
each path. When compared to a centralized counterpart, our
model indicated a slight rise in RMSE to 2.5 dBm from 2.4
dBm and an increase in MAE to 1.9 dBm from 1.7 dBm.
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FIGURE 15. (a) Corridor layout, (b) REM from the centralized LSTM model, and (c) REM from FedLSTM

FIGURE 16. (a) Room layout, (b) REM from the centralized LSTM model, and (c) REM from FedLSTM

Subsequently, we evaluated the FedLSTMmodel considering
variations in the number of participating clients. Numerical
results revealed that increasing the number of clients en-
hanced performance metrics such as error rate and R2 score.
Additionally, adjusting the number of local training epochs
showed that even devices with limited computational power
can meaningfully contribute to training the federated model,

with fewer epochs still achieving competitive results. Graphic
comparisons of REMs fromFedLSTMand centralized LSTM
highlighted their similarities. However, FedLSTM distinctly
provided the trifold benefits of data security, communications
efficiency, and a reduced server load. This research empha-
sizes FL’s potential to ensure data privacy while upholding ro-
bust performance from indoor network coverage predictions.
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Our future work includes adapting the framework for map-
ping outdoor environments and integrating geographic data
for more comprehensive REM construction. We also plan to
develop optimized communication protocols between servers
and clients, and create an advanced client selection algorithm.
These enhancements aim to improve data diversity and client
comfort, further extending the applicability and efficiency of
federated learning in diverse settings.
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