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ABSTRACT The further development of image registration (IR) as automated image alignment techniques
is a well-known concern in the field of computer vision (CV). These techniques have been implemented
in many real-world scenarios: from remote sensing to medical imaging to artificial vision and computer-
aided design. There is great interest in applying original optimization algorithms to overcome the challenges
associated with early IR methods (e.g. the ICP algorithm). On the other hand, algorithms rooted in
evolutionary theories in nature-inspired computational models such as Evolutionary Computing (EC), have
gained in importance over the past two decades. In addition, other algorithms with wide applicability fall
into this category of methods, e.g. metaheuristics, swarmming, etc. Most of these methods have been widely
adopted to address the IR problem, and are used as reliable alternatives for optimization goals. The aim of
this paper is to address the following two main research challenges: (i) Bridging the gap in the revision of
solutions proposed in recent years from the latter optimization model and from those ones from a new model
based on deep learning (DL); and ii) introducing a new non-metaphor-based IR approach, called JAYA, to
solve specific problems of aligning 3D surfaces of range images, also known as range image registration
(RIR). In fact, as far as is known, this is the first time JAYA has been suggested for the above RIR problem.
In particular, a new RIR method using the JAYA algorithm have been introduced and its performance has
been accordingly compared against a wide set of methods from the SoTA.More than a dozen Softcomputing-
based RIR methods have been included in the experimentation, making it the largest comparative study ever
carried out in this category. In particular, range image datasets belonging to the SAMPL repository have
been used, which has been widely adopted by many authors in the SoTA.

INDEX TERMS Computer Vision, Evolutionary Computation, Metaheuristics, Deep Learning, Image
Registration, JAYA.

I. INTRODUCTION

Image registration (IR) [1] was found to play a central role
in the computer vision (CV) field. Specifically, IR represents
one of the core resume efforts in the field of image processing.
The focus is on the precise alignment of two or more images
(taken at different times, from different sensors or perspec-
tives) in a common coordinate system. IR is then routed to
determine either a geometric transformation or messaging
(matching feature points) resulting in optimal overlap of the
images considered. Its use extends to a wide range of real-
world applications, where medical imaging and remote sens-
ing are the most important areas that are widely explored in

the State-of-The-Art (SoTA) [2]–[6].

Over time, various algorithms have been developed that
address the issue of IR and contribute to extensive research.
Basically, the IR challenge can be defined through the task of
optimization, where the IR process revolves around identify-
ing the optimal transformation that achieves the most appro-
priate/optimal alignment between the images. The estimation
and optimization of the IR transformation is usually handled
by an iterative method that systematically does search for the
area of potential IR solutions.

In recent years, several fields of science have seen a grow-
ing fascination with the application of improved methods

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361325

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

for building modern 3D models of real-world objects and
scenes captured with the help of remote scanners. In the first
contributions to IR, the optimization made using these early
methods was negatively affected by factors such as image
noise, image discrimination, and variations in the orders of
magnitude within the parameters of the IR transformation.
This was particularly evident in the iterative closest point
(ICP) algorithm, where the process was highly interlocking
in local optima [7], [8]. This particular challenge also arises
because these IR methods require that the alignment process
begin with precise image pre-alignments, usually performed
by experts.

Instead, optimization methods that are approximate or
heuristic coming from the Softcomputing paradigm [9], and
often referred to as metaheuristics [10], [11], offer a com-
pelling option. In particular, nature-inspired computing refers
to a class of metaheuristic algorithms that simulate or are
inspired by certain natural phenomena by means of the com-
bination of grammar and randomness. Evolutionary com-
putation (EC) [12], [13] is a discipline of nature-inspired
optimization algorithms, and these methods demonstrate the
ability to produce high-quality results for complex optimiza-
tion challenges, especially when facing CV tasks [14]. The
adoption of this optimization model has generated significant
interest within the IR community over the past decade due to
its successful results when dealing with the drawbacks of the
early methods, i.e. ICP. In particular, evolutionary algorithms
(EAs), such as genetic algorithms (GAs), have proven suc-
cessful in treating the problem of IR. A large number of styles
in this category have been published, especially in the last
two decades, with many widely and comprehensively studied
works found [4]–[6], [15].

A notable advantage of this outstanding IR optimization
methods is that they can work without the need for an ac-
curate estimate of the initial position of images. However,
these methods require careful adjustment of several control
parameters (the probability ofmutation or crossover operators
in GAs) to achieve optimal performance for each specific
application addressed. Determining the appropriate values of
control parameters is usually a labor-intensive process that is
carried out manually. Users often lose time to improve these
important parameters. Therefore, the automatic adjustment
of these parameters has become one of the topics of great
importance. The more skillfully the control parameter val-
ues are set, the more efficient will become the IR methods
using this family of approximate algorithms [16]. Specifi-
cally, some papers have been published proposing these types
of advanced optimization strategies, making them the most
advanced designs available to date to solve the problem of
IR [5]. However, despite the excellent results of the latter,
there are still few proposals in the SoTA that deal with this
particular type of optimization strategy.

Since the first efforts to address the IR problem through
Softcomputing-based optimization approaches, this topic has
become a very dynamic field of research that is witnessing
a large influx of contributions. Nevertheless, due to new and

innovative improvements in recent years, an updated review
of SoTA is necessary. The first objective of this research is to
provide a brief overview of the most important IR methods
that use such smart technologies. In addition, other emerging
approaches from the field of deep learning (DL) [17] applied
to the IR problem will be explored.
As a secondary primary objective of this study, a new

design of an IR method was proposed, which improved ca-
pabilities compared to SoTA. Specifically, the JAYA algo-
rithm is presented as a pioneering optimization strategy that
eliminates the need for meticulous tuning of control parame-
ters [18], [19]. As far as is known, this is the first application
of the JAYA algorithm to IR, especially in the context of 3D
surface alignment of range images. Extensive experimental
research has been conducted to evaluate the performance of
the proposed method in dealing with pair-wise IR instances
for 3D modeling of real objects. The well-know SAMPL
repository of range images has been considered in this exper-
imentation. In addition, the JAYA-based IR method has been
systematically compared with 12 other analog IR algorithms
in the SoTA, by means of using several datasets of range
images spanning different levels of complexity, in particular
20 and 40 degrees of overlapping between images.
This manuscript is organized as follows. To begin with,

Section II provides foundational insights into the IR chal-
lenges related to range data. Next, Section III presents a
brief overview of several of those more recent applications
of Nature-inspired and similar approaches addressing this
problem.Moreover, a concise description of those IRmethods
using DL techniques are also introduced in this section. The
proposed new design of the JAYA algorithm for tackling with
the IR problem is accordingly introduced in Section IV. Sec-
tionV conducts an empirical investigation, evaluating the new
proposal of IR based on JAYA and comparing its performance
against 12 other methods of the SoTA. Finally, Section VI
offers conclusive comments on the findings of this work.

II. BACKGROUND
A. PROBLEM FORMULATION

In this section, the contextualized IR problem is introduced
for the particular scenario of aligning 3D surfaces obtained
by laser ranging devices. This imaging modality is known as
range imaging ( [20]).
Specifically, range scanner devices possess the capability

to capture three-dimensional images, termed range images,
from diverse perspectives of the observed object. Each range
image captures a portion of the overall geometry of the
scanned object, providing the placement of each image in a
distinct coordinate system. Consequently, the adoption of a
reconstruction technique becomes imperative to seamlessly
integrate the images, ensuring the attainment of a compre-
hensive and dependable representation of the physical object.
This conceptual framework is commonly referred to as three-
dimensional model reconstruction [20], where IR assumes a
pivotal role.
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Typically, two methodologies for reconstructing and in-
tegrating multiple range images exist [20]. The cumulative
pair-wise approach entails the iterative application of the IR
method, addressing pairs of range images at each step to re-
construct the original model. In contrast, the global/multiview
IR stage, implement subsequent to the cumulative approach,
aims to enhance the accuracy of the reconstruction outcome
by simultaneously considering all pre-registered images. Ir-
respective of the chosen reconstruction approach (cumulative
or multiview), the quality of the resulting model hinges sig-
nificantly on the efficacy of the pair-wise range IR (RIR)
algorithm utilized. Then, in the realm of 3D model recon-
struction, the careful selection and optimization of the pair-
wise RIR algorithm play a pivotal role in determining the
ultimate quality of the integrated model.

There is no universally applicable blueprint for a hypothet-
ical (pair-wise) IR method that could address all IR tasks, e.g.
RIR, as the unique requirements of each application need to
be carefully considered [2]. Nevertheless, IR methods typi-
cally involve the incorporation of four essential components
(see Figure 1): two input Images denoted as Scene Is =
{⃗p1, p⃗2, . . . , p⃗n} and Model Im = {⃗p ′1, p⃗ ′2, . . . , p⃗ ′m}, with
p⃗i and p⃗ ′

j representing image points; aRegistration transfor-
mation f , characterized as a parametric function establishing
a relationship between the two images; a Similarity metric
function F , utilized to quantify the qualitative closeness
or degree of fitting between the transformed scene image,
denoted as f ′(Is), and the model image; and an Optimizer
tasked with identifying the optimal transformation f within
the defined solution search space.

FIGURE 1. A general description of how the IR optimization process
works. Range images from the SAMPL dataset (see Section V) are shown
in the diagram.

Furthermore, in the intricate realm of IR, crafting an effec-
tive methodology involves a thoughtful consideration of the
specific application requirements. The orchestration of com-
ponents such as input images, registration transformations,
similaritymetric functions, and optimizers plays a crucial role
in shaping a robust and tailored IR solution.

Similarly, an iterative procedure is commonly pursued until
achieving convergence, typically within a tolerance threshold
determined by the relevant similarity metric. This element
will be addressed in greater depth in the following section.
In particular, the ICP algorithm [21], [22] was initially intro-
duced to attain a precise estimation of the rigid pose for pairs
of range images through an optimization method grounded in
the least squares estimation of the registration transformation
f . Nevertheless, for the method to converge to a satisfactory
alignment, it is essential that the relative rotation and transla-
tion of the pair of images remain small.

B. SOFTCOMPUTING AND RIR
The field of Softcomputing [9] denotes a domain within
computer science characterized by the utilization of impre-
cise solutions to computationally challenging tasks, notably
those categorized as NP-complete problems where deriving
a global optimal solution is not feasibly achieved within a
(preferable) polynomial timeframe. Specifically, Softcomp-
tuing diverges from traditional hard-computing (e.g. the ap-
proach of the canonical method for IR, ICP) in its capacity to
accommodate imprecision, uncertainty, partial truth, and ap-
proximation. The fundamental tenet of Softcomputing lies in
leveraging this tolerance for imprecision, uncertainty, partial
truth, and approximation to attain manageability, resilience,
and minimized solution costs. Key paradigms in Softcomput-
ing encompass Fuzzy systems, Nature-inspired computation,
and Artificial neural computing, among others.
Over the past two decades, computational strategies In-

spired by Nature such as EC [13], [23], [24], have proven
their efficacy in addressing intricate real-world challenges
within the realm of CV. Furthermore, general-purpose Meta-
heuristics and other similar approaches constitute additional
optimization algorithms successfully employed in this do-
main. In particular, several alternative EAs have been intro-
duced in recent years, enhancing the SoTA of this domain by
adopting more fitting optimization strategies [13]. These in-
clude evolution strategies (ES) [25], scatter search (SS) [26],
differential evolution (DE) [27], [28], memetic algorithms
(MAs) [29], particle swarm optimization (PSO) [30], esti-
mation distribution algorithms (EDAs) [31], membrane com-
puting (MC) [32], and cellular automata (CA) [33], and dif-
ferential evolution (DE) [28]. Additionally, there has been
a recent influx of EC models inspired by analogous princi-
ples, such as the bacterial foraging optimization algorithm
(BFOA) [34], artificial bee colony (ABC) [35], harmony
search algorithm (HS) [36], bat algorithm (BA) [37], firefly
algorithm (FA) [38], and grasshopper optimization algorithm
(GOA) [39], among many others.
The initial endeavors to confront the IR challenge using

EC trace back to the 1980s [40], when a GA was devised to
address the rigid IR of 2D angiography images. Since then,
the domain of Softcomputing-based IR has flourished into
a highly dynamic field, driven by the favorable outcomes
achieved. Numerous well-established EAs have been enlisted
to tackle the optimization process of IR. Comprehensive re-
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views of the application of this family of optimization tech-
niques to IR dealing with 3D modeling and medical imaging
scenarios can be found in [4], [6], [15].

As mentioned, the pipeline for reconstructing a 3D model
involves executing multiple pair-wise alignments between
two consecutive range images to generate the ultimate 3D
model of the physical object [41]. Consequently, each pair-
wise RIR method strives to identify the Euclidean motion
that optimally aligns the scene view (Is) with the model view
(Im). This Euclidean motion is typically characterized by a 3D
rigid transformation (f ) defined by six or seven real-coded
parameters, depending on whether Euler or axis-plus-angle
representation is employed for rotation, respectively. In this
research, it has been considered the rigid transformation as
comprising a rotation R = (θ, Axisx ,Axisy,Axisz) and a
translation t⃗ = (tx , ty, tz), where θ and ⃗Axis denote the angle
and axis of rotation, respectively. The transformed points of
the scene view are identified as

f (⃗pi) = R(⃗pi) + t⃗, i = {1, . . . , n} (1)

where, n represents the quantity of points in the Is image.
Consequently, the evolutionary pair-wise RIR process can
be cast as a numerical optimization challenge (where RIR
solutions manifest as seven-dimensional real-coded vectors
x = ⟨θ,Axisx ,Axisy,Axisz, tx , ty, tz⟩) designed to explore the
Euclidean transformation f ∗ that achieves the optimal align-
ment of both f (Is) and Im:

f ∗ = argmin F(Is, Im; f ) s.t. : f ∗(Is) ∼= Im
f (2)

in accordance with the optimization of the Similarity metric,
F . Notably, the median square error (MedSE) is commonly
adopted as the F function in 3D modeling [42], owing to its
resilience in the face of outliers (e.g., noisy range images ob-
tained during the RIR process). Its formulation is as follows:

F(Is, Im; f ) = MedSE(d2i ), ∀i = {1, . . . , n} (3)

wherein MedSE() represents the median value derived from
all the squared Euclidean distances, d2i = ∥f (⃗pi) − p⃗′j∥2
(j = {1, . . . ,m}), between the transformed scene point, f (⃗pi),
and its corresponding nearest point, p⃗′j , in the model view
Im. It is noteworthy that both the F function and either the
fitness or the objective function (see Section III) bear identical
significance in the optimization process.

Ultimately, to accelerate the calculation of the clos-
est/nearest point for each f (⃗pi) point, sophisticated indexing
structures like kd-trees [43] or the grid closest point (GCP)
transform [44] are commonly used employed. Specifically,
this work makes use of these structures in the experimental
section.

III. BRIEF OVERVIEW
Following the inception of the initial ICP algorithm, numer-
ous additions have been put forth to enhance its capabili-
ties [8], [45]. Since the initial endeavors to address the IR

problem using Softcomputing-based solutions, this subject
has evolved into a highly active realm of research, marked by
a substantial influx of proposals. However, there is a pressing
need for an updated examination of the SoTA owing to the
emergence of new and innovative enhancements in the past
recent years.

Then, this section is devoted to present a brief revision
of the most pertinent IR methods within the field. Refer to
the subsequent contributions for a more in-depth overview
conducted up to the year 2021 [4]–[6], [15]. In addition, new
emerging approaches within the field of DL is accordingly
introduced below.

A. EVOLUTIONARY AND METAHEURISTC-BASED
APPROACH

In [46], the authors introduced a novel IR approach by hy-
bridizing a self-adaptive ES algorithm with an accelerated
PSO algorithm, denoted as ES-APSO. This recent innova-
tion was specifically crafted for the purpose of signature
recognition. Notably, their PSO strategy draws inspiration
from the Firefly Optimization (FiFO) [47] algorithm, which
mimics the flashing behavior of fireflies. Essentially, FiFO
adheres to three idealized rules. Firstly, fireflies exhibit unisex
attraction, meaning one firefly is drawn to others irrespective
of their gender. The second rule posits that attractiveness is
proportionate to brightness, with both diminishing as distance
increases. The third rule pertains to the brightness of a firefly,
determined by the landscape of the objective function (i.e.,
F). ES-APSO underwent extensive testing across a diverse
set of experiments using various 2D images representing
signatures. The results were subsequently compared against
several canonical versions of FiFO. The experimental out-
comes underscored the efficacy of ES-APSO in addressing
instances of signature recognition. In [48], the authors present
an improvement to monomodal IR of medical images, intro-
ducing the integration of the Cuckoo Search (CS) method
for generating Lévy flights. This modification and optimiza-
tion are specifically tailored for application in MRIs, with
a primary focus on brain cancer detection. The effective-
ness of the proposed monomodal IR with CS algorithm was
evaluated through a comparative analysis with conventional
monomodal IR approaches. In [49], the authors present a
novel technique for IR under geometric perturbations, encom-
passing rotations, translations, and non-uniform scaling. The
input images, whether monochrome or colored, undergo pre-
processing using a noise-resistant edge detector to yield bina-
rized versions. Their method leverages the efficiency of com-
putations conducted in reduced representations by adopting a
memetic approach ( [50]), yielding rapid and promising initial
solutions. As stated by the authors, the proposed method
amalgamates bio-inspired and EC techniques with clustered
search, implementing a procedure specifically designed to
tackle the premature convergence issue across various scaled
representations.
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B. DEEP LEARNING-BASED APPROACH
As mentioned earlier, the primary constraint of ICP lies in its
reliance on a nearest neighbor-based correspondence strategy,
which is greatly influenced by the initialization. Present DL-
based approaches [17] employ two categories of solvers,
contingent on whether they depend on explicit correspon-
dences [51].

Hence, in this scenario, DL is implemented to enhance
both the extraction and matching of features. On the one
hand, DCP [52] integrates DGCNN [53] for embedding point
clouds and incorporates an attention-basedmodule for match-
ing features. This is followed by the application of a dif-
ferentiable SVD solver within an end-to-end architecture for
IR. On the other hand, DGR [54] utilizes fully convolutional
geometric features for feature extraction and employs a 6-
dimensional segmentation for predicting correspondences. In
line with the previous ones, DeepGMR [55] learns to identify
pose-invariant correspondences between Gaussian mixture
models that approximate the shape. Subsequently, it computes
the transformation based on the model parameters, enabling
the suppression of noise in the point cloud. The primary
limitation of DL-based IR methods based on correspondence
lies in the robustness of the SVD solver. This enforces feature
matching to be nearly free of outliers, a challenge that proves
difficult to overcome.

In summary, while this emergent IR approach, i.e. DL-
based IR, shows encouraging performance, its resilience re-
lies significantly on the utilization of proficient differentiable
solvers, coupled with the application of correspondences de-
fined heuristically. Ultimately, techniques centered around
this approach frequently find themselves ensnared in local
minima.

IV. JAYA-BASED RIR PROPOSAL
It is widely acknowledged that conventional or classical
optimization methods come with certain constraints when
addressing intricate optimization challenges. These limita-
tions are predominantly linked to the inherent search mecha-
nisms embedded in these traditional approaches. To mitigate
some of the shortcomings associated with classical optimiza-
tion procedures, researchers have introduced Softcomputing-
based optimization techniques, e.g. EAs and Metaheuris-
tics, alternatively known as advanced optimization tech-
niques, primarily stemming from artificial intelligence re-
search. These paradigm of algorithms exhibit problem- and
model-independent characteristics, with the majority being
both efficient and adaptable. The field of research dedicated
to these techniques remains highly dynamic, witnessing a
continuous influx of novel EC and Metaheuristic-based en-
hanced algorithms [11], [13], [56].

In the last few years, Dr. Rao proposed a novel optimiza-
tion algorithm called JAYA [18], devoid of any metaphorical
foundation. The algorithm constantly strives to get closer
to success, aiming for the optimal solution, while actively
avoiding failure, which involves avoiding convergence with
respect to the least favorable outcome. Its overall goal is the

triumphant achievement of the best solution, which inspires
its nomenclature: JAYA, a Sanskrit term meaning triumph or
victory. Designed specifically for global optimization chal-
lenges, this algorithm is versatile in addressing both con-
tinuous and discrete optimization problems, covering single,
multiple or numerous objectives.
Following the introduction of the JAYA algorithm, various

adaptations and modifications have been introduced to en-
hance its applicability in the field [19]. The utilization of the
JAYA algorithm and its derivatives across diverse engineering
and scientific domains is also relevant. Researchers may ob-
serve that, aside from its simplicity and efficacy, the JAYA al-
gorithm operates without the necessity for algorithm-specific
(i.e. control) parameters, thereby alleviating the drawbacks
associated with numerous advanced optimization algorithms
that require meticulous tuning of such parameters. As empha-
sized in this work, improper adjustment of these algorithm-
specific parameters can lead to near-optimal results or con-
finement to local optima.
A handful of methods incorporating a self-tuning method-

ology of the control parameters have been contributed to
the SoTA [57]–[59], and they are acknowledged as the most
advanced RIR methods currently available. Next subsections
are devoted to introduce the specif design of an enhanced RIR
method using a fully self-tuned approach.

A. RIR OPTIMIZATION BY JAYA
Unlike the dual phases under consideration (i.e., the teacher
phase and the learner phase) in the TLBO algorithm [60],
JAYA operates with a single phase (i.e. teacher phase). Its
concept is straightforward, demonstrating superior perfor-
mancewhen compared to alternative optimization algorithms.
This algorithm proves effective in attaining global solutions
for both continuous and discrete optimization problems, re-
quiring minimal computational effort while maintaining high
consistency.
JAYA is easy to develop and eliminates the need for ad-

justing algorithm-specific parameters. P initial solutions are
randomly generated within the specified upper and lower
bounds of the process variables. Subsequently, each variable
in every solution undergoes a stochastic update as defined by
Eq. 4. Consider F as the objective function to minimize (or
maximize), and let there be d design variables. The objective
function value for the best solution is denoted as Fbest , while
the objective function value for the worst solution is denoted
as Fworst (see pseudo-code in Figure 3 for the JAYA-based
RIR method).

P(i+ 1, j, k) = P(i, j, k)
+r(i, j, 1)(P(i, j, b)− |P(i, j, k)|)
−r(i, j, 2)(P(i, j,w)− |P(i, j, k)|)

(4)

Here, b and w denote the indices of the best and worst
solutions within the current population P (see Figure 2). The
variables i, j, k represent the indices of the iteration, design
variable, and candidate solution, respectively. P(i, j, k) de-
notes the j-th variable of the k-th candidate solution in the i-
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th iteration. The numbers r(i, j, 1) and r(i, j, 2) are randomly
generated within the range of [0, 1], serving as scaling factors
to ensure effective diversification. JAYA’s primary objective
is to enhance the objective function, i.e. F , for each candidate
solution in the population.

FIGURE 2. A general flowchart of JAYA.

Consequently, the algorithm seeks to shift the F value of
each solution towards the best solution, Fbest , by updating
variable values. Following the updates, the new solutions
are compared to their corresponding old solutions, and only
superior solutions (thosewith improvedF values) are retained
for the next generation. Thus, with each generation, a solution
moves closer to the best solution, while simultaneously dis-
tancing itself from the worst solution, Fworst . This achieves a
balanced trade-off between intensification and diversification
in the search process. The algorithm consistently endeavors to
move closer to success (i.e., reaching the best solution) and
avoids failure (i.e., moving away from the worst solution). Its
goal is triumphant attainment of the best solution, denoted as
Fbest .
Unlike prior contributions in RIR that employed a self-

tuned approach [57]–[59], the JAYA-based RIR introduced in
this work incorporates self-adaptation for the population size.
Consequently, this novel proposal can be characterized as the
first fully self-tuned RIR method in the field. The subsequent
section is dedicated to introducing this specific adaptation
strategy.

B. SELF-TUNING THE POPULATION SIZE
The relevant aspect is that the JAYA algorithm, being self-
adaptive, automatically tunes the population size [61]. Conse-

FIGURE 3. The pseudo-code of the JAYA-based RIR method.

quently, users are relieved from this task. Assuming the initial
population is random and equals (10∗d), where d represents
the number of design variables, the formulation for the new
population is as follows:

mnew = round(mold + r ∗ mold) (5)

where, r denotes a randomly generated value within the
range of [−0.5, 0.5]. The population size may either decrease
or increase based on the negative or positive nature of the
random value r (see pseudo-code in Figure4 for the fully self-
tuned JAYA-based RIR method). For instance, if the current
population size mold is 70 (i.e. (10 ∗ 7), being 7 the number
of design variables for the RIR problem) and the randomly
generated number r is−0.25, the ensuing population size for
the subsequent iteration mnew will be 53 (see Eq. 5), which
means a decrease of the population size.
Additionally, elitism is incorporated when the population

size of the new population is higher than the population size
of the old population (mnew > mold ). In this scenario, the
entire existing old population is carried over to the new one,
and the best optimal solutions from the current population are
allocated to the remaining mnew−mold solutions. Conversely,
if the population size of the new population is smaller than
that of the old population (mnew < mold ), only the best popu-
lation from the old one is transferred to the new population.
If the population size decreases and falls below the count of
design variables d , it is adjusted to be equal to the number of
design variables (i.e., mnew = d when mnew < d). This strat-
egy promotes a suitable trade-off between intensification and
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FIGURE 4. The pseudo-code of the fully self-tuned JAYA-based RIR
method.

diversification of the search, and ensures that the solutions do
not get trapped in local optima.

C. ADAPTIVE LOCAL-SEARCH
Crossover-based local-search (XLS) [62] is a singular class of
optimization methods that are especially attractive for real-
coding problems. Indeed, they consider crossover operators
that have a self-adaptive nature. Such operators can generate
trial solutions according to the distribution of the parents
solutions in the population without any adaptive parameters.
In particular, in [63] the author shown that the unimodal
normal distribution crossover (UNDX) operator can provide
self-adaptive behavior on a number of real-coded problems,
and it has been applied successfully to real and challenging
optimization problems. The fundamental idea of XLS is to
induce an LS in the vicinity of specific solutions involved to
improve the exploitation capabilities of the host global search
algorithm.

In the specific design of the fully self-adaptive JAYA-based
RIR method (see pseudo-code in Figure 4), the proposed
UNDX-based XLS approach is designed as follows: the best
solution is considered to be improved, called family father
(i.e. Pb), only in case it was updated in the current i-th
iteration. T solutions in the current populationP are randomly

selected to pair with the Pb solution to create new trial solu-
tions in its neighborhood through the UNDX operator ( [63]).
Finally, a choice is made to replace the father Pb solution with
a new created one (from the T solutions generated by the
UNDX operator) in case it is better than the former ( [64]).
Additionally, this specific design for the UNDX-based XLS
considers that the three input solutions X1,X2, and X3 that
will be fed to the UNDX operator (see [63]) refer to the best
(Pb) , worst (Pw) and a randomly chosen solution from the i-th
current iteration of P, respectively.
Finally, to make the XLS fully adaptive, the value of T is

dynamically adjusted equivalently as done in Eq. 5. Specifi-
cally, Eq. 6 shows the value of T for the i-th iteration in which
it is decided to apply the UNDX-based XLS mechanism.

T = round( 13 · mnew) (6)

where mnew is the number of solutions in the i-th popula-
tion; in case the value of T is less than 3, then T = 3 new
trial solutions are generated within the UNDX-based XLS
strategy.

V. COMPUTATIONAL STUDY
The purpose of this section is to present a series of exper-
iments in order to study the results obtained through the
proposed fully self-tuned JAYA RIR method. In addition, its
performance will be compared against to that obtained by
those methods proposed to date in the SoTA, also making
use of similar optimization approaches: SaEvO [58],MA [50],
DE [65], GA [43], PSO [66], GA [45], ABC [67],
StEvO [57],BBO [67], GA [44], HS [67], GA [68].
The proposed JAYA-based RIR algorithm was imple-

mented in C++ and compiled with the GNU/g++ toolkit. All
the tested methods have been adapted by using the same
representation of the rigid transformation (f ) and objective
function (see Eq.(3) in Section II-B).
In order to perform a fair comparison among the RIR

methods, it has been considered for all tested methods the
same stop criterion previously used in the experimental sec-
tions of [4], [58], [67], i.e. the run (CPU) time. Specifically,
the 20 seconds established in those contributions have been
maintained in this work. Moreover, both the same control
parameters for the tested methods and the running hardware
have been maintained in this work, i.e. using an Intel Pentium
IV 2.6MHz processor and 2GBRAM. Note that the proposed
JAYA-based RIR method does not need any adjustment of the
control parameters.

A. RANGE IMAGE DATASETS
In order to ease the comparison with the results reported in
other contributions in the field [4], [58], [67], the experiments
correspond to a number of pair-wise RIR problem instances
using different range datasets obtained from the well-known
public repository of the Signal Analysis and Machine Per-
ception Lab (SAMPL). Figure 5 shows the six range image
datasets considered, named as in previous contributions [43]:
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‘‘Bird’’, ‘‘Frog’’, ‘‘Tele’’, ‘‘Angel’’, ‘‘Buddha’’, and ‘‘Lob-
ster’’. The datasets range from eight to fifteen thousand points
size.

FIGURE 5. Range image dataset from the SAMPL repository. From left to
right and from top to bottom: ‘‘Bird’’, ‘‘Frog’’, ‘‘Tele’’, ‘‘Angel’’, ‘‘Buddha’’,
and ‘‘Lobster’’ images.

Concerning the RIR problem scenarios, 20 and 40 overlap-
ping degrees of the turn table have been commonly used in
the literature for testing RIR proposals [3], [4]. As stated, the
lower the rotation degree of the turn table is, the more over-
lapped the adjacent images and the easier the RIR problem
will be (see Section II-A). Then, that scenario considering 40
degree overlap is considered the most complex and challeng-
ing one.

Finally, it has been used both the GCP structure (see Sec-
tion II-B) and the subsampled version (5K randomly sampled
version) of each range image in order to speed up the compu-
tation of the objective function (see Eq.(3) in Section II-B).

B. EXPERIMENTAL SETUP
To avoid execution dependency, 30 different runs were per-
formed on each of the 13 RIR algorithms before the align-
ment tested, taking into account image overlap of 20 and 40
degrees, respectively (see section V-A).

All tested algorithms start with an initial set of random
solutions. Then, in each run, a randomly generated rigid
transformation is applied using an uniform distributed scene
image fr(Is) and using the RIR method to find the optimal
transformation f ∗ between the transformed escene image
fr(Is) and the model image Im. Each rigid transformation is
randomly generated as follows: each of the 3 rotation axis
parameters is in the range [−1, 1], the angle of rotation is

in the range [0◦, 360◦], and the range of the 3 translation
parameters is [−40mm, 40mm].

C. ANALYSIS OF RESULTS
Tables 1 and 2 show statistical results of the minimized
objective function F (see Eq.(3)) corresponding to the 30
runs carried out by each of the 13 RIR methods when facing
the 2 RIR problem scenarios, i.e. 20 and 40 degrees over-
lap. Specifically, each column of these tables refer to the
range dataset, the RIR method, and the minimum, maximum,
mean, and standard deviation values. Furthermore, the last
two columns, i.e., QA and QB, rank each method based on
its quartile position with respect to the minimum and mean
values, respectively. Then, the degree of accuracy QA and
robustness QB of each method can be better assessed.
In particular, a subset of methods with the best performance

achieved in the 20 degree scenario and 4 range datasets have
been selected (see Table 1), i.e. the 7 methods with the best
rating according toQA andQB. Table 2 shows the performance
achieved by these 7 RIR methods addressing the most com-
plex scenario with 40 degrees and 6 range datasets.
Figures 6 and 7 graphically show the performance offered

by each of the 13 analyzedmethods depending on the position
they occupy according to accuracy and robustness, QA and
QB, respectively. Figure 8 shows the degree of robustness
of the 7 best RIR methods facing the 10 problem instances
designed in this experimentation, i.e. 4 and 6 for the scenarios
with 20 and 40 degrees of overlapping, respectively. Specif-
ically, each bar in the graph shows the number of times in
which the considered method has reached the best mean value
among the ten RIR problem instances.
As can be seen from the results in Table 1 for the 20 degree

scenario, the RIR methods that offer adaptive capabilities of
the control parameters are those that offer the best results:
JAYA, StEvO, and SaEvO. Also, the memetic MA proposal
and the developments based on ABC and HS achieve very
competitive performances, although lower than the adaptive
ones. It can be seen how the methods with the best per-
formance in all cases are JAYA, StEvO, MA, and SaEvO.
The common denominator in the design of the majority of
these best algorithms is that a specific mechanism to exploit
exploitative capabilities is incorporated, i.e. a local search.
Therefore, this design aspect is of special importance in
obtaining a better performance. This same behavior is also
reflected in the results shown in Table 2 corresponding to the
scenario with 40 degrees of overlapping.
Finally, if the results are analyzed globally taking into ac-

count the ten RIR problem instances addressed in the two sce-
narios considering variable complexity, it can be highlighted
that the proposed design based on JAYA is the RIR method
that offers the best performance in terms of robustness, this
being one of the main objectives to be analyzed in this work.
Specifically, JAYA behaves as the most robust method in 50
percent of the cases, compared to 30 and 20 percent for StEvO
and SaEvO, respectively.
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TABLE 1. Pre-alignment RIR results of the 20 degree and 4 range datasets
problem scenario. The unit length is squared millimeters. The best
minimum and mean values are underlined. Also, accuracy and robustness
are shown according to quartile positions, QA and QB, respectively.

Dataset RIR method Min. Max. Mean S.D. QA QB

SaEvO [58] 0.2447 0.9441 0.3499 0.2119 1 1
MA [50] 0.2448 0.9453 0.3185 0.1461 1 1
DE [65] 0.2493 0.9462 0.6732 0.2209 2 3
GA [43] 0.2495 0.9555 0.4179 0.2560 2 2
PSO [66] 0.4801 0.9814 0.9108 0.1013 4 4
GA [45] 0.4731 0.9733 0.8601 0.1236 3 4

Angel 20o ABC [67] 0.2470 0.5289 0.3319 0.1007 2 2
StEvO [57] 0.2448 0.5268 0.2947 0.0886 1 1
BBO [67] 0.2576 0.9554 0.4975 0.2692 3 3
GA [44] 0.2553 0.9531 0.5818 0.2792 3 3
HS [67] 0.2494 0.9535 0.4412 0.2724 2 2
GA [68] 0.9092 0.9805 0.9651 0.0151 4 4
JAYA 0.2463 0.3638 0.3076 0.0298 4 1

SaEvO [58] 0.1124 0.5998 0.1812 0.1572 1 1
MA [50] 0.1132 0.8881 0.2075 0.2015 2 2
DE [65] 0.1245 0.8429 0.4793 0.2157 4 3
GA [43] 0.1152 0.9178 0.3506 0.3112 2 2
PSO [66] 0.4337 0.9613 0.8638 0.1180 4 4
GA [45] 0.3125 0.9361 0.7153 0.1678 4 4

Bird 20o ABC [67] 0.1167 0.9009 0.3107 0.2451 2 2
StEvO [57] 0.1125 0.5977 0.1814 0.1569 1 1
BBO [67] 0.1263 0.9301 0.4347 0.2759 3 2
GA [44] 0.1199 0.9180 0.4465 0.2725 3 3
HS [67] 0.1170 0.9188 0.4671 0.3603 2 3
GA [68] 0.8577 0.9545 0.9335 0.0214 4 4
JAYA 0.1128 0.6543 0.1782 0.1268 1 1

SaEvO [58] 0.1189 0.5296 0.1789 0.1337 1 1
MA [50] 0.1194 0.8120 0.2029 0.1756 1 2
DE [65] 0.1322 0.7345 0.4374 0.1615 3 3
GA [43] 0.1249 0.8555 0.4329 0.2415 2 2
PSO [66] 0.3633 0.9407 0.7792 0.1448 4 4
GA [45] 0.4342 0.9044 0.6972 0.1353 4 4

Frog 20o ABC [67] 0.1226 0.7733 0.2437 0.1798 2 2
StEvO [57] 0.1193 0.5308 0.1792 0.1337 1 1
BBO [67] 0.1649 0.8690 0.5396 0.2023 3 3
GA [44] 0.1234 0.8311 0.5119 0.2162 2 3
HS [67] 0.1260 0.8751 0.3476 0.2749 3 2
GA [68] 0.8147 0.9331 0.8895 0.0347 4 4
JAYA 0.1195 0.5765 0.1776 0.0987 2 1

SaEvO [58] 0.0735 0.1071 0.0780 0.0080 1 1
MA [50] 0.0736 0.7867 0.1639 0.2192 2 2
DE [65] 0.0755 0.6578 0.3193 0.1819 2 3
GA [43] 0.0750 0.9234 0.3728 0.3366 2 3
PSO [66] 0.2510 0.9319 0.7801 0.1622 4 4
GA [45] 0.3374 0.9161 0.7477 0.1472 4 4

Tele 20o ABC [67] 0.0752 0.8691 0.1501 0.1817 2 1
StEvO [57] 0.0735 0.8647 0.1044 0.1414 1 1
BBO [67] 0.0829 0.8699 0.251 0.2292 3 2
GA [44] 0.0791 0.8958 0.3159 0.2531 3 3
HS [67] 0.0754 0.8721 0.2350 0.2963 2 2
GA [68] 0.7509 0.9519 0.9132 0.0438 2 4
JAYA 0.0721 0.5209 0.2267 0.1318 1 2

TABLE 2. Pre-alignment RIR results of the 40 degree and 6 range datasets
problem scenario. The unit length is squared millimeters. The best
minimum and mean values are underlined. Also, accuracy and robustness
are shown according to quartile positions, QA and QB, respectively.

Dataset RIR method Min. Max. Mean S.D. QA QB

SaEvO [58] 0.3493 0.9440 0.4983 0.2175 1 1
MA [50] 0.3498 0.9539 0.5271 0.2467 2 2
GA [43] 0.3527 0.9711 0.6790 0.2640 3 4

Angel 40o ABC [67] 0.3542 0.9098 0.5265 0.2210 3 2
StEvO [57] 0.3493 0.9436 0.4990 0.2175 1 1
HS [67] 0.3553 0.9567 0.6460 0.2665 4 3
JAYA 0.3503 0.9509 0.5207 0.2001 2 2

SaEvO [58] 0.2028 0.9269 0.4451 0.3052 1 1
MA [50] 0.2052 0.9373 0.4626 0.3175 2 2
GA [43] 0.2159 0.9425 0.5795 0.3158 3 3

Bird 40o ABC [67] 0.2124 0.9308 0.5072 0.2829 3 3
StEvO [57] 0.2041 0.9168 0.3741 0.2655 1 1
HS [67] 0.2165 0.9430 0.6151 0.3058 4 4
JAYA 0.2057 0.9308 0.4412 0.2596 2 1

SaEvO [58] 0.3990 0.9032 0.6120 0.1224 2 2
MA [50] 0.3978 0.7524 0.6300 0.1020 1 2
GA [43] 0.5075 0.9506 0.7146 0.1126 3 3

Buddha 40o ABC [67] 0.4473 0.9446 0.6690 0.1220 3 4
StEvO [57] 0.3996 0.6873 0.5730 0.1103 2 1
HS [67] 0.5526 0.9285 0.7147 0.1044 4 4
JAYA 0.3948 0.7318 0.5516 0.1097 1 1

SaEvO [58] 0.2536 0.7725 0.3991 0.1963 2 1
MA [50] 0.2548 0.7812 0.4700 0.2271 2 2
GA [43] 0.2735 0.9474 0.6923 0.1750 3 3

Frog 40o ABC [67] 0.2717 0.8410 0.5512 0.2015 3 3
StEvO [57] 0.2517 0.7717 0.3941 0.1856 1 1
HS [67] 0.4026 0.9005 0.7403 0.1161 4 4
JAYA 0.2521 0.8149 0.3870 0.1667 1 1

SaEvO [58] 0.2505 0.7582 0.3787 0.1894 1 1
MA [50] 0.2490 0.8056 0.4369 0.2231 1 2
GA [43] 0.2665 0.9201 0.5727 0.2089 3 3

Lobster 40o ABC [67] 0.2745 0.8220 0.6249 0.1530 4 4
StEvO [57] 0.2522 0.8013 0.3816 0.1916 2 2
HS [67] 0.2665 0.9257 0.5890 0.1964 3 3
JAYA 0.2562 0.7004 0.3744 0.1533 2 1

SaEvO [58] 0.1050 0.8062 0.1911 0.1667 1 1
MA [50] 0.1062 0.8354 0.2217 0.2116 2 2
GA [43] 0.1077 0.8950 0.5354 0.2929 3 4

Tele 40o ABC [67] 0.1082 0.8607 0.2700 0.2222 3 4
StEvO [57] 0.1054 0.4708 0.1682 0.1226 1 1
HS [67] 0.1095 0.9222 0.4129 0.3072 4 3
JAYA 0.1057 0.728 0.2512 0.1915 2 2

VI. CONCLUSIONS
Image registration has demonstrated to be a very active re-
search area in the last decade, especially when consider-
ing new optimization alternatives as those from the soft-
computing field. In contrast to traditional image registration
methods such as the ICP algorithm, this emerging paradigm
of optimization approaches (i.e. metaheuristics, evolutionary
algorithms, swarm intelligence, etc) provide a more inter-
esting view-point due to they do not require a good initial
estimation of starting solutions and they avoid to be trapped
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FIGURE 6. Statistical results of the tested RIR methods when facing the
20 degree overlap RIR scenario. RIR methods are sorted from left (best) to
right (worst) according to their best performance considering the
quartile-based performance scores QA and QB in Table 1.

in local optima. However one of the main shortcomings of
this promising algorithms is that they must be carefully tuned
in order to achieve their best performance for each problem
addressed.

In this work, a brief updated review of the state-of-the-
art methods originating from both the previous paradigm and
others of recent appearance, such as the one based on deep
learning tools, has been carried out. Next, the progress in the
registration problem has been delved into using the optimiza-
tion techniques that have offered the best performance to date,
i.e. those based on the softcomputing paradigm. Due to the
promising results achieved by methods of this family with
self-adaptive capabilities of the control parameters, this work
has taken a step further in the proposal of a novel method
based on the JAYA algorithm, which does not require the
adjustment of no control parameters. Then, it can be said that,
as far as is known, this is the only image registration method
that does not require any prior adjustment.

An extensive experimentation has been designed for the
adequate comparison of the proposed method based on the
JAYA algorithm against 12 RIR methods within the same
category, all of them from the state of the art. Likewise, 10
range image registration problem instances that make up two
scenarios of increasing complexity have been designed. In
particular, range image datasets from one of the most used

FIGURE 7. Statistical results of the best seven tested RIR methods when
facing the 40 degree overlap RIR scenario. RIR methods are sorted from
left (best) to right (worst) according to their best performance considering
the quartile-based performance scores QA and QB in Table 2.

FIGURE 8. Ranking of the seven best tested RIR methods when facing all
the RIR scenarios, i.e. 20 and 40 degree overlap. From left to right are
shown the best and worst methods, respectively, according to the number
of times each method achieved the best mean value in Tables 1 and 2.
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repositories in the literature have been used to address this
type of problems, i.e. the SAMPL repository. From the results
obtained, it can be concluded that the methods that perform
an adaptive adjustment of the control parameters are the ones
that offer the best performance. In particular, the proposal
based on the JAYA algorithm is the method with the greatest
robustness within this last category, which is one of the main
objectives to be analyzed in this work.
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