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ABSTRACT Uncertainty quantification (UQ) in polynomial chaos expansion (PCE) suffers from the curse of dimensionality, 

which is fundamentally reflected in that the number of the PCE coefficients to be found grows rapidly as the number of random 

inputs increases, and thus the number of samples required increases dramatically.  Regardless of the approach taken to alleviate 

this disaster, we are usually faced with the technical challenge of automatically and programmatically determining the basis 

functions during the PCE implementation, which are composed of a large number of multivariate polynomials. To address this 

problem, this paper proposes an algorithm based on the recursive idea for automatically determining the basis functions, and 

combines this algorithm with the latest weight-based regression called least squares polynomial chaos regression (LSPCR), 

proposes the implementation of the LSPCR method in the medium- and high-dimensional cases, and evaluates its performance 

in the electromagnetic coupling problem of the transmission lines (TLs) in this case. Subsequently, the performance of six 

algorithms for LSPCR are compared in the medium- and high-dimensional, low-order cases, each algorithm consisting of a 

sampling strategy selected from asymptotic sampling (AS), standard sampling (SS), and coherence-optimal sampling (COS), 

paired with a norm problem chosen from either least squares optimization (LSO) or 𝓵𝟏 -minimization (𝓵𝟏 -M) problems. 

Numerical experiments demonstrate the excellence of the proposed algorithm. Furthermore, the results also show that only the 

algorithms that employ the SS (SSs) and the algorithms based on the COS (COSs) require no more than 1.4% of the total 

Monte Carlo (MC) computation time when producing similarly accurate results to the MC, regardless of the chosen norm 

problem. 

 

INDEX TERMS uncertainty quantification (UQ), polynomial chaos expansion (PCE), least squares 

polynomial chaos regression, high dimensionality, transmission lines (TLs). 

I. INTRODUCTION 

Polynomial chaos expansion (PCE), a prominent method for 

uncertainty quantification (UQ) in various engineering fields 

[1]-[18], gradually shows a significant decrease in its 

efficiency as the count of random parameters increases, i.e., 

the curse of dimensionality.  

In recent years, many efficient techniques have been 

proposed to alleviate dimensionality disasters. A tensor 

recovery approach to improve efficiency was proposed in 

[19], which exploits the sparsity and low-rank properties of 

some higher-order tensors to compress the number of samples 

required. [20] discussed a combination of a hierarchical 

approach and the Stochastic Galerkin (SG) method, where the 

hierarchical approach is introduced to merge the underlying 

geometric and material uncertainty parameters into the 

uncertainty quantities of the associated per-unit-length 

parameters to achieve dimensionality reduction. In [21], a 

combination of a decoupled perturbative technique with the 

SG method was presented, where the decoupling technique 

allows a better scaling of the number of the PCE coefficients 

and thus a reduction of the dimensional catastrophe. A new 

polymorphic formulation based on the generalized PC 

method was developed in [22], where polymorphic variables 

can lead to a compression of the dimensionality of random 

inputs by capturing the combined effect of epistemic and 

aleatory uncertainties in the system. [23] proposed an 

algorithm combining partial least squares techniques and the 

generalized PC method, where a nonlinear partial least 

squares technique is used to convert a group of random 

variables (RVs) into a smaller number of uncorrelated ones, 

followed by dimensionality reduction. 

All of these approaches focus on two main ways. One 

approach is to compress the number of samples required 
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through certain techniques. Another approach is to reduce the 

dimensionality by compressing the number of random input 

parameters through certain techniques, which may not work 

in all high-dimensional UQ problems, or even if they do work 

in some problems, the dimensionality may still remain high 

after the reduction. Regardless of the approach taken to 

alleviate this disaster, we are usually faced with the technical 

challenge of automatically and programmatically 

determining the basis functions during the PCE 

implementation, which are composed of a large number of 

multivariate polynomials. To address this problem, this paper 

proposes an algorithm based on the recursive idea for 

automatically determining the basis functions, and combines 

this algorithm with the latest weight-based regression called 

least squares polynomial chaos regression (LSPCR) [24]-[26], 

proposes the implementation of the LSPCR method in the 

medium- and high-dimensional cases, and evaluates its 

performance in the electromagnetic coupling problem of the 

transmission lines (TLs) in this case. The LSPCR method 

increases efficiency by compressing the number of samples. 

It differs from the generally known regression approach. In 

the latter, the required samples are taken across the entire 

random space corresponding to the random parameters, and 

the original stochastic problem is addressed by solving the 

regression problem without weights over the entire random 

space. The LSPCR method transforms the original stochastic 

problem from the entire random space into a suitable subset 

and solves the weighted regression problem on the subset to 

obtain the PCE coefficients, where different sampling 

strategies corresponding to different weights are established, 

thus obtaining high quality samples to improve efficiency. 

Six algorithms for LSPCR have been designed and 

implemented, each consisting of a sampling strategy selected 

from asymptotic sampling (AS), standard sampling (SS), and 

coherence-optimal sampling (COS), paired with a norm 

problem chosen from either least squares optimization (LSO) 

or ℓ1-minimization (ℓ1-M) problems, where the AS and the 

COS are newly developed sampling strategies based on 

weights. The six algorithms are then compared in the 

medium- and high-dimensional, low-order cases.  

The results of these comparisons will be the most up-to-

date. This is because the difference in performance of these 

six algorithms is related to the dimensionality of the random 

input parameters and the highest order of the basis function. 

Moreover, the comparison of the six algorithms in the low-

order, medium-dimensional case, the comparison of the LSO-

based algorithms in the low-order, high-dimensional case, 

and the comparison of the ℓ1-M-based algorithms in the low-

order, high-dimensional case are not considered in [24][25], 

and [26] only considers the six algorithms in the low-order, 

low-dimensional case for comparison. 

The organization of this paper is as follows: Section II 

presents the LSPCR implementation scheme for medium- and 

high-dimensional cases. Section III introduces the application 

of the LSPCR method to medium- and high-dimensional TL 

problems. Finally, a conclusion is drawn in Section IV. 

 

II. LSPCR IMPLEMENTATION SCHEME FOR MEDIUM 
AND HIGH DIMENSIONAL CASES 

A. Review of the LSPCR method 

Consider the stochastic differential equation 
 

ℒ(𝜁, 𝑥, 𝑡, 𝑤) = ℋ(𝜁, 𝑥, 𝑡), 𝑥 ∈ 𝐷,            (1) 
 

where  ℒ is a differential operator, 𝑥 ∈ 𝐷 ⊂ ℝ𝑚, 𝑚 = 1, 2, 3, 
𝜁 = (𝜁1, ⋯ , 𝜁𝑑) is a random vector, and its probability density 

function (pdf) is 𝜌 with the support Γ. If the components of 𝜁 

are independent of each other and all in Askey-scheme [27], 

and equation (1) has a unique solution 𝑤 = 𝑤(𝜁, 𝑥, 𝑡) whose 

variance is bounded, then 𝑤(𝜁, 𝑥, 𝑡) can be approximated as 
 

𝑤(𝜁, 𝑥, 𝑡) ≈ ∑  

𝑃

𝑘=1

𝑐𝑘(𝑥, 𝑡)Ψ𝑘(𝜁),                   (2) 

 

with 
 

Ε[Ψ𝑚(𝜁) Ψ𝑛(𝜁)]=ℎ𝑚
2 𝛿𝑚𝑛, 

 

where 𝑃 is the number of the basis functions {Ψ𝑘(𝜁)}𝑘=1
𝑃 , Ε 

denotes the expectation operator, ℎ𝑚
2 = ∫  

Γ
Ψ𝑚

2 𝜌(𝜁)𝑑𝜁, 

𝛿𝑚𝑛 is the Kronecker function. If the highest order of basis 

functions is 𝑝, then 𝑃 = (
𝑝 + 𝑑

𝑑
). 

To obtain the coefficients 𝒄: = (𝑐1, ⋯ , 𝑐𝑃)T in (2), the 

LSPCR method is used.  Once the PCE coefficients are 

obtained, the first two moments of 𝑤(𝜁, 𝑥, 𝑡)  can be 

expressed according to the coefficients 𝒄.  

1)  PRINCIPLE OF THE LSPCR METHOD  

We take 𝑁  samples {𝜂(𝑖)}𝑖=1
𝑁  by some kind of sampling 

strategies, and the corresponding solutions of (1) are denoted 

as {𝑤(𝜂(𝑖))}𝑖=1
𝑁 ,where 𝑁  is the number of independent 

samples. Two different weight-based norm problems, 

including the LSO problem [24], i.e.,  
 

argmin
𝒄̂

  ∥ 𝑽𝒘 − 𝑽𝜱𝒄̂ ∥2,                       (3) 

 

and the ℓ1-M problem [25], i.e., 
 

argmin
𝒄

  ∥ 𝒄̂ ∥1   subject to ‖𝑽𝒘 − 𝑽𝜱𝒄̂‖2 ≤ 𝛿      (4) 

are used to obtain the coefficient 𝒄̂ in (2), where 𝑽(𝑖, 𝑖) =

𝜑(𝜂(𝑖)),  𝒘 ≔ (𝑤(𝜂(1)), ⋯ , 𝑤(𝜂(𝑁)))
T

, 𝚽(𝑖, 𝑗) ≔ Ψ𝑗(𝜂(𝑖)), 
 

and 𝛿 is a tolerance for solution imprecision, 𝜑 is named the 

weight function. 

2) THREE SAMPLING STRATEGIES 

Here we introduce the SS, the AS, and the COS. The AS and 

the COS have recently been developed based on weights and 

are unique in that they do not sample based on the pdf 𝜌(𝜂) 

of  𝜁 in (1), but on a newly constructed distribution. 

Furthermore, they do not sample over the entire random space 

Γ as usual, but over a subset of it.  
 

(a) Standard sampling 

The SS is to draw samples according to the pdf 𝜌(𝜂) of 𝜁 in 

(1), and its weight function is 𝜑(𝜂) = 1. 
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(b) Asymptotic sampling 

If 𝜁 in (1) is a 𝑑-dimensional standard normal random vector, 

then the AS is to take samples from the uniform distribution 

supported on a 𝑑 -dimensional sphere whose radius is 𝑟 =

√2 ⋅ √2𝑝 + 1. Its samples can be generated by the following 

algorithm. First, draw samples of 𝑍: = (𝑧1, ⋯ , 𝑧𝑑),  where 

𝑧1, ⋯ , 𝑧𝑑  independently follow normal distributions with 

zero mean and the same variance. Second, take samples of 𝑈, 
which is uniformly distributed on [0,1]. Third, take samples 

of  𝑋 =
𝑍

∥𝑍∥2
⋅ 𝑟 ⋅ 𝑈

1

𝑑 , which is a uniform distribution of radius 

𝑟 on a 𝑑-dimensional sphere. In this case, the weight function 

is 𝜑(𝜂) = exp (−∥ 𝜂 ∥2
2/4). 

 

(c) Coherence-optimal sampling 

The COS uses 𝑓𝑋(𝜂): = 𝑎2𝜌(𝜂)𝐵2(𝜂) for sampling, and the 

weight function is 𝜑(𝜂) =
1

𝐵(𝜂)
, where 𝐵(𝜂): = √∑  𝑃

𝑘=1 |Ψ𝑘(𝜂)|2.     

The procedure for sampling from 𝑓𝑋 can be seen in algorithm 

1 in [26], which requires a candidate distribution. If 𝜁 in (1) 

is a standard normally distributed random vector, then the 

candidate is selected as the standard normal distribution when 

𝑝 ⩽ 𝑑,  and the uniform distribution on a d-dimensional 

sphere is selected when 𝑝 > 𝑑. 
The three sampling strategies combined with the two norm 

problems result in six algorithms. For simplicity of 

expression, we refer to the algorithm using the SS combined 

with the LSO technique as SS&LSO, and the others are 

defined similarly. In addition, COS&LSO and COS& ℓ1-M 

are collectively referred to as COSs, while ASs and SSs are 

similarly named. 
 

B.  Automatic determination of the set of basis functions 
based on recursive ideas 

Consider the set consisting of all 𝑝-order basis polynomials 

with 𝑑 elements, denoted by 𝐴. Each element of the set can 

be expressed as 
 

𝐹𝑝(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = 𝑓1(𝑥1) ∙ 𝑓2(𝑥2) ∙ ⋯ ∙ 𝑓𝑑(𝑥𝑑) 
 

with 

 
𝑂(𝑓1(𝑥1)) + 𝑂(𝑓2(𝑥2)) + ⋯ + 𝑂(𝑓𝑑(𝑥𝑑)) ≤ 𝑝, 

 

where 𝑂(𝑓𝑖(𝑥𝑖)) ( 𝑖 = 1, ⋯ , 𝑑)  denotes the order of the 

monic polynomial 𝑓𝑖(𝑥𝑖) with respect to the ith element 𝑥𝑖. 

We already know that the cardinal number of 𝐴 is 
 

𝐴̿ =
(𝑑 + 𝑝)!

𝑑! 𝑝!
. 

It can be seen that as 𝑑  and 𝑝 increase, 𝐴̿ also increases 

rapidly. For example, 𝑑 = 26, 𝑝= 4 results in 𝐴̿ = 27405. 

Therefore, to implement the LSPCR method in the high-

dimensional, high-order case, it is necessary to design an 

algorithm that can be universally applied to automatically 

generate all the elements of 𝐴 when 𝑑  and 𝑝 take arbitrary 

values. 

Denote 𝑝𝑖 = 𝑂(𝑓𝑖(𝑥𝑖)), then we have 
 

𝑝1 + 𝑝2 + ⋯ + 𝑝𝑑 ≤ 𝑝, 
 

 
FIGURE 1.  Recursive relationship between GetMultiIndex results for 
different (𝒅, 𝒑). 
 

where 𝑝𝑖  is a non-negative integer. The main point of the 

above algorithm is to find all sequences (𝑝1, 𝑝2, ⋯ , 𝑝𝑑) that 

satisfy the above inequality. 

One possible way to implement the algorithm is to 

automatically generate all possible 𝑝𝑑  sequences satisfying 

0 ≤ 𝑝𝑖 ≤ 𝑝 ( 𝑖 = 1, ⋯ , 𝑑)  in the first step, and then to 

remove those sequences for which 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑑 > 𝑝 

according to the inequality constraints in the second step. 

However, the first step of this approach leads directly to the 

curse of dimensionality, which is practically infeasible in the 

high-dimensional, high-order case. 

For this reason, we use a recursive approach to implement 

this algorithm, denoted by GetMultiIndex( 𝑑, 𝑝 ). Fig. 1 

demonstrates the recursive relationship between the results of 

GetMultiIndex for different (𝑑, 𝑝). 

From Fig. 1, we can easily derive 
 

GetMultiIndex(3,4) = ⋃ (GetMultiIndex(𝑑 − 1,𝑝 − 𝑖), 𝑖)𝑝
𝑖=0 . 

 

By induction, a general relationship can be obtained as 

follows 

GetMultiIndex(𝑑,𝑝)= ⋃(GetMultiIndex(𝑑 − 1,𝑝 − 𝑖), 𝑖)

𝑝

𝑖=0

. 

 

Denoting all sequences (𝑝1, 𝑝2, ⋯ , 𝑝𝑑) corresponding to 

basis functions as multiIndex, and summarizing the above, 

we obtain Algorithm 1 as follows. 
 

Algorithm 1 Summary of the generation of multiIndex. 

Function multiIndex = GetMultiIndex(𝑑, 𝑝). 

if 𝑝 == 0 

multiIndex = (0, 0, …, 0); return; 

end 

if 𝑑 == 1 

multiIndex = (0, 1, …, 𝑝); return; 

end 

for 𝑖 = 0: 𝑝 

multiIndex =multiIndex∪(GetMultiIndex(𝑑-1, 𝑝-𝑖), 𝑖); 

end 

end function 
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FIGURE 2.  N-conductor TL model under consideration. 

III. APPLICATION OF THE LSPCR METHOD TO 
MEDIUM AND HIGH DIMENSIONAL TL PROBLEMS 

A.  PROBLEM STATEMENT 

 In this paper, a stochastic analysis of a lossless n-conductor 

(n=10) TL system on an ideal ground, as shown in Fig. 2, is 

performed using the LSPCR method. The nominal values of 

its parameters are as follows: the length 𝐿 = 10−1 m, the 

radius 𝑟 = 3 × 10−4 m, the height ℎ = 1.27 × 10−3  m, the 

conductor distance 𝐷 = 1.27 × 10−3 m, all left terminal load 

𝑅1 = 50 Ω , all right terminal load 𝑅2 = 100 Ω.  This TL 

system is illuminated by a plane wave with the incidence 

angle 𝜃, the azimuth angle 𝜑 and the polarization angle 𝜃𝐸 , 

the waveform 𝐸(𝑡) = 𝐸0𝑒−((𝑡−𝑡0) 𝑇⁄ )2
,  where 𝐸0 = 1 kV/m, 

𝑡0 = 1 ns , 𝑇 = 50 ps. We consider two cases, one for 

medium random input dimensions and another for high 

dimensions. Specifically, 

Case 1: Assume that the field amplitude 𝐸0, the incidence 

angle 𝜃,  the azimuth angle 𝜑, the polarization angle 𝜃𝐸, the 

height ℎ , and the TL radius 𝑟  (containing 10 parameters) 

make a total of 𝑑  = 15 random input parameters, which 

independently follow the normal distribution with the 

standard deviation 0.2 ∗ 𝜇,  where the means of 𝜃 and 𝜑, and 

𝜃𝐸 are 𝜇𝜃 = 30°, and 𝜇𝜑 = −45°, 𝜇𝜃𝐸
= 45°, respectively.  

Case 2: Assume that the 15 random parameters in case 1 plus 

the loads at both ends of the TL (which contain 20 parameters) 

make a total of 𝑑 =35 random parameters that are mutually 

independent normal RVs with the standard deviation 0.2 ∗ 𝜇,  
where the mean of the incidence angle 𝜃  and the azimuth 

angle 𝜑 , and the polarization angle 𝜃𝐸  are 𝜇𝜃 = 60° , and  

𝜇𝜑 = −30°, 𝜇𝜃𝐸
= 60°, respectively. 

In the time domain, the voltage 𝑉𝑖
𝑇 and current 𝐼𝑖  on the ith 

conductor follow the following stochastic equation [28], 

which are 
∂

∂𝑧
[𝑉𝑖

𝑠(𝑧, 𝑡, 𝜁)] + [𝐿𝑖𝑗(𝜁)]
∂

∂𝑡
[𝐼𝑖(𝑧, 𝑡, 𝜁)] 

              = [𝐸𝑧𝑖
𝑖 (𝑧, 𝑡, 𝜁, ℎ) − 𝐸𝑧0

𝑖 (𝑧, 𝑡, 𝜁, 0)],                    (5𝑎) 
 

  
∂

∂𝑧
[𝐼𝑖(𝑧, 𝑡, 𝜁)] + [𝐶𝑖𝑗(𝜁)]

∂

∂𝑡
[𝑉𝑖

𝑠(𝑧, 𝑡, 𝜁)] = 0,      (5𝑏) 

 

    𝑉𝑖
𝑇(𝑧, 𝑡, 𝜁) = 𝑉𝑖

𝑠(𝑧, 𝑡, 𝜁) + 𝑉𝑖
𝑖(𝑧, 𝑡, 𝜁),                   (5𝑐) 

 

 
（a） 

 

 
(b) 

FIGURE 3.  Plots for, (a) moments of the six LSPCR and MC solutions, and 

(b) zoom-in results for 𝒅 = 𝟏𝟓. 
 

where 
 

𝑉𝑖
𝑖(𝑧, 𝑡, 𝜁) = ∫  

ℎ

0

𝐸𝜂𝑖
𝑖 (𝜂𝑖 , 𝑧, 𝑡, 𝜁)𝑑𝜂𝑖,    
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𝑉𝑖
𝑠 is the scattered (induced) voltage on the ith conductor, 𝐸𝑧𝑖

𝑖  

is the z-component of the total electric field (line axis) on the 

ith conductor, [𝐿𝑖𝑗] is the inductance-per-unit-length matrix, 

[𝐶𝑖𝑗] is the capacitance-per-unit-length matrix of the multi-

conductor line, 𝑉𝑖
𝑖 is the incident voltage on the ith conductor, 

𝜉 is a random vector. 
 

B.  NUMERICAL REALIZATION 

In the six algorithms for solving stochastic multi-conductor 

TLs, all numerical experiments were carried out on a 

workstation with two Intel Xeon Gold 6226R CPUs and 

192GB of memory. When implementing the six algorithms, 

the highest order of the basis functions 𝑝 = 2 is chosen. This 

implies the number of basis functions 𝑃 = 136 for 𝑑 = 15, 

𝑃 = 666 for 𝑑 = 35. A common 𝛿 = 10−4 is selected for the 

ℓ1 -Ms. The Hermite polynomials are chosen as the basis 

functions because the random parameters all follow a normal 

distribution. In the numerical experiment, independent 

replicate experiments were carried out for each sample 𝑁 and 

the experimental results were averaged to eliminate the 

evaluation errors associated with the randomness of the PCE 

coefficients resulting from the stochastic nature of the 

samples generated each time.  

It is worth noting that once the stochastic problem is given, 

all the factors that can influence the numerical solution of the 

LSPCR are: the highest order 𝑝 which determines the number 

of the basis functions, the number of samples 𝑁,  the 

randomness of the samples that has been essentially 

eliminated by independent replicate experiments, the choice 

of sampling strategy and the norm problem, respectively. In 

fact, the aim of this paper is to explore the differences in 

accuracy and efficiency of the six different algorithms formed 

by the combination of three sampling strategies with two 

types of norm problems in the medium-dimensional, low-

order and high-dimensional, low-order cases. 
 

1)  IMPLEMENTATION OF THE SIX LSPCR ALGORITHMS 

The six algorithms are designed to calculate the coefficients 

in (2), and generate the first two moments of random voltage 

responses from these coefficients. Fig. 3 shows the time-

domain voltage response moments at the right-terminal 

termination point of the sixth TL for 𝑑 = 15  random 

parameters derived between the reference and six algorithms, 

using the moments of the MC solution for 𝑁 = 105 samples as 

the reference. This is because when 𝑁 is greater than 105, the 

MC moments hardly show changes, but any decrease in 𝑁 

causes changes. Fig. 4 shows the counterparts for 𝑑 = 35. 

Similarly, for 𝑑 = 35, the moments of the MC solution for 

𝑁 = 2 × 105 samples are chosen to serve as the reference. 

For the six algorithms, we take 𝑁 = 300 samples for 𝑑 = 15, 

and 𝑁 = 1400 samples for 𝑑 = 35. 

It can be seen from Figs. 3 and 4 that the moments of the 

SSs, the COSs agree very well with the reference, while the 

means of the ASs agree better with the reference, but with a 

greater difference in the standard deviation (SD). 

It is worth noting that in the low-order, low-dimensional 

case, as with the other four algorithms, the ASs also obtain 

 

 

 
(a)  

 

 
(b)  

FIGURE  4.  Plots for, (a) moments of the six LSPCR and MC solutions, 

and (b) zoom-in results for 𝒅 = 𝟑𝟓. 
 

high accuracy in the solution moments [26]. A similar 

situation can be seen in Fig. 5, which is obtained by solving 

the model in Fig. 2 with 𝑑  = 3 random input parameters, 

where the incidence angle 𝜃, the azimuth angle 𝜑 and the 
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FIGURE 5. Plots for, (a) moments of the six LSPCR and MC solutions, and 

(b) zoom-in results for 𝒅 = 𝟑. 
 

 
FIGURE  6.  Computed  𝜺̂  of the moments derived between the reference 
and six algorithms with 𝒅 = 𝟏𝟓 as a function of 𝑵.  

TABLE I 

COMPUTING COST COMPARISON FOR THE SIX ALGORITHMS WITH D=15 

 

Time (s) SS AS COS 

LSO 3511  3582  3701  

ℓ1-M 3674  3691  3955  
 

polarization angle 𝜃𝐸 vary randomly. 

It can be seen from [26] and Fig. 5 that the AS performs 

almost as excellently as the COS in the low-dimensional case, 

while Figs. 3 and 4 show that it performs poorly in the high-

dimensional case. If attempting to increase 𝑝  to achieve a 

high accuracy solution in this case, it would suffer from the 

extremely enormous curse of dimensionality. Therefore, the 

AS is better suited to solving low-dimensional problems. 
 

2) COMPARISON OF SIX ALGORITHMS WITH 
DIFFERENT NUMBER OF SAMPLES 

In order to more accurately and easily compare the 

differences between the six algorithms for different 𝑁, we 

define relative mean square error of the mean (RMSEM) 

𝜀𝜇̂ and relative mean square error of the standard deviation 

(RMSESD) 𝜀𝜎̂ to describe the accuracy of the mean and the 

standard deviation, 
 

𝜀̂𝜇: =
∫

𝑇
 𝐸(𝜇(𝑡) − 𝜇

Ref
(𝑡))

2
d𝑡

∫
𝑇

𝐸( 𝜇
Ref
2 (𝑡))d𝑡

,                         (6𝑎) 

 

𝜀̂𝜎: =
∫

𝑇
 𝐸(𝜎(𝑡) − 𝜎Ref(𝑡))2d𝑡

∫
𝑇

𝐸( 𝜎Ref
2 (𝑡))d𝑡

,                          (6𝑏) 
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where 𝑇 is the observation time, 𝐸  denotes the expectation 

operator, 𝜇(𝑡)  and 𝜎(𝑡)  are the mean and the standard 

deviation derived from the LSPCR method, 𝜇Ref(𝑡)  and 

𝜎Ref(𝑡) are the reference. We still choose the moments of the 

MC solution in section 1) as the reference. 

Fig. 6 plots the computed 𝜀̂  of the moments derived 

between the reference and six algorithms with 𝑑 = 15 as a 

function of 𝑁,  and Fig. 7 shows the counterparts for 𝑑 = 35.  

It can be seen from Figs. 6 and 7 that the moment 

accuracies gradually increase as 𝑁  increases because the 

computed 𝜀̂  values corresponding to the six algorithms 

gradually decrease. Furthermore, we find that when 𝑁/𝑃 ≥
2.1 (i.e., 𝑁 ≥ 300 for 𝑑 = 15, 𝑁 ≥ 1400 for 𝑑 = 35), both 

the SSs and the COSs recover moments with high accuracy 

because their 𝜀̂ values are very small, while the ASs recover 

moments with low accuracy because their 𝜀̂ values are large. 

In addition, there are no noticeable differences between the 

ℓ1 -Ms and the LSOs, as well as between the SSs and the 

COSs, since their 𝜀̂ values are not significantly different. 

To compare the efficiency,  𝑁=300 samples for 𝑑 = 15  
and 𝑁=1400 samples for  𝑑 = 35  are taken. The average 

computation time is shown in TABLE I and II. 

Note that the computation time for the reference is 616493 

s for 𝑑 = 15 and 1243669 s for 𝑑 = 35. Compared to TABLE I  

and II, this implies that the LSPCR method requires no more 

than 0.7% of the MC calculation time for 𝑑=15, and no more 

than 1.4% of the MC calculation time for 𝑑=35. Compared to 

the reference, the SSs and the COSs show a great 

improvement in efficiency with similar accuracy of the 

moments. Furthermore, TABLE I and II  also show that the 

LSOs have a significant speed advantage over the ℓ1-Ms. In 

addition, the SSs and the ASs are obviously faster than the 

COSs, and there are small differences between the SSs and 

the ASs. 

IV. CONCLUSION 

This paper proposes an algorithm based on the recursive idea 

to solve the problem of automatically determining the basis 

function composed of a large number of multivariate 

polynomials, which is usually faced in the implementation of 

PCE programs in the high-dimensional case, and combines 

this algorithm with the latest weight-based regression called 

LSPCR, and then proposes the implementation of the LSPCR 

method in the medium- and high-dimensional cases, and 

evaluates its performance in the electromagnetic coupling 

problem of the TL in this case. Six algorithms for LSPCR 

have been designed and implemented and are then compared 

with the MC method and with each other. 

Numerical experiments demonstrate the excellence of the 

proposed algorithm. Furthermore, the results also show that 

for the medium- or high-dimensional, low-order problems, 

compared to the MC, only the SSs, and the COSs show a great 

improvement in efficiency with similar accuracy of the 

moments. Moreover, the SSs and the COSs outperform the 

ASs, and there is almost no difference between the ℓ1-Ms and 

the LSOs, as well as between the SSs and the COSs.  In  

 
FIGURE 7. Computed  𝜺̂  of the moments derived between the reference 
and six algorithms with 𝒅 = 𝟑𝟓 as a function of 𝑵. 

TABLE II 

COMPUTING COST COMPARISON FOR THE SIX ALGORITHMS WITH D=35 
 

Time (s) SS AS COS 

LSO 13916  13808  17321 

ℓ1-M 14656 14580  17663  
 

addition, the ℓ1-Ms are obviously slower than the LSOs. The 

SSs and the ASs are obviously faster than the COSs, and there 

are small differences between the SSs and the ASs. 
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