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ABSTRACT The failure of the power communication network often leads to a cascading failure of the
power system. Evaluating the potential risks in the power communication network is crucial to ensure the
stable operation of the power system. This paper proposes a comprehensive risk assessment method for
qualitative and quantitative measures. Firstly, an index system for risk assessment, considering both static
structure and dynamic operation, is established. The optimal weight of each index is determined using the
combination game weighting method. Additionally, a risk assessment model for the power communication
network is established by coupling gray cloud theory and matter-element extension model. The fuzzy
theory’s triangular modulus operator is utilized to fuse three types of fault probabilities, quantify the risk
value of the power communication network, and assign it a grade. Finally, experimental results demonstrate
that this method improves discrimination degree by 1.2%, 92%, and 85% respectively compared to other
traditional algorithms.

INDEX TERMS Gray cloud theory, matter-element extension model, triangular modulus operator, compre-
hensive risk assessment.

I. INTRODUCTION

THE safe and reliable operation of the Power Communi-
cation Network (PCN) is crucial for ensuring the stable

operation of the power system. Conducting scientific and
accurate risk assessments of the power communication net-
work and implementing appropriate management measures
are of utmost importance to minimize the occurrence of major
power events.

Since the proposal of the risk assessment theory of the
power communication network, extensive research has been
conducted by relevant researchers. The evaluation methods
primarily consist of approaches based on uncertainty analy-
sis theory [1–4],reliability theory [5–9], and artificial intel-
ligence algorithms [10–13]. In recent years, the uncertainty
analysis theory-based evaluation method has been widely
applied in power quality assessment [14–16], power safety
risk assessment[17, 18], power system equipment condition
assessment[19–22], and power grid operation risk assessment

[23–25]. In reference[1], the risk assessment model of power
communication network based on traditional matter-element
fails to fully consider the fuzziness and randomness asso-
ciated with determining the risk for the boundary value or
measured value of each index. Reference [26] introduced a
risk assessment and grading system for power grid operation,
addressing the issues of insufficient response to the details of
the risk assessment index system and inadequate risk informa-
tion. Reference [3] proposed a method for assessing the risk
of power communication network using compatible rough-
fuzzy sets. This method effectively addressed the fuzzy issue
of decision attribute values. Additionally, references [5] and
[27] quantified the risk level of power communication net-
work from the perspective of service failure. However, these
studies focused solely on operational risks and considered
relatively limited risk factors.

This paper aims to assess the risk in the power commu-
nication network by considering the probability and con-
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sequences of accidents (faults). It takes into account both
the static structural risk factors and dynamic operation risk
factors. The PCN risk assessment index system is established
using the analytic hierarchy process and the entropy weight
method to determine the subjective and objective weights of
each index. Weight coefficients are assigned using the com-
bined game weighting method. The risk assessment model
combines the matter-element extension model, gray theory,
and cloud model theory to evaluate the risk level of each
indicator and judge the overall severity of risk in the power
communication network. The triangular modulus operator
in fuzzy theory is used to integrate the failure probability
of human factors, equipment factors, and natural factors,
resulting in a comprehensive risk occurrence probability. This
approach enables qualitative and quantitative risk assessment
of the power communication network, providing a basis for
decision-making in risk avoidance and management.

II. RISK ASSESSMENT FRAMEWORK AND RISK
ASSESSMENT INDEX OF THE POWER COMMUNICATION
NETWORK
A. RISK ASSESSMENT FRAMEWORK OF THE POWER
COMMUNICATION NETWORK
This paper presents a risk assessment method for the power
communication network by combining gray cloud theory
and matter-element extension model. The overall research
framework is illustrated in Figure 1 and comprises three main
parts: the development of a risk assessment index system, the
investigation of a risk assessment method, and the study of
risk occurrence probability.

In this study, we first analyze the risk factors of the power
communication network by considering its static structure
and dynamic operation. Based on this analysis, we construct
a risk assessment index system for the power communication
network. To determine the subjective and objective weights
of each index, we employ the analytic hierarchy process
and entropy weight method. The weight coefficients are then
distributed using the combination game weighting method,
allowing us to obtain the optimal weight coefficient for each
index.The second part of our research focuses on developing
a risk assessment method for the power communication net-
work. We propose a model that combines the matter-element
extension model, gray theory, and cloud model theory to
leverage the advantages of each. The matter-element exten-
sion model enables us to perform qualitative and quantita-
tive analysis, while the clustering evaluation method based
on gray theory provides the evaluation cloud level for each
index and allows us to assess the overall risk severity of
the power communication network. Additionally, the cloud
model theory takes into account the randomness and fuzziness
of the power communication network’s operation state.The
third part discusses the study of the probability of risk in the
context of power communication network. It explains that
the probability function of comprehensive risk occurrence is
established using the triangular modulus operator in fuzzy
theory. This function fuses the fault probability of human

factors, equipment factors, and natural factors. The risk clas-
sification and risk quantification of the power communica-
tion network are achieved through the research conducted
on the three aforementioned aspects. This research enables
the acquisition of qualitative and quantitative comprehensive
evaluation results.

B. CONSTRUCTION OF RISK ASSESSMENT INDEX SYSTEM
The paper establishes a risk assessment index system for
the power communication network based on its static
structure[28–31] and dynamic operation [32–34].

1) Static structural risk factors
The static structural risk factors of the network mainly focus
on the attributes of communication network nodes and the
connectivity of the entire network. These factors include the
location, load level, and size of communication nodes, as well
as the importance of each unit in the network topology.

2) Dynamic operation risk factors
The dynamic operational risk of a power communication
network primarily focuses on the quality of facility operation,
business operation, and network resource scheduling. This
includes factors such as the probability of failure, rate of
defect elimination, resource utilization, and service transmis-
sion reliability.
The risk of a power communication network encompasses

both the static structural risk and the dynamic operational risk.
Building upon the analysis of risk factors mentioned earlier,
this paper proposes a risk assessment index system for the
’static structure-dynamic operation’ power communication
network, as depicted in Figure 2.
The subjective weight and objective weight of each index

are calculated using the analytic hierarchy process and the
entropy weight method, respectively. The weight coefficient
is then distributed using the combination game weighting
method to determine the comprehensive weight value of each
evaluation index.
The calculation steps of entropy weight method are as

follows:
1. Form the evaluation matrix R

′

R
′
=

r
′

11 · · · r
′

1m
... r

′

ij

...
r
′

n1 · · · r
′

nm

 (1)

where r ′ij represents the actual data of the ith node under the
jth indicator. i = 1, 2, · · · , n, j = 1, 2, · · · ,m. n is the number
of nodes, m is the number of evaluation indexes.

2. Calculate the proportion of the ith node under the jth
index Pij

Pij = r ′ij/
n∑

i=1

r ′ij (2)

3. Calculate the entropy value of the evaluation indicators
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FIGURE 1. The overall research framework of this paper.

ej = k
n∑

i=1

Pij lnPij (3)

In the formula, k = − 1
lnN .

Then the weight of the jth indicator is calculated by the
formula:

wj =
1− ej∑n

i=1(1− ej)
(4)

The calculation steps of analytic hierarchy process method
are as follows:

1. Constructing comparison matrix R

R = (rij)n×m =

r11 · · · r1n
... rij

...
rn1 · · · rnm

 (5)

2. Consistency test of the matrix
The consistency indicator is defined as :

CI =
λmax − nr
nr − 1

(6)

In the formula, nr is the order of the matrix, and λmax is
the maximum eigenvalue corresponding to the matrix.

Introduce random consistency index RI :

RI =
CI1 + CI2 + · · ·+ CInr

nr
(7)

Calculate the consistency check coefficient CR:

CR =
CI
RI

(8)

Usually, if CR<0.1, the matrix is considered to pass the
consistency test, and the maximum eigenvalue vector of the
matrix is the obtained weight vector.
The weight vector calculated by the analytic hierarchy

process and the entropy weight method is:

wf =
(
wf 1,wf 2, · · · ,wfm

)
,
(
f = 1, 2

)
. (9)

In the formula, m is the number of indexes. f =1 indicates
the use of analytic hierarchy process to calculate weights, f =2
indicates that the entropy weight method is used to calculate
the weights.

Optimize the weight coefficient:

min ∥α1w1 + α2w2 − w1 − w2∥2

s.t.


α1 + α2 = 1

0 ≤ α1 ≤ 1

0 ≤ α2 ≤ 1

(10)
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FIGURE 2. Risk assessment index system of power communication network.

According to the differential properties of matrices, the
first derivative of (10) can be transformed into[

w1wT1 w1wT2
w2wT1 w2wT2

] [
α1

α2

]
=

[
w1wT1
w2wT2

]
(11)

The optimal weight obtained by the combination game
weighting method is:

w = α1w1 + α2w2 (12)

In the formula, w1 and w2 are the weight vectors obtained
by the two weighting methods, alpha1 and alpha2 are the cor-
responding weight coefficients. w is the final optimal weight
vector.

III. RISK COUPLING EVALUATION MODEL OF POWER
COMMUNICATION NETWORK
This section provides a comprehensive evaluation of the risk
of power communication network, considering the severity
of risk consequences and the probability of risk occurrence.
The assessment is based on the relevant data provided by a
specific area in Jilin Province, which determines the value of
each risk assessment index.

A. RISK CONSEQUENCE SEVERITY QUANTIFICATION AND
GRADE ASSESSMENT
1) Quantitative mathematical model of risk consequence
severity
Let Q be the quantitative value of risk severity. According
to the index system of " static structure-dynamic operation, "
q1 is the influence value of static structure of communication
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network, and q2 is the influence value of dynamic operation.
Then:

Q = q1 + q2

=

m1∑
j=1

wjF (Uj) +

m∑
j=m1

wjF (Uj)
(13)

In the formula, F(Uj) represents the value of each evalua-
tion index, wj is the weight of index j , j = 1, 2, · · · ,m. . For
cost-based indicators, F(Uj) is the sum of the risk values of
each indicator. For the benefit index, the deviation of the index
is used to measure the risk value of the index. The calculation
function of F(Uj) is:

F (Uj) =

Nn∑
z=1

e
max

(
Vj−V̄j
V̄j

,
V j−Vj
V j

,0

)
− 1

e− 1
(14)

In the formula, Nn is the total number of unit nodes in the
network, Vj is the value of the node under the index j , V̄j
and V j are the upper and lower limits of the node Z under the
index j measure, respectively.

2) Grading mathematical model of risk consequence
severity
The matter-element theory in topology provides a qualitative
and quantitative description of the development and change of
things. The cloud model is an effective model that integrates
the randomness and fuzziness of information and enables
the transformation of uncertainty between qualitative con-
cepts and quantitative values. Therefore, this paper proposes
to enhance the traditional gray clustering whitening weight
function by utilizing the cloud model. It also aims to establish
a risk assessment model for power communication network
by combining the gray cloud theory and matter-element ex-
tension model.

1. Define matter element
In the formula, Rs is the level of PCN risk consequence

evaluation, N represents the risk of power communication
network, C = {C1,C2, · · · ,Cm} represents the set of risk
indicators, and V = {V1,V2, · · · ,Vm} represents the quan-
titative value of risk indicators. Vsj = (Lsj,Rsj) is the value
range of index j under grade s, j = 1, 2, · · · ,m, s = 1, 2, 3, 4.
According to expert opinions, the classification scheme of
qualitative index is determined. Additionally, the specific
value of a certain period of indicators is divided into intervals
to establish the grading scheme for quantitative indicators.
Referring to the historical data of the provincial power grid
companies and literature , this paper designs the index grading
scheme for the qualitative index as shown in table 1.

Rs = (N ,C ,V ) =


N C1 V1

C2 V2

...
...

Cm Vm

 =


N C1 (Ls1,Rs1)

C2 (Ls2,Rs2)
...

...
Cm (Lsm,Rsm)

 (15)

2. Cloud description of hierarchical boundaries

The left and right boundary values of the evaluation index
classification are used as a double constraint space

[
Lx ,Rx

]
.

The digital characteristics of the gray cloud model include:

Ex =
Lx + Rx

2

En =
Rx − Lx

6

He =
En
p

(16)

Where p is a given constant. By formula (16), the traditional
matter-element extension model of formula (15) is trans-
formed into:

Rs = (N ,C ,V ) =


N C1 (Ex1,En1,He1)

C2 (Ex2,En2,He2)
...

...
Cm (Exm,Enm,Hem)

 (17)

Replace V with the digital eigenvalue (Exj,Enj,Hej) of the
gray cloudmodel, (Exj,Enj,Hej) is the cloud description of the
evaluation index Cj about the grade Rs, j = 1, 2, · · · ,m. This
modification addresses the limitation of the traditionalmatter-
element extension model, which overlooks the complete con-
sideration of the randomness and fuzziness associated with
the state level boundary during the division of the index
interval.

3. Cloud model improves the traditional whitening weight
function

The index value x to be evaluated is regarded as a cloud
droplet, and a random number E

′

n obeying normal distribution
with an expected value of En and a standard deviation of
He is generated. The function form of the expected member-
ship whitening value, calculated by the gray cloud whitening
weight function, is improved by introducing the cloud model.

f (x) = exp

(
− (x − Ex)

2

2 (E ′
n)

2

)
, x ∈ [Lx ,Rx ] (18)

The expression of the whitening weight function is divided
into three categories. If the whitening weight function of the
index j on the kth grade is:

f kj (x) =

exp

(
− (x−Ex)2

2(E′
n )

2

)
, x ∈ [Lx ,Rx ]

0, x /∈ [Lx ,Rx ]
(19)

It is called the moderate measure normal gray cloud model,
denoted by

[
Ek
xj,E

k
nj,H

k
ej

]
.

If the whitening weight function of index j with respect to
the kth grade satisfies

f kj (x) =



1, x ∈ [Lx ,Ex ]

exp
(
− (x−Ex)2

2(E′
n)

2

)
, x ∈ [Ex ,Rx ]

0, x /∈ [Lx ,Rx ]

(20)
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TABLE 1. Grading scheme of qualitative evaluation index

Qualitative indicators Grade1 Grade2 Grade3 Grade4

Site level
500KV plant station,

center transfer
220kv plant station,

ground control
110kv and below plant
station, county transfer

Enterprise internal
management, office

Site size Hub Regional station Terminal –
Load rating Premium Users Level 1 critical users Level 2 critical users Temporary critical users
Load size 40% and above 16% to 40% 12% to 16% 6% to 12%
Delay ⩽ 10ms ⩽ 150ms ⩽ 1s Not demanding

Bit error rate ⩽ 10−9 ⩽ 10−7 ⩽ 10−5 ⩽ 10−3

Security partition Partition 1 Partition 2 Partition 3 Partition 4

It is called the lower limit measure normal gray cloud model,
denoted by

[
−;
(
Ek
xj,E

k
nj,H

k
ej

)]
. If the whitening weight func-

tion of index j with respect to the kth grade satisfies

f kj (x) =


exp

(
− (x−Ex)2

2(E′
n )

2

)
, x ∈ [Lx ,Ex ]

1, x ∈ [Ex ,Rx ]
0, x ̸∈ [Lx ,Rx ]

(21)

It is called the upper limit measure normal gray cloud
model, denoted by

[(
Ek
xj,E

k
nj,H

k
ej

)
;−
]
.In the evaluation pro-

cess, the nature of the index is divided into two types: benefit
type and cost type, and the corresponding whitening weight
function type is selected according to the quantitative change
characteristics of the index.This improvement addresses the
shortcomings of the conventional gray clustering method,
which fails to distinguish the characteristics of various types
of indicators.

4. Calculating the correlation degree of cloud clustering
The average value f

′k
j (x) of p times calculated by the

whitening weight of index j with respect to gray class k is

f ′kj (x)=
1

p

p∑
t=1

f kjt (x)

=
1

p

(
f kj1 (x) + f kj2 (x) + · · ·+ f kjp (x)

) (22)

In the formula, f kjt (x) is the value of the whitening weight
function calculated at the tth time,t ∈

[
1, p
]
. The whitening

weight function value for each evaluation grade describes the
degree of cloud clustering correlation of the quantitative value
of the index. The whitening weights of the same index at
different grades are normalized.

τ kj (x) =
f kj (x)∑s
k=1 f

k
j (x)

(23)

where s is the number of grades, k = 1, 2, · · · , s.
5. Determine the grade of risk severity
The calculation of the cloud clustering correlation between

each index value and the evaluation grade is weighted as
follows:

λk =

m∑
j=1

τ kj (x)wj (24)

In the formula, τ kj (x) is the normalized whitening weight,
which is the weight of wj index j, j = 1, 2, · · · ,m. The cloud
clustering correlation vector under the current operating state
of the power communication network is

λki =
(
λ1
i , λ

2
i , · · · , λsi

)
=

(
m∑
j=1

τ1j (x) • wj,
m∑
j=1

τ2j (x) • wj, · · · ,
m∑
j=1

τ sj (x) • wj

)
(25)

The value k of the risk severity level Rs is determined
according to λki = max

(
λ1
i , λ

2
i , · · · , λsi

)
, k = 1, 2, · · · , s.

6. Test the evaluation results of PCN
To mitigate the impact of randomness in calculating the

cloud clustering correlation degree between the index value
and the normal gray cloud, this study conducts multiple cal-
culations and determines the expected value and entropy of
the evaluation results using the following formula:

Eλx =
λ(x1) + λ(x2) + · · ·+ λ(xH )

H

Eλn =

√√√√ 1

H

H∑
h=1

(λ(xh)− Eλx)

(26)

In the formula, Eλx and Eλn are the expected value and
entropy of the evaluation results, respectively. The H value is
taken 100 times in this paper, andλ(xh) is the evaluation result
obtained by the hth operation. The expected value represents
the average level of the evaluation results, while entropy
measures the dispersion of the evaluation results. A larger
entropy value indicates more dispersed evaluation results.
Therefore, the credibility factor δ is defined as:

δ =
Eλx

Eλn
(27)

The greater the value of δ , the greater the dispersion of the
evaluation results, the smaller the credibility of the evaluation
results. On the contrary, the greater the credibility of the
evaluation results.

B. RISK OCCURRENCE PROBABILITY AND GRADE
EVALUATION
Referring to the standard GB/T 38438-2019 ’Operation Eval-
uation Index System of Power Communication Network’ and
GB/T 40585-2021 ’Technical Specification for Monitoring,
Evaluation and Visualization of Power Grid Operation Risk’,
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this study categorizes fault causes into human factors, equip-
ment factors, and natural factors, based on the theory of fault
cause analysis. Among them, human factors mainly refer to
line failures and machine malfunctions caused by random
events such as personnel building construction and personnel
misuse. The entire service period of the equipment can be
divided into three phases: the initial failure period, incidental
failure period, and wear and tear period. The early failure
period is primarily caused by issues such as product process
and equipment quality. To prevent early failures, substandard
products are identified and removed through screening. Dur-
ing the incidental failure period, equipment operates stably
with a low failure rate. However, as equipment ages and
experiences wear and tear, its performance gradually dete-
riorates, leading to an increase in failure rate. This phase
is known as the wear and tear failure period. In practice,
equipment is replaced with new ones when it reaches a certain
age to avoid such failures. Therefore, this paper primarily
focuses on studying the more common incidental failure pe-
riod throughout the equipment’s service period. On the other
hand, natural factors mainly refer to tower collapse and line
breakage caused by severe external disasters such as wind,
rainstorms, lightning strikes, and ice cover. Accordingly, this
paper proposes calculation methods for the failure probabil-
ity of human factors based on the Poisson distribution, the
failure probability of equipment factors based on the Markov
process, and the failure probability of natural factors based on
historical statistics.

A counting process is a stochastic process {N(t), t ⩾ 0}
that represents the total number of events that have occurred
up to time t . It is considered to have independent increments
if the number of events occurring in disjoint time intervals are
independent of each other. Additionally, the counting process
is said to have smooth increments if the distribution of the
number of events occurring in any time interval depends
solely on the length of the time interval. In literature [35], it
has been confirmed that the probabilistic prediction method
based on the Poisson distribution is effective for risk assess-
ment of transmission line tripping.According to the Poisson
theorem, the Poisson distribution is applicable for describing
the occurrence of rare events. In the context of lines stretching
hundreds of kilometers, man-made disasters are considered
to be infrequent and independent events. Hence, this paper
utilizes the Poisson distribution to model the probability of
their occurrence within a specific time period, typically one
year.

Assuming that the number of failure events due to man-
made construction and other reasons is n, the average annual
probability of risk disasters in the region can be expressed as

P(X = n) =
θn

n!
e−θ, n = 1, 2, · · · (28)

The probability of at least one risk disaster in a year is

P(X ≥ 1) = 1− e−θ, n = 1, 2, · · · (29)

In the formula, the maximum likelihood estimate of the
parameter θ is determined using the maximum likelihood
estimation method [35]. The expression for this estimate is:

θ̂ =

∑l
v=1 xv
l

(30)

In the formula, xv is the sample observation value of l lines,
ν = 1, 2, · · · , l .
In the on-line risk assessment, the equipment is time-

varying outage, so this paper simulates the equipment failure
probability using a Markov process model based on time
continuous and state discrete, and uses the Fokker-Planck
equation to solve . Here, the state space is simplified to
three states, including: 0 state (normal operation), 1 state
(instantaneous fault), and N state (permanent fault). The cor-
responding Fokker-Planck equation is as follows:P′

0 (t)
P

′

1 (t)
P

′

N (t)

 =

−(γ0→1 + γ0→N ) µ1→0 µN→0

γ0→1 −µ1→0 0
γ0→N 0 −µN→0

P0 (t)
P1 (t)
PN (t)

 (31)

In the formula, Pi(t) is the instantaneous probability under
the state i at time t , i = 0, 1,N .γ0→1 and γ0→N are the
transfer rate from the running state to the instantaneous fault
state and the permanent fault state respectively, µ1→0 and
µN→0 are the transfer rate from the instantaneous fault state
and the permanent fault state to the running state respectively,
that is, the repair rate.
The eigenvalue of the system of differential equations ob-

tained by the above formula is a real number [26], and the
form of its solution is

P0 (t) = a0 + b0ex1t + c0ex2t

P1 (t) = a1 + b1ex1t + c1ex2t

PN (t) = aN + bN ex1t + cN ex2t
(32)

The parameters ai, bi, ci, xj in the formula are calculated by
the transfer rate γ0→i, µi→0 and the probability distribution[
P0
0,P

0
1,P

0
N

]
of the initial time of each state. i=0,1,N ; j=1,2.

This study focuses on various natural factors, including
wind, rainfall, lightning, icing, and other external disaster
events, which can vary across different regions. To determine
the failure probability of these natural factors, a targeted
approach is adopted using regional historical statistical data.
Then T is called a triangular norm operator.Triangular

modulus is defined as [25] : if the mapping T :[0, 1]2 →
[0, 1],for ∀a, b, c, d ∈ [0, 1], satisfies 1) T (0, 0) =
0,T (1, 1) = 1 ; 2) if a ≤ c, b ≤ d then T (a, b)≤T (c, d);
3) T (a, b) = T (b, a) ; 4) T

(
T (a, b), c

)
= T

(
a,T (b, c)

)
.

For the fault probability to be fused, the triangular modulus
operator can meet its requirements. By the following formula

T (a, b) =
a • b

1 + (1− a) (1− b)
(33)

The three fault probabilities are fused to obtain a compre-
hensive risk probability I .
In the design of the method presented in this paper, the idea

of reference [36] is used as a reference. The fusion failure
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TABLE 2. Risk grading scheme

The level of risk The level of risk probability
Grade1 Grade2 Grade3 Grade4

Grade1 Grade1 Grade1 Grade2 Grade2
The level of Grade2 Grade2 Grade2 Grade2 Grade3
risk severity Grade3 Grade2 Grade3 Grade3 Grade3

Grade4 Grade3 Grade3 Grade4 Grade4

probability result calculated by Equation (33) is used to de-
termine the risk occurrence probability level, which is divided
into four levels. Level 1 has a risk occurrence probability per
hour above 10−4 , level 2 has a risk occurrence probability
per hour between 10−5-10−4, level 3 has a risk occurrence
probability per hour between 10−6-10−5 , and level 4 has a
risk occurrence probability per hour above 10−7-10−6.

C. RISK QUANTIFICATION VALUE AND RISK GRADING OF
POWER COMMUNICATION NETWORK
Based on the obtained risk consequence value and the com-
prehensive risk occurrence probability, the expression of the
comprehensive quantitative value of the risk assessment of the
power communication network is as follows:

R = I ∗ Q (34)

Based on the risk severity level Rs and the risk occurrence
probability level Ps obtained above, the comprehensive risk
assessment level of the power communication network is
calculated by the following formula:

Ls = round (αRs + βPs) (35)

In the formula, Ls refers to the risk level,α and β are
the weight coefficients with the value interval of (0, 1),
α + β = 1. round() represents rounding. It can be seen
from the above formula that if α is 1, it is a traditional
deterministic risk assessment method. The evaluation method
proposed in this paper takes into account the possibility and
consequences of risk occurrence. When α>β , the risk level
result is more inclined to the consequences of risk occurrence.
When α<β , the risk level result is more focused on the
possibility of risk occurrence. In various engineering appli-
cations, researchers have proposed different forms of risk
matrices based on diverse project backgrounds and decision-
making attitudes. This paper focuses on the research context
of power communication networks, where the classification
of risk significance level is influenced by the risk attitude
and risk preference of decision makers. It is important to
note that there is currently no universally accepted criterion
for determining the boundary values that separate probability
and severity levels. According to the actual operation of
the network, combined with the experience of professionals,
considering that power companies generally focus more on
the consequences of risk occurrence, set α to 0.6, and get the
final risk grading scheme as shown in table 2.

IV. SIMULATION EXPERIMENT
A. EXPERIMENTAL SETTINGS
In this study, we simulate a basic network comprising of 14
nodes and 16 links, and distribute 10 typical conventional
services. We refer to the risk analysis research conducted by
provincial power grid companies on power communication
network (PCN) to evaluate the PCN comprehensively. The
evaluation levels of PCN are divided into four categories: se-
rious, abnormal, attention, and good, corresponding to levels
1 to 4. Additionally, we collected 135 sets of fault sample data
for analysis.

FIGURE 3. Local topology diagram of a region.

B. EXPERIMENTAL RESULT ANALYSIS
1) evaluation result analysis
1. The weight of the established risk assessment index system
was calculated.Because the sub-category indicators under the
characteristics of electricity business are qualitative indica-
tors, experts are invited to score the six qualitative indicators
under the characteristics of electricity business.The sample
data of the evaluation index was weighted and combined into
an index called C15, which represents the value of electricity
business characteristics. Figure 2 shows that there are a total
of 24 evaluation indicators, denoted as C1-C24. The weight
calculation results for each indicator can be seen in Figure 4.
The entropy weight method is an objective weighting

method that calculates the entropy value based on the actual
value of each evaluation index. On the other hand, the analytic
hierarchy process is a subjective weighting method that relies
on expert scoring. The results show significant differences
between the two methods when it comes to the ratio index
with small actual data. To ensure a balance between the sub-
jective judgment of decision makers and the objective char-
acteristics of evaluation objects, it is advisable to integrate
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FIGURE 4. Index weight calculation results.

FIGURE 5. Calculation results of index cloud clustering correlation degree.

or synthesize the subjective and objective weighting methods
in order to obtain more scientifically sound weight results for
each evaluation index.The combined game weighting method
is used to allocate the weight coefficient, and the obtained
comprehensive weight effectively solves the problem that
the weight value is too large or too small due to the single
weighting method.

2. According to the formula (15) -formula (24), the cloud
clustering correlation degree τ kj between the risk assessment
index and each risk level is obtained, and the results are shown
in Figure 5.

Based on the results, the high-risk state indicators include

the network topology subclass in the static structure index,
the network connectivity subclass, and the power business
index in the dynamic operation index. Therefore, managers
should focus on these indicators. They should prioritize the
load level, as higher importance of service users increases the
risk. The network ring rate should also be monitored, as it re-
flects the network’s self-healing ability. Network connectivity
indicates the network’s invulnerability, and the reliability of
transmission power business should be given high attention.
Any interruption in transmission business can result in sig-
nificant losses to the power communication network. Addi-
tionally, managers should closely monitor the subcategories

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346678

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of equipment operation status, resource scheduling, and the
characteristics of network nodes themselves. These indicators
can be managed using conventional management processes.

3. Based on the concept of the AlARP criterion for risk
classification [37], the risk value is divided into three regions
using two risk dividing lines. The red line represents the
unacceptable risk level, while the blue line represents the neg-
ligible risk level. When considering cost-based indicators, a
level 4 risk is identified when the value is less than 25% of the
maximum value, while a level 1 risk is associated with a value
exceeding 75% of the maximum value. In the case of benefit-
based indicators, the degree of deviation from the nominal
value is determined using equation (14). A level 4 risk is
assigned when the deviation is within 25% of the maximum
value, indicating acceptable network operation. Conversely,
a level 1 risk is assigned when the deviation exceeds 75% of
the maximum value. Figure 6 illustrates the changes in risk
quantification values for three selected indicators based on
the results shown in Figure 5.

The risk value of the topological structure of each node
in the network is presented in Figure a. All node risks are
non-negligible, which aligns with the findings in Figure 5.
Specifically, the topological index, connectivity index, and
risk level 1 exhibit the strongest correlation. Figure b illus-
trates the business risk value of each node in the network. The
results indicate that only node 12 poses low risk, while the
remaining nodes pose medium and high risks, consistent with
the conclusion of Figure 5. Figure c showcases the risk value
of resource scheduling for each node in the network. The
findings reveal that only node 14 has high risk, while most
nodes operate normally, which is in line with the conclusion
of Figure 5, the index has the greatest clustering correlation
degree at a good level. It is noteworthy that despite the risk
of nodes 5-8 being the same under the C24 index, their risk
characteristics differ due to variations in topological connec-
tions and business loads. The experimental results validate
the comprehensiveness and effectiveness of the established
index system. In addition,the final risk value of each node
is obtained by summing up the risk values under different
index measures. The key nodes of the power communication
network can be identified based on the resulting ordering.

2) comparative analysis
The risk severity level k of the current operating state of the
power communication network is obtained using Equation
(25), and the risk value is calculated based on Equation
(13),Equation (14), Equation (33), and Equation (34). This
corresponds to observation case 1 in table 3. Additionally, the
parameter value of the business index is modified to observe
the comprehensive risk assessment results under different
network conditions, as presented in table 3.

The difference between the actual network status of obser-
vation 1 and observations 2 and 3 is the variation in traffic
volume. In observations 2 and 3, the amount of power traffic
transmitted in the power communication network is gradually
increased. The results indicate that, at the same probability

(a) Indicator C8

(b) Indicator C15

(c) Indicator C24
FIGURE 6. Risk index calculation results:(a) Indicator C8; (b) Indicator
C15;(c) Indicator C24.
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TABLE 3. Cloud clustering correlation degree of different states and evaluation results

Evaluation Cloud clustering correlation degree Evaluation results
object Serious Abnormal Attention Good The level of probability The level of risk The value of risk
Case 1 0.3548 0.2934 0.3219 0.5048 Grade 2 Attention 10.6494
Case 2 0.2400 1.0224 1.2334 0 Grade 2 Attention 20.8924
Case 3 0.2400 1.2678 0.9942 0 Grade 2 Abnormal 31.1355

TABLE 4. Comparison of evaluation results

Evaluation clustering correlation degree Evaluation results
method Serious Abnormal Attention Good The level of risk The value of risk

Method of this article 0.3548 0.3314 0.3219 0.5048 Attention 10.6494
Gray clustering method 0.3638 0.3713 0.3477 0.5194 Attention ——
Matter-element extension -1.2348 -0.6406 -0.6519 -0.6577 Abnormal ——
Fuzzy C-means clustering 0.1442 0.2816 0.306 0.2683 Attention ——

level, both the risk level and risk value increase when the
business volume is doubled. When the business volume is
increased by a factor of 1, the risk level remains unchanged,
however, the risk quantification value can still explain the
change in network state risk.

To further validate the evaluation results of the method
proposed in this paper, we compared it with three other evalu-
ationmodels: the traditional gray clustering evaluationmodel,
fuzzy C-means clustering, and the matter-element extension
model mentioned in literature [1]. The comparison results are
presented in table 4. Additionally, table 5 displays the time
and credibility required for the evaluation using these four
methods under the same network conditions.

The results indicate that the traditional matter-element ex-
tension model is less accurate in determining the correlation
degree. The correlation degree results for abnormal, attention,
and good grades are very similar, making it prone to mis-
judgment. However, our method has an advantage over the
gray clustering method as it includes both the comprehensive
judgment of the risk level and the quantitative value of the
risk. It introduces the risk probability level to further differ-
entiate the risk level when the risk severity level is similar. Ad-
ditionally, the network operation can be understood based on
the risk value when the risk level is the same. The evaluation
method’s calculation discrimination degree is characterized
by the difference between the final judgment result and its
closest correlation degree. After performing calculations, the
discrimination degree of this method is 0.1500, which is
higher than the discrimination degrees of the gray cluster-
ing method (0.1481), the matter-element extension method
(0.0113), and the fuzzy C-means clustering method (0.0244).
It is evident that this method has the highest discrimination
degree compared to the other methods. The result is similar
to the gray clustering method, the only difference lies in
the introduction of the cloud model and the consideration
of the nature of the index. The clustering algorithm remains
consistent, but the former method outperforms in terms of
efficiency.

The traditional matter-element extension method calcu-

lates the correlation degree by measuring the extension dis-
tance between the index value and the index range. On the
other hand, the fuzzy C-means clustering method calculates
the correlation degree by considering the Euclidean distance
from the index value to the clustering center. In contrast, the
gray clusteringmethod calculates the correlation degree using
three different function types. However, the conventional gray
clustering method fails to take into account the opposite
effects of the benefit index and cost index on risk charac-
teristics. This paper proposes an improved gray clustering
method that addresses these limitations. Firstly, the cloud
model is introduced to enhance the traditional whitening
weight function. This allows for a more detailed division of
intervals and the selection of the appropriate function type to
calculate the correlation degree, thereby effectively capturing
the fuzziness and randomness of the evaluation grade infor-
mation. Secondly, the nature of the index is further distin-
guished, thereby avoiding the issue of index incompatibility.
The experimental results confirm that this method exhibits the
largest difference and provides the best evaluation of the risk
level of power communication network. Table 5 demonstrates
that the method proposed in this paper also excels in terms
of time calculation and credibility.The dispersion degree of
the simulation example results is evaluated by calculating
the expected value of the evaluation results and conducting
entropy analysis. The simulation example demonstrates that
the evaluation results obtained using the method proposed in
this paper are highly credible. In conclusion, the experimental
results confirm that the proposed method has a better overall
effect.

Finally, the weight coefficient of Equation (35) is analyzed
and its value is changed. The results are shown in Figure 7.

It can be seen that when α<0.3 , the evaluation result is
consistent with the level of probability, and when α>0.7,
the evaluation result is consistent with the severity level of
risk.When α ∈ [0.3, 0.7],the risk assessment grade results
are the same.In practical applications, the assessment of risk
grading focus can be flexibly realized on demand according
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TABLE 5. Evaluation method running time and credibility

Evaluation
method Method of this article Gray clustering method Matter-element extension Fuzzy C-means clustering

Running time (1 time)/s 0.011276 0.044916 0.647153 0.003505
Running time (100 times)/s 1.06879 2.374 —— 1.99272

Credibility δ 0 0.021 —— 0.3571

FIGURE 7. The evaluation results under different weight coefficient α.

to the actual operation of the network.

V. CONCLUSION
This paper presents a risk assessment method for power com-
munication network that takes into account multiple risk fac-
tors. The study analyzes the risk factors associatedwith power
communication network and establishes an evaluation index
system based on the concept of ’static structure-dynamic op-
eration’. A risk assessment model is developed by combining
the matter-element extension model, gray theory, and cloud
model theory. The proposed model utilizes the triangular
modulus operator to calculate the probability of comprehen-
sive risk occurrence, enabling both quantitative and accurate
risk calculation and qualitative risk level evaluation for power
communication network. The simulation results demonstrate
that the business index and topology connectivity index are
the primary risk factors. Furthermore, the method proposed
in this paper outperforms three other risk evaluation methods
in terms of credibility, efficiency, and discrimination, while
also reducing the error in determining risk levels.
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