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ABSTRACT We look into Generative Adversarial Network (GAN), its prevalent variants and applications
in a number of sectors. GANs combine two neural networks that compete against one another using zero-
sum game theory, allowing them to create much crisper and discrete outputs. GANs can be used to perform
image processing, video generation and prediction, among other computer vision applications. GANs can
also be utilised for a variety of science-related activities, including protein engineering, astronomical data
processing, remote sensing image dehazing, and crystal structure synthesis. Other notable fields where
GANs have made gains include finance, marketing, fashion design, sports, and music. Therefore in this
article we provide a comprehensive overview of the applications of GANs in a wide variety of disciplines.
We first cover the theory supporting GAN, GAN variants, and the metrics to evaluate GANs. Then we
present how GAN and its variants can be applied in twelve domains, ranging from STEM fields, such as
astronomy and biology, to business fields, such as marketing and finance, and to arts, such as music. As
a result, researchers from other fields may grasp how GANs work and apply them to their own study. To
the best of our knowledge, this article provides the most comprehensive survey of GAN’s applications in
different field

INDEX TERMS deep learning, generative adversarial networks, computer vision, time series, applications

I. INTRODUCTION

Generative Adversarial Networks [1] or GANs belong to the
family of Generative models [2]. Generative Models try to
learn a probability density function from a training set and
then generate new samples that are drawn from the same
distribution. GANs generate new synthetic data that resem-
bles real data by pitting two neural networks (the Generator
and the Discriminator) against each other. The Generator
tries to capture the true data distribution for generating new
samples. The Discriminator, on the other hand, is usually a
Binary classifier that tries to discern between actual and fake
generated samples as precisely as possible.

Over the last few years, GANs have made substantial
progress. Due to hardware advances, we can now train deeper
and more sophisticated Generator and Discriminator neural
network architectures with increased model capacity. GANs
have a number of distinct advantages over other types of
generative models. Unlike Boltzmann machines [3], GANs

do not require Monte Carlo approximations in order to train,
and GANs use back-propagation and do not require Markov
chains.

GANs have gained a lot of traction in recent years and
have been widely employed in a variety of disciplines, with
the list of fields in which GANs can be used fast expanding.
GANs can be used for data generation and augmentation(
[4], [5]), image to image translation( [6], [7]), image super
resolution( [8], [9]) to name a few. It is this versatile nature,
that has allowed GANs to be applied in completely non-
aligned domains such as medicine and astronomy.

There have been a few surveys and reviews about GANs
due to their tremendous popularity and importance. However,
the majority of past papers have concentrated on two distinct
aspects: first, describing GANs and their growth over time,
and second, discussing GANs’ use in image processing and
computer vision applications( [10], [11], [12], [13], [14]).
As a consequence, the focus has been less on describing
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GAN applications in a wide range of disciplines. Therefore,
we’ll present a comprehensive review of GANs in this first-
of-its-kind article. We’ll look at GANs and some of the
most widely used GAN models and variants, as well as a
number of evaluation metrics, GAN applications in a variety
of 12 areas (including image and video related tasks, medical
and healthcare, biology, astronomy, remote sensing, material
science, finance, marketing, fashion, sports and music), GAN
challenges and limitations, and GAN future directions.

Some of the major contributions of the paper are high-
lighted below:

• Describe the wide range of GAN applications in engi-
neering, science, social science, business, art, music and
sports. As far as we know, this is the first review paper to
cover GAN applications in such diverse domains. This
review will assist researchers of various backgrounds in
comprehending the operation of GANs and discovering
about their wide array of applications.

• Evaluation of GANs include both qualitative and quan-
titative methods. This survey provides a comprehensive
presentation of quantitative metrics that are used to eval-
uate the performance of GANs in both computer vision
and time series data analysis. We include evaluation
metrics for GANs’ application in time series data which
are not discussed in other GAN survey paper. To the best
of our knowledge, this is the first survey paper to present
time series data evaluation metrics for GANs.

We have organized the rest of the article as follows:
Section 2 presents the basic working of GANs, and the
most commonly used GAN variants and their descriptions.
Section 3 summarises some of the frequently used GAN
evaluation metrics. Section 4 describes the extensive range of
applications of GANs in a wide variety of domains. We also
provide a table at the end of each subsection summarizing the
application area and the corresponding GAN models used.
Section 5 discusses some of the difficulties and challenges
that are encountered during the training of GANs. Apart from
this we present a short summary concerning the future di-
rection of GAN development. Section 6 provides concluding
remarks.

II. GAN, GAN VARIANTS AND EXTENSIONS
In this section we describe about GANs, the most common
GAN models and extensions. Following a description of
GAN theory, we go over twelve GAN variants that serve as
foundations or building blocks for many other GAN models.
There are a lot of articles on GANs, and a lot of them have
named-GANs, which are models that have a specific name
that usually contains the word “GAN”. We’ve focused on
twelve specific GAN variants. The reader will obtain a better
knowledge of the core aspects of GANs by reading through
these twelve GAN variants, which will help them navigate
other GAN models.

A. GAN BASICS
Generative Adversarial Networks were developed by Ian
Goodfellow et al. [1] in the year 2014. GANs belong to
the class of Generative models [2]. GANs are based on the
min-max, zero-sum game theory. For this, GANs consists
of two neural networks: one is the Generator and the other
is the Discriminator. The goal of the Generator is to learn
to generate fake sample distribution to deceive the Discrim-
inator whereas the goal of the Discriminator is to learn to
distinguish between real and fake distribution generated by
the Generator.

1) Network architecture and learning
The general architecture of GAN which is comprised of the
Generator and the Discriminator is shown in Figure 1. The
Generator (G) takes in as input some random noise vector Z
and then tries to generate an image using this noise vector
indicated as G(z). The generated image is then passed to the
Discriminator and based on the output of the Discriminator
the parameters of the Generator are updated. The Discrimi-
nator (D) is a binary classifier which simultaneously takes a
look at both real and fake samples generated by the Generator
and ties to decide which ones are real and which ones are
fake. That is for a sample image X the Discriminator models
the probability of the image being fake or real. The probabil-
ities are then passed back to the Generator as feedback.

Over time each of the Generator and the Discriminator
model tries to one up each other by competing against
each other this where the term “adversarial” of Generative
Adversarial Networks comes from and the optimization is
based on the minimax game problem. During training both
the Generator’s and Discriminator’s parameters are updated
using back propagation with the ultimate goal of the Gener-
ator is to be able to generate realistic looking images and
the Discriminator to get progressively better at detecting
generated fake images from real ones.

GANs use the Minimax loss function which was intro-
duced by Goodfellow et al. when they introduced GANs for
the first time. The Generator tries to minimize the following
function while the Discriminator tries to maximize it. The
Minimax loss is given as,

MinG MaxD f(D,G) =Ex[log(D(x))]

+ Ez[log(1−D(G(z)))].
(1)

Here, Ex is the expected value over all real data samples,
D(x) is the probability estimate of the Discriminator if x is
real, G(z) is the output of the Generator for a given random
noise vector z as input, D(G(z)) is the Discriminator’s
probability estimate if the fake generated sample is real, Ez

is the expected value over all random inputs to the Generator.

B. CONDITIONAL GENERATIVE ADVERSARIAL NETS
(CGAN)
Conditional Generative Adversarial Nets [15] or cGANs are
an extension of GANs for conditional sample generation.
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FIGURE 1: Basic GAN architecture

This gives control over the modes of data being generated.
cGANs use some extra information y, such as class labels or
other modalities, to perform conditioning by concatenating
this extra information y with the input and feeding it into
both the Generator G and the Discriminator D. The Minimax
objective function can be modified as shown below,

min
G

max
D

f(D,G) =

Ex[log(D(x|y))] + Ez[log(1−D(G(z|y)))] (2)

FIGURE 2: cGAN architecture [15]

C. WASSERSTEIN GAN (WGAN)
The authors of WGAN [16] introduced a new algorithm
which gave an alternative to traditional GAN training. They

showed that their new algorithm improved the stability of
model learning and prevent problems such as mode col-
lapse. For the critique model, WGAN uses weight clipping,
which ensures that weight values (model parameters) stay
within pre-defined ranges. The authors found that Jensen-
Shannon divergence is not ideal for measuring the distance
of the distribution of the disjoint parts. Therefore they used
the Wasserstein distance which uses the concept of Earth
mover’s(EM) distance instead to measure the distance be-
tween the generated and the real data distribution and while
training the model tries to maintain One-Lipschitz continuity
[17].

The EM or Wasserstein distance for the real data distribu-
tion Pr and the generated data distribution Pg is given as

W (Pr, Pg) = infγεΠ(Pr,Pg)E(x,y)∼r[∥x− y∥] (3)

where Π(Pr, Pg) denotes the set of all joint distributions
γ(x, y) whose marginals are respectively Pr and Pg . How-
ever, the equation for the Wasserstein distance is highly
intractable. Therefore the authors used the Kantorovich-
Rubinstein duality to approximate the Wasserstein distance
as

maxwεωEx∼Pr
[fw(x)]− Ez∼p(z)[fw(G(z))] (4)

where (fw)wεω represents a parameterized family of func-
tions that are all K-Lipschitz for some K. The Discriminator
D’s goal is to optimize this parameterized function which
represents the approximated Wasserstein distance. The goal
of the Generator G is to miminize the above Wasserstein
distance equation such that the generated data distribution
is as close as possible to the real distribution. The overall
WGAN objective function is given as

minGmaxwεωEx∼Pr
[fw(x)]− Ez∼p(z)[fw(G(z))] (5)

or

minGmaxDEx∼Pr
[fw(x)]− Ez∼p(z)[fw(G(z))] (6)
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Even though WGAN improved training stability and allevi-
ated problems such as mode collapse however enforcing the
Lipschitz constraint is a challenging task. WGAN-GP [17]
proposes an alternative to clipping weights by using gradient
penalty to penalize the norm of gradient of the critic with
respect to its input.

D. UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS (DCGANS)
Radford et al. [5] introduced the deep convolutional genera-
tive adversarial networks or DCGANs. As the name suggests
DCGANs use deep convolutional neural networks for both
the Generator and Discriminator models. The original GAN
architecture used only multi-layer perceptrons or MLPs but
since CNNs are better at images than MLP, the authors of
DCGAN used CNN in the Generator G and Discriminator
D neural network architecture. Thre key features of the
DCGANs neural network architecture are: (a) First, for the
Generator, convolutions are replaced with transposed convo-
lutions, so the representation at each layer of the Generator
is successively larger, as it maps from a low-dimensional
latent vector onto a high-dimensional image. Replacing any
pooling layers with strided convolutions (Discriminator) and
fractional-strided convolutions (Generator). (b) Second, use
batch normalization in both the Generator and the Discrimi-
nator. (c) Third, use ReLU activation in Generator for all lay-
ers except for the output, which uses Tanh. Use LeakyReLU
activation in the Discriminator for all layers. (d) Fourth, use
the Adam optimizer instead of SGD with momentum. All
of these modifications rendered DCGAN to achieve stable
training. DCGAN was important because the authors demon-
strated that by enforcing certain constraints we can develop
complex high quality Generators. The authors also made
several other modifications to the vanilla GAN architecture.

E. PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION (PROGAN)
Karras et al. [4] introduced a new training methodology for
training GANs to generate high resolution images. The idea
behind ProGAN is to be able to synthesize high resolution
and high quality images via the incremental (gradual) grow-
ing of the Discriminator and the Generator networks during
the training process. ProGAN makes it easier for the Genera-
tor to generate higher resolution images by gradually training
it from lower resolution images to those higher resolution
images. That is in a progressive GAN, the Generator’s first
layers produce very low-resolution images, and subsequent
layers add details. Training is considerably stabilised by the
progressive learning process.

F. INTERPRETABLE REPRESENTATION LEARNING BY
INFORMATION MAXIMIZING GENERATIVE
ADVERSARIAL NETS (INFOGAN)
The key motivation behind InfoGAN [18] is to enable GANs
to learn disentangled representations and have control over

the properties or features of the generated images in an
unsupervised manner. To do this instead of using just a noize
vector z as input the authors decompose the noise vector into
two parts first being the traditional noise vector z and second
as new “latent code vector” c. This code has a predictable
effect on the output images. The objective function for Info-
GAN [18] is given as,

MinGMaxDf1(D,G) = f(D,G)− λI(c;G(z, c)) (7)

where λ is the regularization parameter, I(c;G(z, c)) is
the mutual information between the latent code c and the
Generator output G(z, c). The idea is to maximize the mu-
tual information between the latent code and the Generator
output. This encourages the latent code c to contain as much
as possible, important and relevant features of the real data
distributions. However it is not practical to calculate the
mutual information I(c;G(z, c)) explicitly as it requires the
posterior P (c|x), therefore a lower bound for I(c;G(z, c)) is
approximated. This can be achieved by defining an auxiliary
distribution Q(c|x) to approximate P (c|x). Thus the final
form of the objective function is then given by this lower-
bound approximation to the Mutual Information:

MinGMaxDf1(D,G) = f(D,G)− λL1(c;Q) (8)

where L1(c;Q) is the lower bound for I(c;G(z, c)). If we
compare the above equation to the original GAN objective
function we realize that this framework is implemented by
merely adding a regularization term to the original GAN’s
objective function.

G. STACKGAN: TEXT TO PHOTO-REALISTIC IMAGE
SYNTHESIS WITH STACKED GENERATIVE
ADVERSARIAL NETWORKS (STACKGAN)
StackGAN [19], takes in as input a text description and then
synthesizes high quality images using the given text descrip-
tion. The authors proposed StackGAN to generate 256×256
photo-realistic images based on text descriptions. To generate
photo-realistic images StackGAN uses a sketch-refinement
process, StackGAN decomposes the difficult problem into
more manageable sub-problems by using Stacked Generative
Adversarial Networks. The Stage-I GAN creates Stage-I
low-resolution images by sketching the object’s primitive
shape and colours based on the given text description. The
Stage-II GAN generates high-resolution images with photo-
realistic details using Stage-I results and text descriptions as
inputs.

To be able to do this, StackGAN architecture consists
of the following components: (a) Input variable length text
description is converted into a fixed length vector embed-
ding. (b) Conditioning Augmentation. (c) Stage I Generator:
Generates (128x128) images (d) Stage I Discriminator (e)
Stage II Generator: Generates (256x256) images. (f) Stage
II Discriminator. The variable length text description is first
converted to a vector embedding which is non-linearly trans-
formed to generate conditioning latent variables as the input
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FIGURE 3: DCGAN Generator architecture [5]

FIGURE 4: ProGAN architecture [4]

of the Generator. Filling the latent space of the embedding
with randomly generated fillers is a trick used in the paper
to make the data manifold more continuous and thus more
conducive to later training. They also add the Kullback-
Leibler divergence of the input Gaussian distribution and
the Gaussian distribution as a regularisation term to the
Generator’s training output, to make the data manifold more
continuous and training-friendly.

The Stage I GAN uses the following objective function:

LD0
= E(I0,t)∼pdata [logD0 (I0, ϕt)] +

Ez∼pz,t∼pdata [log (1−D0 (G0 (z, ĉ0) , ϕt))]
(9)

LG0
= Ez∼pz,t∼pdata

[log (1−D0 (G9 (z, ĉ0) , ϕt))]

+ λDKL (N (µ0(ϕt),Σ0(ϕt)) ∥N (0, I))

(10)

The Stage II GAN uses the following objective function:

LD = E(I,t)∼pdata [logD(I, ϕt)]

+ Es0∼pG0
,t∼pdata [log (1−D(G(s0, ĉ), ϕt))]

(11)
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LG = Es0∼pG0
,t∼pdata [log (1−D(G(s0, ĉ), ϕt))]

+ λDKL (N (µ(ϕt),Σ(ϕt))∥N (0, I))
(12)

where ϕt is the text embedding of the given description,
pz is Gaussian distribution, ĉ0 is sampled from a Gaussian
distribution from which ϕt is drawn. s0 = G0(z, ĉ0) and
λ = 1.

H. IMAGE-TO-IMAGE TRANSLATION WITH
CONDITIONAL ADVERSARIAL NETWORKS (PIX2PIX)
pix2pix [6] is a conditional generative adversarial net-
work(cGAN [15]) for solving general purpose image-to-
image translation problems. The GAN consists of a Genera-
tor which has a U-Net [20] architecture and the Discriminator
is a PatchGAN [6] classifier. The pix2pix model not only
learns the mapping from input to output image, but also
constructs a loss function to train this mapping. Interestingly,
unlike regular GANs, there is no random noise vector input
to the pix2pix Generator. Instead, the Generator learns a
mapping from the input image x to the output image G(x).
The objective or the loss function for the Discriminator is
the traditional adversarial loss function. The Generator on the
other hand is trained using the adversarial loss along with the
L1 or pixel distance loss between the generated image and the
real or target image. The L1 loss encourages the generated
image for a particular input to remain as similar as possible
to the corresponding output real or ground truth image. This
leads to faster convergence and more stable training. The loss
function for conditional GAN is given by

LcGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[log(1−D(x,G(x, z)))]
(13)

The L1 or pixel distance loss is given by

LL1(G) = Ex,y,z [∥y −G(x, z)∥1] (14)

The final loss function is given by

argmin
G

max
D

LcGAN (G,D) + λLL1(G) (15)

where λ is the weighting hyper-parameter coefficient.
Pix2PixHD [21] is an improved version of the Pix2Pix
algorithm. The primary goal of Pix2PixHD is to produce
high-resolution images and perform semantic manipulation.
To do this the authors introduced multi-scale Generators
and Discriminators and combined the cGANs and feature
matching loss function. The training set consists of pairs of
corresponding images (si, xi, where si is a semantic label
map and xi is a corresponding natural image. The cGAN loss
function is given by,

E(s,x)[logD(s,x)] + Es[log(1−D(s, G(s))] (16)

The ith-layer feature extractor of Discriminator Dk as
Dk

(i)(from input to the ith layer of Dk). The feature match-
ing loss LFM (G,Dk) is given by

LFM(G,Dk) = E(s,x)

T∑
i=1

1

Ni[∥∥∥D(i)
k (s,x)−D

(i)
k (s, G(s))

∥∥∥
1

] (17)

where T is the total number of layers and Ni denotes the
number of elements in each layer. The objective function of
pix2pixHD is given by

min
G

 max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk)


+ λ

∑
k=1,2,3

LFM(G,Dk)

(18)

I. UNPAIRED IMAGE-TO-IMAGE TRANSLATION USING
CYCLE-CONSISTENT ADVERSARIAL
NETWORKS(CYCLEGAN)
One fatal flaw of pix2pix is that it requires paired images
for training and thus cannot be used for unpaired data which
do not have input and output pairs. CycleGAN [7] addresses
the issue by introducing a cycle consistency loss that tries to
preserve the original image after a cycle of translation and
reverse translation. Matching pairs of images are no longer
required for training in this formulation. CycleGAN uses two
Generators and two Discriminators. The Generator G is used
to convert images from the X to the Y domain. The Generator
F, on the other hand, converts images from Y to X. (G : X →
Y , F : Y → X). The Discriminator DY distinguishes y from
G(x) and the Discriminator DX distinguishes x from F (y).
The adversarial loss is applied to both the mapping functions.
For the mapping function G : X → Y and its Discriminator
DY , the objective function is given by

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)]

+ Ex∼pdata (x) [log (1−DY (G(x))]
(19)

The authors argued that the adversarial losses alone cannot
guarantee that the learned function can map an individual
input xi to a desired output yi as it leaves the model under-
constrained. The authors therefore used the cycle consistency
loss such that the learned mapping is cycle-consistent. It
is based on the assumption that if you convert an image
from one domain to the other and back again by feeding it
through both Generators in sequence, you should get some-
thing similar to what you put in. Forward cycle consistency
is represented as x → G(x) → F (G(x)) ≈ x and the
backward cycle consistency as y → F (y) → G(F (y)) ≈ y.
The cycle consistency loss is given by

Lcyc (G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1]
+ Ey∼pdata (y) [∥G(F (y))− y∥1]

(20)

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346273

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Dash et al.: GANs and its applications in a wide variety of disciplines: From Medical to Remote Sensing

FIGURE 5: StackGAN architecture [19]

FIGURE 6: Using pix2pix to map edges to color images
[6]. D, the Discriminator, learns to distinguish between fake
(Generator-generated) and actual (edge, photo) tuples. G,
the Generator, learns how to deceive the Discriminator. In
contrast to an unconditional GAN, the Generator and Dis-
criminator both look at the input edge map.

The final full objective is given by

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λLcyc(G,F ),

(21)

where λ controls the relative importance of the two objec-
tives.

G∗, F ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX , DY ) (22)

J. A STYLE-BASED GENERATOR ARCHITECTURE FOR
GENERATIVE ADVERSARIAL NETWORKS(STYLEGAN)
The primary goal of StyleGAN [22] is to produce high qual-
ity, high resolution facial images that are diverse in nature
and provide control over the style of generated synthetic
images. StyleGAN is an extension of the ProGAN [4] model
which uses the progressive growing approach for synthesiz-
ing high resolution and high quality images via the incremen-
tal (gradual) growing of the Discriminator and the Generator

networks during the training process. It’s important to note
that StyleGAN changes affect only the Generator network,
which means they only affect the generative process. The
Discriminator and loss function, which are both the same as
in a traditional GAN, have not been altered. The upgraded
Generator includes several additions to the ProGAN’s Gen-
erators which are described below:

• Baseline Progressive GAN: The authors use the Pro-
gressive GAN(ProGAN [4]) as their baseline from
which they inherit the network architecture and some
of the hyperparameters.

• Bi-linear up/down sampling: The ProGAN model
used the nearest neighbor up/down sampling but the
authors of StyleGAN used bi-linear sampling layers for
both the Generator and the Discriminator.

• Mapping Network, Style Network and AdaIN: In-
stead of feeding in the noise vector z directly into
the Generator, it goes through a mapping network to
get an intermediate noise vector w, say. The output
of the mapping network (w) is then passed through a
learned affine transformation (A) before passing into
the synthesis network through the Adaptive Instance
Normalization [23] or AdaIN module. In Figure “A”
stands for a learned affine transform. The AdaIN mod-
ule transfers the encoded information, created by the
Mapping Network after the affine transformation, which
is incorporated into each block of the Generator model
after the convolutional layers. The AdaIN module be-
gins by converting the output of the feature map to a
standard Gaussian and then adding the style vector as
a bias term. The mapping network f is a standard deep
neural network which is comprised of 8 fully connected
layers and the synthesis network g consists of 18 layers.

• Remove traditional input: Most models, including
ProGAN, utilize random input to generate the Gener-
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FIGURE 7: CycleGAN [7] (a) two Generator mapping functions G : X → Y and F : Y → X , and two Discriminators
DY and DX . (b) forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x and (c) backward cycle consistency loss:
y → F (y) → G(F (y)) ≈ y.

ator’s initial image. However, the StyleGAN authors
found that the image features are controlled by w and
the AdaIN. As a result, they simplify the architecture by
eliminating the traditional input layer and begin image
synthesis with a learned constant tensor.

• Add noise inputs: Before evaluating the nonlinearity,
Gaussian noise is added after each convolution. In Fig-
ure 7. “B” is the learned scaling factor applied per
channel to the noise input.

• Mixing regularization: The authors also introduced
a novel regularization method to reduce neighbouring
styles correlation and have more fine grained control
over the generated images. Instead of passing just one
latent vector, z, through the mapping network as input
and getting one vector, w, as output, mixing regular-
isation passes two latent vectors, z1 and z2, through
the mapping vector and gets two vectors, w1 and w2.
The use of w1 and w2 is completely randomized for
every iteration this technique prevents the network from
assuming that styles adjacent to each other correlate.

K. RECURRENT GAN (RGAN) AND RECURRENT
CONDITIONAL GAN (RCGAN)
Besides generating synthetic images, GAN can also generate
sequential data [24], [25]. Instead of modeling the data dis-
tribution in the original feature space, the generative model
for time-series data also captures the conditional distribution
P (Xt|X1:t−1) given historical data. The main difference
in architecture between Recurrent GAN and the traditional
GAN is that we replace the DNNs/ CNNs with Recurrent
Neural Networks (RNNs) in both Generator and Discrimi-
nator. Here, the RNNs can be any variants of RNN, such as
Long short-term memory (LSTM) and Gated Recurrent Unit
(GRU), which captures the temporal dependency in input
data. In the case of Recurrent Conditional GAN (RCGAN),
both Generator and Discriminator are conditioned on some
auxiliary information. Many experiments [25] show that
RGAN and RCGAN are able to effectively generate realistic
time-series synthetic data.

For RGAN-and-RCGAN, the Generator RNN takes the
random noise at each time step to generate the synthetic

FIGURE 8: StyleGAN Generator [22]

sequence. Then, the Discriminator RNN works as a classifier
to distinguish whether the input is real or fake. Condition
inputs are concatenated to the sequential inputs of both the
Generator and Discriminator if it is an RCGAN. Similar
to GAN, the Discriminator in RGAN minimize the cross-
entropy loss between the generated data and the real data.
The Discriminator loss is formulated as follows.

Dloss(Xn, yn) = −CE(RNND(Xn), yn) (23)

Where Xn (Xn ∈ RT×d) and yn (yn ∈ {1, 0}T ) are the
input and output of the Discriminator with sequence length T
and feature size d. yn is a vector of 1s for real sequence and
0s for synthetic sequence. CE(·) is the average cross-entropy
function and RNND(·) is the RNN in Discriminator. The
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Generator loss is formulated below.
Gloss(Zn) = Dloss(RNNG(Zn), 1)

= −CE(RNND(RNNG(Zn)), 1)
(24)

Here, Zn is a random noise vector with Zn ∈ RT×m.
In the case of RCGAN, the inputs of both Generator and
Discriminator also concatenate the conditional information
cn at each time step.

L. TIME-SERIES GAN (TIMEGAN)
Recently, a novel GAN framework preserving temporal dy-
namics called Time-Series GAN (TimeGAN) [26] is pro-
posed. Besides minimizing the unsupervised adversarial loss
in the traditional GAN learning procedure, (1) TimeGAN
introduces a stepwise supervised loss using the original in-
puts as supervision, which explicitly encourages the model
to capture the stepwise conditional distributions in the data.
(2) TimeGAN introduces an autoencoder network to learn
the mapping from feature space and embedding/latent space,
which reduces the dimensionality of the adversarial learning
space. (3) To minimize the supervised loss, jointly training
on both the autoencoder and Generator is deployed, which
forces the model to be conditioned on the embedding to
learn temporal relationship. TimeGAN framework not only
captures the distributions of features in each time step but
also capture the complex temporal dynamics of features
across time.

The TimeGAN consists of four important parts, embed-
ding function, recovery function, Generator and Discrimina-
tor. First, the autoencoder (first two parts) learns the latent
representation from the inputs sequence. Then, the adversar-
ial model (latter two parts) trains jointly on the latent space to
generate the synthetic sequence with temporal dynamics by
minimizing both the unsupervised loss and supervised loss.

III. GAN EVALUATION METRICS
One of the most difficult aspects of GAN training is assessing
their performance, or determining how well a model approxi-
mates a data distribution. In terms of theory and applications,
significant progress has been made, with a large number
of GAN variants now available. However there has been
relatively little effort put into evaluating GANs, and there are
still gaps in quantitative assessment methods. In this section,
we present the relevant and popular metrics which are used
to evaluate the performance of GANs.

1) Inception Score (IS): IS was proposed by Salimans
et al. [27] and it employs the pre-trained InceptionNet
[28] trained on ImageNet [29] to capture the desired
properties of generated samples. The average Kull-
back–Leibler or KL divergence [30] between the con-
ditional label distribution p(y | x) of samples and the
marginal distribution p(y) calculated from all samples
is measured by IS. The goal of IS is to assess two
characteristics for a set of generated images: image
quality (which evaluates whether images have mean-
ingful objects in them) and image diversity. Thus IS

favors a low entropy of p(y | x) but a high entropy of
p(y). IS can be expressed as:

exp (Ex[KL(p(y | x)∥p(y))]) (25)

A higher IS indicates that the generative model is
capable of producing high-quality samples that are also
diverse.

2) Modified Inception Score (m-IS): In its original form,
Inception Score assigns models that produce a low
entropy class conditional distribution p(y | x) with
a higher score overall generated data. It is, however,
desirable to have diversity within a category of sam-
ples. To characterize this diversity, Gurumurthy et
al. [31] proposed a modified version of inception-
score which incorporates a cross-entropy style score
−p (y | xi) log (p (y | xj)) where xjs are samples of
the same class as xi as per the outputs of the trained
inception model. The modified IS can be defined as,

exp
(
Exi

[
Exj

[(KL (P (y | xi) ∥P (y | xj))]]
)

(26)

The m-IS is calculated per-class and then averaged
across all classes. m-IS can be thought of as a proxy for
assessing both intra-class sample diversity and sample
quality.

3) Mode Score(MS): The MODE score introduced by
Che et al. [32] is an improved version of the IS that
addresses one of the IS’s major flaws: it ignores the
prior distribution of ground truth labels. In contrast to
IS, MS can measure the difference between the real and
generated distributions.

exp
(
Ex

[
KL

(
p(y | x)∥p

(
ytrain ))]−KL

(
p(y)∥p

(
ytrain )))

(27)
where p

(
ytrain

)
is the empirical distribution of labels

computed from training data. According to the author’s
evaluation, the MODE score successfully measures
two important aspects of generative models, namely
variety and visual quality.

4) Frechet Inception Distance (FID): Proposed by
Heusel et al. [33], the Frechet Inception Distance score
determines how far feature vectors calculated for real
and generated images differ. A specific layer of the
InceptionNet [28] model is used by the FID score to
capture and embed features of an input image. The
embeddings are summarized as a multivariate Gaussian
by calculating the mean and covariance for both the
generated data and the real data. The Fréchet dis-
tance (or Wasserstein-2 distance) between these two
Gaussians is then used to quantify the quality of the
generated samples.

FID(r, g) = ∥µr − µg∥22
+Tr(Σr +Σg − 2(ΣrΣg)

1
2 )

(28)

where (µg,Σg) and (µr,Σr) represent the empirical
mean and empirical covariance of the generated and
real data disctibutions respectively. Smaller distances

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346273

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Dash et al.: GANs and its applications in a wide variety of disciplines: From Medical to Remote Sensing

FIGURE 9: RGAN and RCGAN [25]

FIGURE 10: (a) Block Diagram of Four Key Components in TimeGAN. (b) Training scheme: solid lines and dashed lines
represent forward propagation paths and backpropagation paths respectively. [26]

TABLE 1: Application of common GAN models

Common GAN variants and extensions Application area
DCGAN [5] Image Generation
cGAN [15] Semi supervised conditional Image Generation
StackGAN [19] Image generation based on text inputs
Pix2Pix [6] Image to image translation
CycleGAN [7] Unpaired Image to image translation
RGAN, RCGAN [25] Synthetic medical time series data generation
TimeGAN [26] Realistic time-series data generation

between synthetic(model generated) and real data dis-
tributions are indicated by a lower FID.

5) Image Quality Measures: Below we describe some
commonly used image quality assessment measures
used to compare GAN generated data with the real
data.

a) Structural similarity index measure (SSIM) [34]
is a method for quantifying the similarity between
two images. SSIM tries to model the perceived

change in the image’s structural information. The
SSIM value varies between -1 and 1, where a
value of 1 shows perfect similarity. Multi-Scale
SSIM or MS-SSIM [35] is a multiscale version
of SSIM that allows for more flexibility in incor-
porating image resolution and viewing conditions
than a single scale approach. MS-SSIM ranges
between 0 (low similarity) and 1 (high similarity).

b) Peak Signal-to-Noise Ratio or PSNR compares
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the quality of a generated image to its correspond-
ing real image by measuring the peak signal-to-
noise ratio of two monochromatic images. For ex-
ample evaluation of conditional GANs or cGANs
[15] Higher PSNR (in db) indicates better quality
of the generated image.

c) Sharpness Difference (SD) represents the differ-
ence in clarity between the generated and the
real image. The larger the value is, the smaller
the difference in sharpness between the images is
and the closer the generated image is to the real
image.

6) Evaluation Metrics for Time-Series/Sequence In-
puts: To evaluate quality of generating synthetic se-
quence data is very challenging. For example, the
Intensive Care Unit (ICU) signal looks completely
random to a non-medical export [25]. The researchers
evaluate the quality of synthetic sequential data mainly
focusing on the following three different aspects. (1)
Diversity – the synthetic data should be generated from
the same distribution of real data. (2) Fidelity – the
synthetic data should be indistinguishable from the real
data. (3) Usability — the synthetic data should be good
enough to be used as the train/test dataset. [26]

a) t-SNE and PCA [26] are both commonly used
visualization tools for analyzing both the original
and synthetic sequence datasets. They flatten the
dataset across the temporal dimension so that
the dataset can be plotted in the 2D plane. They
measure how closely the distribution of gener-
ated samples resembles that of the original in 2-
dimensional space.

b) Discriminative Score [26] evaluates how difficult
for a binary classifier to distinguish between the
real (original) dataset and the fake (generated)
dataset. It is challenging for the classifier to clas-
sify if the synthetic data and the original are
drawn from the same distribution.

c) Maximum Mean Discrepancy (MMD) [25], [36]
learns the distribution of the real data. The max-
imum mean discrepancy method has been pro-
posed to distinguish whether the synthetic data
and the real data are from the same distribution by
computing the squared difference of the statistics
between real and synthetic samples (MMD2).
The unbiased MMD2 can be denoted as follow-
ing where the inner production between functions
is replaced with a kernel function K.

M̂MD2 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

K(xi, xj)

− 2

mn

n∑
i=1

m∑
j=1

K(xi, yj)

+
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

K(yi, yj)

(29)

A suitable kernel function for the time-series
data is vital. The authors treat the time series as
vectors for comparison and select the radial basis
function (RBF) as the kernel function which is
K(x, y) = exp(−∥x− y∥2 /(2σ2)). To select
an appropriate kernel bandwidth σ, the estimator
of the t-statistic of the power of the MMD test
between two distributions t̂ = M̂MD

2

√
V̂

is max-

imised. The authors split a validation set during
training to tune the parameter. The result shows
that MMD2 is more informative than either Gen-
erator or Discriminator loss, and correlates well
with quality as assessed by visualising [25].

d) Earth Mover Distance (EMD) [37], [38] is a
measure of the distance between two probability
distributions over a region. It describes how much
probability mass has to be moved to transform Ph

into P g where Ph denotes the historical distri-
bution and P g is the generated distribution. The
EMD is defined by

EMD(Ph, P g) = inf
π∈

∏
(Ph,P g)

E(X,Y )∼π [∥X − Y ∥]
(30)

where
∏
(Ph, P g) denotes the set of all joint

probability distributions with marginals Ph and
P g .

e) AutoCorrelation Function (ACF) Score [37] de-
scribes the coefficient of correlation between his-
torical and the generated time series. Let r1:T
denote the historical log percentage change series
and {r(1)

1:T̃ ,θ
, ..., r

(M)

1:T̃ ,θ
} a set of generated log

percentage change paths of length T̃ ∈ N . The
autocorrelation is calculated with the time lag tau
and the series r1:T and measures the correlation
of the lagged time series with the series itself

C(τ ; r) = Corr(rt+τ , rt) (31)

The ACF(f ) score is computed for a function f :
R → R as
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ACF (f) := ∥ C(f(r1:T ))

− 1

M

M∑
i=1

C(f(r
(i)
1:T,θ)) ∥2

(32)

where C : RT → [−1, 1]S : r1:T 7→
(C(1; r), ..., C(S; r)).

f) Leverage Effect Score [37] provides a compari-
son of the historical and the generated time de-
pendence. The leverage effect for lag τ is mea-
sured using the correlation of the lagged, squared
log percentage changes and the log percentage
changes themselves.

ℓ(τ ; r) = Corr(r2t+τ , rt) (33)

The leverage effect score is defined by

∥ L(r1:T =
1

M

M∑
i=1

L(r
(i)

1:T̃ ,θ
)) ∥2 (34)

where L : RT → [−1, 1]S : r1;r 7→
(ℓ(1; r), ..., ℓ(S; r)).

IV. GAN APPLICATIONS
GANs are by far the most widely used generative models and
they are immensely powerful for the generation of realistic
synthetic data samples. In this section, we will go over
the wide array of domains in which Generative Adversar-
ial Networks (GANs) are being applied. Specifically, we
will present the use of GANs in Image processing, Video
generation and prediction, Medical and Healthcare, Biol-
ogy, Astronomy, Remote Sensing, Material Science, Finance,
Fashion Design, Sports and Music.

A. IMAGE PROCESSING
GANs are quite prolific when it comes to specific image
processing related tasks like image super-resolution, image
editing, high resolution face generation, facial attribute ma-
nipulation to name a few.

• Image super-resolution: Image super-resolution refers
to the process of transforming low resolution images to
high resolution images. SRGAN [8] is the first image
super-resolution framework capable of inferring photo-
realistic natural images for 4x up-scaling factors. Sev-
eral other super resolution frameworks( [9], [39]) have
also been developed to produce better results. Best-
Buddy GANs [40] developed recently is used for single
image super-resolution (SISR) task along with previous
works( [41], [42]).

• Image editing: Image editing involves removing or
modifying some aspects of an image. For example,
images captured during bad weather or heavy rain lack
visual quality and thus will require manual intervention
to either remove anomalies such as raindrops or dust

particles that reduce image quality. The authors of ID-
CGAN [43] used GANs to address the problem of sin-
gle image de-raining. Image modification could involve
modifying or changing some aspects of an image such
as changing the hair color, adding a smile, etc. which
was demonstrated by ( [44], [45]).

• High resolution face image generation: High resolu-
tion facial image generation is one other area of image
processing where GANs have excelled. Face generation
and attribute manipulation using GANs can be broadly
classified into the creation of entire synthetic faces, face
features or attribute manipulation and face component
transformation.

– Synthetic face generation: Synthetic face genera-
tion refers to the creation of synthetic images of the
face of people who do not exist in real life. ProGAN
[4], described in the previous section demonstrated
the generation of realistic looking images of human
faces. Since then there have been several works
which use GANs for facial image generation( [46],
[47]). StyleGAN [48] which is a unique genera-
tive adversarial network introduced by Nvidia re-
searchers in December 2018. The primary goal of
StyleGAN is to generate high quality face images
that are also diverse in nature. To achieve this, the
authors used techniques such as using a noise map-
ping network, adaptive instance normalization and
progressive growing similar to ProGAN to produce
very high resolution images.

– Face features or attribute manipulation: Face
attribute manipulation includes facial pose and ex-
pression transformation. The authors of PosIX-
GAN [49] trained their model to generate high
quality face images with 9 different pose varia-
tions when given a face image in any arbitrary
pose as input. DECGAN [50] authors used Dou-
ble Encoder Conditional GAN to perform facial
expression synthesis. Expression Conditional GAN
(ECGAN) [51] can learn the mapping from one
image domain to another and the authors were
able to control specific facial expressions by the
conditional attribute label.

– Face component transformation: Face compo-
nent transformation deals with altering the face
style(hair color and style) or adding accessories
such as eye glasses. The authors of DiscoGAN [52]
were able to change hair color and the authors of
StarGAN [53] were able to perform multi-domain
image translations. BeautyGAN [54] can be used to
translate the makeup style from a given reference
makeup face image to another non-makeup one
while preserving face identity. The authors of Info-
GAN [18] trained their model to learn disentangled
representations in an unsupervised manner and can
modify facial components such as adding or remov-
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TABLE 2: Summary of relevant and popular GAN evaluation metrics

Quantitative metrics Description
Inception Score (IS) [27] Measures the KL-Divergence between the conditional and marginal label

distributions over the data.
Modified Inception Score (m-IS) [31] Incorporates a cross-entropy style score to promote diversity within a category

of samples.
Mode Score (MS) [32] Improved veersion of IS and takes into account the prior distribution of ground

truth labels.
Fréchet Inception Distance (FID) [33] Evaluates the Fréchet distance or the Wasserstein-2 distance between the multi-

variate Gaussians fitted to data embedded into a feature space.
Structural Similarity Index Measure (SSIM [34]), Peak signal-to-noise
ratio (PSNR), Multiscale SSIM (MS-SSIM [35]) and Sharpness Differ-
ence (SD)

Evaluate and assess the quality of generated images.

Maximum Mean Discrepancy (MMD [24], [36]), Earth Mover Distance
(EMD [37], [38]), DY Metric [37], ACF Score [37], Leverage Effect
Score [37]

Evaluate the quality of generated sequence data.

ing eyeglasses and changing hairstyles. GANs can
also be applied to image inpainting where the task
is of reconstructing missing regions in an image.
In this regard GANs have been used( [55], [56]) to
perform the task.

B. VIDEO GENERATION AND PREDICTION
Synthesizing videos using GANs can be divided into three
main categories.

• Unconditional video generation
• Conditional video generation
• Video prediction

1) Unconditional video generation
For unconditional video generation the output of the GAN
models is not conditioned on any input signals. Due to the
lack of any information provided as a condition with the
videos during the training phase, the output videos produced
by these frameworks typically are low-quality in nature.

The authors of VGAN [57] were the first to apply GANs
for video generation. Their Generator consists of two CNN
networks, one 3D spatio-temporal convolutional network to
capture moving objects in the foreground, and the other is a
2D spatial convolutional model that captures the static back-
ground. The two independent outputs from the Generator are
combined to create the generated video and fed to the Dis-
criminator, to decide if it is real or fake. Temporal Generative
Adversarial Nets (TGAN) [58] can learn representation from
an unlabeled video dataset and generate a new video. TGAN
Generator consists of two sub Generators one of which is
the temporal Generator and the other is the image Generator.
The temporal Generator takes a single latent variable as
input and produces a set of latent variables, each of which
corresponds to a video frame. The image Generator creates
a video from a set of latent variables. The Discriminator
consists of three-dimensional convolutional layers. TGAN
uses WGAN to provide stable training and meets the K-
Lipschitz constraint. FTGAN [59] consists of two GANs:
FlowGAN and TextureGAN. FlowGAN network deals with
motion, i.e. adds optical flow for representing the object
motion more effectively. The TextureGAN model is used

to generate the texture that is conditioned on the previous
FlowGAN result, to produce the required frames. Motion
and Content decomposed Generative Adversarial Network
or MoCoGAN [60] uses a motion and content decomposed
representation for video generation. MoCoGAN is made up
of four sub-networks: a recurrent neural network, an image
Generator, an image Discriminator, a video Discriminator,
and a video Discriminator. Built on the BigGAN [61] ar-
chitecture, the Dual Video Discriminator GAN (DVD-GAN)
[62] is a generative video model for high quality frame
generation. DVD-GAN employs Recurrent Neural Network
(RNN) units as well as a dual Discriminator architecture to
deal with the spatial and temporal dimension.

2) Conditional video generation

In conditional video generation the output of the GAN
models is conditioned on input signals such as text, audio
or speech. We do not consider other conditioning techniques
such as images to video, semantic map to videos and video
to video as these can be considered to fall under the video
prediction category which is described in section 4.5.2 below.

For text to video synthesis the goal is to generate videos
based on some conditional text. Li et al. [63] used Variational
Autoencoder (VAE) [64] and Generative Adversarial Net-
work (GAN) for generating videos from text. Their model is
made a conditional gist Generator (conditional VAE), a video
Generator, and a video Discriminator. The initial image/gist
is created by the conditional gist Generator, which is condi-
tioned on encoded text. This gist serves as a general represen-
tation of the image, background color and object layout of the
desired video. The video’s content and motion are then gen-
erated using cGAN by conditioning both the gist and the text
input. Temporal GANs conditioning on captions (TGANs-C)
[58] uses a Bidirectional LSTM and LSTM based encoder to
embed and obtain the representation of the input text. This
output representation is then concatenated with a random
noise vector and then given to the Generator, which is a
3D deconvolution network to generate synthesize realistic
videos. The model has three Discriminators: The video Dis-
criminator distinguishes real video from synthetic video and
aligns video with the correct caption, the frame Discriminator
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TABLE 3: Applications in Image processing

Image processing application GAN models
Image super-resolution SRGAN [8], TSRGAN [9], ESRGAN [39], Best-BuddyGAN [40],

GMGAN [41], PESR [42]
Image editing and modifying ID-CGAN [43], IcGAN [44]
Synthetic face generation ProGAN [4], StyleGAN [22]
Face features or attribute manipulation PosIX-GAN [49], DECGAN [50], ECGAN [51]
Face component transformation DiscoGAN [52], StarGAN [53], BeautyGAN [54], InfoGAN [18]

determines whether each frame is real/fake and semantically
matched/mismatched with the given caption, and the motion
Discriminator exploits temporal coherence between consecu-
tive frames. Balaji et al. proposed the Text-Filter conditioning
Generative Adversarial Network (TFGAN) [65]. TFGAN
introduces a novel multi-scale text-conditioning technique
in which text features are extracted from the encoded text
and used to create convolution filters. Then, the convolution
filters are input to the Discriminator network to learn good
video-text associations in the GAN model. StoryGAN [66]
is based on a sequential conditional GAN framework whose
task is to generates a sequence of images for each sentence in
a given multi-sentence paragraph. The GAN model consists
of (i) Story Encoder, (ii) A recurrent neural network (RNN)
based Context Encoder, (iii) An image Generator and (iv)
An image Discriminator and a story Discriminator. BoGAN
[67] maintains semantic matching between video and the
corresponding language description at various levels and
ensures coherence between consecutive frames. The authors
used LSTM and 3D convolution based encoder decoder
architecture to produce frames from embedding based on
the input text. Region level semantic alignment module was
proposed to encourage the Generator to take advantage of the
semantic alignment between video and words on a local level.
To maintain frame-level and video level coherence two Dis-
criminators were used. Kim et al. [68] came up with Text-to-
Image-to-Video Generative Adversarial Network (TiVGAN)
for text-based video generation. The key idea is to begin
by learning text-to-single-image generation, then gradually
increase the number of images produced, and repeat until the
desired video length is reached.

Speech to video synthesis involves the task of generating
synchronized video frames conditioned on an audio/speech
input. Jalalifar et al. [69] used LSTM and CGAN for speech
conditioned talking face generation. LSTM network learns to
extract and predict facial landmark positions from audio fea-
tures. Given the extracted set of landmarks, the cGAN then
generates synchronized facial images with accurate lip sync.
Vougioukas et al. [70] used GANs for generating videos of a
talking head. The generation of video frames is conditioned
on a still image of a person and an audio clip containing
speech and does not rely on extracting intermediate features.
Their GAN architecture uses an RNN based Generator, frame
level and sequence level Discriminator respectively. The idea
of disentangled representation was explored by Zhou et al.
[71]. The authors proposed the Disentangled Audio-Visual
System (DAVS), which uses disentangled audio-visual rep-

resentation to create high-quality talking face videos.

3) Video prediction
Video prediction is the ability to predict future video frames
based on the context of a sequence of previous frames.
Formally future frame prediction can be defined as follows.
Let Xi ∈ Rw×h×c be the ith frame in the sequence of
n video frames X = (Xi−n, . . . , Xi−1, Xi), where w, h,
and c denote the width, height and the number of channels
respectively. The goal is to predict the next sequence of
frames Y =

(
Ŷi+1, Ŷi+2, . . . , Ŷi+m

)
using the input X.

Video prediction is a challenging task due to the complex
task of modelling both the content and motion in videos. To
this extent several studies have been carried out to perform
video prediction using GAN-based training ( [72], [73], [74],
[75], [76], [77], [78]). Mathieu et al. [72] used multi-scale
architecture for future frame prediction. The network was
trained using an adversarial training method, and an image
gradient difference loss function. MCNet [73] performs the
task of video frame prediction by disentangling temporal and
spatial dynamics in videos. An Encoder-Decoder Convolu-
tional Neural Network is used to model video content and
Convolutional-LSTM is used to model temporal dynamics or
motion in the video. In this way predicting the next frame is
as simple as converting the extracted content features into the
next frame content using the recognized motion features.

FutureGAN [74] used an encoder-decoder based GAN
model to predict future frames of the video sequence. Their
network comprises of Spatio-temporal 3D convolution net-
work(3D ConvNets) [79] for all encoder and decoder mod-
ules to capture both the spatial and temporal components of a
video sequence. To have stable training and prevent problems
of mode collapse the authors used Wasserstein GAN with
gradient penalty (WGAN-GP) [80] loss and the technique
of progressively growing GAN or ProGAN [4] which has
been shown to generate high resolution images. VPGAN [75]
is a GAN-based framework for stochastic video prediction.
The authors introduce a new adversarial inference model,
an action control conformal mapping network and use cycle
consistency loss for their model. The authors also combined
image segmentation models with their GAN framework for
robust and accurate frame prediction. Their model outper-
formed other existing stochastic video prediction methods.
With a unified architecture, Dual Motion GAN [76] attempts
to jointly resolve the future-frame and future-flow prediction
problems. The proposed framework takes in as input a se-
quence of frames to predict the next frame by combining the
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future frame prediction with the future flow-based prediction.
To achieve this, Dual Motion GAN employs a probabilistic
motion encoder (to map frames to latent space), two Genera-
tors (a future-frame Generator and a future-flow Generator),
as well as a flow estimator and flow-warping layer. A frame
Discriminator and a flow Discriminator are used to classify-
ing fake and real future frames and flow. Bhattacharjee et al.
[81] tackle the problem of future frames prediction by using
multi-stage GANs. To capture the temporal dimension and
handle inter-frame relationships, the authors proposed two
new objective functions, the Normalized Cross-Correlation
Loss (NCCL) and the Pairwise Contrastive Divergence Loss
(PCDL). The multistage GAN(MS-GAN) is made up of 2
GANs to generate frames at two separate resolution whereby
Stage-1 GAN output is fed to Stage-2 GAN to produce the
final output. Kwon et al. [82] proposed a novel framework
based on CycleGAN [7] called the Retrospective CycleGAN
to predict future frames that are farther in time but are
relatively sharper than frames generated by other methods.
The framework consists of a single Generator and two Dis-
criminators. During training, the Generator is tasked with
generating both future and past frames, and the retrospective
cycle constraints are used to ensure bi-directional predic-
tion consistency. The frame Discriminator detects individual
fake frames, whereas the sequence Discriminator determines
whether or not a sequence contains fake frames. According
to the authors, the sequence Discriminator plays a crucial
role in predicting temporally consistent future frames. To
train their model, the combination of two adversarial and two
reconstruction loss functions were used.

C. MEDICAL AND HEALTHCARE
GANs have immense medical image generation applications
and can be used to improve early diagnosis, reduce time
and expenditure. Because medical image data is generally
limited, GANs can be employed as data augmentation tech-
niques by conducting image-to-image translation, synthetic
data synthesis, and medical image super-resolution.

One major application of GANs in medical and health-
care is the image-to-image translation framework, that is
when multi-modal images are required one can use images
from one modality or domain to generate images in another
domain. Magnetic resonance imaging (MRI), is considered
the gold standard in medical imaging. Unfortunately, it is
not a viable option for patients with metal implants, as the
metal in the machine could interfere with the results and the
patients’ safety. MR-GAN [83] is similar to CycleGAN [7]
and is used to transform 2D brain CT image slices into 2D
brain MR image slices. However, unlike CycleGAN, which
is used for unpaired image-to-image translation, MR-GAN
is trained using both paired and unpaired data and combines
adversarial loss, dual cycle-consistent loss, and voxel-wise
loss. MCML-GANs [84] uses the approach of multiple-
channels-multiple-landmarks (MCML) input to synthesize
color Retinal fundus images from a combination of vessel
tree, optic disc, and optic cup images. The authors used two

models based on the pix2pix [6] and CycleGAN [7] model
framework and proposed several different architectures for
the Generator model and compared their performance. Zhao
et al. [85] also proposed Tub-GAN and Tub-sGAN image-to-
image translation framework to generate retinal and neuronal
images. Armanious et al. [86] proposed the MedGAN frame-
work for generalizing image to image translation in the field
of medical image generation by combining the adversarial
framework with a new combination of non-adversarial losses
along with the usage of CasNet a ResNets [87] inspired
architecture. Sandfort et al. [88] used CycleGAN [7] to
transform contrast CT images into noncontrast images. The
authors compared the segmentation performance of a U-Net
trained on the original dataset versus a U-Net trained on a
combined dataset of original data and synthetic non-contrast
images were compared.

DermGAN [89] is used to generate synthetic images with
skin conditions. The model learns to convert a semantic
map containing a pre-specified skin condition, its size and
location, as well as the underlying skin colour, into a realistic
image that retains the pre-specified traits. The DermGAN
Generator uses a modified U-Net [20] where the deconvo-
lution layers are replaced with a nearest-neighbor resizing
layer followed by a convolution layer to reduce the checker-
board effect. The Generator and Discriminator are trained
to minimize the combination of feature matching loss, min-
max GAN loss, l1 reconstruction loss for the whole image, l1
reconstruction loss for the pathological region.

Apart from solving the image to image translation prob-
lems GAN are widely used for synthetic medical image
generation( [90], [91], [92], [93]). Costa et al. [92] im-
plemented an adversarial autoencoder for the task of con-
ditional retinal vessel network synthesis. Beers et al. [94]
applied ProGAN to generate high resolution and high quality
512x512 retinal fundus images and 256x256 multimodal
glioma images. Zhang et al. [93] used DCGAN [5], WGAN
[16] and boundary equilibrium GANs (BEGANs) [95] to
generate synthetic medical images. They used the generated
synthetic images to augment their datasets to build models
with higher tissue recognition accuracy. Overall training with
augmented datasets saw an increase in tissue recognition
accuracy for the three GAN models when compared to base-
line models trained without data augmentation. fNIRS-GANs
[96] based on WGAN [16] is used to perform functional
near-infrared spectroscopy (fNIRS) data augmentation to im-
prove the fNIRS-brain– computer interface (BCI) accuracy.
Using data augmentation the authors were able to achieve
higher classification accuracy of 0.733 and 0.746 for both the
SVM and neural network models respectively as compared
to 0.4 for both the models trained without data augmen-
tation. To prevent data leakage by generating anonymized
synthetic electrocardiograms (ECGs), Piacentino et al. [97]
used GANs. The authors first propose a new general proce-
dure to convert raw data into images, which are well suited
for GANs. Following that, a GAN design was established,
trained, and evaluated. Because of its simplicity, the authors
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TABLE 4: Applications in Video generation and prediction

Video generation and prediction GAN models
Unconditional video generation VGAN [57], TGAN [58], FTGAN [59], MoCoGAN [60], DVD-GAN

[62]
Conditional video generation VAE-GAN [63], TGANs-C [58], TFGAN [65], StoryGAN [66], Bo-

GAN [67], TiVGAN [68], LSTM and cGAN [69], RNN based GAN
[70], TemporalGAN [71]

Video Prediction Multi-Scale GAN [72], MCNet [73], FutureGAN [74], VPGAN [75],
Dual Motion GAN [76], MSGAN [81], Retrospective Cycle GAN [82]

chose to use Auxiliary Classifier Generative Adversarial
Network(ACGAN) [98] for their intended task. Kwon et al.
[99] used GANs to augment mRNA samples to improve
classification accuracy of deep learning models for cancer
detection. With 5 fold increase in training data by combining
GAN generated synthetic samples with the original dataset,
the authors were able to improve the F1 score by 39%.

Image reconstruction and super resolution are vital to
obtaining high resolution images for diagnosis as due to
constraints such as the amount of radiation used for MRI
and other image acquisition techniques can highly impact the
quality of images obtained. Multi-level densely connected
super-resolution network, mDCSRN-GAN [100] proposed
by Chen et al. uses an efficient 3D neural network design
for the Generator architecture to perform image super res-
olution. MedSRGAN [101] is an image super resolution
(SR) framework for medical images. The authors used a
novel convolutional neural network, Residual Whole Map
Attention Network (RWMAN) as the Generator network to
low resolution features and then performs upsampling. For
the Discriminator instead of having just the single generated
high resolution image the authors used pairs of input low
resolution images and generated high resolution images.
Yamashita et. al [102] evaluated several super resolution
GAN models(SRCNN [103], VDSR [104], DRCN [105] and
ESRGAN [39]) for Optical Coherence Tomography (OCT)
[106] image enhancement. The authors found ESRGAN has
the worst performance in terms of PSRN and SSIM but
qualitatively, it was the best one producing sharper and high
contrast images.

D. BIOLOGY
Biology is an area where generative models especially GANs
can have a great impact by performing tasks such as protein
sequence design, data augmentation and imputation and bio-
logical image generation. Apart from this GANs can also be
applied for binding affinity prediction.

Protein engineering the process of identifying or de-
veloping useful or valuable proteins sequences with cer-
tain optimized properties. Several works have been done in
relation to the application of Deep Generative models for
protein sequence, especially the use of GANs(Repecka et
al. [107], Amimeur et al. [108] and Gupta et al. [109] ).
GANs can be used to generate novel valid functional protein
sequences and optimize protein sequences to have certain
specific properties. ProteinGAN [107] can learn to generate
diverse functional protein sequences directly from complex

multidimensional amino acids sequence space. The authors
specifically used GANs to generate functional malate dehy-
drogenases. Amimeur et al. [108] developed the Antibody-
GAN which uses a modified WGAN for the generation of
both single-chain and paired-chain antibody sequence gener-
ation. Their model is capable of generating extremely large
diverse libraries of novel libraries that mimic somatically
hypermutated human repertoire response. The authors also
demonstrated the use of transfer learning to use their GAN
model to generate molecules with specific properties of inter-
est like MHC class II binding and specific complementarity-
determining region (CDR) characteristics. FBGAN [109]
uses the WGAN architecture along with the analyzer in a
feedback-loop mechanism to optimize the synthetic gene
sequences for desired properties using an external function
analyser. The analyzer is a differential neural network and
assigns a score to sampled sequences from the Generator. As
training progresses lowest scoring generated sequences are
replaced by high scoring generated sequences for the entire
Discriminator’s training set. GANs were utilised by Anand at
al. [110] to generate protein structures, with the goal of using
them in quick de novo protein design.

GANs have been used for data augmentation and data
imputation in biology due to the lack of available biosam-
ples or the cost of collecting such samples. Some recent
works include the generation and analysis of single-cell
RNA-seq( [111], [112]). The authors of cscGAN [112]
or conditional single-cell generative adversarial neural net-
works used GANs for the generation of realistic single-
cell RNA-seq data. Wang et al. [113] proposed GGAN, a
GAN framework to impute the expression values of the
unmeasured genes. To do this they used a conditional GAN
to leverage the correlations between the set of landmark and
target genes in expression data. The Generator takes the land-
mark gene expression as input and outputs the target gene
expression. This approach leverages correlations between the
set of landmark and target genes in expression data from
projects like 1000 Genomes. Park et al. [114] applied GANs
to predict the molecular progress of Alzheimer’s disease
(AD) by successfully analyzing RNA-seq data from a 5xFAD
mouse model of AD. Specifically, the authors successfully
applied WGAN+GP [80] to bulk RNA-seq data with fewer
variations in gene expression levels and a smaller number of
genes. scIGAN [115] is a GAN-based framework for scRNA-
seq imputation. scIGANs can use complex, multi-cell type
samples to learn non-linear gene-gene correlations and train
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TABLE 5: Applications in Medical and Healthcare

Medical and Healthcare application GAN models
Multimodal Image to image translation pix2pix [6], CycleGAN [7], MR-GAN [83],MCML-GANs [84], Tub-

GAN and Tub-sGAN [85], MedGAN [86], DermGAN [89]
Image generation for data augmentation WGAN [16], WGAN-GP [17], DCGAN [5], BEGAN [95], ProGAN

[4], fNIRS-GANs [96], ACGAN [98]
Image reconstruction SRCNN [103], VDSR [104], DRCN [105], ESRGAN [39] mDCSRN-

GAN [100],MedSRGAN [101]

a generative model to generate realistic expression profiles of
defined cell types.

GANs can also be used to generate biological imaging
data. CytoGAN [116] or Generative Modeling of Cell Im-
ages, the authors evaluated the use of several GAN models
such as DCGAN [5], LSGAN [117] and WGAN [16] for cell
microscopy imaging, in particular morphological profiling.
Through their experiments, they discovered that LSGAN was
the most stable, resulting in higher-quality images than both
DCGAN and WGAN. GANs have also been used for the
generation of realistic looking electron microscope images
(Han et al. [118]) and the generation of cells imaged by
fluorescence microscopy(Oskin et al. [119]).

Predicting binding affinities is an important task in drug
discovery though it still remains a challenge. To aid in drug
discovery by predicting binding affinity between drug and
target Zhao et l. [120] devised the use of a semi-supervised
GANs-based method. The researchers utilised two GANs to
learn representations from raw protein and drug sequence
data, and a convolutional regression network to predict affin-
ity.

E. ASTRONOMY
With the advent of Big-data, the amount of data publicly
available to scientists for data-driven analysis is mind bog-
gling. Every day terabytes of data are being generated by
hundreds if not thousands of satellites across the globe. With
powerful computing resources GANs have found their way
into astronomy as well for tasks such as image translation,
data augmentation and spectral denoising.

The authors of RadioGAN [121] based their GAN on the
Pix2Pix model to perform image to image translation be-
tween two different radio survey datasets to recover extended
flux densities. Their model recovers extended flux density
for nearly half of the sources within a 20% margin of error
and learns more complex relationships between sources in
the two surveys than simply convolving them with a different
synthesised beam. Several other authors have also used image
to image translation models such as Pix2Pix, Pix2PixHD to
generate solar images(Dash et al., Park et al. [122], Kim et
al. [123], Jeong et al. [124], Shin et al. [125] etc.).

Apart from image-to-image related tasks, GANs have been
extensively used to generate synthetic data in the astron-
omy domain. Smith et al. [126] proposed SGAN to produce
realistic synthetic eXtreme Deep Field(XDF) images similar
to the ones taken by the Hubble Space Telescope. Their
SGAN model has a similar architecture to DCGAN and can

be used to generate synthetic images in astrophysics and
other domain. Ullmo et al. [127] used GANs to generate
cosmological images to bypass simulations which generally
require lots of computing resources and are quite expensive.
Dia et al. [128] showed that GANs can replace expensive
model-driven approaches to generate astronomical images. In
particular, they used ProGANs along with Wasserstein cost
function to generate realistic images of galaxies. ExoGAN
[129] which is based on the DCGAN framework [5] is the
first deep-learning approach for solving the inverse retrieval
of exoplanetary atmospheres. According to the authors, Exo-
GAN was found to be up to 300 times faster than a standard
retrieval for large spectral ranges. ExoGAN is designed to
work with a wide range of instruments and wavelength ranges
without requiring any additional training. Fussell et al. [130]
explored the use of DCGAN [5] and StackGAN [19] in a
chained fashion for generation of high-resolution synthetic
galaxies images.

The authors of Spectra-GAN [131] designed their algo-
rithm for spectral denoising. Their algorithm is based on
CycleGAN i.e. it has two Generators and two Discrimina-
tors, with the exception that instead of unpaired samples
SpectraGAN used paired examples. The model comprises of
three loss functions: adversarial loss, cycle-consistent loss,
and generation-consistent loss.

F. REMOTE SENSING
Using GANs for remote sensing applications can be broadly
divided into the following main categories:

• Data generation or augmentation: Lin et al. [132] pro-
posed multiple-layer feature-matching generative adver-
sarial networks (MARTA GANs) for remote sensing
data augmentation. MARTA GAN is based on DC-
GAN [5] however while DCGAN could produce im-
ages with a 64 × 64 resolution, MARTA GAN can
produce 256×256 remote sensing images. To generate
high-quality samples of remote images perceptual loss
and feature-matching loss were used for model training.
Mohandoss et al. [133] presented the MSG-ProGAN
framework that uses ten bands of Sentinel-2 satellite
imagery with varying resolutions to generate realistic
multispectral imagery for data augmentation. To help
with training stability the authors based their model
on the MSGGAN [134], ProGAN [4] models and used
WGAN-GP [80] loss function. Thus, MSG-ProGAN
can generate multispectral 256 × 256 satellite images
instead of RGB images.
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TABLE 6: Applications in Biology

Applications in Biology GAN models
Protein Engineering ProteinGAN [107], Antibody-GAN [108], FBGAN [109], DCGANs

[110]
Data augmentation and data imputation cscGAN [112],GGAN [113], scIGAN [115]
GANs for Biological Image Synthesis CytoGAN [116], SGAN [118], DCGAN+Wasserstein loss [119]
Binding affinity prediction GANsDTA [120]

TABLE 7: Applications in Astronomy

Applications in Astronomy GAN models
Image to image translation RadioGAN [121],pix2pix [6],pix2pixHD [21]
Image data generation and augmentation SGAN [126], DCGAN [5], ProGAN [4], ExoGAN [129]
Image denoising Spectra-GAN [131]

• Super Resolution: HRPGAN [135] uses a PatchGAN
inspired architecture to convert low resolution remote
sensing images to high resolution images. The authors
did not use batch normalization to preserve textures and
sharp edges of ground objects in remote sensing images.
Also, ReLU activations were replaced with SELU acti-
vations for overall lower training loss and stable train-
ing. In addition, the authors used a new loss function
consisting of the traditional adversarial loss, perceptual
reconstruction loss and regularization loss to train their
model. D-SRGAN [136] converts low resolution Digital
Elevation Models (DEMs) to high-resolution DEMs.
D-SRGAN is based on the SRGAN [8] model. For
training, D-SRGAN uses the combination of adversarial
loss and content loss.

• Pan-Sharpening: Liu et al. [137] proposed PSGAN for
solving the task of image pan-sharpening and carried out
several experiments using different image datasets and
different Generator architectures. PSGAN is superior
to many popular pan-sharpening approaches in terms
of generating high-quality pan-sharpened images with
fine spatial details and high-fidelity spectral informa-
tion under both low-scale and full-scale image settings,
according to their experiments. Furthermore, the au-
thors discovered that two-stream architecture is usually
preferable to stacking and that the batch normalisation
layer and the self-attention module are undesirable in
pan-sharpening. Pan-GAN [138] uses one Generator
and two Discriminators for performing pan sharpening.
The Generator is based on the PNN [139] architecture
but the image scale in the Generator remains the same
in different layers. The spectral and spatial Discrimina-
tors are similar in structure but have different inputs.
The generated HRMS image or the interpolated LRMS
image is fed into the spectral Discriminator. The orig-
inal panchromatic image or the single channel image
generated by the generated HRMS image after average
pooling along the channel dimension are the inputs for
the spatial Discriminator.

• Haze removal and Restoration: Edge-sharpening
cycle-consistent adversarial network (ES-CCGAN)
[140] is a GAN-based unsupervised remote sensing im-

age dehazing method based on the CycleGAN [7]. The
authors used the unpaired image-to-image translation
techniques for performing image dehazing. ES-CCGAN
includes two generator networks and two discriminant
networks. The Generators use DenseNet [141] blocks
instead of the ResNet [142] block to generate dehazed
remote-sensing images with plenty of texture informa-
tion. An edge-sharpening loss was designed to restore
clear edges in the images in addition to the adversar-
ial loss, cycle-consistency loss and cyclic perceptual-
consistency loss. Furthermore, to preserve contour in-
formation, a VGG16 [143] network was re-trained using
remote-sensing image data to evaluate the perceptual
loss. To tackle the problem of lack of availability of
pairs of clear images and corresponding haze images
to train the model, Sun et al. [144] proposed a cas-
cade method combining two GANs. A learning-to-haze
GAN(UGAN) learns to haze remote sensing images
using unpaired clear and haze image sets. The UGAN
then guides the learning-to-dehaze GAN (PAGAN) to
learn how to dehaze UGAN hazed images. Wang et al.
[145] developed the Image Despeckling Generative Ad-
versarial Network (ID-GAN) to restore speckled Syn-
thetic Aperture Radar (SAR) images. Their proposed
method uses an encoder-decoder type architecture for
the Generator which performs image despeckling by
taking a noisy image as input. The Discriminator fol-
lows a standard layout with a sequence of convolution,
batch normalization and ReLU layers, sigmoid function
to distinguish between real and synthetic images. The
authors used a refined loss function which is made up
of pixel-to-pixel Euclidean loss, perceptual loss, and
adversarial loss, all combined with appropriate weights.

• Cloud Removal: Several authors have used GANs for
the removal of clouds contamination from remote sens-
ing images( [146], [147], [148], [149]). CLOUD-GAN
[146] can translate cloudy images into cloud-free visible
range images. CLOUD-GAN functions similar to Cy-
cleGAN [7] having two Generators and two Discrimina-
tors. The authors use the LSGAN [117] training method
as it has been shown to generate higher quality images
with a much more stable learning process compared to
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regular GANs. For thin cloud removal in multi-spectral
images, Li et al. [147] proposed a novel semi-supervised
method called CR-GAN-PM, which combines Gener-
ative Adversarial Networks and a physical model of
cloud distortion. There are three networks in the CR-
GAN-PM: an extraction network, a removal network,
and a discriminative network. The GAN architecture is
made up of the removal and discriminative networks.
A combination of adversarial loss, reconstruction loss,
correlation loss and optimization loss was used for
training CR-GAN-PM.

G. MATERIAL SCIENCE
GANs have a wide range of applications in material science.
GANs can be used to handle a variety of material science
challenges such as Micro and crystal structure generation
and design, Designing of complex architectured materials,
Inorganic materials design, Virtual microstructure design
and Topological design of metaporous materials for sound
absorption.

Singh et al. [150] developed physics aware GAN model for
the synthesis of binary microstructure images. The authors
used three models to accomplish the task. The first model
is the WGAN-GP [80]. The second approach replaces the
usual Discriminator in a GAN with an invariance checker,
which explicitly enforces known physical invariances. The
third model combines the first two to recreate microstruc-
tures that adhere to both explicit physics invariances and
implicit restrictions derived from image data. Yang et al.
[151] proposed a GAN-based framework for microstructural
materials design. A Bayesian optimization framework is used
to obtain the microstructure with desired material property
by processing the GAN generated latent variables. Crystal-
GAN [152] is a novel GAN-based framework for generating
chemically stable crystallographic structures with enhanced
domain complexity. The CrystalGAN model consists of three
main components, a First step GAN, a Feature transfer
procedure and the Second step GAN synthesizes. The First
step GAN resembles the cross-domain GAN and generates
pseudo-binary samples where the domains are mixed. The
Feature transfer technique brings greater order complexity to
the data generated from the samples obtained in the preced-
ing stage. Finally, the second step GAN synthesizes ternary
stable chemical compounds while adhering to geometric lim-
itations. Kim et al. [153] proposed leveraging a coordinate-
based crystal representation inspired by point clouds to gen-
erate crystal structures using generative adversarial network.
Their Composition-Conditioned Crystal GAN can generate
materials with the desired chemical composition by con-
ditioning the network with a one-hot encoded composition
vector. Designing complex architectured materials is chal-
lenging and is heavily influenced by the experienced de-
signers’ prior knowledge. To tackle this issue, Mao et al.
[154] successfully used GANs for the design of complex
architectured materials. Millions of randomly generated ar-
chitectured materials classified into different crystallographic

symmetries were used to train their model. Their proposed
model generates complex architectured designs that require
no prior knowledge and can be readily applied in a wide
range of applications.

Dan et al. proposed MatGAN [155] is the first GAN model
for efficient sampling of inorganic materials design space by
generating hypothetical inorganic materials. MatGAN, based
on WGAN [16] can learn implicit chemical compositional
rules from existing materials, allowing them to generate hy-
pothetical yet chemically sound molecules. Another similar
work was carried out by Hu et al. [156] where they used
WGAN [16] to generate hypothetical inorganic materials
consistent with the atomic combination of the training ma-
terials.

Lee et al. [157] employed DCGAN [5], CycleGAN [7]
and Pix2Pix [6] to generate realistic virtual microstructural
graph images. KL-divergence, a similarity metric that is
considerably below 0.1, confirmed the similarity between the
GAN-generated and ground truth images.

GANs were used by Zhang et al. [158] to greatly accelerate
and improve the topological design of metaporous mate-
rials for sound absorption. Finite Element Method (FEM)
simulation image data were used to train the model. The
quality of the GAN generated designs was confirmed by FEM
simulation and experimental evaluation, demonstrating that
GANs are capable of generating metaporous material designs
with satisfactory broadband absorption performance.

H. FINANCE
Financial data modeling is a challenging problem as there are
complex statistical properties and dynamic stochastic factors
behind the process. Many financial data are time-series data,
such as real property price and stock market index. Many
of them are very expensive to available and usually do not
have enough labeled historical data, which greatly limits the
performance of deep neural networks. In addition, unlike
the static features, such as gender and image data, time-
series data has a high temporal correlation across time. This
becomes more complicated when we model multivariate time
series where we need to consider the potentially complex
dynamics of these variables across time. Recently, with the
development and wide usage of GAN in image and audio
tasks, a lot of research works have proposed to generate
realistic time-series synthetic data in finance.

Efimov et al. [159] combine conditional GAN (CGAN)
and Deep Regret Analytic Generate Adversarial Networks
(DRAGANs) to replicate three American Express datasets
with high fidelity. A regularization term is added in the
Discriminator loss in DRAGANs to avoid gradient exploding
or gradient vanishing effects as well as to stabilize the conver-
gence. Zhou et al. [160] adopt the GAN-FD model (A GAN
model for minimizing both forecast error loss and direction
prediction loss) to predict stock prices. The Generator is
based on LSTM layers while the Discriminator is using CNN
layers. Li et al. [161] propose a conditional Wasserstin GAN
(WGAN) named Stock-GAN to capture history dependency
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TABLE 8: Applications in Remote Sensing

Applications in Remote Sensing GAN models
Data generation or augmentation MARTA GAN [132],MSG-ProGAN [133]
Super Resolution HRPGAN [135],D-SRGAN [136]
Pan-Sharpening PSGAN [137],PAN-GAN [138]
Haze removal and Restoration ES-CCGAN [140],ID-GAN [145], Sun et al. [144]
Cloud removal CLOUD-GAN [146],CR-GAN-PM [147]

TABLE 9: Applications in Material Science

Applications in Material Science GAN models
Micro and crystal structure generation and design Hybrid (WGAN-GP [80]+GIN) [150], GAN+GP-Hedge Bayesian

optimization framework [151], CrystalGAN [152], Composition-
Conditioned Crystal GAN [153]

Designing complex architectured materials GAN-based model [154]
Inorganic materials design MatGAN [155], WGAN [16] based model [156]
Virtual microstructure design (DCGAN [5], CycleGAN [7] and Pix2Pix [6]) [157]
Topological design of metaporous materials for sound absorption GAN based model [158]

for stock market order streams. The proposed Generator
network has two crafted features (1) approximating the dou-
ble auction mechanism underlying stock exchanges and (2)
including the order-book features as the condition informa-
tion. Wiese et al. [37] introduce Quant GANs which use
the Temporal Convolutional Networks (TCNs) architecture,
also known as WaveNet [162] as the Generator. It shows the
capability of capturing the long-range dependence such as
the presence of volatility clusters in stock data such as S&P
500 index. FIN-GAN [163] captures the temporal structures
of financial time-series so as to generate the major stylized
facts of price returns, including the linear unpredictability,
the fat-tailed distribution, volatility clustering, the leverage
effects, the coarse-fine volatility correlation, and the gain/loss
asymmetry. Leangarun et al. [164] build LSTM-GANs to
detect the abnormal trading behaviors caused by stock price
manipulations. The base architecture for both Generator and
Discriminator is LSTM. The simulated manipulation cases
are used for testing purposes. The detection system was
tested with the trading data from the Stock Exchange of
Thailand (SET) which achieves 68.1% accuracy in detecting
pump-and-dump manipulations in unseen market data.

I. MARKETING
GANs can be leveraged to help businesses create effective
marketing tools by synthesizing novel and unique designs for
logos and generate fake images of models.

Typically designing a new logo is a fairly long and ex-
hausting process and requires a lot of time and effort of the
designer to meet the specific requirements of the clients. Sage
et al. [165] put forward iWGAN, a GAN-based framework
for virtually generating infinitely many variations of logos
by specifying parameters such as shape, colour, and so on, in
order to facilitate and expedite the logo design process. The
authors proposed clustered GAN model to train on multi-
modal data. Clustering was used to stabilise GAN training,
prevent mode collapse and achieve higher quality samples
on unlabeled datasets. The GAN models were based on the
DCGAN [5] and WGAN-GP [80] models. LoGAN [166] or
the Auxiliary Classifier Wasserstein Generative Adversarial

Neural Network with gradient penalty (AC-WGAN-GP) is
based on the ACGAN [98] architecture. LoGAN can be
used to generate logos conditioned on twelve predetermined
colors. LoGAN consists of a Generator, a Discriminator and a
classification network to help the Discriminator in classifying
the logos. The authors use the WGAN-GP [80] loss function
for better training stability instead of using the ACGAN loss.

GANs can be used to replace real images of people for
marketing-related ads, by generating synthetic images and
videos thus alleviate problems related to privacy. Ma et
al. [167] proposed Pose Guided Person Image Generation
Network(PG2) to generate synthetic fake images of a person
in arbitrary poses conditioned on an image of a person and
a new pose. PG2 uses a two-stage process: Stage 1 Pose
integration and Stage 2 Image refinement. Stage 1 generates
a coarse output based on the input image and the target pose
that depicts the human’s overall structure. Stage 2 adopts
the DCGAN [5] model and refine the initial result through
adversarial training, resulting in sharper images. Deformable
GANs [168] generate person images based on their ap-
pearance and pose. The authors introduced deformable skip
connections and nearest neighbor loss to address large spatial
deformation and to fix misalignment between the generated
and ground-truth images. Song et al. [169] proposed E2E
which uses GANs for unsupervised pose-guided person im-
age generation. The authors break down the difficult task of
learning a direct mapping under various poses into semantic
parsing transformation and appearance generation to deal
with its complexity.

J. FASHION DESIGNING
Fashion design is not the first thing that comes to mind when
we think of GANs, however developing designs for clothes
and outfits is another area where GANs have been utilized (
[170], [171], [172]).

Based on the cGAN [15], Attribute-GAN [171] learns a
mapping from a pair of outfits based on clothing attributes.
The model has one Generator and two Discriminators. The
Generator uses a U-Net architecture. A PatchGAN [173] Dis-
criminator is used to capture local high-frequency structural
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TABLE 10: Applications in Finance

Applications in Finance GAN models
Financial Data Generation CGAN and DRAGANs [159], FIN-GAN [163], Stock-GAN [161]
Stock Market Prediction GAN-FD [160], Quant GANs [37]
Anomaly Detection in Finance LSTM-GANs [164]

TABLE 11: Applications in Marketing

Applications in Marketing GAN models
Logo generation iWGAN [165],LoGAN [166]
Model generation and pose generation PG2 [167], Deformable GANs [168], E2E [169]

information and a multi-task attribute classifier Discriminator
is used to determine whether the generated fake apparel im-
age has the expected ground truth attributes. Yuan et al. [172]
presented Design-AttGAN, a new version of attribute GAN
(AttGAN) [174] to edit garment images automatically based
on certain user-defined attributes. The AttGAN’s original
formulation is changed to avoid the inherent conflict between
the attribute classification loss and the reconstruction loss.

K. SPORTS
GANs can be used to generate sports texts, augment sports
data, and predict and simulate sports activity to overcome the
lack of labeled data and get insights into player behaviour
patterns.

Li et al. [175] used WGAN-GP [80] for automatic gen-
eration of sport news based on game stats. Their WGAN
model takes scores as input and outputs sentences describing
how one team defeated another. This paper also showed the
potential applications of GANs in the NLP area.

JointsGAN [176] was proposed by Li et al. to augment
soccer videos with a dribbling actions dataset for improving
the accuracy of the dribbling styles classification model.
The authors use Mask R-CNN [177] and OpenPose [178]
to build dribbling player’s joint model to act as a condition
and guide the GAN model. The accuracy of classification is
improved from 88.14% percent to 89.83% percent using the
dribbling player’s joints model as the condition to the GAN.
Theagarajan et al. [179] used GANs to augment their dataset
to build robust deep learning classification, object detection
and localization models for soccer-related tasks. Specifically,
they proposed the Triplet CNN-DCGAN framework to add
more variability to the training set in order to improve the
generalisation capacity of the aforementioned models. The
GAN-based model is made of a regularizer CNN (i.e., Triplet
CNN) along with DCGAN [5] and uses the DCGAN loss and
the binary cross-entropy loss of the Triplet CNN.

Memory augmented Semi-Supervised Generative Adver-
sarial Network (MSS-GAN) [180] can be used to predict the
shot type and location in tennis. MSS-GAN is inspired by
SS-GAN [181], coupled with memory modules to enhance its
capabilities. The Perception Network (PN) is used to convert
input images into embeddings, which are then combined with
embeddings from the Episodic Memory (EM) and Semantic
Memory (SM) to predict the next shot via the Response
Generation Network (RGN). Finally, a GAN framework is

used to train the network, with the RGN’s predicted shot
being passed to the Discriminator, which determines whether
or not it is a realistic shot. BasketballGAN [182] is a cGAN
[15] and WGAN [16] based framework to generate basket-
ball set plays based on an input condition(offensive tactic
sketched by coaches) and a random noise vector. The network
was trained by minimizing the adversarial loss (Wasserstein
loss [16]) dribbler loss, defender loss, ball passing loss, and
acceleration loss.

L. MUSIC
Because human perception is sensitive to both global struc-
ture and fine-scale waveform coherence, music or audio
synthesis is an intrinsically tough deep learning problem. As
a result, synthesising music requires the creation of coherent
raw audio waveforms that preserve both global and local
structures. GANs have been applied for tasks such as music
genre fusion and music generation.

FusionGAN [183] is a GAN based framework for unsu-
pervised music genre fusion. The authors proposed the use of
a multi-way GAN based model and utilized the Wasserstein
distance measure as the objective function for stable training.

MidiNet [184] is a CNN-GAN based model to gener-
ate music with multiple MIDI channels. The model uses
conditioner CNN to model the temporal dependencies by
using the previous bar to condition the generation of the
present bar, providing a powerful alternative to RNNs. The
model features a flexible design that allows it to generate
many genres of music based on input and specifications.
Dong et al. [185] proposed Multi-track Sequential Generative
Adversarial Networks for Symbolic Music Generation and
Accompaniment or MuseGAN. Based on GANs, MuseGAN
can be used for symbolic multi-track music generation. Dong
et al. [186] demonstrated a unique GAN-based model for
producing binary-valued piano-rolls by employing binary
neurons [187] as a refiner network in the Generator’s output
layer. When compared to existing approaches, the gener-
ated outputs of their model with deterministic binary neu-
rons have fewer excessively fragmented notes. GANSYNTH
[188], based on GANs can generate high-fidelity and locally-
coherent audio. The proposed model outperforms the state-
of-the-art WaveNet [189] model in generating high fidelity
audio while also being much faster in sample generation.
GANs were employed by Tokui [190] to create realistic
rhythm patterns in unknown styles, which do not belong
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TABLE 12: Applications in Fashion Design

Applications in Fashion Design GAN models
Clothes and garment design P-GANs [170],Attribute-GAN [171],Design-AttGAN [172]

TABLE 13: Applications in Sports

Applications in Sports GAN models
Sports text generation(NLP task) WGAN-GP [80] based GAN [175]
Sports data augmentation JointsGAN [176], Triplet CNN-DCGAN [179]
Sports action prediction and simulation MSS-GAN [180], BasketballGAN [182]

to any of the well-known electronic dance music genres
in training data. Their proposed Creative-GAN model uses
the Genre Ambiguity Loss to tackle the problem of orig-
inality. Li et al. [191] presented an inception model-based
conditional generative adversarial network approach (INCO-
GAN), which allows for the automatic synthesis of complete
variable-length music. Their proposed model comprises of
four distinct components: a conditional vector Generator
(CVG), an inception model-based conditional GAN (INCO-
GAN), a time distribution layer and an inception model [28].
Their analysis revealed that the proposed method’s music is
remarkably comparable to that created by human composers,
with a cosine similarity of up to 0.987 between the frequency
vectors. Muhamed et al. [192] presented the Transformer-
GANs model, which combines GANs with Transformers
to generate long, high-quality coherent music sequences. A
pretrained SpanBERT [193] is used as the Discriminator and
Transformer-XL [194] as the Generator. To train on long
sequences, the authors use the Gumbel-Softmax technique
[195] to obtain a differentiable approximation of the sam-
pling process and to keep memory needs reasonable, a variant
of the Truncated Backpropagation Through Time (TBPTT)
algorithm [196] was utilised for gradient propagation over
long sequences.

V. LIMITATIONS OF GANS AND FUTURE DIRECTION
In this section, we’ll go through some of the issues that GANs
encounter, notably those related to training stability. We also
discuss some of the prospective research areas in which GAN
productivity could be enhanced.

A. LIMITATIONS OF GANS
Generative adversarial networks (GANs) have gotten a lot of
interest because of their capacity to use a lot of unlabeled
data. While great progress has been achieved in alleviating
some of the hurdles associated with developing and training
novel GANs, there are still a few obstacles to overcome. We
explain some of the most typical obstacles in training GANs,
as well as some proposed strategies that attempt to mitigate
such issues to some extent.

1) Mode Collapse: In most cases, we want the GAN to
generate a wide range of outputs. For example, while
creating photos of human faces we’d like the Generator
to generate varied-looking faces with different features
for every random input to Generator. Mode collapse

happens when the Generator can produce only a single
type of output or a small set of outputs. This may
occur as a result of the Generator’s constant search
for the one output that appears most convincing to the
Discriminator in order to easily trick the Discriminator,
and hence continues to generate that one type.
Several approaches have been proposed to alleviate
the problem of mode collapse. Arjovsky et al. [16]
found that Jensen-Shannon divergence is not ideal
for measuring the distance of the distribution of the
disjoint parts. As a result, they proposed the use of
Wasserstein distance to calculate the distance between
the produced and real data distributions. Metz et al.
[197] proposed Unrolled Generative Adversarial Net-
works, which limit the risk of the Generator being over-
optimized for a certain Discriminator, resulting in less
mode collapse and increased stability.

2) Non-convergence: Although GANs are capable of
achieving Nash equilibrium [1], arriving at this equi-
librium is not straightforward. The training procedure
necessitates maintaining balance and synchronisation
between the Generator and Discriminator networks for
optimal performance. Furthermore, only in the case of
a convex function can gradient descent guarantee Nash
equilibrium.
Adding noise to Discriminator inputs and penalising
Discriminator weights ( [198], [199]) are two tech-
niques of regularisation that authors have sought to
utilise to improve GAN convergence.

3) Vanishing Gradients: Generator training can fail ow-
ing to vanishing gradients if the Discriminator is too
good. A very accurate Discriminator produces gra-
dients around zero, providing little feedback to the
Generator and slowing or stopping learning.
Goodfellow et al. [1] proposed a tweak to minimax loss
to prevent the vanishing gradients problem. Although
this tweak to the loss alleviates the vanishing gradients
problem, it does not totally fix the problem, resulting
in more unstable and oscillating training. The Wasser-
stein loss [16] is another technique to avoid vanishing
gradients because it is designed to prevent vanishing
gradients even when the Discriminator is trained to
optimality.
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Applications in Music GAN models
Music genre fusion FusionGAN [183]
Music generation MidiNet [184], MuseGAN [185], Binary Neurons based WGAN-GP [186],

GANSYNTH [188], Creative-GAN [190], INCO-GAN [191], Transformer-
GANs [192]

TABLE 14: Applications in Music

B. FUTURE DIRECTION
Even though GANs have some limits and training issues,
we simply cannot overlook their enormous potential as
generative models. The most important area for future re-
search is to make advancements in theoretical aspects to
address concerns like mode collapse, vanishing gradients,
non-convergence, and model breakdown. Changing learn-
ing objectives, regularising objectives, training procedures,
tweaking hyperparameters, and other techniques have been
proposed to overcome the aforementioned problems, as out-
lined in section 5.1. In most cases, however, accomplishing
these objectives entails a trade-off between desired output
and training stability. As a result, rather than addressing one
training issue at a time, future research in this field should
use a holistic approach in order to achieve a breakthrough in
theory to overcome the challenges mentioned above.

Besides overcoming the above theoretical aspects during
model training, Saxena et al. [200] highlight some promising
future research directions. (1) Keep high image quality with-
out losing diversity. (2) Provide more theoretical analysis to
better understand the tractable formulations during training
and make training more stable and straightforward. (3) Im-
prove the algorithm to make training efficient (4) Combine
other techniques, such as online learning, game theory, etc
with GAN.

VI. CONCLUSION
In this paper, we presented state-of-the-art GAN models
and their applications in a wide variety of domains. GANs’
popularity stems from their ability to learn extremely non-
linear correlations between latent space and data space. As a
result, the large amounts of unlabeled data that remain closed
to supervised learning can be used. We discuss numerous
aspects of GANs in this article, including theory, applica-
tions, and open research topics. We believe that this study
will assist academic and industry researchers from various
disciplines in gaining a full grasp of GANs and their possible
applications. As a result, they will be able to analyse the
potential application of GANs for their specific tasks.
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