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ABSTRACT Musculoskeletal abnormality is routinely presented in tissues and organs of the human
locomotor system across the life course, and it is essential to detect musculoskeletal abnormality in X-rays.
However, it is difficult to diagnose musculoskeletal abnormality from Radiographs due to the following
issues: 1) There are other interfering organ tissues in the complicated backgrounds; 2)The MURA dataset
contains seven different musculoskeletal radiographs, which makes general convolution neural networks
unable to model the weird relationship between them. To address such problems, a Lesion-Guided Adaptive
Graph Network (LGAG-Net) is proposed for bone abnormality detection from musculoskeletal radiograph,
where the Lesion-guided Recurrent Feature Sampling (LRFS) module is first designed to localize the
corresponding musculoskeletal abnormality regions, and then the Adaptive Graphsage Attention (AGA)
module is developed to perform bone abnormality detection on the located musculoskeletal abnormality
regions. Experiments on MURA dataset show that the proposed LGAG-Net can achieve an accuracy of
87.81% and Cohen Kappa statistic of 0.868, which outperforms the state-of-the-art methods, assisting the
radiologists to rapidly estimate the physical development in patients.

INDEX TERMS Surface defect segmentation; multi-view learning; residual attention; Gaussian normaliza-
tion

I. INTRODUCTION
Musculoskeletal complications are prevalent across the life
course, and occur frequently with other non-communicable
diseases in multimorbidity health states [1]–[3], about one-
third to one-fifth of people suffer from musculoskeletal pain
[4]. According to the statistics, the global burden of muscu-
loskeletal diseases increases significantly between the years
2000 and 2015 [5], where over 50% of people aged 18 and
above are affected by musculoskeletal diseases in the United
States [6], and in China, musculoskeletal diseases are one of
the three leading causes of disability [7].

Musculoskeletal conditions will result in great damage to
the human locomotor system, affecting the comprised tissues

and organs, such as muscles, bones, joints, ligaments, and
tendons [8]. The fast development of digital imaging tech-
nologies in the medical domain provides basic tools for doc-
tors to diagnose bone diseases and abnormalities in bones are
routinely diagnosed manually by professional radiologists to
analyze specific conditions based on radiographs. In the fight
against bone diseases, timely abnormality detection is critical
for further diagnosis and treatment. However, a large number
of tasks and time-consuming process result in an overloaded
workload for radiologists, and the situation is exacerbated for
those in underdeveloped areas [9]. There is a pressing need for
rapid and effective computer-aided detection (CAD) methods
to identify abnormality in bones, and thereby decrease the
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burden and error rates on radiologists.
Over the past decade, a number of research groups have fo-

cused on developing CAD tools to extract abnormal features
associated with certain diseases from musculoskeletal X-
Rays. [10] utilizes photogrammetry to detect thoracic muscu-
loskeletal abnormalities in preterm infants. Vibrational spec-
troscopic techniques are applied to assess bone quality [11].
[12] detect the musculoskeletal abnormalities in children with
mucopolysaccharidoses based on pediatric gait, arms, legs,
and spine. In addition, a number of traditional image process-
ing methods are proposed to detect bone fracture [13]–[15].
However, the accuracy of these CAD tools has not achieved
a significantly high level of diagnosis for radiologists. There
is an urgent need for an appropriate and accurate approach to
implementing abnormality detection with high accuracy.

The machine learning, including support vector machines,
Naive Bayes, K-nearest neighborhood (KNNs) and random
forest, has also provided sound results in the field of medicine
[16] [17]. The four different classifiers LBF SVM (Radial Ba-
sis Function support vector machine), linear SVM, Logistic
Regression and Decision tree are used for abnormality detec-
tion in bones [18]. [19] propose a computer-assisted solution
that combines canny edge with SVM Classifier for bone
anomaly detection in X-Ray images. These machine learning
approaches help radiologists diagnosemusculoskeletal condi-
tions much more accurately and overcome the disadvantages
of traditional CAD tools previously mentioned, but most of
them are poor in robustness because the picture quality and
other factors are able to result in great variabilities in the
algorithm recognition results.

Recently, deep learning has achieved superior performance
in image recognition, classification, and segmentation, which
has spurred application for abnormality detection in bones
with deep learning. [20] investigates deep transfer learning
to improve the performance in detecting abnormalities of up-
per extremities based on DenseNet-169, DenseNet-201, and
InceptionResNetV2. [21] develop the ensemble200 model
including DenseNet201, MobileNet, and NASNetMobile to
improve the performance consistency and generalization of
abnormality detection in musculoskeletal radiographs. [22]
propose the GnCNNr model which utilizes group normaliza-
tion, weight standardization, and cyclic learning rate sched-
uler to enhance the performance of the model for muscu-
loskeletal abnormality detection. [23] introduces a novel tool
to assist radiologists in automatically detecting abnormali-
ties in musculoskeletal radiographs and leverages CAM to
localize the abnormality in the image. A complicated capsule
network architecture is introduced for musculoskeletal radio-
graphs abnormality detection and it can vanquish the serious
limitations of convolutional neural networks when the images
are rotated and deformed [1]. [24] create an ensemble of 10
convolutional neural networks to identify and localizes frac-
tures from the appearance of radiographs. A multi-network
framework consisting of 2D-CNN and GCN is presented for
the detection of automatic abnormalities in musculoskeletal
radiographs [25].

Although these methods have shown good performance in
musculoskeletal abnormality detection, it is still challenging
because of the complexity of this task. First, there are a
number of interfering organ tissues in the complicated back-
grounds, as shown in Fig. 1 (a) and (b), where the abnormal
regions are small while others are redundant for diagnosis.
Second, the abnormal and normal elbows are always simi-
lar, leading to confusion regarding abnormality detection, as
shown in Fig. 1 (c) and (d). Third, it is difficult for the convo-
lutional neural networks to model the abnormal dependencies
between different musculoskeletal radiographs, including the
finger, humerus, elbow, forearm, hand, shoulder, and wrist,
resulting in poor performance on musculoskeletal abnormal-
ity detection.
To address these problems, a Lesion-Guided Adaptive

Graph Network (LGAG-Net) is proposed for bone abnor-
mality detection, where the Lesion-guided Recurrent Feature
Sampling (LRFS) module is first devised to focus on the mus-
culoskeletal abnormality regions frommusculoskeletal radio-
graph, and then the Adaptive Graphsage Attention (AGA)
module is developed to diagnose bone abnormality on the
musculoskeletal abnormality regions. The main contributions
of this paper are summarized as follows.

(1) The Lesion-guided Recurrent Feature Sampling (LRFS)
module is designed to capture the musculoskeletal ab-
normality regions, where the recurrent sampling strategy
is proposed for obtaining the most representative fea-
tures from the feature regions;

(2) The Adaptive Graphsage Attention (AGA) module is
developed to diagnose bone abnormality in the abnormal
bone regions, where the adaptive graph attention module
can aggregate the information between adjacent nodes
instead of learning the attention weights in every node.

(3) Experiments on the MURA dataset validate the effec-
tiveness of the proposed LGAG-Net, and it can assist
radiologists in rapidly estimating the physical develop-
ment of patients.

The remainder of the paper is organized as follows: Section
II describes the proposed LGAG-Net. Section III shows the
experiments, while the conclusions are given in IV.

II. LESION-GUIDED ADAPTIVE GRAPH NETWORK FOR
MUSCULOSKELETAL ABNORMALITIES DETECTION
In this section, a Lesion-Guided Adaptive Graph Network
(LGAG-Net) is proposed for musculoskeletal abnormalities
detection, as shown in Fig. 2, and it consists of two modules:
Lesion-guided Recurrent Feature Sampling (LRFS) module
and Adaptive Graphsage Attention (AGA) module, which are
described as follows.

A. LESION-GUIDED RECURRENT FEATURE SAMPLING
MODULE FOR ABNORMAL REGIONS LOCATION
Abnormality detection in musculoskeletal radiographs is rou-
tinely implemented to act on the finger, wrist, elbow, forearm,
hand, shoulder, and humerus of the human skeletal system.
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(a) (b) (c) (d)

FIGURE 1. Examples of musculoskeletal radiograph: (a) and (b) show that there are other interfering organ tissues in the complicated backgrounds. (c)
and (d) show abnormal and normal elbows, respectively, but they are highly similar and difficult to distinguish.

However, the abnormal regions are small while other inter-
fering organ tissues are redundant for diagnosis, and some
abnormal and normal regions are relatively similar, leading to
confusion in musculoskeletal abnormality diagnosis. Inspired
by it, a Lesion-guided Recurrent Feature Sampling (LRFS)
module is devised to locate the musculoskeletal abnormal-
ity regions from radiographs, consisting of musculoskele-
tal regions segmentation, musculoskeletal feature extractor,
and recurrent sampling strategy, as shown in Lesion-guided
Recurrent Feature Sampling Module of Fig. 2, which are
described as follows:

1) Musculoskeletal Regions Segmentation
Precise musculoskeletal region segmentation results in abun-
dant and reliable node feature information for musculoskele-
tal graph construction. Here, a high-performance medical im-
age segmentation network, namely Swin-UNet [26], is used to
accurately depict the boundaries of the bones. Swin-UNet is a
semantic segmentation method that integrates residual skip-
connection and Transformer attention mechanism to aggre-
gate musculoskeletal regions, and especially it can focus on
skeletal abnormal areas for superior performance.

2) Musculoskeletal Feature Extractor
The musculoskeletal regions segmented by Swin-UNet are
used to excavate normality or abnormality information in
bone morphology to strengthen the diagnostic capability of
the proposed approach for clinical bone abnormality detec-
tion. Specifically, the feature maps generated from the Swin-
Unet are used as the predictive node features inmusculoskele-
tal radiographs. Therefore, different bone descriptors are pre-
sented as follows: finger degeneration; operative plate in the
forearm; screw fixation in the humerus; shoulder fractures;
external fixation in the wrist, as shown in Fig. 3.

3) Recurrent Sampling Strategy
The node matrix which contains representative feature vec-
tors plays a significant role in the performance of the model in
the graph convolutional network. However, features exacted

by specific methods are routinely redundant or insufficient. In
order to restrain such problems, a recurrent sampling strategy
is proposed to obtain the most representative features from
the feature exaction tools. Specifically, let matrix MϵRnxm

denotes the feature optimizationmatrix realized by a convolu-
tion operation. Then the node feature matrix Hj is calculated
by the formula:

H j
kxm = H j

kxnM
j
nxm (1)

where Hj
kxm denotes the optimized matrix HϵRkxm in the j-th

epoch.

B. ADAPTIVE GRAPHSAGE ATTENTION MODULE FOR
MUSCULOSKELETAL ABNORMALITY DIAGNOSIS
Another challenging factor for musculoskeletal abnormal-
ity detection is that the convolutional neural networks play
poor performance in modeling the abnormal dependencies
between different musculoskeletal radiographs, including the
finger, humerus, elbow, forearm, hand, shoulder, and wrist.
Meanwhile, the graph convolutional neural network has been
proven to be an effective tool for information modeling be-
tween different-type data. Moreover, constructing an intrin-
sic relation graph that reveals interactions between bones
is critical for bone abnormality detection, where each mus-
culoskeletal predictive feature maps form the nodes of the
smallest adjacent graph and edges denote the images are all
adjacent to each other. Motivated by these observations, the
Adaptive Graphsage Attention (AGA) module is designed
to diagnose bone abnormality in the abnormal bone regions,
where the adaptive graph attention module can aggregate the
information between adjacent nodes instead of learning the
attention weights in every node, as shown in Fig. 2. Next,
the general graph convolutional network is described, and
then the Adaptive Graphsage Attention (AGA) Module is
presented as follows.

1) Graph Convolutional Network
The graph convolutional network (GCN) is routinely used
to research irregular data structures in non-Euclidean space,
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FIGURE 2. Architecture of the proposed Lesion-Guided Adaptive Graph Network (LGAG-Net), where the Lesion-guided Recurrent Feature Sampling (LRFS)
module is first devised to segment the corresponding musculoskeletal abnormality regions, and then the Adaptive Graphsage Attention (AGA) module is
designed to carry out the bone abnormality detection.

such as knowledge graph [27], traffic forecasting [28], rec-
ommender system [29], computer vision [30] [31]. A graph
involved node feature X can be defined as

G = (V ,E ,X), (2)

where XϵRnxd contains n d-dimensional feature vectors, V
denotes the node set and E presents the edge set. An adja-
cency matrix AϵRnxn is generated based on the edge set E.
Let Hl = {h1, h2, . . . , hk}, hiϵRn represents the input node
features matrix of the l-th layer, where k is the number of
nodes, and n is the number of features in each node, the
typical implementation of graph convolution network [32] is
expressed as follows:

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2H lW l) (3)

where Ã = A+I , D̃ii = ΣjÃij is the normalized degree matrix,
W l is the weights in the l-th layer, and σ is the activation
function, where the ReLU is used in our experiments.

C. ADAPTIVE GRAPHSAGE ATTENTION MODULE

1) Musculoskeletal Graph Edge Construction

In the complicated bone graph, the potential interaction rela-
tionship between graph nodes is established based on human
unit SH. Firstly, we construct the smallest adjacent graph unit
SA in which the adjacencymatrixAS is generated according to
that all the images in the same file are adjacent to each other.
Secondly, a node feature vector in human unit SH is calculated
from the weighted average of all node features in the SA,
and the node adjacency matrix AH is produced by calculating
the category between the output feature maps from the Swin-
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(a) (b) (c) (d) (e)

FIGURE 3. Abnormality bones. (a) An abnormal finger with degenerative changes. (b) An abnormal forearm with the operative plate. (c) The screw
fixation of the humerus (d) Shoulder fractures (e) External fixation in wrist.

Unet.

2) Adaptive GraphSage

Representative feature vectors and edge relationships are
absolutely vital for subsequent information aggregation in
graph convolution networks, and various graph convolution
networks can be applied to establish adjacent graphs based
on node feature and edge information. In [32], it can learn
the graph information through aggregation functions in Eq. 3
and combines the neighbor’s node feature and the information
captured from other adjacent nodes. However, this graph-
constructing strategy cannot automatically assign appropriate
weights for features according to the relationship between
adjacent nodes. In other words, the information from its k-
hop neighbor nodes is aggregated into the node through the
connecting edges, which is unreasonable for the bone graph
because of the redundancy in the node feature.

Inspired by [33], an Adaptive Graphsage Attention (AGA)
module is proposed to learn the self-attention weights W
between all the adjacent node features. The learnable linear
transformation in l-layer form 3 can be expressed as follows:

H l = D̃− 1
2 ÃD̃− 1

2H l (4)

Instead of learning the self-attention weights in every node,
we tend to aggregate the information of features just between
adjacent nodes. We perform the self-attention on the nodes
using a shared attentional coefficient matrix W by computing
attention coefficients:

wi,j = f (hi, hj) (5)

where wi,j presents the interaction relationship degree of node
j’s features to node i, f(·) denotes the convolution operation
based on node features H. As the D̃ is the normalized degree
matrix, the self-attention coefficients between adjacent nodes
can be expressed as

WA = D̃− 1
2 ÃD̃− 1

2 ·W (6)

where · means the dot multiplication in the matrix. The soft-
max function is used to convert the WA matrix into W̃A by
normalizing the row coefficients:

wj =
exp(wj)∑
i
exp(wij)

(7)

where wj denotes the j column coefficients in i-th row, and
then the k-layer transform is presented as:

H l = W̃ lH l (8)

Finally, the perfect formula can be described as:

H l = W̃ l
SW̃

l
H W̃

l
EH

l (9)

where W̃ l
S denotes the deformable matrix of smallest adjacent

graph, W̃ l
H presents the deformable matrix of human unit, W̃ l

E
denotes the deformable matrix of node features.

3) Layer Information Fusion
The adaptive graph attention network is formed by stacking
multi-layer structures, and there exists information loss in
forwarding propagation. As reported by [34] that identity
mappings in residual networks are able to improve the gener-
alization of models, a residual attention module is proposed
to deal with the problem of information loss, and it can be
expressed as follows:

x l+1 = wx l + f (x l) (10)

where w denotes the self-attention coefficients, f (·) presents
convolution operation, x l presents the input of l-layer.

III. EXPERIMENTS AND RESULTS ANALYSIS
A. DATASET AND EVALUATION METRICS
The proposed approach is evaluated on the MURA dataset
[35], which consists of 14656 images taken from seven
different types of extreme musculoskeletal radiographs, as
recorded in Table 1. In this experiment, the dataset is split
into three folds for cross-validation, including 10259 training
images, 2932 validation images, and 1465 test images.
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To verify the effectiveness of the proposed LGAG-Net, Co-
hen’s kappa statistic is used to compare the results tested on
seven type of bone radiographs. Accuracy, recall, precision,
and F-score are used as evaluation metrics in comprehensive
comparison between typical networks, and they are defined
as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (11)

Precision =
TP

TP+ FP
, (12)

Recall =
TP

TP+ FN
, (13)

and
F1-score = 2× Precision× Recall

Precision+Recall
, (14)

where TP is the correctly classified abnormal bones, FP is
the wrongly predicted abnormal bones, FN is the correctly
classified normal bones, and FN is the wrongly predicted
normal bones. In addition, the kappa statistic score can be
defined as:

Kappa =
Accuracy− CAccuracy

1− CAccuracy
, (15)

where CAccuracy denotes the class accuracy, computed by

CAccuracy =

N∑
i=1

aibi

N 2
, (16)

in which ai is the actual number of samples for each category,
and bi is the number of samples predicted for each class.

B. IMPLEMENTATION DETAILS
The AMFA-Net is constructed by Pytorch 1.6.0 [36] on a
workstation with four NVIDIA GeForce GTX 1080Ti GPUs.
TheAdamoptimizer is initializedwith a learning rate of 1e−3,
and the CrossEntropy is regarded as the loss function. To
prevent over-fitting, dropout is set to 0.2 during training and
all models are trained for 100 epochs with a batch size of 8.
Moreover, all the node features are normalized by subtracting
the mean and dividing by its standard deviation channel-wise.

C. EXPERIMENTAL RESULTS
1) Comparison with State-of-the-Art
To prove the effectiveness of the proposed LGAG-Net, several
recent state-of-the-art methods are used for bone abnormality
detection, including MURA [35], CapsNet [1], and MSCNN-
GCN [25], and some classical deep learning models, which
are described as follows:

First, MURA [35] is a baseline model to detect and localize
abnormalities in deep learning, which takes as input one or
more views for the model. For the CapsNet [1] method, it has
shown promising features for musculoskeletal radiographs
abnormality detection with 10% higher kappa score than
Densenet169. Besides, the MSCNN-GCN, consisting of a
multi-scale convolution neural network (MSCNN) with fully

connected graph convolution network (GCN), achieves top
scores on both F1-score and kappa metric for the detection of
musculoskeletal abnormalities. Finally, some deep learning-
based networks are used, i.e., VGG19 [37], ResNet50 [38],
DenseNet161 [41], EfficientNet-b7 [40], MobileNetV2 [39]
are leveraged to train for comparative experiments. This
MURA dataset is split in the same way as [25] and the
recorded results from the paper are utilized for comparison,
and the experimental results are given in Table 2 and 3.
From Table 2 that we can see that the proposed LGAG-Net
is able to achieve the best outcomes, achieving the kappa
score of 0.836, 0.862, 0.812, 0.857, 0.884, 0.876, 0.957, on
finger, humerus, elbow, forearm, hand, shoulder, and wrist,
respectively. Besides, the average kappa score can be up
to 0.869, which is better than other methods. These ex-
cellent performance demonstrate the proposed can be used
as an effective tool for bone abnormality detection from
musculoskeletal radiograph. Furthermore, the LGAG-Net can
achieve advancements of 3.3% on the kappa score, compared
to the second best MSCNN-GCNmethods, validating that the
proposed LGAG-Net show higher anti-interference ability to
diagnose musculoskeletal abnormality based on graph con-
volution network (GCN). Finally, five classical deep learning
networks, i.e., VGG19 [37], ResNet50 [38], DenseNet161
[41], EfficientNet-b7 [40], MobileNetV2 [39] are tested on
the MURA dataset, and the results are listed in Table 3. It
can be found that the proposed LGAG-Net outperforms other
models, achieving the best performance of 87.81%, 91.73%,
86.67%, 89.13% and 86.84% on Accuracy, Precision, Recall,
F1-score, and Cohen âĂŹs kappa, respectively, achieving
significant improvements for VGG19 [37], ResNet50 [38],
EfficientNet-b7 [40], MobileNetV2 [39], demonstrating that
the proposed LGAG-Net is a feasible approach for bone
abnormality detection.

D. ABLATION STUDIES
1) Recurrent sampling strategy
A recurrent sampling strategy is proposed to deal with the
problem of redundancy or insufficiency in features exacted
by deep learning models. Compared with general features
exaction methods, such as ResNet50, the recurrent sampling
strategy is able to screen valuable information by convolution
operationmatrix. Comparative results are recorded in Table 4,
it can be inferred that the proposed method achieves state-of-
the-art performance on accuracy and Cohen’s kappa score.

2) Adaptive GraphSage
As illustrated in Section 3.3, in order to assign appropriate
weights for information aggregation between node features,
we propose a self-attention mechanism on the adjacent node.
Experiments of using different graph edge configuration
methods are shown in Table 4, where GC and AGC denote
graph convolution and adaptive graph convolution method
respectively. Compared with the result from GC in the first
row, utilizing AGC achieves improvements from 82.7% to
84.8% for the patch accuracy, as well as the Cohen’s kappa
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TABLE 1. The characteristics of the training and validation sets for the MURA dataset [35]

Study
Train Validation

Total
Normal Abnormal Normal Abnormal

Elbow 1,094 660 92 66 1,912
Finger 1,280 655 92 83 2,110
Hand 1,497 521 101 66 2,185
Humerus 321 271 68 67 727
Forearm 590 287 69 64 1,010
Shoulder 1,364 1,457 99 95 3,015
Wrist 2,134 1,326 140 97 3,697
Total 8,280 5,177 661 538 14,656

TABLE 2. Kappa statistic score obtained by MURA method, CapsNet, MSCNN-GCN and LGAG-Net

Image MURA [35] (95% CI) CapsNet [1] (95% CI) MSCNN-GCN [25] (95% CI) LGAG-Net (95% CI)

Finger 0.389 (0.446, 0.332) 0.735 (0.959, 0.512) 0.744 (0.806, 0.682) 0.836 (0.826, 0.846)
Humerus 0.600 (0.642, 0.558) 0.754 (0.896, 0.612) 0.843 (0.936, 0.749) 0.862 (0.851, 0.873)
Elbow 0.710 (0.745, 0.674) 0.733 (0.754, 0.713) 0.774 (0.831, 0.717) 0.812 (0.801, 0.823)
Forearm 0.737 (0.766, 0.707) 0.785 (0.795, 0.775) 0.837 (0.912, 0.762) 0.857 (0.837, 0.877)
Hand 0.851 (0.871, 0.830) 0.835 (0.856, 0.881) 0.855 (0.897, 0.814) 0.884 (0.872, 0.886)
Shoulder 0.729 (0.760, 0.697) 0.856 (0.876, 0.836) 0.862 (1.000, 0.678) 0.876 (0.856, 0.896)
Wrist 0.931 (0.940, 0.922) 0.908 (0.917, 0.898) 0.936 (0.948, 0.924) 0.957 (0.943, 0.971)
Average 0.705 (0.700, 0.710) 0.801 (0.865, 0.738) 0.836 (0.911, 0.761) 0.869 (0.855, 0.881)

TABLE 3. Performance comparison of CNN models trained on the MURA dataset

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Cohen’s kappa (%)

VGG19 [37] 81.95 82.70 81.61 81.71 63.61 (62.79, 64.43)
ResNet50 [38] 81.64 82.40 81.29 81.39 62.98 (62.15, 63.80)
MobileNetV2 [39] 81.95 82.84 81.58 81.68 63.59 (62.77, 64.41)
EfficientNet-b7 [40] 81.86 82.09 81.65 81.73 63.52 (62.70, 64.34)
DenseNet161 [41] 83.27 83.52 83.06 83.15 66.35 (65.56, 67.14)
LGAG-Net 87.81 91.73 86.67 89.13 86.84 (85.51, 88.17)

score from 83.1% to 85.2% because the self-attention module
can assimilate effective information from adjacent nodes. In
addition, the accuracy is further improvedwith 1.1% using the
proposed graph edge configuration while node features are
obtained from the recurrent sampling strategy. This is because
it guarantees that the valuable feature information from the
adjacent node can be transmitted to the local node.

3) Layer information fusion
A residual network [38] is proposed to deal with the notorious
problem of vanishing/exploding gradients, that is, there exists
information loss in forwarding propagation. Inspired by it,
a residual attention module is embedded into the network
structure layers and the comparative experimental results are
recorded in Table 4. Graph convolution network embedded
with residual attention module achieves the highest results,
87.8% for classification accuracy and 86.84% for Cohen’s
kappa score, which demonstrates the residual attention mod-
ule is an informative tool for capturing the corresponding
contextual information in bone abnormality regions.

IV. CONCLUSIONS
In this paper, a Lesion-Guided Adaptive Graph Network
(LGAG-Net) is proposed for bone abnormality detection
from musculoskeletal radiograph, where the lesion-guided
recurrent feature sampling module is first designed to local-
ize the corresponding musculoskeletal abnormality regions,
and then the adaptive graphsage attention module is de-
veloped to perform bone abnormality detection on the lo-
cated musculoskeletal abnormality regions. Experiments on
the MURA dataset show that the proposed LGAG-Net can
achieve the best performance on bone abnormality detection,
further maintaining musculoskeletal health and preventing
complications requires encouragement of physical activities
to promote physical fitness and normal neuromuscular devel-
opment.
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